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1. INTRODUCTION

Let G be a connected algebraic group over an algebraically closed field. A basic
question in representation theory asks for the dimensions and characters of the
simple rational G-modules. Structure theory of algebraic groups allows one to
assume that G is reductive. If the ground field is of characteristic zero, then the
theory runs parallel to the well-understood theory for compact Lie groups. In
positive characteristic p, Steinberg’s tensor product theorem, the linkage principle
and Jantzen’s translation principle reduce this to a question about finitely many
modules which occur in the same block as the trivial module (the “principal block”).
For these modules Lusztig has proposed a conjecture if p > h, where h denotes the
Coxeter number of the root system of G [LusSO} He conjectures an expression for
the characters of the simple modules in terms of affine Kazhdan-Lusztig polynomials
and the (known) characters of standard modules.

Lusztig’s conjecture has been shown to hold for p large (without an explicit
bound) thanks to the work of Andersen, Jantzen and Soergel [AJS94], Kashi-
wara and Tanisaki [KT95,KT96], Kazhdan and Lusztig [KL93|KL94al [KT.94b]
and Lusztig [Lus94]. Alternative proofs for large p have been given by Arkhipov,
Bezrukavnikov and Ginzburg [ABGO04], Bezrukavnikov, Mirkovi¢ and Rumynin
[BMROSIBM13] (in the broader context of Lie algebra representations) and Fiebig
[Fiell]. Fiebig also gives an explicit enormousd? bound [Fiel2] and establishes the
multiplicity one case [Fiel0]. For any fixed G and “reasonable” p very little is
known: the case of rank 2 groups can be deduced from Jantzen’s sum formula, and
intensive computational efforts have checked the conjecture for small p and certain
groups, all of rank < 5. There is no conjecture as to what happens if p is smaller
than the Coxeter number.
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1Lusztig first proposed his conjecture under a restriction equivalent to p > 2h — 3 (see [Jan08]
Section 4] and [Jan03| Section 8.22] for a discussion). Kato [Kat85] Section 5] proved that if
Lusztig’s conjecture holds for restricted weights, then it holds for all weights in the Jantzen region
(Lusztig’s original formulation). Since Kato’s work p > h has been widely regarded as a realistic
bound [Jan08| Section 4].

2For example, at least of the order of p > n"* for SLy41.
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In [Soe00] Soergel introduced a subquotient of the category of rational represen-
tations, dubbed the “subquotient around the Steinberg weight,” as a toy model for
the study of Lusztig’s conjecture. Whilst the full version of Lusztig’s conjecture is
based on the combinatorics of alcoves and the affine Weyl group, the subquotient
around the Steinberg weight is controlled by the finite Weyl group and behaves like
a modular version of category O. Lusztig’s conjecture implies that the multiplicities
in the subquotient around the Steinberg weight are given by finite Kazhdan-Lusztig
polynomials. Thus Lusztig’s conjecture implies that “the subquotient around the
Steinberg weight satisfies the Kazhdan-Lusztig conjecture.”

In [Soe00] Soergel goes on to explain how the subquotient around the Steinberg
weight is controlled by Soergel bimodules. This allows him to relate this category
to the category of constructible sheaves on the Langlands dual flag variety, with
coefficients in the field of definition of GG. Using Soergel’s results and the theory
of parity sheaves [JMW14], one can see that a part of Lusztig’s conjecture for
p > h is equivalent to the absence of p torsion in the stalks and costalks of integral
intersection cohomology complexes of Schubert varieties in the flag variety. It has
been known since the birth of the theory of intersection cohomology that 2-torsion
occurs in type Bs, and 2- and 3-torsion occurs in type Gs. For over a decade no
other examples of torsion were known. In 2002 Braden discovered 2-torsion in the
stalks of integral intersection cohomology complexes on flag varieties of types Dy
and A; (see Braden’s appendix to [WB12]). In 2011 Polo discovered 3-torsion in
the cohomology of the flag variety of type Fg and n-torsion in a flag variety of type
Aygn—1. Polo’s (as yet unpublished) results are significant, as they emphasize how
little we understand in high rank (see the final lines of [Wil12]).

In general these topological calculations appear extremely difficult. Recently
Elias and the author found a presentation for the monoidal category of Soergel
bimodules by generators and relations [EW], building on the work of Libedinsky
[Lib10], Elias-Khovanov [EK10] and Elias [ELiL6]. One of the applications of this
theory is that one can decide whether a given intersection cohomology complex has
p-torsion in its stalks or costalks (the bridge between intersection cohomology and
Soergel bimodules is provided by the theory of parity sheaves)ﬁ The basic idea is
as follows: given any pair (w,x), where z,w € W and w is a reduced expression
for w € W, one has an “intersection form,” an integral matrix. The stalks of
the intersection cohomology complex corresponding to w are free of p-torsion if no
elementary divisors of the intersection forms associated to all elements x < w are
divisible by p. In principle, this gives an algorithm to decide whether Lusztig’s
conjecture is correct around the Steinberg WeightE This algorithm (in a slightly
different form) was discovered independently by Libedinsky [Lib15].

The generators and relations approach certainly makes calculations easier. How-
ever, this approach still has its difficulties: the diagrammatic calculations remain
extremely subtle, and the “light leaves” basis in which the intersection form is calcu-
lated depends on additional choices which seem difficult to make canonical. Recent

30ne can also perform this calculation using the theory of moment graphs [FW14]. However,
the computations using generators and relations are generally much simpler.

40ne can extend this to the full version of Lusztig’s conjecture by using a certain subset of
the affine Weyl group, thanks to the work of Fiebig [Fiell]. Although it seems likely that the
converse holds, at present one knows only one implication: the absence of p > h torsion implies
the truth of Lusztig’s conjecture in characteristic p.
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SCHUBERT CALCULUS AND TORSION EXPLOSION 1025

progress in this direction has been made by Xuhua He and the author [HW], who
discovered that certain entries in the intersection form (which in some important
examples are all entries) are canonical and may be evaluated in terms of expressions
in the nil Hecke ring.

The main result of this paper may be seen as an example of this phenomenon.
We observe that one may embed certain structure constants of Schubert calculus
for SL,, as the entries of the 1 x 1 intersection forms associated to pairs (w,x)
in (much) higher rank groups. In this way one can produce many new examples
of torsion which grow exponentially in the rank. For example, using Schubert
calculus for the flag variety of SLs we observe that the Fibonacci number Fj i
occurs as torsion in SLg;y5. We deduce that there is no linear function f(n) of
n such that Lusztig’s conjecture holds for all p > f(n) for SL,. In the Appendix
(by Kontorovich, McNamara and the author) we apply recent results of Bourgain-
Kontorovich [BK14] in number theory to deduce that the torsion in SL, grows
exponentially in n.

Finally, there is a related conjecture due to James [Jam90] concerning the simple
representations of the symmetric group in characteristic p. When combined with
known results about the decomposition numbers for Hecke algebras at roots of
unity, the James conjecture would yield the decomposition numbers for symmetric
groups S, in characteristic p > /n. In the final section of the paper we explain
why our counter-examples to Lusztig’s conjecture for SLy with p > (g) imply that
the James conjecture is incorrect for Sp({;’)' (Parts of this section were explained

to me by Joe Chuang.)

