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Recent experiments have focused attention on the properties of chains of atoms in which the atoms are either
in their ground states or in highly excited Rydberg states which block similar excitations in their immediate
neighbors. As the low-energy Hilbert space of such chains is isomorphic to that of a chain of Fibonacci anyons,
they have been proposed as a platform for topological quantum computation and for simulating anyon dynamics.
We show that generic local operators in the Rydberg chain correspond to nonlocal anyonic operators that do not
preserve a topological symmetry of the physical anyons. Consequently, we argue that Rydberg chains do not
yield Fibonacci anyons and quantum computation with Rydberg atoms is not topologically protected.
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I. INTRODUCTION

The low-energy dynamics of many physical systems takes
place in Hilbert spaces that do not describe tensor products
of spatially local degrees of freedom. Celebrated examples
include the restriction to the lowest Landau level at high
magnetic fields [1], and to local singlet coverings in magnetic
systems [2,3]. These systems are characterized by a set of
local constraints—Ilocal operators that commute with one
other and with the Hamiltonian and take particular values
at low energies, and are described by (generalized) gauge
theories. Gauge theories are ubiquitous in physics; in addition
to describing the particle content of the universe, they underlie
myriad condensed phases of matter, including superconduc-
tors, quantum Hall fluids, and spin liquids [4-7].

Particles endowed with non-Abelian statistics emerge as
the quasiparticles or topological defects of various strongly
interacting quantum systems [8-22]. They define a second
class of systems with nonfactorizable Hilbert spaces, in which
the Hilbert space is constrained by the fusion rules that encode
the outcomes of fusing pairs of particles. Although these
constrained Hilbert spaces can be isomorphic to those found in
conventional gauge theories [23,24], the unconstrained space
associated with the anyons is physically meaningless.

Recent experiments have created an elegant system that
naively appears to fall into both classes discussed above
[25-28]. Specifically, the system in Ref. [27] consists of a
chain of as many as 51 neutral atoms that can support long-
lived high principal quantum number “Rydberg” excitations.
When the lattice constant is small enough, the low-energy
thermodynamics and quantum dynamics of the Rydberg sys-
tem is restricted to a locally constrained manifold by the van
der Waals interaction

ninj41 = 0, (1)
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where n; = 0, 1 is the occupation number of a Rydberg excita-
tion on the atom at site i [29]. While this Hilbert space clearly
has a gauge theory description, it is also isomorphic to that
of a set of non-Abelian “Fibonacci” anyons [9,23,24,31] (see
Fig. 1). The isomorphism presents the tantalizing possibility
that the Rydberg chain, like the Fibonacci chain [32-34],
can serve as a platform for a variant of topological quantum
computation and for quantum information storage [35-38].
Indeed, previous work [35] has addressed the engineering
of specific anyon Hamiltonians (such as the golden chain
introduced by Ref. [23]) with Rydberg atoms. Should Rydberg
atoms yield Fibonacci anyons, then they would further pro-
vide the first experimental realization of non-Abelian anyons,
as despite many decades of experimental effort in semi-
conducting heterostructures [39] and more recently, indium
nanowires [40—44], particles with non-Abelian statistics have
proven elusive in the laboratory.

In this article, we show that Rydberg chains cannot ro-
bustly simulate Fibonacci anyons for two related reasons.
First, generic local operators in the Rydberg chain are non-
local in the anyon chain. This nonlocality is reminiscent of
the transcription between spins and fermions in the familiar
Jordan-Wigner transformation. The nonlocality immediately
implies that simulation of anyonic dynamics with Rydberg
atoms has to be fine tuned, and that the Rydberg atoms, unlike
the Fibonacci anyons, do not define topologically protected
qubits. Second, the anyonic system exhibits a topological
symmetry that the Rydberg system does not. In the boundary
condition sector ny = ny = 0, many operators in the Rydberg
chain do not commute with this symmetry and thus have no
counterpart in the Fibonacci chain. Altogether we conclude
that the Rydberg system is properly thought of as a general-
ized gauge theory (see Refs. [45-48]).

The outline of the article is as follows. We review the prop-
erties of Fibonacci anyons and the fusion tree basis in Sec. I,
before presenting the map between the Rydberg chain and the
Fibonacci chain in Sec. III. We then derive the topological
symmetry of anyonic Hamiltonians in Sec. IV and provide
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examples of operators that are topologically symmetric. Fi-
nally, we discuss the details of trying to simulate Fibonacci
anyons via Rydberg atoms and the lack of topological protec-
tion for Rydberg qubits (Sec. V).

II. FIBONACCI ANYONS

Fibonacci anyons are non-Abelian particles in two dimen-
sions [9,49]. They arise as the quasiparticle excitations of cer-
tain topologically ordered fluids, e.g., the v = 12/5 quantum
Hall state [12]. When they are pinned into a one-dimensional
arrangement, we obtain the Fibonacci chain discussed in
Sec. IIB.

