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1. Introduction

1.1. Equidistribution

Let Γ < G := PSL2(R) be a non-uniform lattice, and let

x0 ∈ T 1(Γ\H) ∼= Γ\G

be a base point in the unit tangent bundle of the punctured surface Γ\H, so that the 
visual limit point

a = lim
t→∞

x0 · at

is a cusp of Γ. Here at = diag(et/2, e−t/2) is the geodesic flow; let A+ = {at, t > 0}. As 
in [KK18], we define a shear of the cuspidal geodesic ray x0 ·A+ to be its left-translate 
by

sT :=
(

(T 2 + 1)−1/4 T (T 2 + 1)−1/4

0 (T 2 + 1)1/4

)
.

Note that sT arises naturally as sT = a− 1
2 log(T 2+1) ·nT , where nx =

( 1 x

0 1

)
. For example, 

identifying G/K with H under g �→ g · i (here K = SO(2) is a maximal compact 
subgroup) and taking x0 = e, the identity element of G, we have for a right-K-invariant 
test function Ψ ∈ Cc(Γ\G)K that its evaluation along such a shear is given by

∫
a∈A+

Ψ(x0 · a · sT )da =
∞∫

1/
√
T 2+1

Ψ (Ty + iy) dy
y
.

In [KK18], the authors proved the effective equidistribution of shears (as T → ∞) using 
“soft” ergodic methods (e.g. mixing) and basic properties of Eisenstein series.3 The goal 
of this paper is to use more of the spectral theory of automorphic forms to produce 
explicit exponents in this problem. For ease of exposition, and to write the best expo-
nents that come from our method, we restrict below to Γ conjugate to the congruence 
group

3 See also [OS14], where an asymptotic formula is obtained by different means, with an error term weaker 
than power savings.
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Γ0(p) = {
( a b

c d

)
∈ PSL2(Z) : c ≡ 0(mod p)},

with p a prime number. A special case of Theorem 4.1 below gives the following 
bound.

Theorem 1.1. Assume the Ramanujan conjecture for the exponent bounding the Fourier 
coefficients of Maass forms on Γ (see §3). Then for any Ψ ∈ C∞

c (Γ\G)K , any T ≥ 2, 
and any ε > 0, there are constants Cj = Cj(Ψ), j = 1, 2, so that∫

a∈A+

Ψ(x0 · a · sT )da = C1 log T + C2 + OΨ,ε(T−1/4+ε).

Remark 1.2. We take the opportunity here to correct an error in the analysis in [KK18], 
which has no effect on the qualitative power gain, but does affect the exponents as 
explicitly quantified here. In particular, [KK18, Remark 1.7] is incorrect as stated, and 
we do not know how to obtain square-root cancellation by this approach. See Remark 4.5
for the error and how to correct it.

1.2. Counting

As is standard, such equidistribution results can be applied to counting problems 
in discrete orbits. In particular, see [KK18, §1.3.1] where we explain that proving the 
effective equidistribution of shears settles the remaining lacunary cases of the Duke-
Rudnick-Sarnak/Eskin-McMullen program [DRS93,EM93,Mar04] of effectively counting 
discrete orbits on quadrics in archimedean balls. In smooth form, one can produce from 
Theorem 1.1 above some rather sharp error exponents, as we now illustrate.

Let F be a real ternary indefinite quadratic form, let G = SO◦
F (R) be the connected 

component of the real special orthogonal group preserving F , and assume that Γ < G is 
the image of Γ0(p) under a spin morphism PSL2(R) → SO◦

F (R) (see §6.1). Let ψ : G →
R≥0 be a smooth bump function about a sufficiently small bi-K-invariant neighborhood 
of the identity in G (that is, a region of the form (2.3)), with 

∫
G
ψdg = 1. Fix v0 ∈ R3

so that the orbit

O := v0 · Γ ⊂ R3

is discrete, the stabilizer of v0 in G is a split torus, H, say, and Γ ∩ H is finite. Fix a 
right-K-invariant archimedean norm ‖ ·‖ on H\G ∼= v0 ·G. This data induces a smoothed 
indicator function of a norm-T ball on v ∈ v0 ·G via convolution with ψ:

ψ̃T (v) :=
∫

g∈G

1{‖vg‖<T}ψ(g)dg. (1.3)

In §5 (see Proposition 5.12), we prove the following
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Theorem 1.4. Again assume the Ramanujan conjecture for Maass forms on Γ. Then for 
any ε > 0, there are constants Cj = Cj(ψ), j = 1, 2, so that

∑
v∈O

ψ̃T (v) = C1T log T + C2T + Oε,ψ

(
T

3
4+ε

)
.

Unconditionally, the error exponent 3
4 + ε can be replaced by 3+4θ

4+8θ + ε, where θ = 7/64
is the best currently known bound towards the Ramanujan Conjecture (which stipulates 
that θ = 0 holds).

1.3. Explicit constants

In certain settings of classical interest, one can go a step further and explicitly identify 
the constants Cj appearing in the main terms above. To showcase this fact, we count 
integer points on the inhomogeneous Pythagorean quadric:

Wd : x2 + y2 − z2 = d,

when d is a perfect square (which corresponds to Γ ∩ H finite as above). After un-
smoothing the count in Theorem 1.4 to make the constants independent of the smoothing 
function ψ, we obtain the following.

Theorem 1.5. Let d = n2 be a square, with n ∈ Z>0. Define the counting function

Nd(T ) := #Wd(Z) ∩ {x2 + y2 + z2 < T 2}.

Again let θ = 7/64 be the bound towards the Ramanujan Conjecture (that θ = 0). For 
any η < 3

40+72θ , β > 3
2 + 2θ, and T ≥ dβ, we have that

Nd(T ) = Md(T ) + O
(
T 1−ηdβη

)
, (1.6)

where the “main term” is given by

Md(T ) :=
√

128T
π

(
log(T ) + C −D(n) + log(2)(1

3 − 1
2ν+2 )

)
.

Here ν = ν2(n) is the 2-adic valuation of n, the constant C is given by:

C = 2γ − 1 − 2ζ
′

ζ
(2) − log(2)

2 − log
(

|Γ(1/4)|4
4π3

)
= 0.616174 . . . ,

where γ = 0.577 . . . is Euler’s constant, ζ(s) is the Riemann zeta function, Γ(s) is the 
Gamma function, and φ is the Euler totient function, and the factor D(n) is the Dirichlet 
coefficient of (ζ2 · ζ ′)(s − 1), that is,
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Fig. 1. Plots for d = 122 = 144 and T < 10, 000. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

D(n) = 1
n

∑
a|n

φ(na ) log(a).

To illustrate the validity of this complicated formula, we verify it numerically with 
plots of Nd(T ), Md(T ), and their difference, for d = 144; see Fig. 1. For T as large 
as 10, 000, the counting function reaches around 350, 000, while the difference Nd(T ) −
Md(T ) remains of size around 400 


√
T , suggesting perhaps that (1.6) may remain 

valid with any η < 1/2 and β = 1/2.

Remark 1.7. Our results are meaningful as long as T > d3/2+2θ+ε. In particular, assum-
ing Ramanujan we can take T to be almost as small as d3/2. When T <

√
d we trivially 

have Nd(T ) = 0 and it is an interesting problem to obtain meaningful asymptotics also 
for the range 

√
d < T < d3/2. (In the rather different setting of d being a fundamen-

tal discriminant, Friedlander-Iwaniec [FI13], using different tools showed an asymptotic 
formula which is effective for T almost as small as 

√
d.)

Along the way to proving Theorem 1.5, we need to establish the following result, 
counting the number of binary quadratic forms of a fixed square discriminant d with 
coefficients in a norm ball. As it is possibly of independent interest, we record it here. 
Let

Q(a, b, c) = b2 − 4ac,

and

NQ,d(T ) = {(a, b, c) ∈ Z3 : Q(a, b, c) = d, 2a2 + b2 + 2c2 ≤ T 2}. (1.8)

Theorem 1.9. With all notation and assumptions as in Theorem 1.5, we have

NQ,d(T ) =
√

72T
π

(
log(T ) + C −D(n) + O(d

ηβ

T η
)
)
. (1.10)
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As discussed in [KK18, Remark 1.10], there are many other methods for counting 
such expressions. For example, Hulse et al. [HKKL16] used a Multiple Dirichlet Series 
technique to count binary forms with a fixed discriminant. In smooth form and counting 
in a slightly different region, they obtain a version of (1.10) with square-root error in the 
T aspect, but with no visible uniformity in d. It is also not clear how easy it would be 
to convert their constants into the completely numerically explicit values as in (1.10).

1.4. Notation

Throughout this paper we denote by G = PSL2(R) and Γ a non-uniform lattice in 
G. For ease of exposition (and for our applications), we assume that Γ is conjugate to 
Γ0(p); minor modifications are needed to handle a more general setting. We will use the 
notation A(t) � B(t) to mean that there is some constant c > 0 such that A(t) ≤ cB(t), 
and we will use subscripts to indicate the dependance of the constant on parameters. For 
B(t) ≥ 0 the notation A(t) = O(B(t)) means that |A(t)| � B(t). We write A(t) 
 B(t)
for A(t) � B(t) � A(t).

1.5. Organization

The preliminary §2 reviews spectral decompositions, Eisenstein series, and Sobolev 
norms. Then in §3, we improve on our analysis in [KK18], giving stronger estimates 
for Fourier expansions at various cusps in terms of approximations to the Ramanujan 
Conjectures. We use these, together with some slight improvements on the method in 
[KK18], to prove in §4 the sharp equidistribution of shears claimed in Theorem 1.1. The 
counting Theorem 1.4 is derived from this in §5, and then used in §6 to prove the explicit 
counting Theorems 1.5 and 1.9. Calculations of Fourier expansions for Eisenstein series 
on Γ0(p) are reserved for the Appendix.

Acknowledgments

We thank Zeev Rudnick for comments on an earlier draft, and the referee for an 
extremely thorough and thoughtful report.

2. Preliminaries

2.1. Coordinates

Let K, A, N ≤ G denote the orthogonal group, the diagonal group, and the unipotent 
group respectively. Explicitly let

kθ =
(

cos θ sin θ
)
, ay =

(
y1/2 0

−1/2

)
, and nx =

(
1 x
)
,
− sin θ cos θ 0 y 0 1
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parametrize elements in K, A and N respectively. The decomposition G = NAK gives 
coordinates g = nxaykθ on G, and the Haar measure in these coordinates is

dg = dxdydθ

2πy2 . (2.1)

The group G acts on the upper half space H = {z = x + iy ∈ C : y > 0} by linear 
fractional transformations, explicitly, for g =

(
a b

c d

)
, gz = az+b

cz+d preserving the hyperbolic 

area dμ = dxdy
y2 .

For any lattice Γ we identify the quotient Γ\H with Γ\G/K (in particular, we will 
think of functions on Γ\H as right K-invariant functions on Γ\G). Our normalization 
(2.1) is such that the Haar measure of Γ\G is equal to the hyperbolic area vΓ = μ(Γ\H).