1.1. Main result. Let R = Z[z1,x9,...,x,] be a polynomial ring in n variables.
We regard R as a graded ring with degz; = 2 (we double degrees for reasons
coming from Soergel bimodules). Let W = S,, denote the symmetric group on n
letters viewed as a Coxeter group with simple reflections S consisting of the simple
transpositions. Then W acts by permutation of variables on R. Let s1,...,8,-1
denote the simple transpositions of S;,, and let ¢ denote the corresponding length
function. Let 0; denote the i*" divided difference operator,
a(f) = S sl €R.
Ti — Tit1
For any element w € S, we obtain well-defined operators 0,, = 0;, - - - 0;,, where
w =8, --- i, is a reduced expression for w in the generators S.
Consider elements of the form

a

N R N (R D R )

K = Oy o

m

where w; € S, are arbitrary. We assume that > ¢(w;) = a +b where a = > a; and
b=>_b; so that k € Z for degree reasons. Given a subset I C {1,...,n—1} let wy
denote the longest element in the parabolic subgroup (s;);cr. Our main theorem
is the following.

Theorem 1.1. Suppose that n > 1 and a,b > 0 are as above, and that k # 0.
Then there exists a reduced expression w for an element of Sqyn+b Such that the
intersection form in degree zero of w at wyr, where I = {1,2,...,a+n+b—1}\
{a,a+n}, is the 1 x 1 matriz ((—1)*k).
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1026 GEORDIE WILLIAMSON

The construction of the expression w is explicit and combinatorial based on
Wi, .oy Wi, A1, 0y and by, ..., b,,. We will also see that for certain choices of
a;, b;, w; the prime factors of the numbers k grow exponentially in h = n + a + b.

1.2. Schubert calculus. We explain why “Schubert calculus” occurs in the title.
Consider the coinvariant ring C for the action of W = S,, on R. That is, C is
equal to R modulo the ideal generated by W-invariant polynomials of positive de-
gree. The Borel isomorphism gives a canonical identification of C' with the integral
cohomology of the complex flag variety of SL,,.

The divided difference operators d,, act on C, as do elements of R. The coin-
variant ring C' has a graded Z-basis given by the Schubert classes {X,, | w € S}
(normalized with X,,, = x?71:6372 <o &1 and Xy = Owwy Xuw, ). We have

Xs-w if % )
(1.1) 9 Xy = 4 e Mo S W
0 otherwise.
The action of multiplication by f € R of degree 2 is given as follows (the Chevalley
formula):
(1.2) fXw= ) (o)) X

teT
£(tw)=e(w)+1
(Here T denotes the set of reflections (transpositions) in S, and if ¢t = (¢,5) € T
with ¢ < j, then o = &; — &; where {¢;} is the dual basis to z1,...,z,.)

Now consider the numbers one may obtain as coefficients in the basis of Schu-
bert classes by multiplication by x; and z,, and by applying Demazure operators,
starting with Xjq. Because 0, X,-1 = Xijq = 1, any coefficient of any Schubert
class that we obtain in this way can be realized as the coefficient of X;q. Now The-
orem [[1] says that any such number occurs as torsion in SL, 445 where a (resp.
b) counts the number of times that one has applied the operator of multiplication
by x1 (resp. x,).

1.3. Note to the reader. This paper is entirely algebraic in that it relies only on
Soergel (bi)modules, their diagrammatics and connections to representation theory
(due to Soergel). Except in remarks, we neither explain nor use the relation to
constructible sheaves and torsion. An alternative geometric proof of the main
theorem (discovered a year after this paper was first circulated) is given in [Wil].

1.4. Structure of the paper.

Sections 2H4: Contain background on Soergel (bi)modules and intersection
forms.

Section B We prove the main theorem.

Section [6F We use our main theorem for n = 4,5 to give examples of torsion.

Section [7k We explain the connection to the Lusztig conjecture.

Section [Bf We explain the connection to the James conjecture.

Appendix [A} We (AK, PM and GW) prove the exponential growth of
torsion.
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SCHUBERT CALCULUS AND TORSION EXPLOSION 1027

2. SOERGEL BIMODULES

In the first three sections we recall what we need from the theory of Soergel
(bi)modules and intersection forms. This paper is not self-contained. The main
references are [S0e90l[Soe92l[Soe07,[EKTOLELL6,EW].

Fix n > 1 and let W = §,, denote the symmetric group on n letters. Throughout
we view W as a Coxeter group with simple reflections S = {(3,i+ 1) | 1 <i < n},
and we denote by £ its length function and < its Bruhat order. Let H denote the
Hecke algebra of (W, S) over Z[v*!] normalized as in [Soe97]. Let {H,},ew and
{H,}zew denote its standard and Kazhdan-Lusztig bases.

Fix a field k of characteristic p > 2, and let R =k[z1,...,2,]. Then W acts by
permutation of variables on R (graded algebra automorphisms). The reader may
easily check (see, e.g., [Lib15, Lemma 7.4]) that this action is reflection faithful in
the sense of [Soe07, Definition 1.5]. Given s € S we denote by R® C R the invariant
subring.

Given a Z-graded object (vector space, module, bimodule) M = @ M? we let
M (j) denote the shifted object: M(j)* = M.

The category of Soergel bimodules B is the full additive monoidal graded
Karoubian subcategory of graded R-bimodules generated by By = R ®@ps R(1)
for all s € S. In other words, the indecomposable Soergel bimodules are the shifts
of the indecomposable direct summands of the Bott-Samelson bimodules

B, = Bs, ®g Bs, ®r -+ @R Bs,, (m)

for all expressions w = s$182---Sy, in S. For any w € S, let B, denote the
indecomposable self-dual Soergel bimodule which occurs as a summand of B,, for
any reduced expression w for w and is not isomorphic to a summand of B, for any
shorter w’. The set { By, }wew coincides with the set of all indecomposable Soergel
bimodules, up to shifts in the grading [Soe(7].

Remark 2.1. In [Soe07] Soergel develops the theory of Soergel bimodules for a
reflection faithful representation V' over an infinite field of characteristic # 2. We
have remarked above that the reflection faithful hypothesis is always satisfied. The
assumption that k is infinite is made in order to identify R with the polynomial
functions on V. However, all the results of [Soe07] hold if one simply defines R to
be the symmetric algebra on V*, as we do. Alternatively, the reader may assume
that k is infinite throughout.

We denote by [B] the split Grothendieck group of B (i.e., [B] = [B'] + [B"] if
B = B'® B"). We make [B] into a Z[vT!] algebra via v[M] := [M(-1)], [B][B] :=
[B®gr B’]. In [Soe07] Soergel proves that there exists a unique isomorphism of
Z[v*']-algebras

ch:[B] 5 H
such that ch(R(—1)) = v and ch(Bs) = H, for all s € S.