We repeatedly use the process of braiding, or taking a
distant anyon around a cluster of other anyons, to constrain
the properties of the Fibonacci chain. Although the braiding
operation can be represented as a unitary operator in the
Hilbert space of the one-dimensional Fibonacci chain, we
emphasize that the physical operation can only be performed
in two dimensions. In contrast, the Rydberg chain can be
measured and manipulated in one dimension.

A. Fibonacci anyons in two dimensions

The fundamental degrees of freedom of the Fibonacci
chain are Fibonacci anyons, denoted by the symbol t. Fi-
bonacci anyons have two defining properties. First, any pair
of Fibonacci anyons has a net anyonic charge of either 1
(meaning that the two anyons can be annihilated, leaving no
particles behind) or 7 (meaning that if the two anyons are
brought close together, they will form a single anyon of the
same type). This total anyonic charge—the fusion channel of
the pair—is reminiscent of the total spin of a pair of particles;
we represent the possibilities compactly through the following
fusion rules [50]:

txt=1471, xl=17, 1Ix1=1. 2)

Unlike spin, however, the total anyonic charge of any number
of Fibonacci anyons necessarily takes on one of only two
values, 1 or 7.

The second defining property of Fibonacci anyons is their
anyonic statistics. Specifically, braiding one Fibonacci anyon
around another in two dimensions leads to a net phase that
depends on the total fusion channel of the two anyons. This
braiding operation is non-Abelian in the sense that it is a
matrix-valued operation in the two-dimensional Hilbert space
of the pair of t anyons. In Sec. I C, we describe how this
matrix-valued operation can be used to realize the operator
that projects onto the vacuum fusion channel of a cluster of ©
anyons.

We note that a system of non-Abelian anyons in two
dimensions is equivalent to a system of bosons with a “sta-
tistical interaction” that is chosen such that the phases due to
braiding are accrued under adiabatic exchange (for a detailed
discussion, see Refs. [31,51]).

B. Fibonacci chain and the fusion tree basis

The Fibonacci chain is composed of a line of N t anyons
with labels 1, ..., N. In Fig. 1, the vertical legs represent the
anyons; the anyonic charge of each leg is 7. Each state in the
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FIG. 1. Left: A chain of Fibonacci anyons in the fusion tree
basis. Each vertical leg carries charge t, while the horizontal bond
i with label Z; represents the net fusion outcome of fusing the anyons
1, ..., i with the boundary label Z,. The Hilbert space is described
by the labels Z; for 1 <i < N — 1 which obey the constraint in
Eq. (4) in each boundary condition sector (Zy, Zy). Right: A chain
of Rydberg atoms in the blockaded regime which obey the same
constraint [Eq. (1)] in each boundary condition sector (ng, ny).

Hilbert space of the Fibonacci chain can be specified by a
set of labels Z; fori = 1, ..., N — 1 on each horizontal bond,
where Z; equals 1 or t. The Z; basis is called the fusion tree
basis, because the Z; labels satisfy the fusion rules in Eq. (2):

Ziy1 =T X Z;. 3

Since the trivial anyonic charge combined with the T anyon
always gives a t anyon, the Hilbert space consists of all as-
signments of Z; obeying the constraint that no two consecutive
bonds take the value 1:

(Zi, Ziy)) #(1,1) forO<i<N— 1L “4)
We define Z; to be the operator that measures the label Z; on
bond i:
. 1, Z; =1
2={4 72} ®

For open chains, the values of Z; and Zy_; are further
constrained by the boundary conditions, i.e., by the values
of Zy and Zy in Fig. 1. For example, if Zy = 1, then we
must have Z; = Zy x t = t, whereas if Z, = t, we have
Z) =1 x t € {1, t}. Physically, Z, is the net fusion channel
of other anyons to the left of the Fibonacci chain, while Zy is
the net channel of the anyons to the right. The four possible
boundary condition sectors, (Zy, Zy) = (1, 1), (1, 7), (7, 1),
and (7, t), have different Hilbert space dimensions:

ok Nosoo N~ I+RE)HREy) ©
N = IN—1+RZ)+R(Zy) 7™ —f ,
5

where F; is the kth Fibonacci number, R(1) =0, R(t) =1,
and

¢ =11++5) 7

is the golden mean.

In deriving Eq. (6)—and indeed throughout this work—we
assume that the net fusion channel of the anyons in the chain
(green vertical legs in Fig. 1) with the two boundary labels Z,
and Zy is 1. This constrains the total topological charge of the
Fibonacci chain to

Net topological charge = Zy x Zy. ®)
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FIG. 2. Left: Space-time depiction of braiding process that re-
alizes Py. A pair of Fibonacci anyons is created from the vacuum
extremely far from the anyonic cluster of interest. One member of the
pair (7p) is taken around the cluster, remaining at all times extremely
far away from any anyons in the cluster. The pair is then brought back
together and annihilated. Right: By deforming the world lines, the
process is represented as a closed loop encircling the anyon cluster.