Remark 2.2. For Γ1 = PSL2(Z) we recall that vΓ1 = π
3 .

2.2. Sobolev norms

Fix a basis B = {X1, X2, X3} for the Lie algebra g of G, and given a smooth test 
function Ψ ∈ C∞(Γ\G), define the “Lp, order-d” Sobolev norm Sp,d(Ψ) as

Sp,d(Ψ) :=
∑

ord(D)≤d

‖DΨ‖Lp(Γ\G).

Here D ranges over monomials in B of order at most d. Note that since the right action 
of B commutes with the left action of G, all norms are invariant in the sense that 
Sp,d(Ψτ ) = Sp,d(Ψ) where Ψτ (x) = Ψ(τx).

We will work with various norms that are convex combinations of these Sobolev norms 
and it will be convenient to classify these norms with respect to how large they become 
on functions approximating a small bump function. For small 0 < δ < 1 let

Bδ = KAδK (2.3)

denote a (spherical) δ-neighborhood of the identity, where

Aδ = {ay : | log(y)| < δ}.

Definition 2.4. Fix a family of smooth functions ψδ on K\G/K, supported on Bδ, with 
average ∫

G

ψδ(g)dg = 1,

and denote the corresponding periodized function by
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Ψδ(g) =
∑
γ∈Γ

ψδ(γg).

We say that a norm S is of degree α if these periodized functions have norms growing 
like S(Ψδ) 
 δ−α. We will slightly abuse notation and sometimes denote by Sα a norm 
of degree α, without specifying the norm explicitly.

Note for future reference that the Sobolev norm Sp,d is of degree d +2 − 2
p , in particular, 

the L2 norm has degree 1, while the L∞ norm has degree 2. Note that if Sα and Sβ

are of degrees α and β respectively, then the convex combination Sq
αS1−q

β is of degree 
qα+(1 −q)β. Moreover, if α ≤ β then S̃β = max{Sα, Sβ} is also of degree β, hence, after 
perhaps replacing Sβ with S̃β we may assume without loss of generality that Sα ≤ Sβ

whenever α ≤ β.

2.3. Eisenstein series

For any cusp a of Γ let Γa denote the stabilizer of a in Γ and τa ∈ G be a corresponding 
scaling matrix such that τa∞ = a and

τ−1
a Γτa ∩N = {nk : k ∈ Z}.

In particular, for the congruence groups Γ0(p) there are two cusps, one at ∞ of width 1
(that is, the stabilizer of ∞ is generated by 

( 1 1
0 1

)
), and the other at 0 of width p with 

scaling matrix τ0 =
(

0 1/√p

−√
p 0

)
= kπ/2 · ap.

The Eisenstein series corresponding to a cusp a is defined for Re(s) > 1 by

EΓ,a(z, s) =
∑

γ∈Γa\Γ
(Im(τ−1

a γz))s (2.5)

and has a meromorphic continuation to C with a simple pole at s = 1 with residue 1
vΓ

and (since Γ is congruence) no other poles in Re(s) > 1
2 .

One can regularize the Eisenstein series by subtracting the pole at s = 1, and we 
define the corresponding Kronecker limit by

KΓ,a(z) = lim
s→1

(
EΓ,a(s, z) −

1
vΓ(s− 1)

)
. (2.6)

2.4. Spectral decomposition

The hyperbolic Laplace operator Δ acts (after unique extension) on the space L2(Γ\H)
of square-integrable automorphic functions, and is self-adjoint and positive semi-definite. 
The spectrum of Δ is composed of the constant functions, the continuous part (spanned 
by Eisenstein series), and discrete part (spanned, in the congruence case, by Maass cusp 
forms).
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We denote by E(Γ\H) the space spanned by the Eisenstein series and by C(Γ\H) its 
orthogonal complement which is the space of cusp forms. For Γ = Γ0(p) the space of 
cusp forms further decomposes into the space of old forms Cold(Γ\H) spanned by the set 
{ϕ(z), ϕ(pz) : ϕ ∈ C(Γ1\H)}, and its orthogonal complement Cnew(Γ\H).

For congruence Γ, the space of cusp forms has an orthonormal basis composed of 
Hecke-Maass forms, that are joint eigenfunctions of the Laplacian and all Hecke op-
erators. We have the following spectral decomposition (see [Iwa95, Theorems 4.7 and 
7.3]).

Proposition 2.7. For Ψ ∈ L2(Γ\H),

Ψ(z) = μΓ(Ψ) +
∑
k

〈Ψ, ϕk〉ϕk(z) (2.8)

+
∑
a

1
4π

∞∫
−∞

〈
Ψ, EΓ,a(·, 1

2 + ir)
〉
EΓ,a(z, 1

2 + ir)dr,

where μΓ(Ψ) = 1
vΓ

∫
Γ\H Ψ(z)dμ(z), and the first sum is over an orthonormal basis of 

Maass cusp forms with eigenvalues λk = 1
4 + r2

k with rk ∈ i(0, 12 ) ∪ [0, ∞).

The equality is in L2(Γ\H) and pointwise for Ψ ∈ C∞
c (Γ\H). As a direct consequence, 

we have the following

Corollary 2.9. For Ψ ∈ C∞
c (Γ\H),

‖Ψ‖2 = |μΓ(Ψ)|2 +
∑
k

| 〈Ψ, ϕk〉 |2 +

∑
a

1
4π

∞∫
−∞

|
〈
Ψ, EΓ,a(·, 1

2 + ir)
〉
|2dr.

3. Fourier coefficients

In this section, we derive general bounds for Fourier coefficients of test functions at 
various cusps. In principle, most of the steps are standard, but we did not find a reference 
in the literature which carries out each of the necessary calculations, so we give details 
for the reader’s benefit. Another reason for restricting to Γ conjugate to Γ0(p) is that the 
general theory of Fourier coefficients at arbitrary cusps becomes extremely cumbersome 
(see, e.g., [GHL15, Theorem 49]).

First we specify what we mean by the “Ramanujan conjectures.” Let ϕ be a Hecke-
Maass cusp newform for Γ0(p), with Laplace Eigenvalue 1

4 + r2. For m �= 0, its mth 
Fourier coefficient (at the cusp a = ∞) satisfies
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aϕ,∞(m, y) :=
1∫

0

ϕ(x + iy)e(−mx)dx = aϕ,∞(m)√yKir(2π|m|y),

with Ks(y) the Bessel function of the second kind. The coefficient further decomposes 
as

aϕ,∞(m) = aϕ,∞(1)λ(m),

where λ(m) is the corresponding Hecke eigenvalue. Let θ ∈ [0, 1/2] be a number so that

|λ(m)| �ε |m|θ+ε. (3.1)

In particular,

θ = 7/64

is known [KS03], while the Ramanujan conjecture predicts that θ = 0 holds.

Remark 3.2. Selberg’s eigenvalue conjecture is the Ramanujan conjecture “at infinity,” 
and asserts that for the congruence groups Γ0(p) there are no Maass cusp forms with 
eigenvalue λ < 1/4. While the conjecture is known for PSL2(Z) and some small values of 
p, for general congruence groups we currently only know that a hypothetical exceptional 
Maass form with eigenvalue λ = 1/4 + r2, r ∈ i(0, 12 ), has r ∈ i(0, θ], θ = 7/64.

Now, let a be a cusp of a lattice Γ, and let τa denote the corresponding scaling matrix. 
Then for any test function Ψ ∈ C∞

c (Γ\H), the translated function Ψτa(z) := Ψ(τaz) is 
periodic in x with period one and hence has a Fourier expansion

Ψτa(z) =
∑
m∈Z

aΨ,a(m, y)e2πimx. (3.3)

In [KK18, Prop. 2.2], we proved that there are constants 0 < cΓ < ∞ and 0 < ηΓ < 1
and some norm S (a convex combination of Sobolev norms) such that these coefficients 
satisfy

|aΨ,a(m, y)| �Γ S(Ψ)|m|cΓyηΓ

uniformly for all 0 �= m ∈ Z and y > 0. The argument there was quite soft (using mixing) 
and applied to any lattice. Now we specialize to Γ conjugate to Γ0(p) to improve the 
exponents cΓ and ηΓ above, as well as to have better control on the degree of the Sobolev 
norm S. Our main result is the following.
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Proposition 3.4. Let Γ be conjugate to Γ0(p). For any Ψ ∈ C∞
c (Γ\H) and any cusp a of 

Γ, we have that

aΨ,a(0, y) = μΓ(Ψ) + O(‖Ψ‖3/4
2 ‖�Ψ‖1/4

2 y1/2). (3.5)

Moreover, for any m �= 0, any ε > 0 and any

α0 > 5/3,

we have

aΨ,a(m, y) =
∑

rk∈i(0, 12 )

〈Ψ, ϕk〉aϕk,a(m, y) + Oα0,ε,p

(
Sα0(Ψ)y

1
2−ε|m|θ

)
, (3.6)

where Sα0 is a norm of degree α0. Moreover, for each of the exceptional forms 
aϕk,a(m, y) = Oε(|m|θ−|rk|+εy1/2−|rk|e−2π|m|y).

In order to prove Proposition 3.4 we consider the spectral decomposition of Ψ into 
Maass forms and Eisenstein series and bound the Fourier coefficients of each. Explicitly, 
for the cusp forms we show the following.

Lemma 3.7. Let ϕk be a Hecke-Maass cusp form on Γ0(p) with eigenvalue 1
4 + r2

k. Then 
for any cusp a, any m �= 0, and any ε > 0, we have for rk ≥ 0

|aϕk,a(m, y)| �ε,p (rk + 1)−1/3+εy1/2−ε|m|θ (3.8)

while for rk = iσk with σk ∈ (0, 1/2)

|aϕk,a(m, y)| �ε |m|θ−σk+εy1/2−σke−2π|m|y. (3.9)

Proof. When ϕ is an eigenfunction of the Laplacian with eigenvalue s(1 − s) we have 
that aϕ,a(0, y) is a linear combination of ys and y1−s and for m �= 0 it takes the form

aϕ,a(m, y) = aϕ,a(m)√yKs−1/2(2π|m|y), (3.10)

with Ks(y) the Bessel function of the second kind.
We first consider the case when ϕk is a new form. Recall that Γ0(p) has two in-

equivalent cusps, one at ∞ and one at 0. First assume that a is equivalent to ∞. Com-
bining (3.1) with Hoffstein-Lockhart’s [HL94, Corollary 0.3] stating that aϕk,∞(1) �p,ε

(r2
k + 1/4)εeπrk/2, we obtain the bound

|aϕk,∞(m)| �p,ε (|m|rk)ε|m|θeπrk/2 (3.11)
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for rk ≥ 0 and |aϕk,∞(m)| = O(|m|θ+ε) for rk ∈ i(0, 1/2). Now for rk > 0 we use the 
bound [Str04, eq. 4.15] for the Bessel function,

|Kir(y)| �ε e
−πr/2(r + 1)−1/3+εy−ε min{1, eπr/2−y}, (3.12)

to see that (3.8) holds in this case. While for rk = iσk we use the bound Kσ(y) �
y−|σ|e−y (which follows directly from the formula Kσ(y) =

∫∞
0 e−y cosh(t) cosh(σt)dt) to 

get (3.9).
Next, for the cusp at 0 we note that the scaling matrix τ0 =

(
0 1/√p

−√
p 0

)
commutes 

with the Hecke operators T (n) with (n, p) = 1 and satisfies τ−1
0 Γ0(p)τ0 = Γ0(p) (see 

[Asa76]). Hence ϕτ0
k is also Hecke eigenfunction with the same eigenvalues, and from 

multiplicity one for new forms we get that ϕτ0
k = cϕk with some scalar c of modulus 1. 