Remark 2.2. Under our assumptions B,, may be realized as the equivariant inter-
section cohomology of the indecomposable parity sheaf [JMW14] of the Schubert
variety labelled by w in the flag variety [FieO8[FW14]. In particular, if k is of char-
acteristic zero, then B,, is the equivariant intersection cohomology of a Schubert
variety. In fact, the whole theory of Soergel bimodules can be seen as providing an
algebraic description of the Hecke category.
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1028 GEORDIE WILLIAMSON

Set PH, := ch(B;) € H. Then {PH_},cw is a basis which depends only on the
characteristic p of k, the p-canonical basis (see [Will2|[JTW]). Let us write

(2.1) H, = Z hy,oHy, PH, = thy,zHya PH, = Zpay,zﬂy’
for polynomials h, . € Z[v] and Ph, ,,Pa, , € Zv*']. The polynomials h, , are
(normalizations of) Kazhdan-Lusztig polynomials and have non-negative coeffi-
cients. The polynomials Pk, ;,Pa, , also have non-negative coefficients [JWI, Propo-
sition 4.2].

Throughout this paper we will say that p occurs as torsion in SL,, if there exists
x € W such that PH_ # H .

3. SOERGEL MODULES

In this section we assume that p > n, so that the results of [Soe00] are available.

Let RY C R denote the W-invariants of positive degree, (RY') the ideal they
generate and C' = R/(RY) the coinvariant algebra, which inherits an (even) grading
and a W-action from R. Let C denote the category of Soergel modules consisting
of all

Dy :=C ®@cem ++ Qcs2 C @cer k(m)

for expressions w = $183- -8y, in S, together with their shifts, direct sums and
summands inside the category of graded C-modules. (Note the order of tensor
factors.)

For a reduced expression z for x let D, denote the unique summand of D,
which does not occur as a summand of D, for any shorter expression z’. The set
{D; | z € W} is well-defined and gives a set of representatives for the isomorphism
classes of indecomposable Soergel modules (up to shift) [Soe00, Theorem 2.8.1].

How to go from Soergel bimodules to Soergel modules? Given a right R-module
M which is killed by Rf the canonical map M®Qps R - M ®csC is an isomorphism.
Hence we have an isomorphism of graded right C-modules,

kQr RRprs RRgt - Qru REKkR®c C Rcs C Q¢ -+ Qcu C.

It follows that if we compose the functor M — k® g M with the equivalence between
right and left C-modules (C' is commutative), we obtain a functor

c:B—=C
with ¢(By) = Dy.
Lemma 3.1. ¢(B,) 2 D,.
Proof. Step 1: We claim that the natural map provides an isomorphism,
(3.1) k ® g Homp(B,, By) = Homg (¢(By), ¢(By)).

(Here and in the rest of the proof, Hom® denotes the graded module of morphisms
of all degrees.) By repeated application of the biadjunction (®gBs(1), ®rBs(1))
we may assume that z is the empty sequence. The map ¢ — ¢(1) gives a canonical
identification of Homy(R, B,) with the submodule of invariants

LiaBy :={m € By | rm = mr for all r € R}.

Now I'iq By is the first step in the filtration P<oBy Cl'<1By C -+ considered after
the proof of [Soe(T7, Proposition 5.7], and from [Soe07) Proposition 5.9] we deduce
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SCHUBERT CALCULUS AND TORSION EXPLOSION 1029

that the subquotients of this filtration are free as left R-modules. Thus I'iy By, is a
summand of By as a left R-module. The injectivity of (B:I]) follows. B

We deduce the surjectivity of BI) by showing that both sides have the same
(finite) dimension. If y = sy52--- 8y, let us write H, H, ---H, =3 g,H, for
some g, € Z[v*!]. In the notation of [Soe07] we have, by [SoeQ7, Proposition 5.7],

> (By: Vialm])v™™ = gia

meZ
and (R : Az[m]) = dz:a0m,0 (Kronecker’s §). Now we apply [Soe07, Theorem
5.15] to deduce that Hom®(R, B,) is free of rank giq(1) over R. On the other
hand, if (—, =) : ZW x ZW — Z denotes the pairing with (z,y) = 0z,y, then by
[Soe00, Lemma 2.11.2], we have

dim Homg, (k, ¢(B,)) = (id, Y _ g=(1)z) = gia(1).

The surjectivity follows.

Step 2: Because ¢(B,,) = D,, we can appeal to the defining properties of B, and
D, to see that it is enough to show: if B is indecomposable, then so is ¢(B). By
the previous step End¢(¢(B)) = k ® g Endp(B), and so Ende(c(B)) is a quotient
of the local ring Endg(B). Now the result follows as a non-zero quotient of a local
ring is local. ([l

Remark 3.2. The above proof uses representation theory, via [Soe00, Lemma 2.11.2].
Soergel has found an algebraic proof of the above lemma, valid for any finite Coxeter
group (unpublished).

Denote by f the functor of forgetting the grading on a C-module, and let fC
denote the essential image of C under f. By [Soe00, Theorem 2.8.1], the indecom-
posable objects in fC are precisely the {fD,}. We denote by [fC], [C] the split
Grothendieck groups of fC and C, respectively. Because C is graded, [C] is natu-
rally a Z[v*!]-module via v[M] := [M(—1)] as above. These observations, together
with the above lemma, show that we have a commutative diagram

e —L— g —=

3

7Sy,

[B]

~ ~

ch

1+w H B H

where 3 is defined by
(3.2) B(fDy) = ch(By)jp=1 = pﬂwh}:l'

4. INTERSECTION FORMS

Let B denote the category of Soergel bimodules defined above. Given any ideal
I CcW (ie,xz <y €l = xacl)wedenote by By the ideal of B generated by
all morphisms which factor through a Bott-Samelson bimodule B,, where y is a
reduced expression for y € I. B
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1030 GEORDIE WILLIAMSON

Given z € W we denote by B=® the quotient category B/By, where %z :=
{yly # z}. We write Homs, for (degree zero) morphisms in B=%. All Bott-
Samelson bimodules B, corresponding to reduced expressions z for  become canon-
ically isomorphic to B, in B2%. We have Ends,(B,) = k. Given any expression w
in S the intersection formﬁ is the canonical pairing
I]k

x

w,a P Hom>y (B (d), By) X Hom>,(By, Bx(d)) — End>.(B:(d)) = k.
The following is standard (see, e.g., [JMW14l Lemma 3.1] for a similar situation).

Lemma 4.1. The multiplicity of By(d) as a summand of B, equals the rank of
I;HE( w,d*

In the papers [EKI0,[EW] the category of Soergel bimodules is presented by
generators and relations. More precisely, a diagrammatic category is defined by
generators and relations, and it is proved that its Karoubi envelope is equivalent to
Soergel bimodules, as a graded monoidal category. We will not repeat the rather
complicated list of generators and relations here; see [EWL Section 1.4] or [HW]
Section 2.7].

In the category D the intersection form is explicit and amenable to computation:
see [HW] Section 2.10] for examples. From the diagrammatic approach it is clear
that Igﬂg"w’d is defined over Z, in the sense that there exists an integral form I 4 4

on a pair of free Z-modules such that Iﬂg,y,d = Iy w,a ®z k for any field k.

Corollary 4.2. The following are equivalent:

(1) The indecomposable Soergel bimodules in characteristic p categorify the
Kazhdan-Lusztig basis. That is, PH, = H,, for allx € W.