In the (1, 1), (1, 7), and (7, 1) boundary condition sectors,
the net topological charge is unique and respectively given by
1, 7, and t. If Zy = Zy = 7, however, the net charge can be
either 1 or 7.

In what follows, we treat the anyons in the Fibonacci chain
as point particles because they are well separated relative to
the correlation length of the topological fluid that they are
embedded in.

C. Projectors onto fusion channels

We now discuss how braiding processes in the two-
dimensional topological fluid hosting the Fibonacci chain
determine the nature of the operators that can act on the chain.
We first describe how braiding a probe t particle realizes the
operator Py that projects a cluster of N Fibonacci anyons
onto the vacuum fusion channel. We then discuss projectors
involving a subset of the anyons in the chain.

A word on notation: Projection operators are represented
by P or P below. We drop the * superscript on projector
operators for notational brevity.

1. Realizing projectors through braiding

Consider a pair of probe T anyons created from the vacuum
far away from the cluster of anyons forming the Fibonacci
chain. Braid one of the probe anyons 7y around the cluster,
keeping 1o extremely far from the cluster at all times, such
that only the long-ranged statistical interactions contribute to
the accumulated phase. Then return the system to its original
state by annihilating the probe particles into the vacuum. A
space-time depiction of the entire process is shown in Fig. 2.
Note that by deforming the world lines, the process can be
represented as a closed loop encircling the anyon cluster
(Fig. 2); this representation is particularly useful in Sec. IV.

Using the basic fusion and braiding data of Fibonacci
anyons in two dimensions (see the Appendix), it is easy to
show that the above process is described by the operator [51]

O = 11)(1] = ¢ ?|7)(1l, €))

where |i) represents the state of the cluster with net fusion
channel i =1, 7. We emphasize that the outcome of the
process depends crucially on the fact that we project the
two probe anyons onto the vacuum both before and after the
braiding experiment. Different choices of the initial and final
fusion channel for this pair will result in different coefficients
in front of the |7) (7| term in Eq. (9). For a discussion of these
more general statistical interactions, see Ref. [51].

Intuitively, Eq. (9) tells us that if the cluster has a net topo-
logical charge of 1, it is indistinguishable from the vacuum
at long distances and the statistical interaction between tg
and the cluster is zero. As the direct anyon-anyon interactions
decay exponentially in the distance between the anyons in a
gapped topological fluid, their contribution to the accumulated
phase of the joint wave function of the cluster and the probe
anyons in the braid operation also vanishes as the separation
between 17 and the cluster becomes large. Thus, braiding
79 around the cluster is equivalent to braiding it around the
vacuum, and the probability that the probe particles annihilate
into the vacuum after the braid operation is 1.

If the cluster has a net topological charge of t, on the other
hand, then the long-ranged statistical interaction with 7y can
change the net fusion channel of the pair of probe anyons.
In this case, the probability that the probe anyons fuse to the
vacuum after the braid is less than 1.

We define Py} = |m)(m| to be the operator that projects the
N-anyon cluster onto a state with net charge m form = 1, t.
From Eq. (9) we see that

Ows = Py — ¢ 2Py (10)
= (1+¢ 2Py — 1. (11)

The braid experiment with probe 7 particles can thus be used
to realize the operator PZ{, that projects an N-anyon cluster
onto the vacuum fusion channel. Notice that P} is the net
topological charge of the entire Fibonacci chain, and is a
c-number fixed by the boundary conditions in all but the
Zy = Zy = t boundary condition sector.

2. Projectors onto fusion channels of subsets of anyons

Braiding the probe 7y anyon around a subset of anyons
in the Fibonacci chain defines the projection operator that
projects the subset into a specific fusion channel [52]. Let
Pe(ii, ..., i,) denote the operator that projects the cluster
of n anyons iy, ..., i, onto the fusion channel « = 1, t. For
example, P, (i, j) projects anyons i and j into the vacuum
fusion channel. When the anyon site labels are suppressed,
the projector acts on all the anyons in the chain to the left of
the index in the subscript. Thus, the symbol P! is shorthand
for the following operator:

Pl =Pl1,....0), (12)
which projects the fusion outcome of the first i anyons in the

Fibonacci chain to the vacuum (see Fig. 3).

D. Relationship to VA operators

The projectors Pi1 are closely related to the Z; operators in
certain boundary condition sectors. First, note that Pi1 does not
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FIG. 3. Pictorial depiction of various operators of the Fibonacci
chain. The operator P! projects the fusion outcome of the first i
anyons in the Fibonacci chain to the vacuum channel, while P} _,(i +
1,...,N) projects the outcome of the anyons i+ 1,...,N. The
value of Z; can be measured through a braid experiment around the
boundary leg Z, and the anyons 1, ..., i, or through a braid around
the boundary leg Zy and the anyons i 4+ 1, ..., N. By deforming the
world lines of either braid experiment, we obtain the loop encircling
the bond i.

act on the boundary label Zy. In contrast, we have

le‘L'lXZ(), ZzZ‘szzl,..., (13)
so that Z; can be interpreted as the net fusion channel of
anyons 1, ..., i with the boundary label Z;:

