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Constraints play an important role in the entanglement dynamics of many quantum systems. We develop

a diagrammatic formalism to exactly evaluate the entanglement spectrum of random pure states in large

constrained Hilbert spaces. The resulting spectra may be classified into universal “phases” depending on

their singularities. The simplest class of local constraints reveals a nontrivial phase diagram with a

Marchenko-Pastur phase which terminates in a critical point with new singularities. We propose a certain

quantum defect chain as a microscopic realization of the critical point. The much studied Rydberg-

blockaded or Fibonacci chain lies in the Marchenko-Pastur phase with a modified Page correction to the

entanglement entropy. Our results predict the entanglement of infinite temperature eigenstates in
thermalizing constrained Floquet spin chains, as we confirm numerically.

DOI: 10.1103/PhysRevLett.124.050602

Consider a bipartition of a random pure state |y) into two
equal subsystems. The entanglement across the cut is
captured by the density of states (DOS) of the reduced
density matrix p [I]. Random matrix theory, which is
widely used to describe statistical properties of quantum
chaotic systems [2—6], predicts that the DOS is given by the
Marchenko-Pastur (MP) distribution [7],

Pap(€) :i,/“—;e for € € (0,4). (1)

The connection to quantum chaos is provided by the
hypothesis that eigenstates and late-time states at infinite
temperature are indistinguishable from random pure states
within subsystems [8—15]. One consequence is the widely
observed Page correction [16] to the entanglement entropy
of eigenstates [17-21].

Many physical systems inhabit constrained Hilbert
spaces as a consequence of either global symmetries or
local energetic constraints. The latter include frustrated
magnets [22,23], pinned non-Abelian anyons [24,25] and
ultracold Rydberg ensembles [26,27]. Recent measure-
ments of entanglement [28] and quench dynamics in
Rydberg-blockaded chains [27] raise questions about the
structure of entanglement in constrained spaces [29-33].
The lack of tensor product structure implies that even the
reduced density matrix of the infinite temperature mixed
state pT=> need not be a simple identity. We compute
exactly the entanglement DOS p(¢) and the Page correc-
tions of random pure states for a wide array of locally and
globally constrained Hilbert spaces and find that p(e)
generically deviates from the MP law Eq. (1).

We find that the entanglement distribution p(e) is
“universal” in two senses. First, for a given constrained
space, we expect p(e) to describe the entanglement of
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eigenstates and late-time states at infinite temperature of
any quantum chaotic Hamiltonian. We numerically confirm
this for several models. Second, p(€) can be grouped into
“entanglement phases” as a function of the constraint
parameters according to their singularities at small e.
Figure 1 shows an example phase diagram. Remarkably,
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FIG. 1. Evolution of the entanglement DOS p(e) as a function
of the relative dimension ¢ of the sectors [ = 0, 1. The critical
divergence p ~¢e~'/? persists through the MP phase (¢ >
¢, =1, green). This gives way to a gapped spectrum with a
finite weight delta function at ¢ =0 (¢ < 1, blue) across a
multicritical point (¢ = 1, orange) with distinct critical expo-
nents, p ~ e >/3. (bottom) Integrated density of states N(e) at
three representative values, including the Rydberg or Fibonacci
chain at ¢ = (1 ++/5)/2, and the defect chain at ¢ = 1. Solid
lines are analytic forms with numerical data from the diagonal-
ization of an N = 1000 random pure state overlaid (points).
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the €~'/? singularity of the MP distribution in uncon-
strained spaces is stable to the addition of constraints. This
MP phase ends at an exotic critical point where the
singularity is modified to e/,

Our exact technique represents p(e) in terms of diagrams
which become planar in the thermodynamic limit. The
constraints dress the diagrams with nontrivial “spin”
structure which fortunately still admits a resummation.
Below, we discuss how to parametrize constrained Hilbert
spaces, before turning to the general diagrammatic method.
We then solve for the entanglement DOS in two cases.
First, we consider a locally constrained family of models,
derive Fig. 1, and confirm our analytic predictions in
Floquet quasienergy states. For the special case of the
Rydberg chain, we compute the Page corrections to the von
Neumann entropy. Second, we consider systems with
global conservation laws—these produce diagonal con-
straints. We close with general comments on entanglement
phases and the Page correction.

Parametrizing constrained spaces.—Consider a length
2L chain partitioned into two equal halves. The states of the
left half can be grouped into sectors labeled by [ with
Hilbert space dimension Nd,. Typically, N scales exponen-
tially with L while the relative dimension d; remains finite
as L — oo. Similarly, each sector r of the right half has
dimension Nd,.