(2) For all (reduced) expressions w, all x € W and all m € Z the graded ranks
of In.w,m ®z Q and of I wm @z k agree.

(3) For all reduced expressions w and all x € W the graded ranks of I w0 ®zQ
and of I .0 ®z k agree.

Proof. Soergel’s theorem [Soe01l, Lemma 5] implies that the indecomposable Soergel
bimodules categorify the Kazhdan-Lusztig basis if k is of characteristic zero (see
[EWT4] for an algebraic proof of this fact). Now Lemma [Tl says that (2) holds if
and only if B,, decomposes the same way over Q as it does over k. Hence (1) and
(2) are equivalent and (1) implies (3).

It remains to be seen whether (3) implies (1). We show the contrapositive. So
assume that (1) is not satisfied, and let w be of minimal length such that PH  #
H,. For any s € § with ws < w, B, is a summand of B,,sBs;. By our minimality
assumption ch(Bys) = H,,, and hence ch(BysBs) = H,H, = > g, H, for some

2L ws»

9z € Z>o. Hence ch(B,,) =PH,, = > Pay ,H, with Pa, ,, € Z>¢. By Lemma 1]

5The terminology “intersection form” comes from geometry: in de Cataldo and Migliorini’s
Hodge theoretic proof of the decomposition theorem, a key role is played by certain intersection
forms associated to the fibers of proper maps [dCMO02I[dCMO05]. In our setting, these intersection
forms are associated to the fibers of Bott-Samelson resolutions of Schubert varieties. The relevance
of these forms for the study of torsion in intersection cohomology was pointed out in [JMW14].
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SCHUBERT CALCULUS AND TORSION EXPLOSION 1031

if z < w is such that Pay , # 0, then the ranks of I, 0 ®z Q and I , o ®zk differ,
for any reduced expression w for w. Thus (3) = (1). O

Remark 4.3. The intersection form and the above proposition are some of the tools
used by Fiebig to establish his bound [Fiel2].

5. PROOF OF THE THEOREM

Let W denote the symmetric group on {1, 2, ..., a+n+b} with Coxeter generators
S ={s1,82,..., Satntb—1} the simple transpositions. Given a subset I C S let W;
denote the corresponding standard parabolic subgroup and wy its longest element.
Consider the sets

A= {81, 8250 sa*l}, M = {Sa+1, cee 3a+n71}; B = {3a+n+1a ceey Sa+n+b71}~

Then W4 (resp. Wy, resp. Wg) is the subgroup of permutations of {1,...,a}
(resp. {a+1,...;,a+n}, resp. {a+n+1,...,a+n+0b}).

We use the notation of Section [T except we shift all indices by a. That is,
we regard S, as embedded in S,y,+, as the standard parabolic subgroup Wjy,.
We rename R = Z[x1,...,Tqtn+s) and write a; = ; — x;41 for the simple root
corresponding to s;. Fix

o a b Am—1 bm_1 ay by
(51) K= awm, (l'azrnlxain Win —1 (anrl Totn " 8101 (xa+1xa+n) e ))3
which we assume is a non-zero integer. (Now wy, ..., w,, € Wy, and the fact that

Kk is a non-zero integer implies that > ¢(w;) = a + b.)

We now perform some preliminary simplifications of the right hand side of (5.1)).
By replacing each xiﬁrle;ﬁrn with 23’ | Oiq fo_n we may assume that for all 7, either
a; or b; is zero. Let M’ = M \ {sat1,Sa4n—1}. If w € Warii{sasy, then Oy
commutes with the operator of multiplication with x,,. Thus if a; is zero, then
we may assume that w; is minimal in its coset w; Wy, ,,y- Similarly, if b; is
zero, then we may assume that w; is minimal in its coset w;Wyrugs, ., 3. From
now on we assume that the right hand side of (&) has been simplified in this way.
Finally, the minimal coset representatives of War/Wapys, +n_1} are the elements

id, 8411, Sa428at1; -+ Satn—18atn—2"""Sa+25a41-
Similarly, the minimal coset representatives of Wy /Wiy, .} are the elements
id, Sa+n—1, Sa+n—28a+n—1, -+, Sa+1Sa+2 """ Sa+n—2Sa+n—1-

Thus each w; belongs to the first (resp. second) list if b; = 0 (resp. a; = 0).

Fix a reduced expression w,, for wys and reduced expressions w, for each w;.
(In fact, following the reductions of the previous paragraph each w; has a unique
reduced expression.) Let w be the sequence

where

Uy = (Sa U Sa—al-i-l) ce (Sasa—l)(sa)

QQ = (sa e Sa7a17a2+1) e (Sa e saialil)(sa .o 'Safal)

Uy, = (Sa ce81) e (8q e Safa17~~-fam7171)(5a CSa—ay——am_1)
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1032 GEORDIE WILLIAMSON

(subscripts fall by 1 within each set of parentheses, and s, occurs a; times in w;)
and

vy = (Sa-l-n e Sa+n+b1—1) T (Sa+n5a+n+1)(5a+n)

Vg = (Satn - 5a+n+b1+b2—1) o (Sagn 5a+n+b1+1)(5a+n t 5a+n+b1)

Uy = (Satn " Satntb—1) " (Satn *** Satntbi+-tbp_1)

(subscripts rise by 1 within each set of parentheses, and s, occurs b; times in v;).

Remark 5.1. The sequence w,, - - - uyu; (resp. v,, - -vyv;) is a reduced expression
for the longest element of Wy} (resp. Wi, yup). If we denote by u; (resp.
v}) the expression obtained from wu; (resp. v;) by deleting every occurrence of s,
(resp. Satn), then u! ---ubu) (resp. v}, ---vhv}) is a reduced expression for the
longest element of W, (resp. Wpg).

Example 5.2. We give a real-life example. We take n = 4 and consider the
operator F : f s Oo3(x3(01(x1f))) on Z[xy, z2, 23, 74] (We write Oz := 0203). In
the next section we will see that F' is a “Fibonacci operator”; in particular,

O1F® (1) = D123(2301 (w1023 (2301 (w1023(2301 (27)))))) = 3.
In the notation of Section [[LI] we have wy = w3 = ws = S$1, Wo = Wy = S$283,
w62515253,a1:2,a3:a5:1,a2:a4=a6:0,b1=b3:b5:Oand
bo = by =bg = 2. Hence a = 4,0 = 6 and a +n + b = 14. We can depict w as

follows:
A M B

3 wy

] 2] Uy

\ | wy
S]] e

<] w,

| 7% Us
\ Ws

Uy

Wy
Us
Ws

=
ST s

The rest of this section will be occupied with the proof of the following theorem.

Y‘

IS

Theorem 5.3. The degree zero intersection form of w at waunmup s the 1 x 1-
matriz ((—1)%).

