
 

Universal Entanglement of Typical States in Constrained Systems

S. C. Morampudi , A. Chandran, and C. R. Laumann
Department of Physics, Boston University, Boston, Massachusetts 02215, USA

(Received 19 October 2018; revised manuscript received 30 April 2019; accepted 5 December 2019; published 6 February 2020)

Constraints play an important role in the entanglement dynamics of many quantum systems. We develop
a diagrammatic formalism to exactly evaluate the entanglement spectrum of random pure states in large
constrained Hilbert spaces. The resulting spectra may be classified into universal “phases” depending on
their singularities. The simplest class of local constraints reveals a nontrivial phase diagram with a
Marchenko-Pastur phase which terminates in a critical point with new singularities. We propose a certain
quantum defect chain as a microscopic realization of the critical point. The much studied Rydberg-
blockaded or Fibonacci chain lies in the Marchenko-Pastur phase with a modified Page correction to the
entanglement entropy. Our results predict the entanglement of infinite temperature eigenstates in
thermalizing constrained Floquet spin chains, as we confirm numerically.
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Consider a bipartition of a random pure state jψi into two
equal subsystems. The entanglement across the cut is
captured by the density of states (DOS) of the reduced
density matrix ρ̂ [1]. Random matrix theory, which is
widely used to describe statistical properties of quantum
chaotic systems [2–6], predicts that the DOS is given by the
Marchenko-Pastur (MP) distribution [7],

pMPðϵÞ ¼
1

2π

ffiffiffiffiffiffiffiffiffiffi
4 − ϵ

ϵ

r
for ϵ ∈ ð0; 4Þ: ð1Þ

The connection to quantum chaos is provided by the
hypothesis that eigenstates and late-time states at infinite
temperature are indistinguishable from random pure states
within subsystems [8–15]. One consequence is the widely
observed Page correction [16] to the entanglement entropy
of eigenstates [17–21].
Many physical systems inhabit constrained Hilbert

spaces as a consequence of either global symmetries or
local energetic constraints. The latter include frustrated
magnets [22,23], pinned non-Abelian anyons [24,25] and
ultracold Rydberg ensembles [26,27]. Recent measure-
ments of entanglement [28] and quench dynamics in
Rydberg-blockaded chains [27] raise questions about the
structure of entanglement in constrained spaces [29–33].
The lack of tensor product structure implies that even the
reduced density matrix of the infinite temperature mixed
state ρ̂T¼∞ need not be a simple identity. We compute
exactly the entanglement DOS pðϵÞ and the Page correc-
tions of random pure states for a wide array of locally and
globally constrained Hilbert spaces and find that pðϵÞ
generically deviates from the MP law Eq. (1).
We find that the entanglement distribution pðϵÞ is

“universal” in two senses. First, for a given constrained
space, we expect pðϵÞ to describe the entanglement of

eigenstates and late-time states at infinite temperature of
any quantum chaotic Hamiltonian. We numerically confirm
this for several models. Second, pðϵÞ can be grouped into
“entanglement phases” as a function of the constraint
parameters according to their singularities at small ϵ.
Figure 1 shows an example phase diagram. Remarkably,

FIG. 1. Evolution of the entanglement DOS pðϵÞ as a function
of the relative dimension ϕ of the sectors l ¼ 0, 1. The critical
divergence p ∼ ϵ−1=2 persists through the MP phase (ϕ >
ϕc ¼ 1, green). This gives way to a gapped spectrum with a
finite weight delta function at ϵ ¼ 0 (ϕ < 1, blue) across a
multicritical point (ϕ ¼ 1, orange) with distinct critical expo-
nents, p ∼ ϵ−2=3. (bottom) Integrated density of states NðϵÞ at
three representative values, including the Rydberg or Fibonacci
chain at ϕ ¼ ð1þ ffiffiffi

5
p Þ=2, and the defect chain at ϕ ¼ 1. Solid

lines are analytic forms with numerical data from the diagonal-
ization of an N ¼ 1000 random pure state overlaid (points).

