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Abstract
We prove the existence of infinitely many low-lying and fundamental closed geodesics
on the modular surface which are reciprocal, that is, invariant under time reversal.
The method combines ideas from parts I and II of this series, namely, the disper-
sion method in bilinear forms, as applied to thin semigroups coming from restricted
continued fractions.

1. Introduction
We quote from Sarnak’s lecture [18] regarding the genesis of the affine sieve (see
[1], [2], [19]):

For me the starting point of this investigation was in 2005 when Michel
and Venkatesh asked me about the existence of poorly distributed closed
geodesics on the modular surface. It was clear that Markov’s constructions
of his geodesics using his Markov equation provided what they wanted but
they preferred quadratic forms with square free discriminant. This raised
the question of sieving in this context of an orbit of a group of (nonlinear)
morphisms of affine space.

The initial question, which arose in Einsiedler, Lindenstrauss, Michel, and
Venkatesh’s investigations into higher-rank analogues of Duke’s theorem [9], asked
(see the discussion below [10, Theorem 1.10]) for an infinitude of low-lying (i.e.,
being poorly distributed by not entering the cusp) fundamental geodesics (i.e., those
corresponding to fundamental classes of binary quadratic forms). This problem was
solved in part II of our series (see [7], [15] for a detailed discussion). But the ques-
tion of an infinitude of fundamental Markov geodesics (for a discussion of Markov
geodesics, see, e.g., [17, p. 226]) remains wide open, despite recent progress on the
“strong approximation” aspect in [4] and [5]. Such geodesics are all reciprocal, that
is, equivalent to themselves under time reversal of the geodesic flow. In this paper, we
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relax Markov geodesics to just low-lying ones and solve the problem of producing an
infinitude of low-lying, fundamental, and reciprocal geodesics.

1.1. Statement of the main theorem
Before stating our main result, we give precise definitions of low-lying, fundamental,
and reciprocal. By closed geodesic, we always mean primitive.

Definition 1.1
Given a compact subset Y of the unit tangent bundle of the modular surface

X D T 1
�
PSL2.Z/nH

�
Š PSL2.Z/nPSL2.R/;

a closed geodesic � on X is called low-lying (with respect to Y) if � � Y.

Definition 1.2
As is well known, closed geodesics on X are in one-to-one correspondence with
primitive conjugacy classes of hyperbolic elements of PSL2.Z/ and with equivalence
classes of indefinite binary quadratic forms (see, e.g., [15]). The latter have discrimi-
nants, and we say that a closed geodesic has discriminantD if its corresponding class
does. The trace of a closed geodesic is that of its corresponding conjugacy class.
Recall that a nonsquare discriminant D is called fundamental if it is the discrimi-
nant of the real quadratic field Q.

p
D/. We call a closed geodesic fundamental if its

discriminant is.

Definition 1.3
The time-reversal symmetry on X corresponds to replacing all tangent vectors by
their negatives; if a closed geodesic is invariant under this involution, it is called recip-
rocal.

Recall that the total number of all primitive closed geodesics, ordered by trace
(which is equivalent to ordering by length), has the following well-known asymp-
totic:

#¹closed geodesics with trace<Xº �
X2

2 logX
:

There are about square-root as many reciprocal geodesics, which makes intuitive
sense, as the geodesic has to spend the second half of its life undoing the twists of its
first half.
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THEOREM 1.4 (Sarnak [17, Theorem 2])

#¹reciprocal geodesics with trace<Xº �
3

8
X:

Our main result produces almost as many low-lying, fundamental, and reciprocal
geodesics.

THEOREM 1.5 (Main theorem)
For any � > 0, there is a compact subset Y D Y.�/�X so that

#¹low-lying, fundamental, reciprocal geodesics with trace<Xº

�� X
1��:

1.2. Ingredients
As in part II of our series (see [7]), we must study restricted continued fractions, and,
to understand these, we use the semigroup

�A WD

��
a 1

1 0

�
W a �A

�C
\ SL2 (1.6)

of even-length words in the generators displayed. Write BN for the archimedean ball
in SL2.R/ with respect to the Frobenius metric:

BN WD

²
gD

�
a b

c d

�
2 SL2.R/ W tr.g

�g/D a2C b2C c2C d2 <N 2

³
:

Hensley [12] estimates the size of an archimedean ball in �A to be

#�A \BN �N
2ıA ; (1.7)

where ıA is the Hausdorff dimension of the limiting Cantor set,

CA WD
®
Œ0; a1; a2; : : : � W aj �A for all j

¯
:

Here we are using the standard notation x D Œa0; a1; a2; : : : � for the continued fraction

x D a0C
1

a1C
1

a2C
:::

:

These fractal dimensions are known to tend to 1 as A!1; indeed, Hensley [13] has
shown that

ıA D 1�
6

�2A
C o

� 1
A

	
: (1.8)
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The following lemmas give sufficient conditions for a closed geodesic—
represented by a hyperbolic conjugacy class Œ�� with � 2 SL2.Z/—to be fundamental
and reciprocal.