Hence, in absolute value, |aϕk,∞(m)| = |aϕk,0(m)| so we have the same bounds also for 
the cusp at 0.

Finally, the bound for old forms follows directly from the bound for new forms of 
Γ1 = PSL2(Z). Explicitly, let ϕ be a Hecke-Maass form for Γ1 with Fourier coefficients 
aϕ(m, y). From this form we get two companion forms ϕ1(z) = ϕ(z) and ϕ2(z) = ϕ(pz)
invariant under Γ0(p). For the cusp at infinity ϕ1 = ϕ has the same Fourier expansion 
at infinity as ϕ. For the second form

ϕ2(z) = ϕ(pz) =
∑
m

aϕ(m, py)e2πimpx =
∑

m≡0(p)

aϕ(mp , py)e
2πimx,

hence aϕ2,∞(m, y) = aϕ(m/p, py) if p|m and is zero otherwise. The cusp at zero has 
scaling matrix τ0 = kπ/2 ·ap. Write σ = kπ/2 so that τ0 = σap. Since ϕσ = ϕ we get that 
ϕτ0

1 = ϕσap = ϕap = ϕ2, whence aϕ1,0 = aϕ2,∞. Similarly ϕτ0
2 = ϕapσap = ϕσ = ϕ and 

aϕ2,0 = aϕ1,∞. Thus the same bound holds also for the cusp at zero. �
Next, we need to bound the Fourier coefficients of Eisenstein series. For each pair of 

cusps a, b of Γ the Fourier expansion of the Eisenstein series EΓ,b with respect to the 
cusp at a, is given by

Eτa
Γ,b(z, s) = δa,by

s + φa,b(s)y1−s +
∑
m�=0

aa,b(s;m, y)e(mx).

Lemma 3.13. For Γ conjugate to Γ0(p) and any two cusps a, b, we have for r ∈ R that

|aa,b(1
2 + ir;m, y)| �ε y

1/2−ε(1 + |r|)−1/3+ε. (3.14)

Proof. Since EΓ,a(z, s) is an eigenfunction with eigenvalue s(1 − s) we can write

aa,b(s;m, y) = φa,b(s;m)2√yKs− 1 (2π|m|y).

2
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For the full modular group Γ1 = PSL2(Z) there is just one cusp at ∞ and the Fourier 
coefficients are given explicitly by φ(s) = ζ∗(2s−1)

ζ∗(2s) and

φ(s;m) =
τs−1/2(m)
ζ∗(2s) , (3.15)

where ζ∗(s) = π−s/2ζ(s)Γ(s/2) is the completed Riemann zeta function and τs(m) =∑
ab=|m|(

a
b )s is the divisor function [Iwa95, page 67]. In particular, using the Stirling 

approximation for the Γ-function

|Γ(1
2 + ir)| 
 e−π|r|/2,

the bound (3.12) for the Bessel function, together with the standard bounds 1
|ζ(1+ir)| �

|r|ε and |τir(m)| ≤ τ0(m) �ε |m|ε, gives (3.14) in this case. For the congruence groups 
Γ0(p) the coefficients φa,b(s; m) are given by a similar explicit formula (see Proposi-
tion A.7 below), resulting in the same bound. �

Combining the above bounds for Fourier coefficients of Maass forms and Eisenstein 
series we can use the spectral decomposition to bound the Fourier coefficients of any 
smooth function as follows.

Proof of Proposition 3.4. First, noting that Ψ ∈ C∞
c (Γ0(p)\H) iff Ψτ ∈ C∞

c (Γ\H) and 
the Fourier coefficients satisfy |aΨ,a(m, y)| = |aΨτ ,b(m, y)| with b = τ−1a, we may assume 
that Γ = Γ0(p).

Let Γ = Γ0(p) and Ψ ∈ C∞
c (Γ\H). Using the spectral expansion we can write (for 

any cusp b) and m �= 0

aΨ,b(m, y) =
∑

rk∈i(0,θ)

〈Ψ, ϕk〉aϕk,b(m, y) +
∑
rk≥0

〈Ψ, ϕk〉aϕk,b(m, y)

+
∑
a

1
2π

∫
R

〈Ψ, EΓ,a(·, 1
2 + ir)〉aa,b(1

2 + ir;m, y)dr.

To bound the contribution of the second sum fix a large parameter M (to be deter-
mined later). Applying the bound (3.8) to the Fourier coefficients we get∣∣∣∣∣∑

rk>0
〈Ψ, ϕk〉aϕk,b(m, y)

∣∣∣∣∣�ε y
1/2−ε|m|θ

( ∑
0≤rk≤M

|〈Ψ, ϕk〉|
(rk + 1)1/3−ε

+
∑

rk≥M

|〈�Ψ, ϕk〉|
r
7/3−ε
k

)
.

Using Cauchy-Schwarz, followed by summation by parts (using Weyl’s law stating that 
#{rk ≤ M} � M2) we can bound the first sum by
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‖Ψ‖2

√ ∑
0≤rk≤M

(rk + 1)−2/3+ε � M2/3+εS2,0(Ψ),

and the second by

‖�Ψ‖2

√ ∑
rk>M

r
−14/3+ε
k � M−4/3+εS2,2(Ψ).

Choosing M = S−1/2
2,0 S1/2

2,2 we get that

|
∑
rk>0

〈Ψ, ϕk〉aϕk,b(m, y)| �ε y
1/2−ε|m|θS5

3+ε
(Ψ),

where the norm S5/3+ε(Ψ) = S2,0(Ψ)2/3−ε/2S2,2(Ψ)1/3+ε/2 is of degree 5/3 + ε.
Next for the Eisenstein integrals for each pair of cusps a, b fix a large parameter M

and use (3.14) to bound∣∣∣∣∣∣
∫
R

〈Ψ, E(·, 1
2 + ir)〉aa,b(1

2 + ir;m, y)dr

∣∣∣∣∣∣�ε y
1/2−ε

( ∫
|r|≤M

|〈Ψ, E(·, 1
2 + ir)〉|

(1 + r)1/3−ε
dr

+
∫

|r|>M

|〈�Ψ, E(·, 1
2 + ir)〉|

r7/3−ε

)
dr.

As before we can use Cauchy-Schwarz to bound the first integral by Oε(S2,0(Ψ)M1/6+ε)
and the second by Oε(S2,2(Ψ)M−11/6+ε) so taking M = S−1/2

2,0 S1/2
2,2 the whole integral is 

bounded by

|
∫
R

〈Ψ, E(·, 1
2 + ir)〉ar(m, y)dr| � y1/2−εS7/6+ε(Ψ),

where

S7/6+ε(Ψ) = S2,0(Ψ)11/12−ε/2S1/12+ε/2
2,2 ,

is of degree 7/6 + ε.
Collecting the contributions of cusp forms and Eisenstein series of all cusps we get 

that

aΨ,b(m, y) =
∑

rk∈i(0,θ)

〈Ψ, ϕk〉aϕk,b(m, y) + O

(
y1/2−ε

(
|m|θS5

3+ε
(Ψ) + S 7

6+ε(Ψ)
))

.

Taking ε sufficiently small so that 53 +ε = α0, and noting that the second term is bounded 
by the first concludes the proof of (3.6).
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For the trivial (m = 0) coefficient, again using the spectral expansion, the only con-
tribution comes from the constant function (giving the main term) and the Eisenstein 
integrals. We thus need to bound for each pair of cusps

∫
R

〈
Ψ, EΓ,a(·, 1

2 + ir)
〉
(y1/2+ir + φa,b(1

2 + ir)y1/2−ir)dr

� y1/2
∫
R

|
〈
Ψ, EΓ,a(·, 1

2 + ir)
〉
|dr.

Fix a large parameter M and separate the integral to

∫
R

|
〈
Ψ, EΓ,a(·, 1

2 + ir)
〉
|dr =

∫
|r|<M

|
〈
Ψ, EΓ,a(·, 1

2 + ir)
〉
|dr

+
∫

|r|>M

|
〈
Ψ, EΓ,a(·, 1

2 + ir)
〉
|dr.

Using Cauchy-Schwarz, we can bound the first integral by

∫
|r|<M

|
〈
Ψ, EΓ,a(·, 1

2 + ir)
〉
|dr ≤

√
2M
√√√√∫

R

|
〈
Ψ, EΓ,a(·, 1

2 + ir)
〉
|2dr

�
√
M‖Ψ‖2,

and

∫
|r|>M

|
〈
Ψ, EΓ,a(·, 1

2 + ir)
〉
|dr =

∫
|r|>M

|
〈
�Ψ, EΓ,a(·, 1

2 + ir)
〉
|

1/4 + r2 dr

� ‖�Ψ‖2M
−3/2.

We thus get that

∫
R

|
〈
Ψ, EΓ,a(·, 1

2 + ir)
〉
|dr �

√
M‖Ψ‖2 + M−3/2‖�Ψ‖2,

and the optimal choice of M =
√

‖�Ψ‖2
‖Ψ‖2

gives the desired bound. �
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3.1. Additional estimates

We end this section with several estimates which follow from our bounds on Fourier 
coefficients. First, as consequence of the estimate for aΨ,a(0, y) we get the following useful 
estimate that we record here for future use.

Corollary 3.16. Let Γ be conjugate to Γ0(p). For any cusp a with scaling matrix τa, for 
any ψ ∈ C∞

c (Γ\H) we have the bound

⎛⎝ 1∫
0

|ψτa(x + iy)|2dx

⎞⎠1/2

� S1(ψ) + S2(ψ)y1/4, (3.17)

with S1 and S2 are suitable norms of degree 1 and 2 respectively.

Remark 3.18. When y is small and ψ approximates a bump function this is an improve-
ment over the trivial bound of S∞,0(ψ) which is a norm of degree 2.

Proof. Using (3.5) with the test function Ψ(z) = |ψτa(z)|2, we get that

1∫
0

|ψτa(x + iy)|2dx = μ(Ψ) + O(‖Ψ‖3/4
2 ‖�Ψ‖1/4

2 y1/2).