In the proof we will need the notion of subexpression and defect together with
the main result of [HW]. Fix a word y = s;, - -+ s;,, in S. A subexpression of y is

a sequence € = e - -- e, with ¢; € {0,1} for all i. We set Yo = sy s cw.
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SCHUBERT CALCULUS AND TORSION EXPLOSION 1033

Any subexpression e determines a sequence Yo, y1,...,Ym € W via yo :=id, y; :=
€ —j . . . .
imill Jyj—1 for 1 <4 < m (so y, = y2). Given a subexpression e we associate a
mt1—j

sequence d; € {U, D} (for Up, Down)_via

d. — U if Si;Ym—j > Ym—j,
I D if si,Ym—j < Ym—j-

Usually we view e as the decorated sequence (dieq,...,dnen). The defect of e is
df(e) := |{i | die; = UO}| — |{i | die; = DO}|.

Remark 5.4. See [EW, Section 2.4] for examples and motivation. We warn the
reader that in this paper we work from right to left to define the defect, rather than
from left to right as in [EW] Section 2.4] and [HW] Section 2.3]. This change of
conventions is necessary to have the operators 0; act on polynomials on the left.
One may easily pass between the two possible choices via the symmetry on Soergel
bimodules which interchanges left and right actions. (In the diagrammatic language
of [EW] this corresponds to flipping diagrams about the y-axis.)

Recall that the nil Hecke ring N H is defined to be the algebra generated by R
and symbols §; for each s; € S, and subject to the relation 2 = 0 for all s; € S,
the braid relations and the nil Hecke relation

0 f = St(f)(sz + 3z(f) for all s; € S and f € R.

As left R-modules NH is free with basis {Jy }wew, where 0, := d;, - - - 0;, for any
reduced expression w = s;, - - §;,. The grading on R extends to a grading on NH
with degd,, = —2¢(w) for all w € W.

Equipped with this notation we can now give the proof.

Lemma 5.5. w is reduced.

Proof. Let us fix an element z € W where Q = {sp, Spt1,...,8¢—1,54} (for some
p,qgwithl <p<g<a+n+b—1)and areduced expression z for . Then for any
7 the expressions

8;85_1-"-Sp—12 and 8;8j41-"-Sq41Z

are reduced. (For example, one can write a formula for how the displayed elements
acton 1,2,...,a+n+bin terms of z, and verify that their lengths differ from ¢(z)
by j —p+2 (resp. ¢ — j + 2) by counting inversions. It follows that the lengths
of the displayed expressions agree with the lengths of the underlying elements, and
thus they are reduced.)

From the definition of w it follows that there exists a sequence of expressions
0 ==xy,2q,...,2, = w such that each z; is obtained from z, ; by the procedure of
the previous paragraph. Thus w is reduced as claimed. O

Write w = s;, -+ 54,

Lemma 5.6. Any subexpression e of w with w® = waumup has e; = 0 if s;; €
{5a:8a4n} and e; =1 if s;, € AUB.

Proof. Let e denote a subexpression of w with w¢ = waunmus-

Any expression y for w, contains a subsequence of the form s, 18, 2---$1
(think about what happens to 1 € {1,...;a+n+0b}). In w, s; occurs only once.
To the left of s; there is only one occurrence of s,_1, s4_2, etc. We conclude that
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1034 GEORDIE WILLIAMSON

the restriction of e to (sgSq—1---5251) in u, is equal to (01---11), where ¢ is the
maximal index with u; # (). Now any expression for w4 starting in s,_1---s;
has to contain a subsequence to the right of the form s,_1 - - - so (think about what
happens to 2 € {1,...,a+n+b}). Continuing in this way we see that the restriction
of e to each u; has the form

(01---1)---(01---1)(01---1)

(with the same bracketing as in the definition of each w;). Similar arguments apply
to each v;, and the result follows. (]

Lemma 5.7. There is a unique subexpression e of w such that we = waupup and
e has defect zero.

Proof. By the previous lemma we must have e; = 0 (resp. 1) if s;; € {s4,5a4n}
(resp. s;; € AUB). Because each e; with s;; € {54,541} is U0 and because Waup
and Wj; commute, we only have to understand subexpressions ¢’ of

w=w_w

Wy Wy - W Why

of defect —(a +b) = — 31" | £(w;) such that (w')€ = wyr. Now L(w') = £(war) +
a + b, and hence any subexpression e’ of w’ with (w’)gl = wjs has at most a + b
zeroes. Moreover, if ¢’ has defect —a — b, then ¢/ must have exactly a + b zeroes, all
of which have to be D0. Now, using that w,, is reduced, the only subexpression of

w’ fulfilling these requirements is
(0---0)(0---0)--(0---0)(1---1). 0

Proof of Theorem [5.3l. We conclude from the previous two lemmas and their proofs
that the unique defect zero subexpression e of w with w¢ = wawpwyy is

e=enf, 9, ef,9,ef 9 ¢
where e, (resp. e;) is a subexpression of w,, (resp. w;) given by

eo = (UL UL,...,U1) (resp. e, =(D0,D0,...,D0))

and f, (resp. g.) is a subexpression of u; (resp. v;) given by
(U0, UL,...,UL)(U0,UL,...,UL)---(U0,UL,...,UL).

(we use the same bracketing as in the definition of u; and v;).
Hence the intersection form of w at waunup for degree d = 0 is indeed a 1 x 1
matrix. Applying [HW] Theorem 5.1] its unique entry is given by the coefficient of

Owainios = OwaOwn Owp 1

E = EmFme e EQFQGgElFlGlEo,

6 Actually, as noted in Remark[5.4] here we use a “right to left” convention, rather than the “left
to right” convention of [HW]. One can check that [HW] Theorem 5.1] holds in either convention.
Alternatively one can proceed as follows. Let w” = s;, - - s5; denote the reversed sequence, and
let © : NH — NH denote the anti-involution with ¢«(f) = f for f € R and ¢(dz) = d,-1 for
z € W. Then [HW| Theorem 5.1] implies that the intersection form of w” at wauyup is the
1 x 1 matrix given by the coefficient of 0y 4 6wy, 0wy in ¢(E). This implies the statement because
the intersection forms of w and w” at waunmUB agree.
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SCHUBERT CALCULUS AND TORSION EXPLOSION 1035

where FEg = 0y, Ei = 0w, for 1 <i < m and the F;, G; are given by
Fl - (aaéafl e 6a7a1+1) te (Oéa(safl)(aa)
F2 = (aaéafl e 5a7a17a2+1) e (aa(safl e 6117(1171)((10,6(171 e 60,70,1)

Fm = (aaéafl o 51) o (aa(safl o 6a7a17~~-7am,171)(aa6a71 o 6a7a17~~-7am,1)

Gl = (aa+n6a+n+1 T 5a+n+b1—1) T (aa+n6a+n+1)(aa+n)

G = (aa+n6a+n+1 te 5a+n+b—1) te (aa+n5a+n+1 ce 5a+n+bl+~~~+bm,1)-

In NH we can write E = ZyGWAuMUB fydy. After noting that

deg B = 2(—l(wa) — l(wp) +a+b— Zf(wz) —l(wyr)) = —20(waumuB),

we see that, in fact, E = k'dy, ., for some k' € Z. In particular, whenever we
apply a nil Hecke relation fo; = d;s;(f) + 0;(f) with s; € AU B to reduce E, the
term involving 9;(f) does not contribute. (It would lead to a term which is zero
for degree reasons.) Hence we can write

E= 6wA5wB (5wm7m5m) U (5w2’7262)(5w1’7151)5wM7

where each ~; (resp. ¢;) is a product of a; (resp. b;) roots of the form xy — xq41

with k < a+ 1 (resp. ©44n — @) for k > a+ n). Hence we have

E =bdupawp (5wm(_lﬂa+1)aml’21n) T (5w2(_xa+1)a2332%-n)(5w1 (_Ia+1>a1$21+n)5w1v1
=(-1)%-4

WAUMUB?
where the first (resp. second) equality follows from Lemma [B.8] (resp. (9] below.
The theorem follows. ]
Lemma 5.8. Let wy,...,w, € Wy and (q,...,(n € R. Assume that for some

1 <i < m we can write {; = (M for some Wyr-invariant (M of positive degree,
and that > deg (; = > (w;). Then 0y, Cm -+ 0w, (10w, = 0.