Zi = 1; X (ti-1 X (- (11 X Zp))). (14)

If Zy = 1, then Z; is simply the outcome of fusing anyon
i with anyons 1, ...,i — 1. Consequently, in the (1, 1) and
(1, ) boundary condition sectors, the topological charge of
anyons 1, ..., i equals Z;, and
, 1+Z
P = 7 (15)
In the (7, 1) boundary condition sector, a similar rela-
tion holds because of the identity Z; =Zy X 1) X -+ X T; =
Tiy1 X Tipa X - -+ X Zy. Consequently, the topological charge
of anyons i+ 1, ..., N equals Z;, and
Plbfi(i—kl,...,N):#. (16)
When Zy = Zy = t, Z; is not equivalent to the net fusion
outcome of anyons in the Fibonacci chain alone. In this
case, the operator Z; acts on the boundary labels and is not
completely determined by P! or P]\l,_i(i +1,...,N) (although
it commutes with both projectors).

III. THE MAP BETWEEN RYDBERG-BLOCKADED AND
FIBONACCI CHAINS

As summarized in Fig. 1, the states in the fusion tree basis
are in one-to-one correspondence with the occupation number
states of the nearest-neighbor Rydberg-blockaded chain in
each boundary condition sector if we identify

|Zi =1) & |n; = 1),
|1Z; = 1) < |n; = 0). (17)

The local constraint in Eq. (4) then corresponds to a perfect
Rydberg blockade [Eq. (1)].

The mapping does not preserve operator locality. Specif-
ically, local operators in the Rydberg chain generically map
to nonlocal operators in the Fibonacci chain. This is reminis-
cent of the one-dimensional Jordan-Wigner transformation in

which local spin operators that anticommute with parity are
mapped to string operators in the Majorana basis.

For example, consider the operator 7;, which measures the
occupation number of atom i in the Rydberg chain. From
Eq. (17), we find

(1+6))=m & 10+ 2. (18)

As discussed in Sec. II B, the operator Z encodes the net
fusion channel of anyons 1, ..., i with the boundary label Z,
(or, equivalently, the fusion channel of anyons i +1,..., N
with the boundary label Zy) and thus requires i- or (N — i)-
body measurements.

To derive the operator that flips the Rydberg occupa-
tion number on site i, 6, we recall the matrix representa-
tion of the projector P, (i,i+ 1) in the basis of five triples
Zi-1,Zi, Zi) =, 1, 1), (z,7, 1), (1,7, 7), (7,1, 1), and
(z, 7, 7) allowed by the fusion rules [31]:

1 0 O 0 0
0 0 O 0 0
Pl i+1H=|0 0 0 0O 0 (19)
0O 0 0 -2 ¢73/2
0O 0 0 ¢—3/2 ¢—l

The off-diagonal term in the matrix is the co-efficient of the
operator 67", while the diagonal terms can be expressed in
terms of Z; and Z;4,. Rearranging Eq. (19), we see that 6}
maps to a sum of local and nonlocal operators in the fusion
tree basis:

1-— N A
65 & PPy, i+ 1)+ M(Zi—] +Ziy1)
%, (I—9),
- TZFIZHI — Wzi, (20

where we have suppressed an additive constant. Although the
first term on the right-hand side (RHS) is a local projector in
the anyon chain, the remaining terms measure the net fusion
channel of all the anyons to the left of i — 1 or i 4+ 1 with the
boundary labels, and thus make the entire RHS nonlocal.

Interestingly, local operators in the Fibonacci chain map
to local operators in the Rydberg chain. For example, the
projector onto the vacuum fusion channel of anyons i and
i + 1 maps to

A X

o
Palii+1) & o5 = ¢~ iy o = 1)
1 —
+ dni_1npyg + %ni (21)

using Eqgs. (18) and (20). More generally, consider an interac-
tion term of range m involving the anyons k, k +m — 1, and
any number of anyons in between. The interaction term cannot
modify the fusion outcome of fusing any collection of anyons
with indicesin {1, ...,k — 1,k +m, ..., N} as it does not act
on any of these anyons. More stringently, the interaction term
cannot measure fusion outcomes associated with these anyons
except for their net fusion channels.

We now use the fact that the interaction term can only
depend on the net fusion outcome of the anyons with indices
in {l,...,k—1,k+m,...,N} to prove that it maps to a
local (m + 1)-body operator in the Rydberg chain. Let Y,
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denote the net fusion channel of the group of anyons to
the left {1,...,k — 1} and Y, that of the group to the right
{k +m,...,N}; our projector is diagonal in Y, ,. As Z;_;
(Z+m—1) is the result of fusing ¥; (¥;) with the boundary leg
Zy (Zy), we conclude that the interaction term is diagonal in
the Zy_1, Zr1m—1 basis. Note that the interaction term acts as
the identity on the bonds 1, ...,k — 2,k +m, ..., N because
it cannot measure the internal structure of the left and right
groups. Thus, the interaction term at most connects states
that differ in their Z, ..., Z;1,—» labels for any choice of
Zk—1s Zg+m—1, and maps to a local (m + 1)-body operator in
the Rydberg chain.