PHYSICAL REVIEW LETTERS 124, 050602 (2020)

0031-9007=20=124(5)=050602(6) 050602-1 © 2020 American Physical Society

https://orcid.org/0000-0002-4935-2176
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.050602&domain=pdf&date_stamp=2020-02-06
https://doi.org/10.1103/PhysRevLett.124.050602
https://doi.org/10.1103/PhysRevLett.124.050602
https://doi.org/10.1103/PhysRevLett.124.050602
https://doi.org/10.1103/PhysRevLett.124.050602


the ϵ−1=2 singularity of the MP distribution in uncon-
strained spaces is stable to the addition of constraints. This
MP phase ends at an exotic critical point where the
singularity is modified to ϵ−2=3.
Our exact technique represents pðϵÞ in terms of diagrams

which become planar in the thermodynamic limit. The
constraints dress the diagrams with nontrivial “spin”
structure which fortunately still admits a resummation.
Below, we discuss how to parametrize constrained Hilbert
spaces, before turning to the general diagrammatic method.
We then solve for the entanglement DOS in two cases.
First, we consider a locally constrained family of models,
derive Fig. 1, and confirm our analytic predictions in
Floquet quasienergy states. For the special case of the
Rydberg chain, we compute the Page corrections to the von
Neumann entropy. Second, we consider systems with
global conservation laws—these produce diagonal con-
straints. We close with general comments on entanglement
phases and the Page correction.
Parametrizing constrained spaces.—Consider a length

2L chain partitioned into two equal halves. The states of the
left half can be grouped into sectors labeled by l with
Hilbert space dimension Ndl. Typically, N scales exponen-
tially with L while the relative dimension dl remains finite
as L → ∞. Similarly, each sector r of the right half has
dimension Nd0r.
Constraints may impose that certain combinations of (l,

r) are disallowed in the global Hilbert space. We para-
metrize such constraints by a matrix C with Clr ¼ 1 if lr is
allowed and 0 otherwise. As we will see, at large N, the
entanglement of a random pure state depends only on the
constraint matrix Clr and the relative dimension vectors dl,
d0r of the sectors. Note that C ¼ ð1Þ, d ¼ d0 ¼ ð1Þ in
unconstrained systems.
Our primary example of a locally constrained system is a

“blockaded” chain (see Fig. 2). Each site of the chain may
be in state 0 or 1 with l, r corresponding to the state of the
Lth and (Lþ 1)th sites on either side of the cut. The
blockade disallows the ðl; rÞ ¼ ð1; 1Þ sector:

C ¼
�
1 1

1 0

�
; d ¼ d0 ¼

�
ϕ

1

�
; ð2Þ

where ϕ≡ d0=d1 depends on the structure of the Hilbert
space away from the cut. Much of the discussion below is
general in terms of C, d, and d0; we specialize formulas to
the blockaded chain using ≙.
The blockaded Hilbert space arises naturally in certain

Rydberg atom experiments [27], dimer ladders [31], pinned
Fibonacci anyon chains [24,25], and defect chains [34]. For
example, in atomic Rydberg chains, the 0 and 1 states
correspond to the ground and excited states of each atom;
Rydberg blockade imposes that no two consecutive atoms
are excited. This rule leads to the relative dimension ϕ ¼
ð1þ ffiffiffi

5
p Þ=2 with N ∼ ϕL. If, on the other hand, the

blockade is only active across the central cut due to a
strong bond “defect,” then ϕ ¼ 1 and N ∼ 2L. See
Supplemental Material [34] for more details and models
realizing other values of ϕ.
Constrained diagrams.—Let jψi be a Gaussian random

pure state normalized such that

ψ iαψ
†
βj ¼

1

N
δiα;jβ ¼

1

N

X
l;r

Clrδ
l
ijδ

r
αβ

≙
1

N
ðδ0ijδ0αβ þ δ1ijδ

0
αβ þ δ0ijδ

1
αβÞ: ð3Þ

Here, ψ†
βj ¼ ψ�

jβ is the conjugate transpose of the ampli-
tudes of jψi viewed as a matrix in the left (i, j) and right
(α, β) indices, and ·̄ denotes averaging over the Gaussian
ensemble. The operators δlij and δ

r
αβ project onto the l and r

sectors of the left and right subsystems, respectively. That
is, δlij ¼ 1 if i ¼ j and the configuration labeled by i is in
sector l. With this notation, the reduced density matrix for
the left subsystem is ρ̂ ¼ ψψ†.
The normalization of Eq. (3) is convenient for the

diagrammatics below. However, one must appropriately
include normalization factors of

N ¼ Trρ̂ ¼ N
X
lr

Clrdld0r ≙ Nðϕ2 þ 2ϕÞ ð4Þ

in the final formulas. Technically, one should sample jψi
from the Haar measure and ensure the normalization of ρ̂.
We use the Gaussian measure in the large-N limit since
correlations between the numerator and denominator (the
normalization) of any moment are suppressed.
The calculation of the ensemble averaged trace moments

of the reduced density operator Trρ̂n may be organized
diagrammatically using Wick’s theorem as follows.
(1) Introduce a single solid [dashed] line to represent each
left (i, j) [right (α, β)] index contraction.