Proof. We have 6y, G+ 0w, G+ 0wy C10w,, € EByeWM Ré,, and hence
G, Com - 0 G+ Oy C100py, = 0
because it is of degree < —2f(wys). As (M is Wy-invariant,
0= M (OG0, 00, G100y ) = Bu G Fuoy C1uy - O

Lemma 5.9. With w;,a;,b;, k as above we have

m_ .bm m—1,.bm— b
(5wmx2+1xa+n)(5wm71$3+l 20t ) e B ek Tl ) wny = K Owyy -

Proof. It is well known that ¢; — 0;, f — (f-) makes R into an NH-module. In
NH we can write

m .bm Am—1,_ bm— b _
(5wm‘rg+1xa+n)(5wmflxail 1Ia+n1) e (61111 Igilzal—kn) =K+ Z fw§w7
id#weW

where K € Z for degree reasons. By applying this identity to 1 € R we deduce
that K = k. The lemma now follows because if w € Wy, then §,,0.,, = 0 unless
w = id. (Il
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6. (COUNTER)-EXAMPLES

We use the notation of Section and write 012 := 0102, X1 = X5, X12 1=
Xs,s,, €tc.

6.1. n < 4: One checks easily using (ILI)) and (L2) that for n = 2,3 one can only
obtain x = +1.

6.2. n =4: Using (1)) and (C2) we see that in C' we have

(6.1) X1 = and X3 =—x4.

Consider the (degree zero) operator F': C' — C given by
F i hs Og3(x3(01(z1h))).

Using (1) and ([2) one checks that F' preserves the submodule ZX; @ ZX3 and
in the basis X, X3 is given by
11
F=(1 )

This matrix determines the Fibonacci recursion. Hence for 7 > 1 we have
FZ(Il) = Fi+1X1 —|— Fz’Xg,

where F} = 1, Fy = 1, F3 = 2, Fy = 3, etc., denote the Fibonacci numbers. In
particular,
O (F'(21)) = Fit1.

We conclude from the main theorem that any prime dividing the Fibonacci number
Fji41 occurs as torsion in SL3; ;5. By Carmichael’s theorem [Carl4] the first n > 1
Fibonacci numbers have at least n distinct prime factors. By the prime number
theorem we conclude that the torsion in SL,, grows at least as fast as some constant
times nlogn. Hence no linear bound is sufficient for Lusztig’s conjecture.

It is a well-known conjecture that infinitely many Fibonacci numbers are prime.
By the above results, this conjecture would immediately imply that the torsion in
SL,, grows exponentially in n. Unfortunately, little seems to be known about the
rate of growth of prime factors of Fibonacci numbers.

In the Appendix we work with different operators in order to establish exponen-
tial growth of torsion. If U; (resp. U, ) denotes the operator h + 9a1 (22 (01 (z1h)))
(resp. h + 9a3(x3(03(24h)))), then U; and U, preserve the submodule ZX; @ ZX3
and in the basis X7, X3 are given by

10 -1 -1
a=(11) w= (3 3)

It follows from our main theorem that any prime dividing any matrix coefficient of

1 1 10 .

01 > and ( 11 ) occurs as torsion
in SL3g45. Indeed, given any word wiws - - - w, in the operators U; and U, we may
obtain all four coeflicients (up to sign) of the corresponding product of the matrices

( (1) } ) and < 1 (1) ) as 9; (w1 (- (wr(z;))---)) for i € {1,3} and j € {1,4}
(use ([6]) and the fact that 0, (X1) = 1 = 95(X3)).

any word of length ¢ in the generators (
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6.3. n = 5: In the following table we list some examples of p torsion in SLy found
using n = 5. The entries in the list were found by random computer searches,

N 14 17 20 22 25 30 40 50 70 100
p 3 7 13 23 53 197 2237 34183 4060219 470 858 183

(These entries were found as follows. Consider the eight degree zero operators:
4 3 2 4 3 2
O132177, 032127, 02177, 0121, 0123405, D234%5, 03475, Oa 5.

It is not difficult to calculate the matrices of these operators acting on any homoge-
nous component of C' in the Schubert basis. The above entries were obtained as
prime factors of coefficients obtained by repeated application of these operators to
r3 and 35 € C°)

7. LUSZTIG CONJECTURE

This section consists of connections and complements to [Soe00], with which we
assume the reader is familiar. In keeping with the setting of this paper, we work
with G = SL,, throughout; however, analogous statements are true (with the same
proofs) for any connected reductive group.

As in Section Bl we assume in this and the following section that p > n. Let
O denote the “regular subquotient around the Steinberg weight” as defined in
[Soe00, Section 2.3]. We denote by A(x), P(z) the standard and projective objects
in @ and by 0, : O — O for s € S the translation functor [Soe00, Section 2.5]. Let
[O] denote the Grothendieck group of O and

a: 0] 5 Z[W)

the isomorphism with a([A(x)]) = = for all z € W (« is denoted A in [Soe00, Section
2.10]). As observed in [Soe00], Lusztig’s conjecture implies that
a(P(r)) = H

=z|v=1

for all z € W.

Remark 7.1. This observation should be compared with a much earlier theorem
of Jantzen [Jan79, Anhang, Corollar] matching multiplicities of simple modules in
Weyl modules in sufficiently large characteristic p and multiplicities of simple mod-
ules in Verma modules in characteristic 0. This observation, together with Jantzen’s
calculations in rank 2, were the main ingredients that led to the formulation of the
Lusztig conjecture.

Proposition 7.2. We have a(P(x)) =*H,,_,. In particular, if PH, # H, with
p > n, then Lusztig’s conjecture fails for SL,, in characteristic p.

Remark 7.3. Recall that Pay, ;,Ph, . € Z>o[vF!] (see Section 2)). In particular,

PH,=H, &"H H

zlv=1 — Hzjv=1"

Proof. Let pO denote the full subcategory of projective objects in O, and [pQ] its
split Grothendieck group. Because O has a finite homological dimension, the map
[pO] — [O] induced by the inclusion is an isomorphism. Recall the commutative
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diagram

O] —— [fc]

]

7S, = IS,

from [Soe00), Section 2.11] (see Section Bl for the definition of fC).
We claim that 8’ above agrees with the 8 defined in Section[3l If w = st---u
we have, by [Soe00, Theorem 2.6.2],

V(O --00,Miq) = fD,.
Thus, by [Soe00, Sections 2.5 and 2.10],
B'([fDw]) = a(Bu - -- 0,0, Miq) = (1 +5)(1 +t) - - (1 + w).
By the commutativity of the diagram in Section [3]
B([fDw)) = ch([BsBy -+ Bul)jo=1 = (H Hy -+ H,)jp=1 = (L4 8)(1+1) - (1 + u).