IV. TOPOLOGICAL SYMMETRY OF ANYONIC
HAMILTONIANS

In this section, we argue that the Fibonacci chain’s total
topological charge must be conserved under its own dynamics,
while the Rydberg chain has no analogous conservation law.
We call the principle underlying this conservation “topologi-
cal symmetry” because it follows from the braiding and fusion
rules of the two-dimensional fluid that hosts the Fibonacci
anyons. We also discuss the relationship to the topological
symmetry of the Fibonacci chain with periodic boundary
conditions [23].

Suppose that the Fibonacci chain’s total topological charge
is ill defined. Then, a generic eigenstate can be decomposed
as

|E) = Py|E) + PY|E). (22)

Next, consider performing the operation described in
Sec. II C. That is, consider creating a pair of 7 particles from
the vacuum infinitely far away from the chain, bringing one
of these around the system at a rate that is sufficiently slow
that it does not create any excitations along its path, and
reannihilating the pair into a vacuum state. From Eq. (9):

N 1
Ows|E) = —¢7P,6|E> + PYIE). (23)

Suppose the state |E) is nondegenerate. Since Ows|E) #
|E), the process of braiding a test particle infinitely far away
from the chain changes its energy. This is clearly impossible
for any physical system. Thus, nondegenerate eigenstates |E)
must have a definite fusion outcome.

Suppose the eigenspace at energy E is degenerate. Then,
0test|E ) is a linearly independent eigenstate with the same
energy as |E). That is, we can always diagonalize the fusion
outcome within the degenerate eigenspace. Thus, in either
case, we conclude that, like total spin, the total fusion outcome
of our system is conserved under the dynamics:

[H.Py] =0, (24)

where H is the Hamiltonian of the system. This is the topo-
logical symmetry.

A few comments are in order. First, the Hamiltonian of
a Fibonacci chain is composed of operators that conserve
the total topological charge, much as the Hamiltonian of
a spin chain with spin-rotational symmetry is composed of
terms that conserve the total spin. Unlike in the spin system,
however, the topological symmetry does not imply spectral

degeneracy. In an SU (2)-symmetric spin system, a fixed total
spin Sior > O requires that the system as a whole transform in
a (2S¢ + 1)-dimensional representation of SU (2). Fibonacci
anyons have no analog of these representations; an isolated ©
particle has no internal quantum numbers apart from its total
anyon charge. Correspondingly, Fibonacci anyons permit no
raising or lowering operators that commute with H.

Second, Ref. [23] identified a “topological symmetry” as-
sociated with a particular operator that commutes with A on a
chain with periodic boundary conditions. Though the operator
in question (or, more specifically, its square) is related to the
braiding process described above, it is physically distinct and
represents a process that is specific to the periodic Fibonacci
chain. In particular, the topological symmetry with periodic
boundary conditions implies a twofold degeneracy in the
spectrum. Nonetheless, both operators capture the conserved
quantity that results from the topological order of the two-
dimensional fluid that the anyons are embedded in.

A. Number of linearly independent topologically symmetric
operators

The topological symmetry restricts the operators that enter
into the Fibonacci chain’s Hamiltonian in certain boundary
condition sectors. We begin here by counting the total number
of operators that obey topological symmetry.

In the (1, 1), (1, ), and (7, 1) boundary condition sectors,
the topological symmetry places no constraints on the anyonic
system’s Hamiltonian because PA‘, is a c-number. In the (7, 7)
sector, however, Eq. (24) imposes that the Hamiltonian is
block diagonal on the two possible fusion outcomes. To see
that this reduces the number of possible operators entering
the Hamiltonian, note first that any topologically symmetric
operator O can be expressed as

O = PyOPy, + PLOP;, (25)
=0,+O;. (26)

The number of linearly independent operators O is the num-
ber of linearly independent operators in the Fibonacci chain
with (1, 1) boundary conditions because the fusion tree basis
with Zy = Zy = 1 is a basis for the Hilbert space with P,\l, =1.
Similarly, the number of linearly independent operators O, is
the number of linearly independent operators in the (1, t) or
(z, 1) sectors. Thus, from Eq. (6), the total number of linearly
independent topologically symmetric operators acting on an
anyonic chain with N anyons is

nop = Fyy_, + Fy. 27)

We observe that ny, is less than the number Fy 41 of linearly
independent operators in the (7, ) boundary condition sector.
Thus, not all Hermitian matrices in the (z, 7) sector represent
valid anyonic Hamiltonians.