For Ψ = |ψτa |2 we have

μ(Ψ) = |S2,0(ψ)|2, ‖Ψ‖2 = |S4,0(ψ)|2, and ‖�Ψ‖2 � |S4,2(ψ)|2.

Define the norms S1(ψ) = S2,0(ψ) and

S2(ψ) := S4,0(ψ)3/4S4,2(ψ)1/4.

Clearly S1 is of degree 1 and S2 is of degree 2. Finally taking a square root gives the 
result. �

Combining Corollary 3.16 and Proposition 3.4 we obtain another estimate that we 
will need.

Proposition 3.19. Let Γ be conjugate to Γ0(p) and Ψ ∈ C∞
c (Γ\H) orthogonal to the 

exceptional spectrum. Then for any α1 > 5+6θ
3+6θ and η1 < 1

2+4θ ,

∑ |aΨ,a(m, y)|
|m| �α1,η1 Sα1(Ψ)yη1 + Sα1+1(Ψ)yη1+1/4, (3.20)
m�=0
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with Sα1 , Sα1+1 norms of degrees α1 and α1+1 respectively. Similarly, for any exceptional 
cusp form ϕk with eigenvalue 1

4 + r2
k < 1

4 for any ε > 0

∑
m�=0

|aϕk,a(m, y)|
|m| �ε y

1/2−θ−ε, (3.21)

where the implied constant may depend on ϕk.

Proof. Replacing Ψ with Ψτa we may assume that a = ∞ and Γ has cusp of width one. 
We can find ε > 0 and α0 > 5/3, sufficiently small so that α1 = α0+2θ

1+2θ and η1 = 1−2ε
2(1+2θ) .

Fix a parameter M ≥ 1 and separate the sum to

∑
m�=0

|aΨ,a(m, y)|
|m| =

∑
0<|m|<M

|aΨ,a(m, y)|
|m| +

∑
|m|≥M

|aΨ,a(m, y)|
|m| .

For the first sum, using Proposition 3.4 we get that

∑
|m|<M

|aΨ,a(m, y)|
|m| � Sα0(Ψ)y1/2−εMθ.

For the second sum using Cauchy-Schwarz, followed by Parseval, and then applying 
Corollary 3.16, we get

∑
|m|≥M

|aΨ,a(m, y)|
|m| ≤ 1√

M

⎛⎝ ∑
|m|≥M

|aΨ,a(m, y)|2
⎞⎠1/2

≤ 1√
M

⎛⎝ 1∫
0

|Ψ(x + iy)|2dx

⎞⎠1/2

� S1(Ψ) + S2(Ψ)y1/4
√
M

.

Now, when S1(Ψ) ≥ Sα0(Ψ)y1/2−ε let M = ( S1(Ψ)
Sα0 (Ψ)y

ε−1/2)
2

1+2θ to get that

∑
m�=0

|aΨ,a(m, y)|
|m| � Sα1(Ψ)y

1−2ε
2(1+2θ) + Sα1+1(Ψ)y

1−2ε
2(1+2θ)+1/4,

with the norms Sα1(Ψ) = S1(Ψ)
2θ

1+2θ Sα0(Ψ)
1

1+2θ and Sα1+1(Ψ) = Sα1 (Ψ)S2(Ψ)
S1(Ψ) .

Otherwise take M = 1 so that we only have the second term, which is bounded by

∑ |aΨ,a(m, y)|
|m| � S1(Ψ) + S2(Ψ)y1/4.
|m|≥1
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But since S1(Ψ) ≤ Sα0(Ψ)y1/2−ε, we can bound

S1(Ψ) + S2(Ψ)y1/4 ≤ Sα1(Ψ)yη1 + Sα1+1(Ψ)yη1+1/4,

also in this case.
Finally, for each exceptional form with rk = iσ ∈ i(0, θ] we can use (3.9) to bound

∑
m�=0

|aϕk,a(m, y)|
|m| �ε

∞∑
m=1

mθ+ε−σ−1y1/2−σe−2πmy � y1/2−θ−ε. �

4. Equidistribution of shears

We now use our results on the Fourier coefficients from the previous section to improve 
the error term in the equidistribution result of [KK18, Theorem 1.1]. In addition to 
improving the error term we also take care to make the dependance of the error on 
width of the cusp explicit, as this will be needed for our application. We will show the 
following

Theorem 4.1. Let Γ be a conjugate of Γ0(p) with a cusp at ∞ of width ω ≥ 1. For any 
7+12θ
3+6θ < α < 3 and any 1

4 < η1 < 1
2+4θ and 1

4 < η2 < 1
2 − θ, there are norms S0, Sα, Sα2

of degrees 0, α and α2 = 1 + α + 3−α
4η1

respectively, so that for any Ψ ∈ C∞
c (Γ\H) and 

any T ≥ ω1/η1

∞∫
1√

1+T2

Ψ(yT + iy)dy
y

= μΓ(Ψ) log(Tω) + 〈KΓ,∞,Ψ〉

+Oα,η1,η2

(
Sα(Ψ)ω 1

2

T
η1
2

+ Sα2(Ψ)ω 1
4

T
η1
2 + 1

8
+ S0(Ψ)ω 1

2

T
η2
2

)
.

As in [KK18], the proof of Theorem 4.1 splits into two parts. The first gives equidis-
tribution in the strip (compare to [KK18, Theorem 3.2]) which in our setting is

Proposition 4.2. Under the same conditions and notations as in Theorem 4.1 we have

∞∫
1√

1+T2

Ψ(yT + iy)dy
y

= 1
ω

ω∫
0

∞∫
1/T

Ψ(x + iy)dydx
y

+Oα,η1

(
Sα(Ψ)ω 1

2

T
η1
2

+ Sα2(Ψ)ω 1
4

T
η1
2 + 1

8
+ S0(Ψ)ω 1

2

T
η2
2

)
.

The second step uses the theory of Eisenstein series to estimate the strip average by 
the Eisenstein distribution (see [KK18, Theorem 3.3]).



D. Kelmer, A. Kontorovich / Journal of Number Theory 208 (2020) 1–46 19
Proposition 4.3. Under the same conditions and notations as in Theorem 4.1 we have,

1
ω

ω∫
0

∞∫
1/T

Ψ(x + iy)dydx
y

= μΓ(Ψ) log(Tω) + 〈KΓ,∞,Ψ〉 + O

(
S2,0(Ψ)√

ωT

)
.

The proof of Proposition 4.3 follows exactly as that of [KK18, Theorem 3.3] without 
any changes. The only difference is the absence of residual spectrum in this case, and the 
fact that we are considering K-invariant test functions, allowing us to use the Sobolev 
norm S2,0(Ψ) = ‖Ψ‖2 instead of S2,1(Ψ). Theorem 4.1 follows from these two propositions 
after noting that the error term O(S2,0(Ψ)√

ωT
) is subsumed by the other terms. We thus 

devote the rest of this section to the proof of Proposition 4.2, taking advantage of the 
assumption that Γ is a conjugate of the congruence group Γ0(p).

4.1. Equidistribution in the strip

In order to prove Proposition 4.2 write Ψ(z) = aΨ,∞(0, yω ) + Ψ⊥(z). The main term 
will come from the constant term, and we will bound the remaining integrals of Ψ⊥ using 
the Fourier expansion. To do this we prove the following lemma.

Lemma 4.4. Let Γ be conjugate to Γ0(p) with a cusp at ∞ of width ω. For any α > 7+12θ
3+6θ , 

η1 < 1
2+4θ and β ∈ (0, 1−η1

3 ), there are norms Sα, Sα+1 of orders α and α+1 respectively, 
so that for any T ≥ 1 and Ψ ∈ C∞

c (Γ\H) orthogonal to all exceptional forms, with

K0 = K0(Ψ, T ) =
(S∞,1(Ψ)2

Sα(Ψ)2 ω−2βT η1
) 1

η1+1 ≥ 1,

for any C ≥ 1, and any 1 ≤ k < CK0 we have

∣∣∣∣∣∣
k+1∫
k

Ψ⊥(y + i
y

T
)dy
y

∣∣∣∣∣∣� C
1+η1

2

(
Sα(Ψ) ω1−η1−β

k
3−η1

2 T
η1
2

+ Sα+1(Ψ) ω
3
4−η1−β

k
5
4−

η1
2 T

1
4+ η1

2

)
.

Proof. Fix a large parameter N ∈ N to be determined later and write

k+1∫
k

Ψ⊥(y + i
y

T
)dy
y

=
N−1∑
j=0

tj+1∫
tj

Ψ⊥(y + i
y

T
)dy
y
,

with tj = Nk+j
N . For tj ≤ y ≤ tj+1 we can approximate

Ψ⊥(y + i
y ) = Ψ⊥(y + i

tj ) + O

(
S∞,1(Ψ)

)
,

T T Nk + j
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where we used that, for the hyperbolic distance,

d(y + i
y

T
, y + i

tj
T

) = | log(y/tj)| ≤ log(tj+1/tj) ≤ (Nk + j)−1.

Remark 4.5. It is here that we correct the error in the proof of [KK18, Lemma 3.6].

Plugging this in gives

tj+1∫
tj

Ψ⊥(y + i
y

T
)dy
y

=
tj+1∫
tj

Ψ⊥(y + i
tj
T

)dy
y

+ O

(
S∞,1(Ψ)

(Nk + j)2

)
.

Now for the first term, expanding Ψ⊥ into its Fourier series, using integration by parts 
to bound | 

∫ tj+1
tj

e2πimy
ω

dy
y | � ω

mk , and using Proposition 3.19 with η1 and α1 = 2α − 3
we can bound∣∣∣∣∣∣∣

tj+1∫
tj

Ψ⊥(y + i
tj
T

)dy
y

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑
m�=0

aΨ,∞(m,
tj
ωT

)
tj+1∫
tj

e2πimy
ω

dy

y

∣∣∣∣∣∣∣
� ω

k

∑
m�=0

|aΨ,∞(m,
tj
ωT )|

|m|

� ω

k
(Sα1(Ψ)( k

ωT )η1 + Sα1+1(Ψ)( k
ωT )η1+1/4

= ω1−η1

k1−η1

Sα1(Ψ)
T η1

+ ω3/4−η1

k3/4−η1

Sα1+1(Ψ)
T η1+1/4 .

Summing over 0 ≤ j < N we get that∣∣∣∣∣∣
k+1∫
k

Ψ⊥(y + i
y

T
)dy
y

∣∣∣∣∣∣� N
ω1−η1

k1−η1

Sα1(Ψ)
T η1

+ N
ω3/4−η1

k3/4−η1

Sα1+1(Ψ)
T η1+1/4 + S∞,1(Ψ)

Nk2 .