Constraints may impose that certain combinations of (/,
r) are disallowed in the global Hilbert space. We para-
metrize such constraints by a matrix C with C;,, = 1 if Ir is
allowed and O otherwise. As we will see, at large N, the
entanglement of a random pure state depends only on the
constraint matrix C;, and the relative dimension vectors d;,
d, of the sectors. Note that C = (1), d=d = (1) in
unconstrained systems.

Our primary example of a locally constrained system is a
“blockaded” chain (see Fig. 2). Each site of the chain may
be in state 0 or 1 with [, r corresponding to the state of the
Lth and (L + 1)th sites on either side of the cut. The
blockade disallows the (/,r) = (1, 1) sector:
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FIG. 2. (left) Configurations of a blockaded chain. The bottom

configuration is disallowed by the constraint. The multi-indices i
and a label configurations in the left and right subsystems, while
1, r 1abel the states of the boundary sites. (right) Block structure of
a pure state. The constraints impose that the (1,1) block is zero.

where ¢ = d,/d, depends on the structure of the Hilbert
space away from the cut. Much of the discussion below is
general in terms of C, d, and d'; we specialize formulas to
the blockaded chain using £.

The blockaded Hilbert space arises naturally in certain
Rydberg atom experiments [27], dimer ladders [31], pinned
Fibonacci anyon chains [24,25], and defect chains [34]. For
example, in atomic Rydberg chains, the 0 and 1 states
correspond to the ground and excited states of each atom;
Rydberg blockade imposes that no two consecutive atoms
are excited. This rule leads to the relative dimension ¢ =

(1++/5)/2 with N ~¢". If, on the other hand, the
blockade is only active across the central cut due to a
strong bond “defect,” then ¢ =1 and N ~2L. See
Supplemental Material [34] for more details and models
realizing other values of ¢.

Constrained diagrams.—Let |y) be a Gaussian random
pure state normalized such that

l//ial/’};j zajﬂ chr ij a/j
(55;52/, + 81,005 + 8:64s).- (3)
Here, z//;j =y, is the conjugate transpose of the ampli-

tudes of |y) viewed as a matrix in the left (i, j) and right
(a, p) indices, and ~ denotes averaging over the Gaussian
ensemble. The operators 5 and 6;; project onto the / and r
sectors of the left and nght subsystems respectively. That
is, 6fj =1 if i = j and the configuration labeled by i is in
sector /. With this notation, the reduced density matrix for
the left subsystem is p = yy'.

The normalization of Eq. (3) is convenient for the
diagrammatics below. However, one must appropriately
include normalization factors of

N =Tip=N> Cndd, 2N +2¢) (4

Ir

in the final formulas. Technically, one should sample |y)
from the Haar measure and ensure the normalization of p.
We use the Gaussian measure in the large-N limit since
correlations between the numerator and denominator (the
normalization) of any moment are suppressed.

The calculation of the ensemble averaged trace moments
of the reduced density operator Trp” may be organized
diagrammatically using Wick’s theorem as follows.
(1) Introduce a single solid [dashed] line to represent each
left (i, j) [right (a, f)] index contraction.

o= L e T (5)

Each line carries a “spin” label / (r) which indicates the
sector of the left (right) subsystem and which must be
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summed over to evaluate the diagram. (2) Introduce
vertices for each insertion of y or y':

Yia = AV vho= AL (6)

In Trp", the w and ' factors alternate so these two rules
produce a circle of alternating solid and dashed lines.
Finally, (3) each Wick pairing is represented by a double
line,

connecting the tops of the vertices consistent with the
arrows and solid or dashed lines. The spin labels carried by
the double lines must satisfy the constraint encoded by C.

For example, the second trace moment may be evaluated
diagrammatically,

™)

N(¢® + 3¢ + ¢)

Each diagram arising in the evaluation of Trp" may be
viewed as a surface with a circular boundary [35-40]. The
double lines are the internal edges separating faces (loops)
while the single lines make up the outer boundary. Since
each closed loop contributes a factor of Nd; or Nd, and
each double line contributes 1/N, the N dependence of the
diagram is given by the Euler characteristic y of the surface.
Accordingly, the large N limit picks out the planar
diagrams with y = 1. Moreover, the relative fluctuations
of any trace moment vanish at large N: the connected

correlators (Tr-)(Tr-),. have two circular boundaries so that
x < 0. The entire sequence of trace moments and corre-
sponding DOS is thus self-averaging at large N.

