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The Greek geometers of antiquity devised a game—we might call it geometrical
solitaire—which . . . must surely stand at the very top of any list of games to be played
alone. Over the ages it has attracted hosts of players, and though now well over 2000
years old, it seems not to have lost any of its singular charm or appeal. – Howard Eves

The Problem of Apollonius is to construct a circle tangent to three given ones in a
plane. The three circles may also be limits of circles, that is, points or lines; and “con-
struct” means using a straightedge and compass. Apollonius’s own solution did not
survive antiquity [8], and we only know of its existence through a “mathscinet review”
by Pappus half a millennium later. Both Viéte and Gergonne rose to the challenge of
devising their own constructions, and either may possibly have rediscovered the solu-
tion of Apollonius. In this note, we consider a special case of the problem of Apollo-
nius, but from the point of view of efficiency. Our goal is to present, in what we believe
is the most efficient way possible, a construction of four mutually tangent circles. Of
course, five (generic) circles cannot be mutually tangent in the plane, for their tangency
graph, the complete graph K5, is non-planar.

Our measure of efficiency is the one used by Hartshorne [7, p. 20]. We aim to
minimize the number of moves, where a move is the act of drawing either (1) a line
through two points, or (2) a circle through a point with given center; like Euclid, our
compass collapses when lifted. Marking a point does not count as a move, for no act
of drawing is involved. There is another measure proposed by Lemoine in 1907 [4, p.
213], which seems to capture the likelihood of propagated error in a construction. We
believe Hartshorne’s measure is more in the spirit of Euclid and Plato, who thought of
constructions as idealized.

The previous best construction appears to be Eppstein’s [2], though one might argue
that ours can be derived from Gergonne’s more general construction. We discuss both
in our closing remarks.

Baby cases: one and two circles

Constructing one circle costs one move: let A and Z be any distinct points in the plane
and draw the circle OA(Z) with center A and passing through Z. (We will use the
notation OP (Q) for the circle centered at P that goes through Q, or just OP when
there is no need to refer to Q.) Given OA, constructing a second circle tangent to it
costs two more moves: draw the line AZ, and put an arbitrary point B on this line (say,
outside OA). Now draw the circle OB(Z). Then OA and OB are obviously tangent at
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Figure 1 A third tangent circle. The solid lines/circles are the initial and final objects (or
objects we wish to include in the next step), while the dotted figures are the intermediate
constructions.

Z. In fact one cannot do better than two moves, for otherwise one could draw the circle
OB immediately, but this requires a priori knowledge of a point on OB .

Warmup: three circles

Given two circles OA and OB , tangent at Z, and the line AB, how many moves does
it take to construct a third circle tangent to both OA and OB? We encourage readers at
this point to stop and try this problem themselves.

Proposition 1. Given two mutually tangent circles OA and OB , and the line AB, a
generic circle tangent to both OA and OB is constructible in five moves.

We first give the construction, then the proof that it works.

The construction Draw a circle OZ centered at Z and with arbitrary radius c, which
will be the radius of our third circle (this is move 1). Let it intersect AB at F and G.
Next draw the circles OA(G) (move 2) and OB(F) (move 3); see Figure 1. Let these
two circles intersect at C. Construct the line AC (move 4) and let Y be its appropriate
intersection with OA. Finally, draw the circle OC(Y ) (move 5). Then OC is tangent to
OA and OB .

Proof. It is clear that OC is tangent to OA. Since |CY | = |GZ|, the radius of OC is
c. Let X be the appropriate point where OB intersects the line BC (the latter is not
constructed). We wish to prove that X lies on OC , as shown, and that OC is therefore
tangent to OB at X. Note that |CX| = |FZ| = c, the radius of OC , so X is indeed on
OC . Thus OC is tangent to OB at X, as claimed. �

Remark. The locus of points C is a hyperbola with foci A and B. By choosing F to be
on the same side of Z as A, as we did in Figure 1, we get one branch of the hyperbola.
The other branch is obtained by choosing F on the other side of Z (and letting c be
sufficiently large).
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Figure 2 The circle OB ′ and points Q and Q′. The solid gray circles are the Apollonian
circles OS and OS′ that we are in the process of constructing.

Main theorem: the fourth circle

Finally we come to the main event, the fourth tangent circle, which we call the Apol-
lonian circle.∗ We are given three mutually tangent circles, OA, OB , and OC , lines AB

and AC, and the points of tangency X, Y , and Z; that is, we are given the already
constructed objects in Figure 1.

Theorem 1. An Apollonian circle tangent to OA, OB , and OC in Figure 1 is con-
structible in seven moves.

The construction Draw the line XZ (this is move 1) and let it intersect AC at B ′.
Draw the circle OB ′(Y ) (move 2). It intersects OB at Q and Q′, with Q, say, closer to
A; see Figure 2. We repeat this procedure: draw the line XY , let it intersect AB at C ′,
draw the circle OC′(Z) and let OC′ intersect OC at R and R′, with R closer to A. This
repetition used two more moves. Next draw the lines BQ and CR (now up to move 6)
and let them meet at S. Finally, use the seventh move to draw the desired Apollonian
circle OS(Q); see Figure 3.

Remark. If a pair of lines, e.g., AC and XZ, are parallel (so B ′ is at infinity), then
use the line BY in lieu of OB ′ (the former is the limit of the latter as B ′ → ∞).