Now define the norms

Sα(Ψ) =
√

Sα1(Ψ)S∞,1(Ψ), Sα+1(Ψ) =

√
S∞,1(Ψ)Sα1+1(Ψ)2

Sα1(Ψ) ,

(that are indeed of degrees α and α + 1). First, for k ≤ K0 we can take

N = N0(k) = [
√

S∞,1(Ψ)
Sα1 (Ψ)

T
η1
2

ωβk
1+η1

2
] ≥ 1,

to get that
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∣∣∣∣∣∣
k+1∫
k

Ψ⊥(y + i
y

T
)dy
y

∣∣∣∣∣∣� Sα(Ψ) ω1−η1−β

k
3
2−

η1
2 T

η1
2

+ Sα+1(Ψ) ω
3
4−η1−β

k
5
4−

η1
2 T

1
4+ η1

2
.

Next for K0 ≤ k < CK0 we take instead N = [C
1+η1

2 N0] ≥ 1 to get that∣∣∣∣∣∣
k+1∫
k

Ψ⊥(y + i
y

T
)dy
y

∣∣∣∣∣∣� C
1+η1

2 Sα(Ψ) ω1−η1−β

k
3
2−

η1
2 T

η1
2

+ C
1+η1

2 Sα+1(Ψ) ω
3
4−η1−β

k
5
4−

η1
2 T

1
4+ η1

2
. �

Using this estimate it is possible to evaluate 
∫K0
1 Ψ⊥(y + i yT )dyy . We now show how 

to boot strap this to extend the range all the way up to K1 = K
1+η1
2η1

0 .

Proposition 4.6. With the same assumptions and notations as in Lemma 4.4, let K1 =
K1(Ψ, T ) = K0(Ψ, T )

1+η1
2η1 . Then for K0 ≥ 1, there is a constant c ∈ (1/e2, 1) such that∣∣∣∣∣∣

cK1∫
1

Ψ⊥(y + i
y

T
)dy
y

∣∣∣∣∣∣� max{1, log log(K0)}
(
Sα(Ψ)ω1−η1−β

T
η1
2

+ Sα2(Ψ)ω
3
4−η1−β− β

4η1

T
η1
2 + 1

8

)
,

where Sα is as above and Sα2 is a norm of degree α2 = 4η1+3
4η1

+ α 4η1−1
4η1

.

Proof. As a first step, a simple application of Lemma 4.4 with C = 1, noting that for 
both terms the power of k in the denominator is greater than one gives∣∣∣∣∣∣

K0∫
1

Ψ⊥(y + i
y

T
)dy
y

∣∣∣∣∣∣ ≤
K0−1∑
k=1

∣∣∣∣∣∣
k+1∫
k

Ψ(y + i
y

T
)dy
y

∣∣∣∣∣∣
� Sα(Ψ)ω

1−η1−β

T
η1
2

+ Sα+1(Ψ)ω
3
4−η1−β

T
1
4+ η1

2
.

Next let s� denote the partial sums of geometric series s� =
∑�

j=0(
1−η1
1+η1

)j converging 

to s∞ = 1+η1
2η1

and let C� = Ks
−1
0 . Applying Lemma 4.4 with C = C� we get the bound∣∣∣∣∣∣∣

C
K0∫
C
−1K0

Ψ⊥(y + i
y

T
)dy
y

∣∣∣∣∣∣∣ ≤
C
K0−1∑

k=C
−1K0

∣∣∣∣∣∣
k+1∫
k

Ψ⊥(y + i
y

T
)dy
y

∣∣∣∣∣∣
� C

1+η1
2

� Sα(Ψ)
(C�−1K0)

1−η1
2

ω1−η1−β

T
η1
2

+
C

1+η1
2

� Sα+1(Ψ)
(C�−1K0)

1−2η1
4

ω
3
4−η1−β

T
1
4+ η1

2
.

From our choice of the constants we have that C� = (K0C�−1)
1−η1
1+η1 so that C

1+η1



(C
−1K0)1−η1 =

1 and C
1+η1



1−2η1 = (C�−1K0)1/2, hence

(C
−1K0) 2
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∣∣∣∣∣∣∣
C
K0∫

C
−1K0

Ψ(y + i
y

T
)dy
y

∣∣∣∣∣∣∣� Sα(Ψ)ω
1−η1−β

T
η1
2

+ (C�−1K0)1/4Sα+1(Ψ)ω
3
4−η1−β

T
1
4+ η1

2
.

Now bounding C�−1K0 ≤ K
1+η1
2η1

0 = K1 and plugging in K0 =
(S∞,1(Ψ)2

Sα(Ψ)2 ω−2βT η1
) 1

η1+1

we can bound the second term by

K
1+η1
8η1

0 Sα+1(Ψ)ω
3
4−η1−β

T
1
4+ η1

2
= Sα2(Ψ)ω

3
4−η1−β− β

4η1

T
1
8+ η1

2
,

with

Sα2(Ψ) = Sα+1(Ψ)S∞,1(Ψ)
1

4η1 Sα(Ψ)
−1
4η1 .

We thus get that for each � ≥ 1 we have∣∣∣∣∣∣∣
C
K0∫

C
−1K0

Ψ(y + i
y

T
)dy
y

∣∣∣∣∣∣∣� Sα(Ψ)ω
1−η1−β

T
η1
2

+ Sα2(Ψ)ω
3
4−η1−β− β

4η1

T
1
8+ η1

2
.

Finally, taking � = max{1, [ log log(K0)
log( 1+η1

1−η1
)
] + 1} we get that

s� = 1+η1
2η1

− 1−η1
2η1

(1−η1
1+η1

)� ≥ 1+η1
2η1

− 2(1−η1
1+η1

)� ≥ 1+η1
2η1

− 2
log(K0) ,

so that e−2K1 ≤ C�K0 ≤ K1, hence, C�K0 = cK1 for some c > 1/e2. Summing up these 
� = O(max{1, log log(K0)}) terms concludes the proof. �

For large values of k > K1 this estimate is no longer optimal, and instead we will use 
the following alternative bound.

Lemma 4.7. Let Γ be conjugate of Γ0(p) with a cusp at ∞ of width ω. For any α1 > 5+6θ
3+6θ

and η1 < 1
2+4θ there are norms Sα1 , Sα1+1 such that for any Ψ ∈ C∞

c (Γ\H) orthogonal 
to all exceptional forms, for any k ≥ 1 we have∣∣∣∣∣∣∣

ω(k+1)∫
ωk

Ψ⊥(y + i
y

T
)dy
y

∣∣∣∣∣∣∣�
Sα1(Ψ)
k2−η1T η1

+ Sα1+1(Ψ)
k7/4−η1T η1+1/4 + S∞,1(Ψ)

k2 .

Proof. For kω ≤ y ≤ (k + 1)ω we can estimate

Ψ(y + i
y

T
) = Ψ(y + i

kω

T
) + O

(
S∞,1(Ψ)

k

)
,

so that
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ω(k+1)∫
ωk

Ψ⊥(y + i
y

T
)dy
y

=
ω(k+1)∫
ωk

Ψ⊥(y + i
ωk

T
)dy
y

+ O

(
S∞,1(Ψ)

k2

)
.

Expanding the first term in Fourier series

ω(k+1)∫
ωk

Ψ⊥(y + i
ωk

T
)dy
y

=
∑
m�=0

aΨ,∞(m,
k

T
)

ω(k+1)∫
ωk

e
2πimy

ω
dy

y
.

Integrating by parts we can bound∣∣∣∣∣∣∣
ω(k+1)∫
ωk

e
2πimy

ω
dy

y

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
k+1∫
k

e2πimy dy

y

∣∣∣∣∣∣ ≤ 1
|m|k2 ,

and using Proposition 3.19 we bound∣∣∣∣∣∣∣
ω(k+1)∫
ωk

Ψ⊥(y + i
ωk

T
)dy
y

∣∣∣∣∣∣∣ ≤
∑
m�=0

|aΨ,∞(m,
k

T
)|

∣∣∣∣∣∣∣
ω(k+1)∫
ωk

e
2πimy

ω
dy

y

∣∣∣∣∣∣∣
≤ 1

k2

∑
m�=0

|aΨ,∞(m, k
T )|

|m|

� Sα1(Ψ)
k2−η1T η1

+ Sα1+1(Ψ)
k7/4−η1T η1+1/4 ,

concluding the proof. �
We can now give the

Proof of Proposition 4.2. First assume that Ψ is orthogonal to all exceptional forms (if 
any such exist). Noting that

∞∫
T√

T2+1

Ψ(y + i yT )dy
y

=
∞∫
1

Ψ(y + i
y

T
)dy
y

+ O

(
S∞,0(Ψ)

T 2

)
,

and that

∞∫
1

aΨ,∞(0, y

ωT
)dy
y

= 1
ω

ω∫
0

∞∫
1/T

Ψ(x + iy)dydx
y

,

we just need to bound 
∫∞ Ψ⊥(y + i y )dy .
1 T y
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Let β = 1
2 − η1 and let K0 = K0(Ψ, T ) =

(S∞,1(Ψ)2
Sα(Ψ)2 ω−2βT η1

) 1
η1+1 be as in Lemma 4.4

and K1 = K
1+η1
2η1

0 = (S∞,1(Ψ)
Sα(Ψ) )

1
η1 ω− β

η1 T
1
2 be as in Proposition 4.6. Note that the condition 

that T ≥ ω1/η1 implies that ω−2βT η1 ≥ ω2η1 ≥ 1 and since S∞,1 is of degree 3, and 
α ≤ 3 we also have that S∞,1(Ψ)

Sα(Ψ) ≥ 1 so that indeed K0 ≥ 1. Now by Proposition 4.6

∣∣∣∣∣∣
cK1∫
1

Ψ⊥(y + i
y

T
)dy
y

∣∣∣∣∣∣� max{1, log log(K0)}
(
Sα(Ψ)ω 1

2

T
η1
2

+ Sα2(Ψ)ω
1
4−

1−2η1
8η1

T
η1
2 + 1

8

)
.

Next, using Lemma 4.7 we can bound

∣∣∣∣∣∣
∞∫

cK1

Ψ⊥(y + i
y

T
)dy
y

∣∣∣∣∣∣ ≤
∑

k>cK1/ω

∣∣∣∣∣∣∣
ω(k+1)∫
ωk

Ψ⊥(y + i
y

T
)dy
y

∣∣∣∣∣∣∣
� Sα1(Ψ)

T η1
+ Sα1+1(Ψ)

T η1+1/4 + ωS∞,1(Ψ)
K1

.

The first two terms are clearly bounded by the similar terms appearing above and plug-
ging in the value of K1, the third term is

ωS∞,1(Ψ)
K1

= S∞,1(Ψ)1−
1
η1 Sα(Ψ)

1
η1

(
ωη1+β

T
η1
2

) 1
η1

.

Notice that S∞,1(Ψ)1−
1
η1 Sα(Ψ)

1
η1 is a norm of degree α

η1
− 3( 1

η1
− 1) (which is smaller 

than α as long as α < 3), and with our choice of β = 1
2 − η1 we see that

(
ωη1+β

T
η1
2

) 1
η1

=
(

ω
1
2

T
η1
2

) 1
η1

≤ ω
1
2

T
η1
2
.