ð5Þ

Each line carries a “spin” label l (r) which indicates the
sector of the left (right) subsystem and which must be

FIG. 2. (left) Configurations of a blockaded chain. The bottom
configuration is disallowed by the constraint. The multi-indices i
and α label configurations in the left and right subsystems, while
l, r label the states of the boundary sites. (right) Block structure of
a pure state. The constraints impose that the (1,1) block is zero.
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summed over to evaluate the diagram. (2) Introduce
vertices for each insertion of ψ or ψ†:

ð6Þ

In Trρ̂n, the ψ and ψ† factors alternate so these two rules
produce a circle of alternating solid and dashed lines.
Finally, (3) each Wick pairing is represented by a double
line,

ð7Þ

connecting the tops of the vertices consistent with the
arrows and solid or dashed lines. The spin labels carried by
the double lines must satisfy the constraint encoded by C.
For example, the second trace moment may be evaluated

diagrammatically,

ð8Þ

Each diagram arising in the evaluation of Trρ̂n may be
viewed as a surface with a circular boundary [35–40]. The
double lines are the internal edges separating faces (loops)
while the single lines make up the outer boundary. Since
each closed loop contributes a factor of Ndl or Nd0r and
each double line contributes 1=N, the N dependence of the
diagram is given by the Euler characteristic χ of the surface.
Accordingly, the large N limit picks out the planar
diagrams with χ ¼ 1. Moreover, the relative fluctuations
of any trace moment vanish at large N: the connected
correlators ðTr·ÞðTr·Þc have two circular boundaries so that
χ ≤ 0. The entire sequence of trace moments and corre-
sponding DOS is thus self-averaging at large N.
In general, there are Cn planar diagrams in Trρ̂n, each of

which contributes a nontrivial polynomial in the relative
dimensions. Here, Cn is the nth Catalan number. For the
unconstrained case, the polynomial is trivial and Trρ̂n ¼
NCn correctly reproduces the moments of the MP law.
Entanglement spectrum.—To calculate the density of

states (DOS) of ρ̂, we turn to the resolvent

ĜðzÞ ¼ 1

z − ρ̂
ð9Þ

which, by the Haar symmetry of jψi, is diagonal and
constant in each sector l of the left Hilbert space,

ĜðzÞ ¼
X
l

δlGlðzÞ ≙ δ0G0ðzÞ þ δ1G1ðzÞ: ð10Þ

The diagonal matrix elements GlðzÞ determine the mean
entanglement DOS associated with the l sector,

plðxÞ ¼
−1
π

ImGlðxþ i0þÞ: ð11Þ

The distribution pl is normalized so that
R
dxplðxÞ ¼ 1; the

total DOS takes into account the relative dimension
between the sectors:

pðxÞ ¼
P

dlplðxÞP
dl

≙
ϕp0ðxÞ þ p1ðxÞ

ϕþ 1
: ð12Þ

In order to correct for the normalization of Eq. (4), we will
eventually change variables from x to

ϵ ¼ N
P

ldl
N

x ≙
ϕþ 1

ϕ2 þ 2ϕ
x: ð13Þ

This scales the eigenvalues of ρ̂ such that Trρ̂ is the
dimension of the left Hilbert space.
To compute the resolvent ĜðzÞ, we expand

ĜðzÞ ¼ 1

z

X∞
k¼0

ρ̂k

zk
ð14Þ

and sum over all planar diagrams generated by the Wick

contractions of ρ̂k ¼ ðψψ†Þk. This is analogous to the
moment method typically used in random matrix theory.
We rearrange the sum over diagrams to obtain a Dyson
series with self-energy relations of the following form,