Hence 8 = 3’ as claimed, as [fC] is generated by [fD,,] over all expressions w.
Now we are done: by [Soe00, Theorem 2.8.2] we have VP(z) = fD,, and the
proposition follows from ([B2)). O

8. JAMES CONJECTURE

In this section we explain why the results of the previous section yield counter-
examples to the James conjecture [Jam90] on the decomposition numbers of Schur
algebras and the symmetric group.

Fix positive integers N and 7. Let AT (N, r) denote the set of partitions of r into
at most N parts; that is, sequences (A1, ..., Ay) such that Ay > --- > Ay > 0 with
r =3 \;. Then AT(N,r) is a partially ordered set with respect to the dominance
order <.

Let S(NV,r) denote the Schur algebra over Z (see, e.g., [Gre81]). Its category of
representations is equivalent to the category of polynomial representations of the
group scheme GLy of fixed degree r. Fix a field k of characteristic p > N, and
let Sk(N,r) denote the Schur algebra over k. The category Rep Sk(IV, r) of finitely
generated Si(N,r)-modules is a highest weight category with simple modules in-
dexed by AT(N,r). Given A € AT(N,r) we denote by L()\) (resp. A(N), V(A),
P(\), T(\)) the simple (resp. standard, costandard, indecomposable projective,
indecomposable tilting) module indexed by .

Let S¢(N,r) denote the g-Schur algebra and S.(N,r) its specialization at a
fixed primitive p!"-root of unity ¢ € C (see, e.g., [Don98|). Then the category of
finitely generated S.(IV,r)-modules is highest weight. As above we write L.())
(resp. A(N), etc.) for the simple (resp. standard, etc.) module corresponding
to A € AT(N,r). Given a module M for S.(N,r) we may choose a stable Z[e]-
lattice and reduce to obtain a module over Sx(N,r). In this way we obtain the
decomposition map on Grothendieck groups,

d : [Rep Sc(N,r)] — [Rep Sk(N,r)].
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SCHUBERT CALCULUS AND TORSION EXPLOSION 1039
One has d([Ve(A)]) = [V(N)]. The James conjecture [Jam90|] predicts that
(8.1) d([Le(NV)]) = [L(V)]

if p> /rll
Let p= (N —1,...,1,0) € AT(N, (g)) and let st := (p — 1)p denote the “Stein-
berg weight.” Let Sn denote the symmetric group of IV letters, acting by permu-

tation on ZV. Lusztig’s quantum character formula gives (see (1] for notation)
(5.2) (st +2p) < Le(st+5p)] = by (1)

as modules for S (N, p(gf )) (Actually, Lusztig’s quantum character formula gives
the multiplicity for the quantum group of sl specialized at € in terms of an affine
Kazhdan-Lusztig polynomial. The translation of his formula to yield the above
multiplicity is standard but technical. Alternatively, one can appeal to [AJS94]
and the p > 0 version of (83]) below.)

Similarly, [Soe00, Theorem 1.2.2] gives (again see (Z) for notation)

(8.3) [V (st +2p) : L(st+yp)] = "huy (1)

as modules for Sy (N ,p(g] ))- (Actually, Soergel’s result gives this multiplicity for
rational modules for SLy (k). The translation to GLy (k) and hence to modules for
the Schur algebra is standard.)

We conclude that whenever PH # H_ for some x the characters of the simple
modules for SE(N,p(];’)) and Sk(N,p(g)) are different, because the simple and
costandard modules both give bases for the Grothendieck group. In particular,
there exists A such that d([L.(\)]) # [L(A\)]. Hence any p appearing on the table
in Section [6] with p > (g) contradicts the James conjecture for S(N,p(];)).

Remark 8.1. A straightforward computation in [Rep Sc(N,r)] and [Rep Sk(N, )]
shows that

d([Le(st+2p)]) =Y auy (1)[L(st +yp)],

) W

and so the a, , evaluated at 1 give part of James’ “adjustment matrix.”

However, amongst weights of the form st +zp for x € Sy only st+wgyp is p-
restricted (wp denotes the longest element of Sy). Hence the above non-trivial
decomposition numbers are invisible to the symmetric group, as all simple modules
corresponding to non-p-restricted weights are killed by the Schur functor.

To get counter-examples in the symmetric group we can use the Ringel self-
duality of the Schur algebra and modular category O. (Parts of the following
argument are due to Joe Chuang.) Given any N’ > N we have an obvious em-
bedding AT(N,r) < AT(N’,r) obtained by appending 0’s to the partition. There
is a quotient functor f : Rep S(N/,r) — Rep S(N,r) which preserves simple, stan-
dard, costandard modules and indecomposable tilting modules corresponding to A
in AT(N,r) C AT(N',r) (see [Gre81l Section 6.5] and [Don98, Section A4.5]).

7A stronger version requires that p be larger than the weight of \. It reduces to the condition
p > /7 for the principal block, which will be the only case considered below.
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Now consider a variant of the subquotient around the Steinberg weight dis-
cussed in the previous section. Consider the Serre subquotient O := A/N of
Rep Sk(N, p(]; )) where A4 is the Serre subcategory generated by simple modules
L()) such that A < st+p and A lies in the same block as st + p, and N denotes the
Serre subcategory generated by those simples L(A) € A which are not of the form
L(st+xzp) for some x € Sy. The definition of O, is obtained by replacing L(X) by
Lc(X) in the definition of O.

Let us denote the images of L(st +xp), A(st +xp), etc., in O as L(z), A(x), ete.,
and similarly for O.. Then O is the highest weight category with simple, standard,
etc., and tilting objects L(z), A(z), etc., and similarly for O.. It is known that
both categories are Ringel self-dual. (The proof of this fact seems not to be explicit
in the literature. However, a proof may be obtained by adapting ideas of [BBMO04].
One shows that one has a braid group action on D*(O) (resp. D*(O.)) and a lift
of the longest element interchanges a projective and tilting generator.) Applying
Bernstein-Gelfand-Gelfand (BGG) reciprocity and then Ringel self-duality for O
and O. we obtain

hr,y(l) = [VE(LL') : Ls(y)] = (Pe(y) : Ae(x)) = (Ta(ywO) : Vg(l'wo)),
Phay(1) = [V(2) : L(y)] = (P(y) : A(z)) = (T(ywo) : V(zwy)).

Applying Ringel self-duality of S(p(];) , p(g)) [Don93] and of S, (p(];) , p(g)) [Don98]
we have

hay(1) = (Te(st + ywop) : Ve(st + zwop)) = (P-((st + ywop)') : Ac((st + zwop)’)),
Pha,y(1) = (T(st + ywop) : V(st + zwop)) = (P((st + ywop)’) : A((st + zwop)’)).