In general, there are C,, planar diagrams in Trp", each of
which contributes a nontrivial polynomial in the relative
dimensions. Here, C,, is the nth Catalan number. For the
unconstrained case, the polynomial is trivial and Trp" =
NC,, correctly reproduces the moments of the MP law.

Entanglement spectrum.—To calculate the density of
states (DOS) of p, we turn to the resolvent

G(z) =

©)

z=p

which, by the Haar symmetry of |y), is diagonal and
constant in each sector / of the left Hilbert space,

Zé’G,

Go(z) +6'Gi(z).  (10)

The diagonal matrix elements G;(z) determine the mean
entanglement DOS associated with the [ sector,

pi(x) :;ImG,(x—i—iO*). (11)

The distribution p; is normalized so that [ dxp;(x) = 1; the
total DOS takes into account the relative dimension
between the sectors:

> dip(x) A
> d

In order to correct for the normalization of Eq. (4), we will
eventually change variables from x to

NS,
N

$po(x) + P1<x>_

plx) = 511

(12)

A P+1
N

This scales the eigenvalues of p such that Trp is the
dimension of the left Hilbert space.
To compute the resolvent G(z), we expand

1=

and sum over all planar diagrams generated by the Wick

X

(13)

Nl'—‘
‘b>|
%

(14)

»I

contractions of pF = (yy")¥. This is analogous to the
moment method typically used in random matrix theory.
We rearrange the sum over diagrams to obtain a Dyson
series with self-energy relations of the following form,

>—->+>@>+>@ @>+ ----- :

In these diagrams, the single solid line (bare propagator for
left indices) carries an extra 1/z compared to the rules
described in the previous section.

Resumming the Dyson series we obtain the governing
equations,

1

G=——, %= C,dH,, 16
T3, 1 zr:l (16)

1
oo BE20de 0

where H, denotes the full propagator for the dashed lines
and X and XY’ are self-energies. The correct branch of
solutions for G,(z) must be analytic in the upper half plane
and decay as 1/z in order to correspond to a properly
normalized p;(x).
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As a simple check, consider the bipartition in an uncon-
strained space. Equation (16) reduces to a quadratic equation
for G(z) whose solution, Gyp(z) = (1 —+/1-4/2)/2,
indeed reproduces the MP law, Eq. (1).

Blockaded chain.—For the constraint structure of
Eq. (2), some algebra reveals that G, satisfies a cubic
equation,

2 z+¢ -1 1

; =0  (18)

and that G; can be expressed in terms of Gy,

1 1 1
G17G0+1—¢G0' (19)
The complete solution of these equations exploiting
the Vieta formula can be found in the Supplemental
Material [34].

The salient features of the resulting entanglement spectra
are illustrated in Fig. 1. As a function of the relative
dimension ¢, there are three “entanglement phases,” dis-
tinguished by the nature of the singularity in the DOS p(e)
as € » 0. We dub the regime ¢ > 1 the MP phase as
p(e) ~ €™ 1/2, just like the MP law in Eq. (1). Indeed, for
¢ — o0, the (0,0) sector of the composite Hilbert space
dominates the amplitude matrix y;, and p(e) approaches
the MP law exactly. At any finite ¢ > 1, however, p(e)
deviates quantitatively.

For ¢ < 1, the continuous part of the DOS gaps away
from a delta function located at ¢ = 0. The delta function
has mass (1 — ¢)/(1 + ¢), which follows from the number
of linearly independent columns in a full rank matrix v,
with the block structure shown in Fig. 2. Qualitatively
similar behavior arises in unconstrained systems when the
dimensions of the two subsystems are unequal.

The multicritical point at ¢ = 1 has no counterpart in
unconstrained systems. The DOS exhibits a nontrivial
power law p(€) ~ e=%/3. The multicritical point is realized,
for example, by the defect chain in which the Hilbert space
is constrained across the single strong central bond.

Figure 3 presents numerical evidence that each of the
three entanglement singularities is actually realized by the
quasienergy eigenstates of three thermalizing Floquet
models in constrained spin chains (see [34] for details of
the models). In particular, the quasienergy states of the
defect chain readily exhibit the multicritical exponent
p(e) ~ €723,

Entropy corrections.—There is very little information
regarding a global random pure state from measurements
confined to a subsystem. This can be quantified using the
Renyi (n # 1) and von Neumann (n = 1) entanglement
entropies,

100 E
L -1 d
= 1077
® Rydberg, N(e) ~ 949
® Defect, N(e) ~ €935
10-2 - ® Anti-Rydberg, Gapped
T T T
10-¢ 104 102 10°
€
FIG. 3. Integrated DOS N(¢) averaged across all quasienergy

states for three local, thermalizing Floquet models on constrained
chains. The Rydberg and Defect models show the universal
exponents of the MP phase and the multicritical point, respec-
tively. The anti-Rydberg chain lies in the gapped phase, so N(e)
begins at a finite value in the logarithmic plot.