LEMMA 1.9 ([7, Lemma 1.14])
A sufficient condition for a closed geodesic Œ�� to be fundamental is that

tr.�/2 � 4 is square-free. (1.10)

LEMMA 1.11 (see [17])
A sufficient condition for a closed geodesic Œ�1� to be reciprocal is that it is of the
form �1 D �

�� , for some � 2 SL2.Z/.

We then reduce Theorem 1.5 to the following sieving result.

THEOREM 1.12
For any � > 0, there is an ADA.�/ <1 so that

#
®
� 2 �A \BN W tr.�

��/2 � 4 is square-free
¯
�N 2��:

Remark 1.13
As in part II (see [7]), we cannot simply execute the affine sieve, because the “spectral
gap” is insufficiently robust relative to the growth exponent ıA, and we must produce
an “exponent of distribution” going beyond that arising from expansion alone (see
Remark 6.6). To do this, we again create certain “bilinear forms” and substitute “res-
onance” harmonics with abelian theory, which is much more tractable. Unlike in part
II, the direct approach fails due to the nature of the quadratic forms arising in the error
terms, and therefore a version of Linnik’s “dispersion method” is needed. Fortunately,
we recently developed such in the “orbital sieve” context in part I of our series (see
[6]), which comes to the rescue here.

Remark 1.14
The main result in part II was proved unconditionally but would also follow imme-
diately from a certain “local-global conjecture for thin orbits” (see the discussion in
[15]). In contradistinction, Theorem 1.5 does not follow from this conjecture, because
the function

SL2.Z/! Z W � 7! tr.���/

is quadratic in the entries and so cannot be surjective when restricted to any �A; the
image is itself thin! (For a definition of thinness in this context, see [14, p. 954].)
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1.3. Organization
The rest of the paper is organized as follows. After some preliminary calculations in
Section 2, we state the sieving theorem and construct the bilinear forms in Section 3
before analyzing the “main term” in Section 4. The error terms are analyzed in Sec-
tion 5, after which the sieving theorem is proved in Section 6. Finally, putting together
the above ingredients, we prove Theorem 1.5 in Section 7.

1.4. Notation
The transpose of a matrix � is written �� . When a calculation involves modular arith-
metic, an overbar, Na, shall denote the multiplicative inverse of a. The constants C ,
c are absolute but may change from line to line. We use the notation f � g and
f DO.g/ to mean f .x/� Cg.x/ for all x > C , where C is an implied constant. We
write f � g for g� f � g. Unless otherwise specified, implied constants depend
at most on A, which is treated as fixed, and possibly on an arbitrarily small " > 0.

2. Preliminaries
We recommend the technical estimates in this section be omitted on a first reading.
They are only referenced as needed in the proof, which begins in Section 3.

2.1. Local estimates
We begin with some elementary computations.

LEMMA 2.1
For p an odd prime,

#
®
.x; y/ 2 F2p W x

2C y2 D 0
¯
D

´
2p � 1 if p	 1.4/,

1 if p	 3.4/.

Moreover, for `¤ 0.p/,

#
®
.x; y/ 2 F2p W x

2C y2 D `
¯
D

´
p � 1 if p	 1.4/,

pC 1 if p	 3.4/.

Proof
Elementary.

For $ D
�
a b
c d

�
, define

f.$/ WD tr.$�$/D a2C b2C c2C d2; (2.2)

and for �D˙1, set



3418 BOURGAIN and KONTOROVICH

�.p/ WD
1

jSL2.p/j

X
�2SL2.p/

1¹f.�/�2�.p/º: (2.3)

Extend the definition of � to all square-free q by multiplicativity. A priori, � seems to
depend on �, although the next lemma shows that it does not.

LEMMA 2.4
For p an odd prime,

�.p/D

´
2p�1
p.pC1/

if p	 1.4/,
1

p.p�1/
if p	 3.4/.

Also, �.2/D 1=3.