Finally, again by BGG reciprocity

hoy(1) = [Vo((st + zwop)’) : Le((st + ywop)')],
Phay(1) = [V((st + zwop)’) : L((st + ywop)")].

The partitions (st +xzwop)’ and (st +ywop)’ are p-restricted. Hence, after applying
the Schur functor, the first (resp. second) number can be interpreted as a decom-
position number for the Hecke algebra specialized at € (resp. the symmetric group
in characteristic p). It follows that the results of the previous section also produce
counter-examples for the symmetric group.

Remark 8.2. Consulting the table of counter-examples in Section [l we see that the
smallest counter-example produced by the above methods occurs in Sy: with

N 40
N’:p<2) :2237(2) =1 744 860.

The size of this number is a relic of our method (in particular, the fact that we
cannot say anything about p-restricted weights). It is an important question as to
where the first counter-examples occur.
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APPENDIX A. EXPONENTIAL GROWTH OF TORSION

A.1. Statement of the theorem. Let

(A1) F¢:<((1) 1)(1 (1)>>+

be the sub-semi-group of SL(2, Z) generated (freely) by the matrices displayed. For
a matrix v € I, let £(v) be its word length in the generators of I'. In the main
body of the paper, the third author proves that any prime p dividing any entry -;;

of any matrix
y = ( Y11 Y12 ) cT
Y21 Y22

occurs as torsion in SLg45, where £ = £(7y) is the word length (see Section[6.2]). The
purpose of this Appendix is to show the existence of exponentially large (relative
to word length) prime divisors of matrix coefficients in ', thus giving exponentially
large counter-examples to the expected bounds in Lusztig’s conjecture.

In fact, the stated purpose can be accomplished by an almostd direct application
of the affine sieve [BGS06,BGS10,[SGS13]; see also, e.g., [Konl4]. It turns out that
one can do much more using recent progress on “local-global” problems in “thin
orbits” (see, e.g., the discussion in [Kon13]); namely, one can produce not just prime
divisors but actual primes in the entries of I' and moreover give explicit estimates
for their exponential growth rates (which are far superior compared to those which
would come from an affine sieve analysis). Our main result is the following

Theorem A.1. There are absolute constants T > 0 and ¢ > 1 so that, for all L
large, there exists v € T' of word length £(v) < L and top-left entry y11 = p prime
with p > 7c”. In fact, there are many primes arising this way,

L

(A.2) # {p >7cl 0 Iy el with () < L and y11 :p} > Cf

The implied constant above is absolute and effective.

Throughout this Appendix, p always denotes a prime. The notation f(L) > g(L)
means that g = O(f); i.e., |g(L)] < M|f(L)| for a fixed M > 0 and all large L. In
this case, M is the implied constant referred to above.

Exact estimates for 7 and ¢ can readily be determined; the value coming from
our proof is ¢ = (1+2—‘/5)1/5 ~ 1.101..., and we can take 7 = 5/7; see (A.7)). Tt turns
out that Theorem [Alis a nearly immediate consequence of recent advances toward
Zaremba’s conjecture on continued fractions with bounded partial quotients.

Given A > 1, let I'4 be the sub-semi-group,

(A.3) Ty = <(Cl‘ é)(;’ é):1<a,b<A>+.

(In fact, T'4 is freely generated by the displayed elements.)

8For the application to be immediate, I would need to be a Zariski-dense group and not just
a semi-group; minor modifications are needed to handle this case.
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Theorem A.2 (Bourgain-Kontorovich [BK14]). There exists Ag and an absolute
constant ¢ < 0o so that, for A > Ay and all N large,

#{n<N : Iyely withy;y =n} = N (1 + 0 (echlogN)) ,
where the implied constant and ¢ > 0 are both absolute.

That is, almost all integers (not just primes) arise as top-left entries in the
semigroup I" 4. Bourgain-Kontorovich give Ay = 50 as an allowable value for A, and
this has since been reduced to Ag = 5 [FK14l[Hual5]; furthermore, Hensley [Hen96]
has conjectured that Ay = 2 is allowable and that the error rate O(e~*v°2 V) can
be replaced by O(1/N). What is most important to our application is that the error
rate is asymptotically o(1/log N). This, together with the prime number theorem,
has the following immediate corollary.

Corollary A.3. Let notation be as above, and set A = 5. Then for any fized
constant 6 < 1,

(Ad) #{pe (ON,N] : Iy eT'4 withy1 =p} = (1—9)%(1—1—0(1)),

as N — oo.
Equipped with this estimate, it is a simple matter to give the following proof.

A.2. Proof of Theorem [A. 1]l Fix constants ¢ > 1 and 7 > 0 to be chosen later,
and let S denote the set of primes on the left hand side of (A.2),

Sy = {p>7'cL : 3y €I’ with £(y) < L and y11 = p}.

We seek a lower bound on the cardinality of S;.

For a parameter A (which we will soon set to A = 5) and a matrix v € T'4, let
£4(y) denote the word length in the generators of I'4 given in (A3]). We make the
pleasant observation that

a 1y (b 1 _ I a (10

1 0 10 - 0 1 b 1)’
and hence I'4 is a sub-semi-group of I'. Moreover, if v € 'y C I', then the word
lengths in the two semi-groups are related by

U(y) < 2A-La(y),

since each generator in I' 4 has word length at most 24 in the generators of I". We
decrease S1 to a smaller set So C S7 of primes coming from the top-left entries of
I'4 instead of T,

Sy == {p>71ct : Iy ey with £a(y) < L/(24) and 711 =p} .

Next we define the archimedean sup-norm

[Ylloe := max(viz),
which for v € I'4 is easily seen to be the top-left entry
(A.5) Moo = 711
Let
1+V5 . 1-45
p = and P =

2
denote the eigenvalues of (1}).
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() ()

K2

=0 0y ()20 0 (1 5) () = Fen

where F), is the mth Fibonacci number. Because Fy, 1 = (¢*" ! — 327+ /V/5, if
we set d := ¢/+/5, then for all v € T'4,

For any

we have

Voo > d- SO2ZA(7)~

That is, the logarithm of the archimedean norm is controlled (up to a constant) by
the word length. Define the “archimedean” parameter N (with respect to L) by

(A.6) N = d- /4

Replacing the word length condition £4(y) < L/(2A) in Sy by the stronger restric-
tion that ||v]lcc < N decreases Sy to a subset Sz defined by

L

S = {p>7c’ : Iy €Ta with |4]lc <N and 111 =p}.

Since y11 = p = ||7]| o0, the condition ||]lcc < NN can be replaced by p < N; hence
S; = {TCL<p§N :dyela with’yll:p}.
Make the choice
(A7) c = o'

which is (1+T‘/5)1/5 ~ 1.101... when A = 5. Then for any 6 < 1, take 7 = #d. With
these choices of parameters, we see that

S; = {OIN <p< N : FyeTy with y1; = p}.

Now we are done: combining the above with (A.6]) and (A4) gives

L

1V C
> [ —
#S1 > #S3 > log N > 7

as claimed in ([A22)). This completes the proof of Theorem [AJ]
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