1 Trp"

(20)

A typical random pure state in an unconstrained system has
entropy nearly that of the infinite temperature mixed state
on the same system. Indeed, Page famously showed that the
deviation

AS, = Sn(ﬁT:m) - Sn(ﬁ) (21)

is less than or equal to 1/2 for n = 1 even though S itself is
extensive.

We expect modifications to both terms in Eq. (21) for
constrained systems because (i) p7=* « Y, §'C;.d,. is not
the identity operator on the left space, and (ii) the entan-
glement DOS p(e) for the random state is different from the
MP law. Because of the concentration of measure at large
N, the average entropy depends explicitly on p(e):

5,() =1In (NZd,) +3 1nln </ d€p(€)€”>. (22)

For example, the Page correction at n =1 for the
Rydberg chain [¢ = (1 +/5)/2]:

AS, ~0.513595 - - - (23)

is larger than the value 1/2 of the unconstrained chain,
violating the Page inequality [34]. The half subsystem has
more information regarding the pure global state in the
constrained chain than it does in the unconstrained case.

Global symmetries.—Many systems have diagonal con-
straints, which impose a one-to-one relationship between
allowed [ and r sectors. For example, global S* conserva-
tion constrains the total S¢ on the left / and right r to add up
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to the total magnetization M. Systems of pinned non-
Abelian anyons provide a more exotic example. Net fusion
into the vacuum channel constrains left and right fusion
sectors to be conjugate [41].

As each (I, r) sector may be viewed as a product space,
the total DOS is a linear combination of scaled and
re-weighted MP laws:

d X
po < 5o (5): (24)
)i r r

Here, pl(\fli, (x) is the unbalanced MP distribution [7], which
arises when A; = d;/d.. deviates from 1.

In a spin-1/2 chain with $% conservation, 2 = (,-,)/ (%)
is generically not equal to 1. Direct computation from (24)
reproduces the Renyi entropies calculated in [42—45] for
globally constrained systems [46].

The balanced case, where all allowed sectors have
d; = d,, arises for the S*-conserving chain at M =0 or
for symmetric bipartitions of pinned anyons. Although the
total DOS p(x) # pmp(x), it lies in the MP phase since the
e~'/2 singularity persists. Remarkably, the Page corrections
are actually unmodified from those of the simple MP
law, AS, = [1/(n—1)]InC,.

Discussion.—We have developed a diagrammatic tech-
nique to compute the entanglement DOS p(¢) of random
pure states in a wide array of constrained systems. This
leads to entanglement phases which are classified by the
singularity structure of p(e) at small e. We have focused on
bipartitions into equally sized left and right subsystems. For
unconstrained systems, it is well known that pm,(e) gaps
for unbalanced cuts. This extends to constrained systems.
Taking d = Ad’, the MP phase in Fig. | may be viewed as a
critical boundary at A =1 in the ¢ — A plane. It has two
natural critical exponents, p(e) ~ e~/ and A ~ |1 — 1],
governing the DOS and gap scaling, respectively. The
multicritical point at ¢ = 1 = 1 terminates the MP phase
with exponents p(e) ~e™?3 and A~ (1—¢)? (on the
A =1 boundary). We showed that the multicritical point
is realized by the defect chain, a spin-1/2 chain with an
infinite penalty for the (1,1) state of the two spins across the
central cut.

We do not expect to be able to solve for the DOS for
constrained systems with more than two boundary sectors
in closed form: the self-consistency equations will be
higher than quartic order. Nevertheless, the equations
can be analyzed asymptotically at small z in order to
extract the entanglement phases and numerically solved to
extract p(e) to any desired precision.

The Page correction AS; quantifies the information that
half of a system has regarding the purity of the global state.
Intriguingly, AS;(¢) > 1/2 for all ¢; heuristically, the
blockade constraint provides more information to the
subsystem than is available in the unconstrained case.

We conjecture that Page’s result is a lower bound to
AS| across all constrained systems.

Entanglement spectra have played an important role in
classifying symmetry-protected topological orders in
highly excited states in many body localized phases
[47-50]. Our results provide the baseline modified entan-
glement spectrum in the adjacent ETH (eigenstate thermal-
ization hypothesis) phase due to symmetry restrictions.
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