Hence, after perhaps replacing Sα by a different norm of degree α we get that

ωS∞,1(Ψ)
K1

≤ Sα(Ψ)ω 1
2

T
η1
2

,

whence ∣∣∣∣∣∣
∞∫
1

Ψ⊥(y + i
y

T
)dy
y

∣∣∣∣∣∣� log log(K0)
(
Sα(Ψ)ω 1

2

T
η1
2

+ Sα2(Ψ)ω 1
4

T
η1
2 + 1

8

)
.

Finally, since K0 grows polynomially with T and the norms of Ψ, replacing the exponent 
η1 with a slightly smaller exponent and, if needed, slightly increasing the degrees α and 
α2, we may drop the log log(K0) term.
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Next, to deal with exceptional forms. Repeating the same arguments for Ψ = ϕk an 
exceptional cusp form, and using (3.21) instead of (3.20), we get that for any η2 < 1

2 − θ∣∣∣∣∣∣
∞∫
1

ϕk(y + i
y

T
)dy
y

∣∣∣∣∣∣�η2

ω
1
2

T
η2
2
.

We should note that, although the implied constant will depend on ϕk, or more precisely 
on some norms S(ϕk), we may bound any such contributions by Op(1), since for any 
fixed level p there are at most finitely many exceptional forms (and p is treated as fixed).

Now for the general case write Ψ = Ψex + Ψpr with

Ψex =
∑

rk∈i(0,1/2)

〈Ψ, ϕk〉ϕk,

the projection of Ψ to the space spanned by the exceptional forms. We can thus bound∣∣∣∣∣∣
∞∫
1

Ψ(y + i
y

T
)dy
y

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∞∫
1

Ψex(y + i
y

T
)dy
y

∣∣∣∣∣∣+
∣∣∣∣∣∣
∞∫
1

Ψpr(y + i
y

T
)dy
y

∣∣∣∣∣∣ .
Estimating |〈Ψ, ϕk〉 ≤ ‖Ψ‖1‖ϕk‖∞ � ‖Ψ‖1 and noting that S0(Ψ) = ‖Ψ‖1 is a norm 

of degree 0 (and that there are at most finitely many exceptional forms), we have∣∣∣∣∣∣
∞∫
1

Ψex(y + i
y

T
)dy
y

∣∣∣∣∣∣�p,η2

S0(Ψ)ω 1
2

T
η2
2

.

Since Ψpr is orthogonal to all exceptional forms we can apply the first part to bound∣∣∣∣∣∣
∞∫
1

Ψ⊥
pr(y + i

y

T
)dy
y

∣∣∣∣∣∣�
(
Sα(Ψpr)ω

1
2

T
η1
2

+ Sα2(Ψpr)ω
1
4

T
η1
2 + 1

8

)
.

To complete the proof, observe that for any of our norms, we have S(Ψex) � S0(Ψ), and 
also that Sα(Ψpr) 
 Sα(Ψ) holds for any α > 0. �
4.2. Two sided cuspidal geodesics

For the cases of interest here, the lattice Γ has cusps at ∞ and at 0 and it is natural 
to consider shears of the two sided cuspidal geodesic connecting them, that is,

μT (Ψ) =
∞∫

Ψ(Ty + iy)dy
y
.

0
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It is easy to see that μT is invariant under scaling, μT (Ψ) = μT (Ψat) and a simple 

computation shows that under σ =
(

0 1
−1 0

)
it transforms via μT (Ψσ) = μ−T (Ψ). In fact, 

using that Ψσ(z) = Ψ(−1
z ) and making a change of variables gives the identity.

μT (Ψ) =
∞∫
1√

T 2+1

Ψ(Ty + iy)dy
y

+
∞∫
1√

T 2+1

Ψσ(−Ty + iy)dy
y
. (4.8)

Applying our results on shears of cuspidal geodesic rays we get the following.

Corollary 4.9. Let Γ be conjugate to Γ0(p) with cusps at ∞ and 0. Let ω1, ω2 denote 
the widths of the cusps of Γ and Γσ at ∞ respectively and let ω = √

ω1ω2. For any α ∈
(7+12θ

3+6θ , 3), η1 ∈ (1
4 , 

1−2θ
2 ), η2 ∈ (1

4 , 
1−2θ

2 ) and T ≥ ω1/η1 we have for any Ψ ∈ C∞
c (Γ\H),

μT (Ψ) = 2μΓ(Ψ) log(Tω) + 〈KΓ,∞,Ψ〉 + 〈KΓ,0,Ψ〉

+Oα,η1,η2

(
Sα(Ψ)ω 1

2

T
η1
2

+ Sα2(Ψ)ω 1
4

T
η1
2 + 1

8
+ S0(Ψ)ω 1

2

T
η2
2

)
,

where Sα, Sα2 are as in Theorem 4.1.

Proof. Note that if Ψ(z) has period ω1 and Ψσ has period ω2 then Ψ̃(z) = Ψ(
√

ω1
ω2

z)
satisfies that both Ψ̃ and Ψ̃σ have a period of ω = √

ω1ω2. Since μT (Ψ) = μT (Ψ̃), using 
Theorem 4.1 with Ψ̃ and Ψ̃σ in each part of (4.8) gives the claimed result. �
5. Lattice points in cones

We now apply our results on equidistribution of shears to get effective counting esti-
mates for counting lattice points in cones of the form

CT = {z ∈ H : |Re(z)| ≤ TIm(z)}, T → ∞. (5.1)

For Γ ≤ PSL2(Z) conjugate to Γ0(p) and τ ∈ PSL2(Q), we define the counting function

N τ
CT

(Γ) = #{γ ∈ Γ : τ−1γi ∈ CT }. (5.2)

Theorem 5.3. For any η < 3
40+72θ and β1 > 1 + 2θ, we have for T > (ωτωτσ)β1 that

N τ
CT

(Γ) = 2T
vΓ

(
log(T 2ωτωτσ) − 2 + vΓ(KΓ,aτ

(i) + KΓ,bτ
(i)) + O

( (ωτωτσ)β1η

T η

))
.

Here ωτ denotes the width of the cusp at ∞ of Γτ = τ−1Γτ , aτ = τ∞, and bτ = τ0.
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As a first step we show that the cones CT are well rounded.

Lemma 5.4. Let g ∈ G such that gi ∈ CT with T ≥ 1. Then for any h ∈ Bδ with 
0 < δ ≤ 1

10 , we have ghi ∈ CT (1+5δ).

Proof. For any h ∈ Bδ we have that |Re(hi)| ≤ sinh(δ) ≤ 2δ and |Im(hi) − 1| ≤ 2δ. 
Write gi = x + iy so that g = nxaykθ for some θ. Since Bδ is K-invariant, kθh = h̃ ∈ Bδ

as well. Hence writing h̃i = ξ + iη, we have that ghi = x + y(ξ + iη) = x′ + iy′ with 
|ξ| ≤ 2δ and |η − 1| ≤ 2δ. We can thus write

|x′|
y′

= |x + ξy|
ηy

≤ |x|
y

(
1 + |ξy/x|

η

)
.

We now consider two cases, first assume that |x|y ≥ 1, in which case

|x′|
y′

≤ T

(
1 + 2δ
1 − 2δ

)
≤ T (1 + 5δ).

Next, when |x| ≤ y we bound

|x′|
y′

= |x + ξy|
ηy

≤ y(1 + |ξ|)
ηy

≤ 1 + 2δ
1 − 2δ ≤ 1 + 5δ. �

Now let χCT
denote the indicator function of CT and consider the function

FT,τ (g) =
∑
γ∈Γ

χCT
(τ−1γg.i) (5.5)

Note that FT,τ ∈ L2(Γ\G/K) and that evaluating at the identity we have FT,τ (1) =
N τ

CT
(Γ). From the well roundedness of CT we get the following:

Lemma 5.6. For δ > 0 small, let ψδ ∈ C∞
c (K\G/K) be supported on Bδ with 

∫
G
ψδ = 1, 

and let

Ψδ(g) =
∑
γ∈Γ

ψδ(γg). (5.7)

Then Ψδ ∈ L2(Γ\G/K) and

〈FT (1−5δ),τ ,Ψδ〉 ≤ N τ
CT

(Γ) ≤ 〈FT (1+5δ),τ ,Ψδ〉, (5.8)

where the inner product the standard inner product in L2(Γ\G/K).
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Proof. Unfolding Ψδ we can write

〈FT,τ ,Ψδ〉 =
∫
G

FT,τ (g)ψδ(g)dg.

By Lemma 5.4 we have that for any g ∈ Bδ

FT (1−5δ),τ (g) ≤ N τ
CT

(Γ) ≤ FT (1+5δ),τ (g),

concluding the proof. �
Remark 5.9. As is well known, this inner product 〈FT,τ ,Ψδ〉 not only is an approximation 
to the sharp cutoff N τ

CT
(Γ), but it is also itself a smooth counting function, since

〈FT,τ ,Ψδ〉 =
∑
γ∈Γ

χ̃CT
(γ),

where

χ̃CT
(γ) =

∫
g∈G

χCT
(τ−1γg)ψδ(g)dg,

is a smoothed cutoff, cf. (1.3).

We thus need to evaluate the inner product 〈FT,τ , Ψδ〉. The following simple lemma, 
relates these to the shears of two sided cuspidal geodesics.

Lemma 5.10. For any Ψ ∈ C∞
c (Γ\H) we have

〈FT,τ ,Ψ〉 =
T∫

−T

∞∫
0

Ψτ (xy + iy)dyy dx. (5.11)

Proof. Unfolding FT,τ and making some changes of variables gives

〈FT,τ ,Ψ〉 =
∫
G

χCT
(τ−1gi)Ψ(gi)dg

=
∫
G

χCT
(gi)Ψτ (gi)dg

=
∞∫ yT∫

Ψτ (x + iy)dxdyy2
0 −yT
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=
∞∫
0

T∫
−T

Ψτ (xy + iy)dxdyy

=
T∫

−T

∞∫
0

Ψτ (xy + iy)dyy dx

as claimed. �
We are in position now to prove Theorem 1.4, which follows immediately (see, e.g., 

[Kon09, (4.8)] and Remark 5.9) from the following:

Proposition 5.12. Let Ψ ∈ C∞
c (Γ\H) be positive with mean one and supported the unit 

neighborhood of some point. Assume that α > 7+12θ
3+6θ , η1 ∈ (1

4 , 
1

2+4θ ), and η2 ∈ (1
4 , 

1
2 − θ), 

and let α2 be as in Theorem 4.1.
Then

〈FT,τ ,Ψ〉 = 2T
vΓ

(
log(T 2ωτωτσ) − 2 + vΓ(〈KΓτ ,∞,Ψτ 〉 + 〈KΓτ ,0,Ψτ 〉)

)
+ Oα,η1

(
Sα(Ψ)(ωτωτσ) 1

4T 1− η1
2 + Sα2(Ψ)(ωτωτσ) 1

8T 7/8− η1
2

)
+ Oη1

(
(ωτωτσ)1/(2η1) log(ωτωτσ)‖Ψ‖∞

)
+ Oη2

(
S0(Ψ)(ωτωτσ) 1

4T 1− η2
2

)
.