Proof
For pD 2, two of the six matrices in SL2.2/ have fD 0, so �.2/D 2=6. Now assume
that p 
 3. We need to count the number of .a; b; c; d/ 2 F4p with

a2C b2C c2C d2 D 2� and ad � bc D 1:

We make the following linear change of variables:

aD xC y; d D x � y; b DwC z; c Dw � z; (2.5)

which is invertible since p¤ 2. The equations become

x2C y2C z2Cw2 D � and x2 � y2C z2 �w2 D 1

or, equivalently,

x2C z2 D 1C y2Cw2 D 1C N2.� � 1/D

´
1 if �D 1,

0 if �D�1.
(2.6)

Using Lemma 2.1 and jSL2.p/j D p.p � 1/.pC 1/ gives the claim.

Given n 2 Z, define „.qIn/ on square-free q by the expression

„.pIn/ WD 1¹n�0.p/º � �.p/ (2.7)

on primes p, and extend multiplicatively to q.
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LEMMA 2.8
For any ! 2 SL2.p/ and �D˙1,

1

jSL2.p/j

X
�2SL2.p/

„
�
pI f.�!/� 2�

�
D 0:

Proof
The coset ! plays no role since the � sum is over all of SL2.p/. The lemma follows
from definition (2.3) of �.

The key estimate of this subsection is the following.

PROPOSITION 2.9
Let !;!0 2 SL2.p/ and �; �0 2 ¹˙1º. Then

1

jSL2.p/j

X
�2SL2.p/

„
�
pI f.�!/� 2�

�
„
�
pI f.�!0/� 2�0

�

�

´
1
p

if ! 2 !0 � PO2.p/,
1
p2

otherwise.
(2.10)

Here we have defined

PO2.p/ WD
®
k 2 SL2.p/ W k

�k 	˙I.p/
¯

D

²�
a b

�b a

�
W a2C b2 	˙1.p/

³
: (2.11)

Proof
Expanding „ and using the definition (2.3) of �, we must estimate

1

jSL2.p/j

X
�2SL2.p/

1¹f.�!/�2�.p/º1¹f.�!0/�2�0.p/º � �.p/
2: (2.12)

The second term is plainly� p�2 by Lemma 2.4.
If p 	 3.4/, then we may trivially bound 1¹f.�!0/�2�0.p/º � 1, whence the first

term is �.p/D 1=.p.p � 1//� 1=p2, as desired. Thus we may restrict to p	 1.4/.
If ! 2 !0 �PO2.p/, then f.�!/D˙f.�!0/, so if the signs �, �0 align, then the first

term in (2.12) could be exactly �.p/D .2p� 1/=.p.pC 1//� 1=p. Thus we cannot
do better than 1=p in this case. Now we seek extra cancellation when ! … !0 �PO2.p/.
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Write

.!�1!0/�.!�1!0/DW

�
U V

V W

�
:

Changing � 7! �!�1 in (2.12) and using (2.2), we must bound

1

jSL2.p/j

X
�2SL2.p/

1¹f.�/�2�º1® tr
�
���
�
U V
V W

��
�2�0

¯:
Writing � D

�
a b
c d

�
, the last equation becomes

U.a2C b2/C 2V.acC bd/CW.c2C d2/	 2�0:

Apply the same change of variables as in (2.5); then the equations become (2.6) and

U
�
1C 2.xy C zw/

�
C 4V.xz � yw/CW

�
1� 2.xy C zw/

�
	 2�0: (2.13)

Now suppose that � D 1 (the case � D�1 being similar). Then x2 C z2 D 1 and
p	 1.4/, so there are p�1 choices of .x; z/ by Lemma 2.1. With .x; z/ fixed, (2.13)
becomes linear in .y;w/; we isolate y:

2


.U �W /x � 2V w

�
y 	 2�0 � .U CW /� 4Vxz � 2.U �W /zw:

Square and add .2Œ.U � W /x � 2V w�w/2 to both sides to take advantage of
y2Cw2 D 0. This gives a quartic equation in w with everything else determined:

0D


2�0 � .U CW /� 4Vxz � 2.U �W /zw

�2
C
�
2


.U �W /x � 2V w

�
w
�2

D


2�0 � .U CW /� 4Vxz

�2
� 4



2�0 � .U CW /� 4Vxz

�
.U �W /zw

C 4.U �W /2w2 � 16.U �W /Vxw3C 16V 2w4:

This equation has at most four solutions in w, unless all the coefficients vanish, in
which case V D 0 and U DW . But det

�
U V
V W

�
D UW � V 2 D 1, so V D 0 implies

U DW DW . Hence U DW D˙1, which means that !�1!0 2 PO2.p/. Since we
have already dealt with this case, we may assume that the coefficients do not all
vanish, whence there are at most four choices for w, from which y is determined.
In summary, there are � p choices for .x; z/ and a bounded number of choices of
.y;w/, while jSL2.p/j � p3; the ratio is� 1=p2, as claimed.
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2.2. Spectral and automorphic estimates
We import here some lemmas from [7], the first of which is an automorphic estimate
in SL2.Z/.