Circle inversions Before the proof, we remind the reader about circle inversions.
For any circle with center O and radius r , the inversion of a point P is, by definition,
the point P ′ on the ray OP that satisfies

|OP |
r

= r

|OP ′| .
∗Many objects in the literature are named after Apollonius though he had nothing to do with them, such as

the Apollonian gasket and the Apollonian group (see, e.g., Kontorovich [9]). The fourth tangent circle really is
due to him, though most authors refer to it as the “Soddy” circle.
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Figure 3 The construction of S and the Apollonian circle OS .

Two well-known properties of inversions are: the image of a line or circle is itself a line
or circle, and angles are preserved. See any good text for details (e.g., Eves [4, Section
3.4] or Hartshorne [7, Section 37]).

Proof. There is a unique circle such that inversion through it sends OA to OC . We
claim that OB ′ is this circle. Indeed, such an inversion must fix OB , and therefore sends
X to Z. Hence, its center must lie on XZ. Its center also lies on the line perpendicular
to OA and OC , which is the line AC. Thus, its center is B ′ = XZ ∩ AC. Finally, the
point Y is fixed by this inversion, giving the claim.

Next, we claim that the point of tangency of OB and the Apollonian circle OS

must also lie on this inversion circle OB ′ (in which case this point must be Q, as
constructed). Indeed, since the inversion preserves the initial configuration of three
circles, it must also fix OS , and hence also its point of tangency with OB .

Finally, since OB and OS are tangent at Q, their centers are collinear with Q; that
is, S lies on the line BQ. Similarly, S lies on CR. �

Remark. The second solution, OS′ , to the Apollonian problem can now be constructed
in a further three moves. Indeed, the points of tangency Q′ and R′ are already on the
page. Draw the lines BQ′ and CR′ (two more moves) and let them intersect at S ′. Then
draw OS′(Q′) (our third move) to get our second Apollonian circle.

Remark. Let A′ = BC ∩ YZ be constructed similarly to B ′ and C ′. Note that the
triangles �ABC and �XYZ are perspective from the Gergonne point. By Desargues’
theorem, they are therefore perspective from a line, which is the line A′B ′C ′, known
as the Gergonne line of �ABC; see Oldknow [10], who seems to have been just shy
of discovering the construction presented here.

Closing remarks

Of the constructions in the literature, we highlight two.

Eppstein The previously simplest solution to our problem seems to be that of Epp-
stein [2,3,5], which uses eleven elementary moves to draw OS . His construction finds
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the tangency point Q by first dropping the perpendicular to AC through B, and then
connecting a second line from Y to one of the two points of intersection of this perpen-
dicular with OB . This second line intersects OB at Q (or Q′, depending on the choice
of intersection point). Note that constructing a perpendicular line is not an elementary
operation, costing 3 moves. The second line is elementary, so Eppstein can construct
Q in 4 moves, then R in 4 more, then two more lines BQ and CR to get the center S,
and finally the circle OS in a total of 11 moves. To construct the other solution, OS′ ,
using his method, it would cost another five moves (as opposed to our three), since one
needs to draw two more lines to produce Q′ and R′ (whereas our construction gives
these as a byproduct).

Gergonne Gergonne’s solution to the general Apollonian problem (i.e., when the
given circles are not necessarily tangent) is perhaps closest to ours, but of course the
problem he is solving is more complicated. He begins by constructing the radical circle
OI for the initial circles OA, OB , and OC , and identifies the six points X, X′, Y , Y ′,
Z, and Z′, where it intersects the three original circles. Those points are taken in order
around OI , with Y ′ and Z on OA, Z′ and X on OB , and X′ and Y on OC . In our
configuration, the radical circle is the incircle of triangle ABC and the six points are
X = X′, Y = Y ′, and Z = Z′.

Every pair of circles can be thought of as being similar to each other via a dilation
through a point. In general, there are two such dilations. This gives us six points of
similarity, which lie on four lines, the four lines of similitude. In Gergonne’s construc-
tion, each line generates a pair of tangent circles. In our configuration, the point B ′ is
the center of the dilation that sends OA to OC . Since OA and OC are tangent, there is
only one dilation, so we get only one line of similitude, the Gergonne line.

The radical circle of OB , OI , and a pair of tangent circles is centered on the line of
similitude, so is where XZ′ intersects that line. In our configuration, that gives us B ′.
The radical circle is the one that intersects OI perpendicularly, so in our configuration
it goes through Y .

Efficiency or complexity Measures of efficiency or complexity come up in many
branches of mathematics. Some, like height in number theory, are simple to define and
quantify. At the other end of the spectrum, the elegance of proofs is a difficult notion
to quantify, but one we nevertheless recognize and appreciate. Erdös would often refer
to what he called The Book, a book in which God keeps the most elegant proofs. The
invocation of an all-knowing is an acknowledgement that we can never know for sure
(i.e., prove) whether a particular proof belongs in that book. With the measures of
Hartshorne and Lemoine, we quantify elegance in constructions, and having done so,
we now have the tools to prove that a construction is best possible or most elegant. This
though appears to be a very difficult question to tackle for even modest constructions.
Hartshorne refers to “par” scores and “doable in” scores, but shies away from calling
anything best possible.

DeTemple, using Lemoine’s measure, analyzes constructions of regular p-gons for
p = 5, 17, and 257, and also muses about the complexity of showing a construction
is best possible [1]. In earlier literature, there is a paper by Güntshe, who gives and
analyzes (using Lemoine’s measure) constructions for the regular 17-gon [6].

We leave the reader with a challenge: construct a (generic) configuration of four
mutually tangent circles in the plane using fewer than 15 (= 1 + 2 + 5 + 7) moves. Or
prove (as we suspect) that this is impossible!

Acknowledgments The authors are grateful to Jeff Lagarias and the referees for numerous helpful comments,
and to a referee for the Güntsche reference [6].
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