(5.13)

Proof. By Lemma 5.10, we have

〈FT,τ ,Ψ〉 =
T∫

−T

∞∫
0

Ψτ (xy + iy)dyy dx. (5.14)

Let

M = (ωτωτσ)1/(2η1).

Then for |x| > M , we may apply Corollary 4.9 to the inner integral to obtain

∞∫
0

Ψτ (xy + iy)dyy = log(|x|2ωτωτσ)
vΓ

+ 〈KΓτ ,∞,Ψτ 〉 + 〈KΓτ ,0,Ψτ 〉

+Oα,η1

(
Sα(Ψ)(ωτωτσ) 1

4

|x| η1
2

+ Sα2(Ψ)(ωτωτσ) 1
8

|x|1/8+ η1
2

)



30 D. Kelmer, A. Kontorovich / Journal of Number Theory 208 (2020) 1–46
+Oη2

(
S0(Ψ)(ωτωτσ) 1

4

|x| η2
2

)
.

Integrating over M ≤ |x| ≤ T gives the first three terms in (5.13) plus

O

(
M log(Mωτωτσ) + M(| 〈KΓτ ,∞,Ψτ 〉 | + | 〈KΓτ ,0,Ψτ 〉 |)

)
.

Since the Kronecker limit KΓτ ,a ∈ L2(Γτ\H), this term is bounded by

O

(
M log(Mωτωτσ) + M‖Ψ‖2

)
,

which is subsumed by the last term in (5.13).
For |x| < M , we argue as follows. First fix x and apply (4.8) to the y integral:

∞∫
0

Ψτ (xy + iy)dyy =
∞∫
1√

1+x2

Ψτ (xy + iy)dyy + sim,

where “sim” refers to a similar term with τ replaced by τσ and x by −x. Break the y
integral into

∞∫
1√

1+x2

=
ωτ∫

1/
√
x2+1

+
∞∫

ωτ

.

Now, since Γτ has a cusp at infinity of width ωτ the quotient Γτ\H has a fundamental 
domain contained in the set {x + iy : |x| ≤ ωτ/2, y > 0}, and since the Siegel set 
{x + iy : |x| ≤ ωτ/2, y ≥ ωτ} has hyperbolic measure one, it is contained in this 
fundamental domain (recall that the fundamental domain for PSL2(Z) and hence also 
for Γτ has hyperbolic measure > 1). On this one fundamental domain, Ψτ is supported 
on the unit neighborhood of some point x0 + iy0, which is contained in some strip of the 
form

{x + iy : x ∈ R, y ∈ (y0
2 , 2y0)}.

Hence Ψτ (xy + iy) = 0 for all y ≥ ωτ outside of this strip implying that∣∣∣∣∣∣
∞∫

ωτ

Ψτ (xy + iy)dyy

∣∣∣∣∣∣ � ‖Ψ‖∞
2y0∫

y0/2

dy

y
� ‖Ψ‖∞.

For the first interval, we trivially bound
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∣∣∣∣∣∣∣
ωτ∫

1/
√
x2+1

Ψτ (xy + iy)dyy

∣∣∣∣∣∣∣ � ‖Ψ‖∞ logMωτ .

Repeating the same argument with τ replaced by τσ we see that for |x| ≤ M∣∣∣∣∣∣
∞∫
0

Ψτ (xy + iy)dyy

∣∣∣∣∣∣� ‖Ψ‖∞ log(ωτωτσ),

and hence ∣∣∣∣∣∣
M∫

−M

∞∫
0

Ψτ (xy + iy)dyy

∣∣∣∣∣∣� ‖Ψ‖∞(ωτωτσ)1/(2η1) log(ωτωτσ)

concluding the proof. �
We are finally in position to give the following

Proof of Theorem 5.3. Let α and η1 be as in Proposition 5.12. Let η = η1
2(α+1) and 

β1 = 1
2η1

and denote by ω = √
ωτωτσ. We can also choose η < η2 < 1/2 −θ. Our δ-bump 

function Ψδ satisfies:

Sα(Ψδ) 
 δ−α, Sα2(Ψδ) 
 δ−α2 , ‖Ψδ‖∞ 
 δ−2

where Sα, Sα2 are as in Theorem 4.1.
Now we further simplify the Eisenstein terms appearing in Proposition 5.12. Since 

EΓτ ,∞(z, s) = Eτ
Γ,aτ

(z, s) removing the residue we get that KΓτ ,∞(z) = Kτ
Γ,aτ

(z) and 
hence, 〈KΓτ ,∞, Ψτ

δ 〉Γτ = 〈KΓ,aτ
, Ψδ〉Γ. Since KΓ,aτ

(z) is smooth and Ψδ is supported on 
a δ-neighborhood of i we can estimate 〈KΓ,aτ

, Ψδ〉Γ = KΓ,aτ
(i) + O(δ) so the Eisenstein 

term can be approximated by

〈KΓτ ,∞,Ψτ
δ 〉Γτ = KΓ,aτ

(i) + O(δ).

Making an optimal choice of

δ = ω
1

2(1+α)T− η1
2(1+α) , (5.15)

the first error term dominates and we get

〈FT,τ ,Ψδ〉 = 2T
vΓ

(
log(T 2ω2) − 2 + vΓ(KΓ,aτ

(i) + KΓ,aτσ
(i))
)

+O
(
ω2β1ηT 1−η

)
.
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Finally, using (5.8) relating the counting problem to the inner product (after replacing 
T with T (1 ± 5δ)) we get that

N τ
CT

(Γ) = 2T
vΓ

(
log(T 2ω) − 2 + vΓ(KΓ,aτ

(i) + KΓ,bτ
(i)) + O((ω

2β1

T )η
)
. �

Remark 5.16. As can be expected, the main term does not depend on τ . The secondary 
term does depend on τ , but only involves knowledge of which cusps are used for the 
Eisenstein term, and the widths of these cusps.

6. Counting integer solutions

In this section, we establish the results claimed in §1.3, handling Theorems 1.5 and 
1.9 simultaneously.

6.1. Decomposition into orbits

Consider the variety

Vd : b2 − 4ac = d,

where d is fixed. Identifying the triple (a, b, c) with the quadratic form

Q(x, y) = ax2 + bxy + cy2,

gives a natural PSL2 action on Vd, via

Qg(v) = Q(vgt),

where g ∈ PSL2 acts linearly on v = (x, y) from the right (here gt is the transpose of 
g). More explicitly, the action of g ∈ PSL2 on triples (a, b, c) ∈ Vd is given by the linear 
action

(a, b, c)g := (a, b, c)ι(g),

where ι : PSL2 → SOb2−4ac is the spin morphism given by

ι
(

a b

c d

)
=

⎛⎝a2 2ab b2

ac ad + bc bd

c2 2cd d2

⎞⎠ .

In particular, Γ1 = PSL2(Z) acts on the integer points Vd(Z) and we can decompose

Vd(Z) = ∪h(d)
i=1 viΓ1,
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into finitely many orbits. The number h(d) of orbits is, in general, very mysterious; for 
instance, when d is a square free fundamental discriminant then h(d) is the class number 
of the quadratic extension Q(

√
d). However when d = n2 is a perfect square, the number 

of orbits can be computed explicitly. In the following lemma, we compute it and give a 
full set of representatives for the orbits.

Lemma 6.1. For d = n2 a square we have h(n2) = n. Moreover, the set {(0, n, 0)τj |0 ≤
j < n} with τj =

(
1 j/n

0 1

)
is a full set of representatives for the classes of 

Vd(Z)/ PSL2(Z).

Proof. We identify a point (a, b, c) ∈ Vd(Z) with the corresponding quadratic form 
Q(x, y) = ax2 + bxy + cy2 having discriminant d = b2 − 4ac. Then PSL2(Z) acts on 
the set of quadratic forms by Qγ(v) = Q(vγt) where v = (x, y) and γ ∈ PSL2(Z) is 
acting linearly on the right.

Recall that a binary quadratic form Q has a square discriminant, if and only if the 
form factors as a product of linear forms

Q(x, y) = (Ax + By)(Cx + Dy),

in which case the discriminant is given by (AD−BC)2. We thus get a map, from the set 
Mn(Z) of 2 × 2 integral matrices with determinant n, onto the set of integral quadratic 
forms of discriminant n2, sending M =

(A B

C D

)
to the form QM (x, y) = (Ax +By)(Cx +

Dy) (this map is not injective since the same form can have several factorizations). A 
direct computation shows that Qγ

M = QMγ , and since

Δn = {
(A 0
C D

)
∈ Mn(Z) : AD = n, 0 ≤ C < D},

is a full set of representatives for Mn(Z)/ PSL2(Z), the set {QM : M ∈ Δn} is a full set 
of representatives for classes of quadratic form of discriminant n2 (some of these might 
be equivalent though). A form in this set of representatives can be written explicitly as

QM (x, y) = Ax(Cx + Dy) = ACx2 + nxy,

and we see that the classes with A �= 1 are redundant. A smaller full set of representatives 
is thus given by the forms Cx2 + nxy with 0 ≤ C < n, and it is not hard to verify 
directly that these are all inequivalent. Finally, observing that Cx2 + nxy is equivalent 
to nxy − Cy2 concludes the proof. �
Remark 6.2. Instead of looking at all integer points in Vd(Z) one can consider only 
primitive points (i.e., points with gcd (a, b, c) = 1). It is easy to see that Γ1 also acts 
on the set of primitive points, and the same proof shows that the set {(0, n, j)|0 ≤ j <

n, (n, j) = 1} is a full set of representatives for the orbits of primitive points.
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Using our orbit decomposition of Vd we can also get a corresponding decomposition 
of the variety

Wd : x2 + y2 − z2 = d.

The map (x, y, z) �→ ( z+y
2 , x, z−y

2 ) is a bijection between Wd and Vd and the integer 
points Wd(Z) map to the set

Ṽd(Z) := {(a, b, c) ∈ Vd|b ∈ Z, a, c ∈ 1
2Z, a + c ∈ Z}.

From this map we see that the congruence subgroup

Γ2 = {γ ∈ Γ1 : γ̄ ∈ {
(

1 0
0 1

)
,
(

0 1
−1 0

)
}},

(with γ̄ ∈ PSL2(Z/2Z) the projection of γ), acts on Ṽd(Z) (and hence also on Wd(Z)). 
Using the classification of the orbit of the Γ1 action on Vd(Z) we get the following 
classification for the Γ2 action on Ṽd(Z).