LEMMA 2.14 ([7, Lemma 2.13])
Let X � 1 be an increasing parameter. Then there is a smooth bump function 'X W
SL2.R/!R�0 with the following properties:
� It gives support to the norm-X ball: if kgk WD

p
tr.g�g/ < X , then

'X .g/
 1: (2.15)

� Furthermore, X
�2SL2.Z/

'X .�/�X2: (2.16)

� Finally, 'X is evenly distributed in progressions: for any square-free q and
any �0 2 SL2.q/,X

�2SL2.Z/
���0.q/

'X .�/D
1

jSL2.q/j

X
�2SL2.Z/

'X .�/CO.X
3=2/: (2.17)

All implied constants above are absolute.

Remark 2.18
The error X3=2 in (2.17) comes from using Selberg’s 3=16 spectral gap (see [20]); we
are striving for the simplest explicit exponents here, not optimal ones, and so we do
not bother using the best available exponents.

Finally, we will need super-approximation in our thin semigroup �A. As dis-
cussed in Remark 1.13, we need this spectral gap to be absolute, and so we pick a
fixed parameter A0 D 2; then �A0 D �2.

LEMMA 2.19
For any Y � 1, there is a nonempty subset

@�
®
� 2 �2 W k�k< Y

¯
and “spectral gap”

‚> 0; (2.20)

so that, for any q and any a0 2 SL2.q/,
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#
®
a 2 @ W a	 a0.q/

¯
D

1

jSL2.q/j
j@j CO

�
j@jqCY �‚

�
: (2.21)

Here C , ‚, and the implied constant are all absolute.

Proof
A nearly identical statement is proved in [7, Proposition 2.9] with a weaker error
term. The main ingredient there is a “prime number theorem”-type resonance-free
region as proved in [3]. Now a resonance-free strip is available (and does not require
q to be square-free) due to Magee, Oh, and Winter [16] and Bourgain, Kontorovich,
and Magee [8]; substituting this result into the proof of [7, Proposition 2.9] gives the
above claim.

Remark 2.22
Actually, the weaker statement [7, Proposition 2.9] using only [3] would already suf-
fice for our purposes (see the treatment in [7]). The resonance-free strip slightly sim-
plifies the exposition, and so we use it here.

3. Construction of … and the sieving theorem

3.1. Construction of the set …
We create here a certain subset …� �A, all elements $ 2… being of size k$k�
N , a growing parameter, with … exhibiting a mutlilinear structure. First we break the
parameter N as

XYZ DN; (3.1)

and take the set @ from Lemma 2.19 with parameter Y .
The elements � 2 �A of size k�k < X all have word-length `.�/ � logX in

the generators (1.6). By the pigeonhole principle, there is therefore a subset 	X of
�A \BX of size

#	X �
X2ı

logX
; (3.2)

(cf. (1.7)) all having the same word-length. (We henceforth write ı for ıA, treating A

as fixed.) In the same way we construct the set 	Z to parameter Z.
Then the set

… WD	X � @ �	Z (3.3)

is a genuine subset (as opposed to a multiset) of �A, since each
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$ D 
 � a �!;

8̂̂
<
ˆ̂:

 2	X ;

a 2 @;

! 2	Z ;

is uniquely represented.

3.2. The sieving theorem
In light of Lemmas 1.9 and 1.11, we define …AP to be the set of $ 2… for which
tr.$�$/2 � 4 has no small prime factors:

…AP WD
®
$ 2… W p

ˇ̌ �
tr.$�$/2 � 4

�
H) p >N 1=350

¯
: (3.4)

An easy consequence of the main sieving theorem stated below is the following.

THEOREM 3.5
For any small � > 0, there is an ADA.�/, sufficiently large, and a choice of param-
eters X , Y , Z in (3.1) so that

#…AP >N
2ı��; (3.6)

as N !1.

The aforementioned sieving theorem is the following “level of distribution”
result.