B. Examples of topologically symmetric operators

We now investigate which operators commute with the
topological symmetry. We show that any projector
77,1,(1'1, ...,Iy) that projects onto the vacuum fusion
channel for any subset of m anyons commutes with the
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FIG. 4. Illustration of loops representing different braiding oper-
ations on the Fibonacci chain. As explained in detail in Ref. [53],
loops that can slide past each other freely (such as those associated
with (a) the projectors Py and P (iy, ..., i,)) commute, while loops
that cannot slide freely past each other (such as those associated with
(b) P} and Z;) do not.

total topological charge, while operators such as Z; that
describe the net fusion channel of anyons in the chain with
the boundary labels do not. As the topological symmetry acts
nontrivially only in the (7, ) boundary condition sector, here
we restrict our attention to this case.

Recall that the projector P,,l1(i1, ..., Ly) can be carried out
by first separating anyons iy, ..., i, from the other anyons
in the chain, and then braiding a probe anyon around this
subset of anyons (see Sec. I C 1). An important feature of the
braiding process is that it commutes with P’. A diagrammatic
“proof” follows from the representation of P,l,(il, ceisim)
as a loop around the world lines of the anyons with labels
i1, ..., Iy (see Fig. 4), on noting that loops in the space-time
representation that are able to freely pass through one another
indicate commuting projectors. (Conversely, loops that cannot
slide past one another represent measurements that do not
commute). For further details on the mathematics underlying
the diagrammatic calculus, see Ref. [53]. As the loop around
the world lines of all N anyons can be passed through any loop
encircling a subset of the anyons,

[Py, PrGir, ... im)] = 0. (28)
Thus, projectors onto a given fusion channel of a subset of
anyons are topologically symmetric operators. The analog of
this statement in the SU (2)-symmetric case is that the total
angular momentum of any subset of the spins respects the
global SU (2) symmetry.

The next question is whether these projectors constitute a
complete basis for all operators compatible with topological
symmetry. Here simple counting arguments do not suffice:
a superexponential-in-N number of topologically symmetric
operators can be constructed by taking tensor products of the
different projection operators P. (i1, . . ., i,). These operators
must be linearly dependent, as their number exceeds the
total number of linearly independent topologically symmetric
operators nq, ~ »*" [see Eq. (27)]. Nevertheless, we expect
that these operators span the topologically symmetric operator
space, as they completely specify the information about the
state of the system accessible by measurements on the anyons
in the chain. Indeed, in the (1, 1), (z, 1), and (1, ) boundary
condition sectors, we can use the mapping between Rydberg
operators 6; and 67 and nonlocal projectors [Eqgs. (15), (16),
(18), and (20)] to construct a basis of topologically symmet-
ric operators in terms of projectors. Thus, any topologically

symmetric anyonic Hamiltonian can be expressed as a sum of
products of projection operators PL (i, ..., in).

With (7, 7) boundary conditions, the operators correspond-
ing to the local Rydberg operations 6; and 6; are not topo-
logically symmetric. The space-time diagram in Fig. 4(b)
provides the diagrammatic proof. From Eq. (18), 67 maps
to the projector associated with a braiding process that en-
circles the boundary label Z,, as well as the anyons in
the chain with labels 1,...,i. The resulting loop cannot
freely slide past a loop encircling all anyons in the chain;
hence,

[67. Py] #0. (29)

Similarly, using the expression for 67 in Eq. (20) in terms
of projectors that encircle the boundary leg with label O,
it is easily shown that [, P] # 0. We note that finely
tuned combinations of operators in the Rydberg chain can be
topologically symmetric if they are an algebraic combination
of projectors onto a subset of the anyons in the chain.

V. SIMULATING FIBONACCI ANYONS WITH
RYDBERG CHAINS

A. Hamiltonians with (1, 1), (1, ), and (z, 1)
boundary conditions

In Sec. IV, we showed that all operators in the constrained
Hilbert space conserve the total topological charge of the
chain in the (1, 1), (1,7), and (7, 1) boundary condition
sectors. However, in Sec. III, we pointed out important dif-
ferences in locality between operators in the Rydberg and
Fibonacci chains. For example, in the (1, 1) boundary con-
dition sector, the local Rydberg operator 7; = %(1 +67) is
represented in the Fibonacci model by P!, which projects all
anyons to the left of bond i into the vacuum fusion channel.
The operator 6; similarly maps to sums of nonlocal projectors
[see Eq. (20)]. Superficially, these differences in locality are
reminiscent of those arising in the mapping between the one-
dimensional (1D) Ising chain and the 1D Majorana chain [11].
However, there is an important distinction: in the latter case,
Ising symmetric operators are local in both representations,
such that aspects of the dynamics of one model can be usefully
studied with the other. In the case at hand, there appears to be
no symmetry (or other reasonable restriction) on operators in
the Rydberg chain such that they produce only local operators
in the anyon chain. As a consequence, any realistic attempt to
create a Fibonacci-type Hamiltonian with Rydberg atoms [35]
must be the result of fine-tuning, such that only the specific
linear combinations of products of 6* and 6° that are local
in the anyon model appear. Deviation from this fine-tuning
results in an effective Hamiltonian for the Fibonacci chain that
is nonlocal.