ð15Þ

In these diagrams, the single solid line (bare propagator for
left indices) carries an extra 1=z compared to the rules
described in the previous section.
Resumming the Dyson series we obtain the governing

equations,

Gl ¼
1

z − Σl
; Σl ¼

X
r

Clrd0rHr; ð16Þ

Hr ¼
1

1 − Σ0
r
; Σ0

r ¼
X
l

ClrdlGl; ð17Þ

where Hr denotes the full propagator for the dashed lines
and Σ and Σ0 are self-energies. The correct branch of
solutions for GlðzÞ must be analytic in the upper half plane
and decay as 1=z in order to correspond to a properly
normalized plðxÞ.
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As a simple check, consider the bipartition in an uncon-
strained space. Equation (16) reduces to a quadratic equation
for GðzÞ whose solution, GMPðzÞ ¼ ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4=z
p Þ=2,

indeed reproduces the MP law, Eq. (1).
Blockaded chain.—For the constraint structure of

Eq. (2), some algebra reveals that G0 satisfies a cubic
equation,

G3
0 −

2

ϕ
G2

0 þ
zþ ϕ − 1

zϕ2
G0 −

1

zϕ2
¼ 0 ð18Þ

and that G1 can be expressed in terms of G0,

1

G1

¼ 1

G0

þ 1

1 − ϕG0

: ð19Þ

The complete solution of these equations exploiting
the Vieta formula can be found in the Supplemental
Material [34].
The salient features of the resulting entanglement spectra

are illustrated in Fig. 1. As a function of the relative
dimension ϕ, there are three “entanglement phases,” dis-
tinguished by the nature of the singularity in the DOS pðϵÞ
as ϵ → 0. We dub the regime ϕ > 1 the MP phase as
pðϵÞ ∼ ϵ−1=2, just like the MP law in Eq. (1). Indeed, for
ϕ → ∞, the (0,0) sector of the composite Hilbert space
dominates the amplitude matrix ψ iα and pðϵÞ approaches
the MP law exactly. At any finite ϕ > 1, however, pðϵÞ
deviates quantitatively.
For ϕ < 1, the continuous part of the DOS gaps away

from a delta function located at ϵ ¼ 0. The delta function
has mass ð1 − ϕÞ=ð1þ ϕÞ, which follows from the number
of linearly independent columns in a full rank matrix ψ iα
with the block structure shown in Fig. 2. Qualitatively
similar behavior arises in unconstrained systems when the
dimensions of the two subsystems are unequal.
The multicritical point at ϕ ¼ 1 has no counterpart in

unconstrained systems. The DOS exhibits a nontrivial
power law pðϵÞ ∼ ϵ−2=3. The multicritical point is realized,
for example, by the defect chain in which the Hilbert space
is constrained across the single strong central bond.
Figure 3 presents numerical evidence that each of the

three entanglement singularities is actually realized by the
quasienergy eigenstates of three thermalizing Floquet
models in constrained spin chains (see [34] for details of
the models). In particular, the quasienergy states of the
defect chain readily exhibit the multicritical exponent
pðϵÞ ∼ ϵ−2=3.
Entropy corrections.—There is very little information

regarding a global random pure state from measurements
confined to a subsystem. This can be quantified using the
Renyi (n ≠ 1) and von Neumann (n ¼ 1) entanglement
entropies,

Snðρ̂Þ≡ 1

1 − n
ln

Trρ̂n

ðTrρ̂Þn : ð20Þ

A typical random pure state in an unconstrained system has
entropy nearly that of the infinite temperature mixed state
on the same system. Indeed, Page famously showed that the
deviation

ΔSn ¼ Snðρ̂T¼∞Þ − Snðρ̂Þ ð21Þ

is less than or equal to 1=2 for n ¼ 1 even though S1 itself is
extensive.
We expect modifications to both terms in Eq. (21) for

constrained systems because (i) ρ̂T¼∞ ∝
P

lr δ
lClrd0r is not

the identity operator on the left space, and (ii) the entan-
glement DOS pðϵÞ for the random state is different from the
MP law. Because of the concentration of measure at large
N, the average entropy depends explicitly on pðϵÞ:

Snðρ̂Þ ¼ ln
�
N
X

dl
�
þ 1

1 − n
ln

�Z
dϵpðϵÞϵn

�
: ð22Þ

For example, the Page correction at n ¼ 1 for the
Rydberg chain [ϕ ¼ ð1þ ffiffiffi