Recalling f defined in (2.2), our sifting sequence is AD ¹aN .n/º with

aN .n/ WD
X
$2…

1f.$/2�4Dn:

Note that A is supported on n < T , where

T �N 4: (3.7)

For square-free q
 1, write

jAqj WD
X
n�0.q/

aN .n/;

which measures the distribution of aN on multiplies of q.

THEOREM 3.8 (The sieving theorem)
For any small � > 0, there is a sufficiently large ADA.�/ and a choice of the param-
eters X , Y , Z so that the following holds. Given a square-free q, there is a decompo-
sition
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jAqj D ˇ.q/ � j…j C r.q/: (3.9)

The function ˇ is multiplicative and satisfies the “quadratic sieve” condition:

Y
w�p<z

�
1� ˇ.p/

��1
� C �

� logz

logw

	2
: (3.10)

Moreover, the “remainder” term r.q/ is controlled by

X
q<Q

squarefree

ˇ̌
r.q/

ˇ̌
�K

j…j

logK N
; for any K <1, (3.11)

where the “level of distribution” Q can be taken as large as

QD T 1=72��: (3.12)

Finally, the set … is large:

j…j>N 2ı��: (3.13)

The deduction of Theorem 3.5 from Theorem 3.8 is completely standard, so we
give a quick sketch.

Sketch
The sifting sequence A has “sieve dimension” � D 2, and any exponent of distribution
˛ < 1=72. Taking, say, ˛ D 1=73 (again, we are not striving for optimal exponents),
and using the crudest Brun sieve (see, e.g., [11, Theorem 6.9]), one shows that

X
n

.n;Pz/D1

aN .n/�
j…j

.logN/2
; (3.14)

where Pz D
Q
p<z p and z does not exceed T ˛=.9�C1/ D T 1=1387 D N 4=1387; we

take z D N 4=1400 D N 1=350. Of course, any nD tr.$/2 � 4 coprime to Pz has no
prime factors below z. Then (3.14) and (3.13) confirm (3.6) after renaming constants.

We focus henceforth on establishing Theorem 3.8.

3.3. The decomposition and dispersion
To prepare the proof, write, for square-free q
 1,

jAqj WD
X
n�0.q/

aN .n/D
X
� modq
�2�4.q/

X
$2…

1¹f.$/���0.q/º:
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To apply the “dispersion” method, we write

1n�0.p/ D„.pIn/C �.p/;

with � and „ defined in (2.3) and (2.7), respectively.
Then

jAqj D
X
� modq
�2�4.q/

X
$2…

Y
pjq

�
„
�
pI f.$/� �

�
C �.p/

�

D
X
qjq

X
� modq
�2�4.q/

X
$2…

„
�
qI f.$/� �

�
�
� q
q

	
: (3.15)

To give a decomposition toward (3.9), we break the sum

jAqj DMqC r.q/ (3.16)

according to whether q <Q0 or not. The two contributions are dealt with separately
in the next two sections.

4. Main-term analysis
From the decomposition (3.16) of Aq in (3.15) the “main” term is

Mq D
X
qjq
q<Q0

X
�.q/

�2�4

X
$2…

„
�
qI f.$/� �

�
�
� q
q

	
: (4.1)

The main goal of this section is to prove the following.

THEOREM 4.2
We have that

Mq D ˇ.q/j…j C r
.1/.q/; (4.3)

where ˇ is a multiplicative function defined on the primes by

ˇ.p/ WD

8̂̂
<
ˆ̂:
1
3

if pD 2,
2.2p�1/
p.pC1/

if p	 1.4/,
2

p.p�1/
if p	 3.4/,

(4.4)

and the “remainder” term r .1/ satisfiesX
q<Q

ˇ̌
r .1/.q/

ˇ̌
� j…jQ"QC

0 Y
�‚: (4.5)
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To begin the proof, insert the construction (3.3) of … into (4.1), writing $ D

a!. Since „.qI �/ depends only on � mod q, we decompose the a sum along pro-
gressions mod q,

MqD
X
qjq
q<Q0

�
� q
q

	 X
�.q/

�2�4

X
�2	X

X
!2	Z

X
a02SL2.q/

„
�
qI f.
a0!/� �

�hX
a2@

1a�a0.q/

i
;

and apply expansion (2.21),

DM.1/
q C r

.1/.q/;

where

M.1/
q WD j…j

X
�.q/

�2�4

X
qjq
q<Q0

�
� q
q

	h 1

jSL2.q/j

X
a02SL2.q/

„
�
qI f.a0/� �

�i
(4.6)

andˇ̌
r .1/.q/

ˇ̌
�

X
qjq
q<Q0

�
� q
q

	 X
�.q/

�2�4

X
�2	X

X
!2	Z

X
a02SL2.q/

ˇ̌
„
�
qI f.
a0!/� �

�ˇ̌
j@jqCY �‚

�
q"

q
j…jQC

0 Y
�‚:

Here we used j„j � 1 and Lemma 2.4 that �.q/� q"=q. Then (4.5) is immediately
satisfied.