B. Hamiltonians with (z, T) boundary conditions

With (7, t) boundary conditions, the net topological charge
of the anyon chain can be 1 or 7, and topological symmetry
imposes nontrivial constraints on the Hamiltonians. Since the
Hilbert space has dimension Fy; for an N-anyon chain, the
total number of operators in the Rydberg Hilbert space is
F{. | however, as discussed in Sec. IV A, only F + F;_, of
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FIG. 5. An example of a qubit composed of one segment of
Fibonacci chain, with two well-separated Fibonacci anyons. Infor-
mation is encoded in the net topological charge of the two-anyon
system, which can take on values of 1 or 7.

these are compatible with conservation of topological charge.
These include the projectors P,Z(i Ly evvsim).

Thus, in addition to the important differences in locality
between Fibonacci and Rydberg Hamiltonians, the spectrum
of a Fibonacci chain is block diagonal in the total topological
charge, while the spectrum of a generic Rydberg Hamiltonian
is not. This has striking consequences for the energy spectrum
of a Fibonacci chain:

(1) The energy spectrum with (z, t) boundary conditions
is a direct sum of the energy spectra with (1, 1) and (1, 7)
boundary conditions.

(2) The energy spectrum with (1, t) boundary conditions
is identical to that with (7, 1) boundary conditions.

These properties of the Fibonacci spectrum could be ex-
ploited to test whether a given Rydberg chain is successfully
emulating a chain of non-Abelian anyons.

C. Consequences for topological quantum computing

One of the most important motivations for constructing
quantum simulators that emulate the Fibonacci chain is to
exploit the potential of Fibonacci anyons for universal topo-
logically protected quantum computation [33,53-56]. We thus
discuss some specific architectures for Fibonacci qubits, their
analogs in the Rydberg picture, and the fate of topological
protection in the face of random noise in the Rydberg Hamil-
tonian.

Any Fibonacci chain segment with two or more anyons
defines a qubit by associating the states of total topological
charge 1 and t with the two z states of the qubit. (Evidently,
each chain segment must be in the (7, 7) boundary condition
sector to be able to represent both possible fusion outcomes.)
The topological charge of each segment is conserved by any
Hamiltonian involving only the anyons on that particular seg-
ment; hence, the information is topologically protected inas-
much as different segments can be isolated from each other.
Additionally, if the anyons within the segment are weakly
interacting, then the energy splitting between the two fusion
channel outcomes of each segment can be very small. For ex-
ample, if the segment contains two well-separated Fibonacci
anyons, the splitting between the 1 and 7 fusion channels is
expected to be exponentially small in the separation. A qubit
of this type is shown in Fig. 5.

One of the appealing features of non-Abelian anyons for
applications in quantum computing is that, at least in theory,
it is possible to manipulate the state of the qubit through
nonlocal (braiding) processes, whereas all local operators
preserve the state of the qubit. For the two-anyon qubit,
the braiding process brings a third anyon between the pair

involved in the qubit (which we assume to be well separated
relative to any relevant correlation lengths); such a process has
some amplitude of flipping the state of the qubit from 1 to T
(and vice versa). Fibonacci anyons are a particularly exciting
platform for this type of quantum computing since braiding
operations can be used to realize a universal set of quantum
gates, in contrast to platforms involving Majorana zero modes,
which cannot [57].

However, there are several obstacles to using Rydberg
atoms to simulate Fibonacci qubits. First, there is no topo-
logical symmetry leading to a conserved fusion outcome for
each chain segment of Rydberg atoms. In particular, the on-
site Rydberg operators 6;* and 6 for i within the segment
fail to conserve the segment’s topological charge. Thus, the
qubit’s state is affected by random noise in these on-site terms.
Second, since the braiding operation is a feature of the anyons
in two dimensions, the topologically protected manipulation
of quantum information is also not easily achievable with lo-
cal Rydberg Hamiltonians. Specifically, the braiding process
between two anyons separated by a distance m maps to a
(m + 1)-body fine-tuned unitary gate on the Rydberg atoms;
any noise on the unitary gate would decohere all the qubits
defined by the (m + 1) Rydberg atoms.

VI. CONCLUDING REMARKS

In closing, we have described the connection between two
different physical problems with isomorphic Hilbert spaces—
those of the Rydberg chain characterized by local constraints
and of Fibonacci anyons characterized by anyonic fusion
rules. The mapping is different from the more familiar Jordan-
Wigner mapping between spins and fermions in one dimen-
sion in several respects. Specifically, we find that operators
that are local in the Fibonacci chain are also local in the
Rydberg chain, while local Rydberg operators generically
map to nonlocal anyonic operators. In addition, the Fibonacci
chain has a topological symmetry arising from its embedding
in a two-dimensional topologically ordered fluid, which has
no natural analog in the Rydberg model. Finally, we showed
that the nonlocality of the mapping between the spaces implies
that qubits in the Rydberg chain do not have the desired topo-
logical protection of quantum information. Irrespective of the
application to anyonic simulators, we expect the fascinating
interplay of theory [37,58-67] and experiment [25-28] to
uncover many new features of constrained systems using the
Rydberg atomic simulator.
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FIG. 6. Identities required to evaluate diagrams in the Fibonacci
anyon model. Here R = R*. Unless otherwise specified, solid lines
represent T anyons. All diagrams are invariant under arbitrary planar
deformations of the graphs.