5
p Þ=2]:

ΔS1 ≈ 0.513595 � � � ð23Þ

is larger than the value 1=2 of the unconstrained chain,
violating the Page inequality [34]. The half subsystem has
more information regarding the pure global state in the
constrained chain than it does in the unconstrained case.
Global symmetries.—Many systems have diagonal con-

straints, which impose a one-to-one relationship between
allowed l and r sectors. For example, global Sz conserva-
tion constrains the total Sz on the left l and right r to add up

FIG. 3. Integrated DOS NðϵÞ averaged across all quasienergy
states for three local, thermalizing Floquet models on constrained
chains. The Rydberg and Defect models show the universal
exponents of the MP phase and the multicritical point, respec-
tively. The anti-Rydberg chain lies in the gapped phase, so NðϵÞ
begins at a finite value in the logarithmic plot.
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to the total magnetization M. Systems of pinned non-
Abelian anyons provide a more exotic example. Net fusion
into the vacuum channel constrains left and right fusion
sectors to be conjugate [41].
As each (l, r) sector may be viewed as a product space,

the total DOS is a linear combination of scaled and
re-weighted MP laws:

pðxÞ ∝
X
l

dl
d0r

pðλlÞ
MP

�
x
d0r

�
: ð24Þ

Here, pðλÞ
MPðxÞ is the unbalanced MP distribution [7], which

arises when λl ¼ dl=d0r deviates from 1.
In a spin-1=2 chain with Sz conservation, λ ¼ ð L

M−lÞ=ðLlÞ
is generically not equal to 1. Direct computation from (24)
reproduces the Renyi entropies calculated in [42–45] for
globally constrained systems [46].
The balanced case, where all allowed sectors have

dl ¼ d0r, arises for the Sz-conserving chain at M ¼ 0 or
for symmetric bipartitions of pinned anyons. Although the
total DOS pðxÞ ≠ pMPðxÞ, it lies in the MP phase since the
ϵ−1=2 singularity persists. Remarkably, the Page corrections
are actually unmodified from those of the simple MP
law, ΔSn ¼ ½1=ðn − 1Þ� lnCn.
Discussion.—We have developed a diagrammatic tech-

nique to compute the entanglement DOS pðϵÞ of random
pure states in a wide array of constrained systems. This
leads to entanglement phases which are classified by the
singularity structure of pðϵÞ at small ϵ. We have focused on
bipartitions into equally sized left and right subsystems. For

unconstrained systems, it is well known that pðλÞ
MPðϵÞ gaps

for unbalanced cuts. This extends to constrained systems.
Taking d ¼ λd0, the MP phase in Fig. 1 may be viewed as a
critical boundary at λ ¼ 1 in the ϕ − λ plane. It has two
natural critical exponents, pðϵÞ ∼ ϵ−1=2 and Δ ∼ jλ − 1j2,
governing the DOS and gap scaling, respectively. The
multicritical point at ϕ ¼ λ ¼ 1 terminates the MP phase
with exponents pðϵÞ ∼ ϵ−2=3 and Δ ∼ ð1 − ϕÞ3 (on the
λ ¼ 1 boundary). We showed that the multicritical point
is realized by the defect chain, a spin-1=2 chain with an
infinite penalty for the (1,1) state of the two spins across the
central cut.
We do not expect to be able to solve for the DOS for

constrained systems with more than two boundary sectors
in closed form: the self-consistency equations will be
higher than quartic order. Nevertheless, the equations
can be analyzed asymptotically at small z in order to
extract the entanglement phases and numerically solved to
extract pðϵÞ to any desired precision.
The Page correction ΔS1 quantifies the information that

half of a system has regarding the purity of the global state.
Intriguingly, ΔS1ðϕÞ > 1=2 for all ϕ; heuristically, the
blockade constraint provides more information to the
subsystem than is available in the unconstrained case.

We conjecture that Page’s result is a lower bound to
ΔS1 across all constrained systems.
Entanglement spectra have played an important role in

classifying symmetry-protected topological orders in
highly excited states in many body localized phases
[47–50]. Our results provide the baseline modified entan-
glement spectrum in the adjacent ETH (eigenstate thermal-
ization hypothesis) phase due to symmetry restrictions.
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