Returning to M
.1/
q in (4.6), the bracketed term vanishes unless q D 1 by

Lemma 2.8, and so we are left with

M.1/
q D j…j2


.q/�1¹2jqº�.q/:

Here we elementarily evaluated the contribution from the � summation (see [7,
Lemma 4.1]). Inserting Lemma 2.4, we see that (4.4) is verified, completing the proof
of Theorem 4.2.

5. Error-term analysis
The remainder term from (3.16) is

r.q/ WD
X
qjq
q>Q0

X
t modq
t2�4.q/

X
$2…

„
�
qI f.$/� t

� X
� modq

�2�4.q/;��t.q/

�
� q
q

	
;

and the total error is
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E WD
X
q<Q

ˇ̌
r.q/

ˇ̌
I

we need to save a little more than Q off of the trivial bound.
The goal of this section is to prove the following.

THEOREM 5.1
We have that

E� T "j…j.XZ/1�ı
h Q4

X1=4
C

1

Q
1=2
0

C
Q1=2

Z1=4

i
: (5.2)

First write E as

E D
X
q<Q


.q/r.q/;

where 
.q/D r.q/=jr.q/j D sgn r.q/. Expanding gives

E D
X

Q0<q<Q

X
t modq
t2�4.q/

X
$2…

„
�
qI f.$/� t

�

1.q; t/;

where


1.q; t/ WD
X
q<Q

q�0.q/


.q/
X
� modq

�2�4.q/;��t.q/

�
� q
q

	
� T "

X
q<Q=q

1

q
� T ":

Decomposing … as 	X@	Z gives

E D
X

Q0<q<Q

X
t modq
t2�4.q/

X
�2	X

X
a2@

X
!2	Z

„
�
qI f.�a!/� t

�

1.q; t/;

�
X

Q0<Q<Q
dyadic

X
a2@

ˇ̌
E1.a;Q/

ˇ̌
;

where

E1.a;Q/ WD
X
q�Q

X
t modq
t2�4.q/

X
�2	X

X
!2	Z

„
�
qI f.�a!/� t

�

1.q; t/:

Theorem 5.1 follows immediately from the next result.
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PROPOSITION 5.3
We have that

ˇ̌
E1.a;Q/

ˇ̌
� T "j	X jj	Z j.XZ/

1�ı
h Q4

X1=4
C

1

Q1=2
C
Q1=2

Z1=4

i
: (5.4)

To begin the proof, apply the Cauchy–Schwarz inequality in the � variable and
insert the smooth bump function 'X from Lemma 2.14:

ˇ̌
E1.a;Q/

ˇ̌2
� j	X j �

X
�2SL2.Z/

'X .�/
ˇ̌̌X
q�Q

X
t modq
t2�4.q/

X
!2	Z

„
�
qI f.�a!/� t

�

1.q; t/

ˇ̌̌2

� j	X j � T
"
X

q;q0�Q

X
t modq
t2�4.q/

X
t0modq0

.t0/2�4.q0/

X
!;!02	Z



ˇ̌̌ X
�2SL2.Z/

'X .�/„
�
qI f.�a!/� t

�
„
�
q0I f.�a!0/� t 0

�ˇ̌̌
: (5.5)

Having applied Cauchy–Schwarz, we now need to save a little more thanQ2. We first
address the innermost � sum.

LEMMA 5.6
Let

q1 D q1.!;!
0Iq/ WDmax

˙

�
gcd

�
q; .!�1!0/�.!�1!0/� I

��
;

so that q1 j q is the largest modulus for which !�1!0 2 PO2.q1/, the group defined in
(2.11). Then ˇ̌̌ X

�2SL2.Z/

'X .�/„
�
qI f.�a!/� t

�
„
�
q0I f.�a!0/� t 0

�ˇ̌̌

�Q6X3=2C 1¹qDq0ºQ
"X2

q1

q2
: (5.7)

Remark 5.8
The first term above is a savings of X1=2 against the loss of some powers ofQ, which
is more than the requisite Q2 savings, as long as Q is not too large relative to X .
The second term is a savings of Q from the q D q0 restriction and a second factor
of Q2=q1 from the q1=q

2 term. If q1 is small, then this already saves more than Q2,
but if q1 is of size q, then the net savings is Q2 but no more. In that case, we will
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need just a bit of extra savings from the fact that !�1!0 2 PO2.q1/ with such a large
modulus q1.