APPENDIX: DIAGRAMMATIC FORMALISM FOR
FIBONACCI ANYONS

In this section, we briefly review the diagrammatic formal-
ism used in the main text to evaluate the coefficients of certain
operators. Our discussion is specific to the Fibonacci case and
is meant to only give a basic physical picture; more general
and rigorous treatments can be found in Refs. [51,68].

The diagrammatic formalism is used to evaluate the parti-
tion function of a relativistically invariant topological quan-
tum field theory (TQFT). Since this partition function is by
definition invariant under purely geometric deformations, it
only depends on the topology of the space-time itself (which
we assume to be trivial) and on the topology of the world
lines of any anyons present. (Note that we must include twists
in these world lines as “topological” [69]). In particular, the
partition function is invariant under a process that collapses all
closed world lines (representing processes in which a pair of
T anyons are created, moved around, and then reannihilated)
to a single instant in time. For this reason, the diagrammatic
formalism also allows us to calculate the matrix elements of
operators associated with closed anyon world lines, such as
the projectors discussed in the main text.

Our starting point is a diagram depicting some space-time
evolution of a set of anyon world lines. An example is given
in Fig. 2, which shows the diagram relevant to braiding one
anyon around a cluster of other anyons. The diagrammatic
calculus then gives a set of rules that can be used to evaluate
the partition function. The topological nature of the theory
ensures that all we need in order to do this is (1) a set of
rules that specify how to resolve crossings (and hence undo
twists and linkings) of world lines, as shown in Fig. 6(a),
(2) a set of rules that specify how to change the order in

FIG. 7. Sliding a loop over a fusion cluster.

which three anyons are fused to give a fourth [Fig. 6(b)],
and (3) some identities associated with anyon loops, shown
in Fig. 6(c). Specifically, the first identity in Fig. 6(c) asso-
ciates a number (known as the quantum dimension) with each
isolated closed anyon loop. The second identity in Fig. 6(c)
encodes the requirement that a pair of anyons created from
the vacuum (7r) channel must reannihilate to the vacuum
(7) channel unless at least one of them is braided around
another anyon. The final identity in Fig. 6(c) is a special
case of Fig. 6(b) and is included here merely as a matter of
convenience. For Fibonacci anyons, the relevant coefficients
are [31]

T,T __ i4mw/5 T,T __
R =e R =

-1 —-1/2
F = <¢¢_1/2 ¢_5¢_1>.

These rules are complete because the topological nature of the
theory requires that the evaluation of each diagram must be in-
variant under deformations that preserve the linking and twist-
ing of each world line. In particular, the result is unchanged
if we bend or rotate the diagrams in Fig. 6 in the plane. This
fact often greatly simplifies calculations in this formalism. For
example, the two loops shown in Fig. 3(a), which surround the
world lines of all anyons on our chain, and of anyons 1, ...,
on the chain, respectively, can slide freely through each other
without undoing any twists or crossings; the associated matrix
element must be unchanged by such sliding, meaning that the
two associated projectors must commute. In Fig. 3(b), on the
other hand, if we attempt to slide the lower red loop through
the grey loop, we necessarily are left with a diagram in which
the red and grey loops have additional crossings. In this case
the two operators do not commute. Finally, as we have argued
in the main text, the matrix element associated with braiding
a particle around a cluster of anyons can depend only on the
fusion outcome of the cluster. This implies that diagrams must
be invariant under the sliding process depicted in Fig. 7. Thus,
we may replace any braiding process involving a test anyon
going around a cluster of T anyons with one in which our test
anyon encircles either nothing (if the cluster is in the vacuum
fusion channel) or a single T anyon (if the cluster is in the T
fusion channel).

Consequently, the operator (9) depicted in Fig. 2 can be
evaluated as follows. If the net topological charge of the
cluster is trivial, then, topologically, this diagram is just a
single closed loop, corresponding to a value of ¢. If the cluster
has a net topological charge of 7, then the rules in Fig. 6 can

e/

(AD)
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be used to evaluate

From the rules shown in Fig. 6(c), we see that the last two
diagrams evaluate to zero, while the first and second both
evaluate to ¢ times an isolated t line (representing our T
anyon in the absence of any braiding). We thus obtain

B e—i87r/5 i67r/5> B 1
D> (=) | =-1

To obtain the operator in Eq. (9), we divide the RHS by ¢.
Physically, this is because the operator’s expectation value is
defined as the ratio of two partition functions: one in which an
anyon pair is created, braided around a cluster of anyons, and
reannihilated, and one in which the pair is simply created and
then reannihilated some time later.
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