Proof of Lemma 5.6
Let

Nq WD Œq; q0�D lcm.q; q0/; Qq D .q; q0/D gcd.q; q0/; q D q1 Qq; q0 D q01 Qq;

with q1, q01, and Qq pairwise coprime. Because „.q;n/ depends only on the residue of
n mod q, we break the innermost � sum into progressions, obtainingˇ̌̌ X

�2SL2.Z/

ˇ̌̌
D

X
�02SL2. Nq/

„
�
qI f.�0a!/� t

�
„
�
q0I f.�0a!

0/� t 0
�h X
�2SL2.Z/
���0. Nq/

'X .�/
i

� X2
ˇ̌̌ 1

jSL2. Nq/j

X
�02SL2. Nq/

„
�
qI f.�0a!/� t

�
„
�
q0I f.�0a!

0/� t 0
�ˇ̌̌

CO. Nq3X3=2/; (5.9)

where we used (2.17) and (2.16). Since Nq�Q2, the last term contributesQ6X3=2 to
(5.7).

Now, the remaining �0 sum in (5.9) is multiplicative, and so decomposing Nq D
q1q
0
1 Qq, we can write it as

ˇ̌̌ X
�02SL2. Nq/

ˇ̌̌
D
ˇ̌̌ 1

jSL2.q1/j

X
�02SL2.q1/

„
�
q1I f.�0a!/� t

�ˇ̌̌



ˇ̌̌ 1

jSL2.q01/j

X
�02SL2.q

0
1
/

„
�
q01I f.�0a!

0/� t 0
�ˇ̌̌



ˇ̌̌ 1

jSL2. Qq/j

X
�02SL2. Qq/

„
�
QqI f.�0a!/� t

�
„
�
QqI f.�0a!

0/� t 0
�ˇ̌̌
:

From Lemma 2.8, we see that the first two terms completely vanish unless q1 D q01 D
1, that is, q D q0 D Qq D Nq. For the third term, we apply the key Proposition 2.9; then
every p j q contributes either 1=p or 1=p2, depending on whether !�1!0 2 PO2.p/
or not. This savings is exactly captured by Q"q1=q

2, completing the proof.

Proof of Proposition 5.3
Inserting (5.7) into (5.5) gives
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ˇ̌
E1.a;Q/

ˇ̌2
� T "j	X jQ

2j	Z j
2Q6X3=2

C T "j	X j
X
q�Q

X
!2	Z

X
q1jq

X2
q1

q2

h X
!02SL2.Z/

!�1!02PO2.q1/

'Z.!
0/
i
; (5.10)

where we extended the !0 sum to all of SL2.Z/ and again inserted the bump function
' from Lemma 2.14. Now break the innermost !0 sum in (5.10) into progressions
mod q1, and apply (2.17) and (2.16) to obtain

h X
!02SL2.Z/

i
D

X
!0
0
2!�PO2.q1/

X
!02SL2.Z/

!0�!0
0
.q1/

'Z.!
0/�

ˇ̌
PO2.q1/

ˇ̌hZ2
q31

CZ3=2
i

� q
"
1

hZ2
q21

C q1Z
3=2
i
;

since jPO2.q1/j � q
1C"
1 . The contribution of this to (5.10) is then

� T "j	X j
X
q�Q

X
!2	Z

X
q1jq

X2
q1

q2

hZ2
q21

C q1Z
3=2
i

� T "j	X jX
2j	Z jZ

2
h 1
Q
C

Q

Z1=2

i
:

Combined with the first term of (5.10) and (3.2), this gives (5.4), as claimed. Theo-
rem 5.1 follows immediately.

6. Proof of the sieving theorem
We proceed now to prove Theorem 3.8. Combining (4.3) with (3.16) gives the decom-
position (3.9). The content of (3.10) is, roughly, that ˇ.p/� 2=p on average; indeed,
from (4.4) we have that

ˇ.p/D

´
4
p
CO.p�2/ if p	 1.4/,

O.p�2/ if p	 3.4/,

so (3.10) is elementarily verified. Combining (4.5) and (5.2) gives (3.11), as long as
the following inequalities are satisfied:

C˛0 < ‚y; (6.1)

4˛C .1� ı/.xC z/ < x=4; (6.2)

.1� ı/.xC z/ < ˛0=2; (6.3)

˛=2C .1� ı/.xC z/ < z=4: (6.4)
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Here

Q0 DN
˛0 ; QDN ˛; X DN x ; Y DN y ; Z DN z :

Remark 6.5
Treating 1 � ı as 0 and x C z as 1, one quickly sees that the best one can do is the
choice ˛� 1=18, x � 8=9, z � 1=9.

Let � > 0 be given, and set

˛D 1=18� �:

Since QDN ˛ and N � T 1=4 (see (3.7)), this gives the exponent of distribution 1=72
claimed in (3.12). Next we set

x D
8

9
� �;

and assume at first that 1� ı < � (more stringent restrictions on ı will follow). Then
since xC z < 1, we have

x D 16˛C 15� > 16˛C 4� > 16˛C 4.1� ı/.xC z/:

That is, (6.2) is satisfied. Similarly, we set

z D
1

9
� �;

whence (6.4) holds once 1 � ı < �=4. This means that y D 2�, so (6.1) is satisfied
when

˛0 D
‚�

C
:

Finally, for (6.3) to hold, we need

ı > 1�
‚�

2C
.1� 2�/�1:

Recalling that ıD ıA, this can be achieved (cf. (1.8)) by taking A sufficiently large.

Remark 6.6
It is here that we are crucially using that the parameters ‚ and C coming from the
“spectral gap” estimate (2.21) are independent of A, and only depend on the fixed
quantity A0 D 2; that is, they are absolute.
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7. Proof of Theorem 1.5

7.1. Proof of Theorem 1.12

LEMMA 7.1
As t!1,

#
®
� 2 SL2.Z/ W tr.�

��/D t
¯
� t": (7.2)

Proof
One must count the number of .a; b; c; d/ 2 Z4 having ad � bc D 1 and a2 C b2 C
c2Cd2 D t . Changing variables to aD xCy, d D x�y, b DwC z, and c Dw� z
gives the equations x2 � y2C z2 �w2 D 1 and 2.x2C y2C z2Cw2/D t . That is,
any solution to the former equations in integers gives one to the latter equations. It is
elementary to see that there are at most t" solutions to the latter.

In this section, write ˛D 1=350, so that we can write (3.4) as

…AP D
®
� 2… W p

ˇ̌ �
tr.���/2 � 4

�
H) p >N ˛

¯
:

Theorem 1.12 asks us to count

#
®
� 2 �A \BN W tr.�

��/2 � 4 is square-free
¯

(7.3)


 #
®
� 2…AP W tr.�

��/2 � 4 is square-free
¯

>N 2ı�� � #…�
AP ; (7.4)

where we used (3.6) and defined

…�
AP WD

®
� 2…AP W tr.�

��/2 � 4 is not square-free
¯
:

Now, for each � 2 …�
AP , there is a prime p with p2 j .tr.���/2 � 4/. Since � 2

…AP , we thus have that p > N ˛ , and, moreover, p2 divides either tr.���/C 2 or
tr.���/� 2; in particular, p�N . Therefore, reversing orders and applying (7.2), we
have

#…�
AP �

X
N˛<p	N

X
t<N2

t2�4�0.p2/

#
®
� 2 �A \BN W tr.�

��/D t
¯

�
X

N˛<p	N

N 2

p2
N "�N 2�˛C":

Since ˛ D 1=350 is fixed, it is clear that, by making ı D ıA sufficiently near 1
(by taking A large), one gets the desired main term from (7.4). This completes the
proof of Theorem 1.12.
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7.2. Proof of Theorem 1.5
Again, this will be an easy consequence of Theorem 1.12. Each � 2 �A\BN arising
in (7.3) gives a hyperbolic conjugacy class Œ���� of trace at most N 2, for which the
corresponding geodesic is low-lying (relative to A), reciprocal, and fundamental. The
only two issues are (a) that the class need not be primitive, and (b) different � ’s can
give rise to the same geodesic. Since the word-length metric is commensurate with
the logarithm of the archimedean metric, the number of imprimitive classes (i.e., the
� ’s, which, as symbols in the generators of �A, have a repeating sequence) is easily
bounded by N 1C"; these can safely be discarded from (7.3) without affecting the
cardinality. The latter (b) happens when the symbols generating � and � 0, say, are
the same up to a cyclic permutation. This adds at most logN to the multiplicity of
(7.3) and can thus also be safely discarded. In summary, we have produced N 2��

low-lying, fundamental, and reciprocal closed geodesics with trace bounded by N 2,
as claimed. This completes the proof.
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