Lemma 6.3. For d = n2 a complete set of representatives for the Γ2 orbits of Ṽd(Z) is 
given by

{(0, n, 0)τj , 0 ≤ j < 2n} ∪ {(0, n, 0)τ̃j : 0 ≤ j < 2n},

where τj =
(

1 j/n

0 1

)
is as above and τ̃j =

(
1+ j

2n
j
2n

1 1

)
.

Proof. Let (a, b, c) ∈ Ṽd(Z) then (2a, 2b, 2c) ∈ V4d(Z). From the classification of Γ1
orbits of V4d(Z) there is γ ∈ Γ1 with (a, b, c) = (0, n, j/2)γ with 0 ≤ j < 2n. We can 

write γ as σγ̃ with γ̃ ∈ Γ2 and σ ∈ {
(

1 0
0 1

)
, 
(

1 1
0 1

)
, 
(

1 0
1 1

)
} in the set of representatives 

for Γ1/Γ2. We can thus write the point (a, b, c) as (0, n, j/2)γ̃ or as (0, n, n + j/2)γ̃ or 
(n + j

2 , n + j, j2 )γ̃ for some 0 ≤ j < 2n. Now, (a, b, c) ∈ Ṽd(Z) and γ̃ preserves this space, 
so in the first two cases we must have that j/2 ∈ Z. Hence, a full set of representatives 
is indeed (0, n, j) = (0, n, 0)τj and (n + j

2 , n + j, j2 ) = (0, n, 0)τ̃j for 0 ≤ j < 2n. �
Remark 6.4. Consider the norm ‖ · ‖∗ on R3 defined by

‖(a, b, c)‖2
∗ = 2a2 + b2 + 2c2,

and let BT = {(a, b, c) ∈ R3 : ‖(a, b, c)‖∗ < T}. Note that Ṽd(Z) ∩BT is in bijection with 
the set {(x, y, z) ∈ Wd(Z) : x2 + y2 + z2 ≤ T 2} so Nd(T ) = #(Ṽd(Z) ∩ BT ). Moreover, 
under this bijection, the primitive points of Wd(Z) correspond exactly to the Γ2-orbits 
of the classes (0, n, 0)τj and (0, n, 0)τ̃j with (n, j) = 1.



D. Kelmer, A. Kontorovich / Journal of Number Theory 208 (2020) 1–46 35
Decomposing the integer points of Vd(Z) ∩BT and Ṽd(Z) ∩BT into the finitely many 
orbits, it is enough to count points in each orbit separately. For this we need to estimate 
terms of the form

#{γ ∈ Γ : ‖(0, n, 0)τγ‖∗ ≤ T}

with τ = τj or τ = τ̃j as above and the lattice Γ = Γ1 or Γ = Γ2 respectively. We 
now show that these counting functions are given in terms of the cone counting function 
defined in (5.2).

Lemma 6.5. For any lattice Γ and τ ∈ G we have

#{γ ∈ Γ : ‖(0, n, 0)τγ‖∗ ≤ T} = N τ−1

CTn
(Γ)

with Tn =
√

T 2

2n2 − 1
2 .

Proof. Write τγ = aynxk so that τγi = yx + iy. Since (0, n, 0)ay = (0, n, 0) and our 
norm is K-invariant we can explicitly compute

‖(0, n, 0)τγ‖2 = n2(1 + 2x2),

so that indeed ‖(0, n, 0)τγ‖∗ ≤ T if and only if |x| ≤ Tn which is equivalent to τγ.i ∈
CTn

. �
6.2. Square discriminants

Our goal here is to prove Theorem 1.9 by estimating

#Vd(Z) ∩BT =
n−1∑
j=0

#{γ ∈ Γ1 : ‖(0, n, 0)τjγ‖∗ ≤ T}

=
n−1∑
j=0

N τ−1
j

CTn
(Γ1).

Note that Γτ−1
j

1 has a cusp at ∞ of width 1 and Γτ−1
j σ

1 has a cusp at ∞ of width 
ωj = n2

(n,j)2 . Hence, from Theorem 5.3 we get that

N τ−1
j

CTn
(Γ1) = 2Tn

vΓ1

(
2 log(Tn) + log( n2

(n, j)2 ) + 2vΓ1KΓ1(i) + O(n
2β1η

T η
n

)
)
,

with β1 = β − 1
2 > 1 + 2θ. Recalling the assumption T ≥ dβ = n2β in the statement of 

Theorem 1.9, we have that Tn � 1 and we can estimate Tn = T√ + O( n ), and
2n T
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log(Tn) = log(T ) − 1
2 log(2) − log(n) + O( n

2

T 2 ),

so that

N τ−1
j

CTn
(Γ1) =

√
2T

nvΓ1

(
2 log(T ) − log(2) − 2 log((n, j)) + 2vΓ1KΓ1(i) + O(n

(2β1+1)η

Tη )
)
.

Summing over all orbits we get that

#Vd(Z) ∩BT =
√

72T
π

⎛⎝log(T ) − 1
2 log(2) + π

3KΓ1(i) −
1
n

n∑
j=1

log(n, j) + O(n
2βη

Tη )

⎞⎠ .

Plugging in the value of KΓ1(i) from (A.10) and noting that

n−1∑
j=1

log(n, j) =
∑
a|n

φ(na ) log(a),

concludes the proof of (1.10).

6.3. Sum of squares

Next we prove Theorem 1.5 by estimating Nd(T ) = Ṽd(Z) ∩ BT . Again, split the 
integral points into the finitely many Γ2 orbit and count in each orbit. We thus need to 

estimate N τ−1
j

CTn
(Γ2) and N τ̃−1

j

CTn
(Γ2).

Let aj = τ−1
j ∞, bj = τ−1

j 0 and let ωj , ω′
j denote the width of the cusps at ∞ of Γτ−1

j

2

and Γτ−1
j σ

2 , appearing in the formula for N τ−1
j

CTn
(Γ2). Similarly let ãj = τ̃−1

j ∞, ̃bj = τ̃−1
j 0

and let ω̃j , ̃ω′
j the corresponding cusp widths.

Recall that Γ2 has only two inequivalent cusps, one at ∞ and another at 1. After 
verifying which pair of cusps we get for each orbit, we show that the contribution of the 
Kronecker terms to the counting function is as follows.

Lemma 6.6. With the above notation we have

2n−1∑
j=0

(KΓ2,aj
(i) + KΓ2,bj

(i) + KΓ2,ãj
(i) + KΓ2,b̃j

(i)) = 4n(KΓ2,∞(i) + KΓ2,1(i)).

Proof. Since τ−1
j ∞ = ∞ and τ̃−1

j ∞ = −1 (which is Γ2 equivalent to the cusp at 1) 
we see that aj = ∞ and ãj = 1. Next τ−1

j 0 = j
n is Γ1-equivalent to the cusp at 

infinity by the action of some γ =
(

a b

c d

)
∈ Γ1 such that j

n = γ∞ = a
b , that is, 

with a = j and b = n . Such an element γ lies in Γ2 iff nj
2 is even, so that 
(n,j) (n,j) (n,j)
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bj =
{

∞ nj
(n,j)2 = 0 (mod 2)

1 nj
(n,j)2 = 1 (mod 2)

. Similarly, τ̃−1
j 0 = −j

2n+j is Γ1-equivalent to the cusp at 

∞ by γ ∈ Γ1 with a
b = −j

2n+j so that a = −j
(j,2n) and b = 2n+j

(j,2n) . Hence γ can be taken 

from Γ2 iff j(j+2n)
(j,2n)2 is even implying that b̃j =

{
∞ j(j+2n)

(2n,j)2 = 0 (mod 2)
1 (j+2n)j

(2n,j)2 = 1 (mod 2)
. We thus get 

that the term Kj = KΓ2,aj
(i) + KΓ2,bj

(i) + KΓ2,ãj
(i) + KΓ2,b̃j

(i) is given by

Kj =

⎧⎪⎪⎨⎪⎪⎩
3KΓ2,∞(i) + KΓ2,1(i)

nj
(n,j)2 = j(j+2n)

(2n,j)2 = 0 (mod 2)
KΓ2,∞(i) + 3KΓ2,1(i)

nj
(n,j)2 = j(j+2n)

(2n,j)2 = 1 (mod 2)
2KΓ2,∞(i) + 2KΓ2,1(i)

nj
(n,j)2 �= j(j+2n)

(2n,j)2 (mod 2).

Writing n = 2am with m odd we see that the first case happens when j = 0 (mod 2a+1)
(hence for n

2a values of 0 ≤ j < 2n), the second case when j = 0 (mod 2a) but j �= 0
(mod 2a+1) (for another n

2a values of j) and the last case when j �= 0 (mod 2a) (for 
2n(1 − 1

2a ) values of j). Now summing over all 0 ≤ j < 2n we get our result. �
Summing up the contributions from the widths of the cusps, we get

Lemma 6.7. With notation as above, let n = 2νm with m odd. Then

2n−1∑
j=0

log(ωjω
′
jω̃jω̃

′
j) = 8n log(2n) − 2n log(2)

2ν − 8
∑
a|n

φ(na ) log(a).

Proof. Fix 0 ≤ j < 2n. Since τj commutes with N the width of the cusp at ∞ of Γτ−1
j

2

is the same as for Γ2 so ωj = 2. Similarly, τ̃−1
j

(
1 1
0 1

)
τ̃j =

(
2 1
−1 0

)
∈ Γ2 so ω̃j = 1.

Next ω′
j is the smallest integer k such that

τ−1
j σ

(
1 k
0 1

)
σ−1τj =

(
1 + kj

n
j2k
n2

−k 1 − kj
n

)
∈ Γ2,

hence

ω′
j =
{

n2

(n,j)2 ,
jn

(n,j)2 = 1 (mod 2)
2n2

(n,j)2 ,
jn

(n,j)2 = 0 (mod 2).

Similarly, ω̃′
j is the smallest integer k such that

τ̃−1
j σ

(
1 k
0 1

)
στ̃j =

(
1 − kj

2n (1 + j
2n ) − j2k

4n2

−k(1 + j )2 1 − kj (1 + j ).

)
∈ Γ2, (6.8)
2n 2n 2n
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and a similar computation gives that

ω̃′
j =
{ 4n2

(2n,j)2 ,
j

(j,2n) = 1 (mod 2) and 2n
(j,2n) = 0 (mod 2)

8n2

(2n,j)2 , otherwise.

Writing n = 2νm with m odd, it is not hard to see that

ωjω̃jω
′
jω̃

′
j =
{ 8n4

(n,j)4 , j = 0 (mod 2ν)
16n4

(n,j)4 , otherwise,

so that

2n−1∑
j=0

log(ωjω
′
jω̃jω̃

′
j) =

2n−1∑
j=0

log( 8n4

(n, j)4 ) + 2n log(2)(1 − 1
2ν )

= 2n log(8n4) − 8
n−1∑
j=0

log((n, j)) + 2n log(2) − 2n log(2)
2ν

= 8n log(2n) − 2n log(2)
2ν − 8

∑
a|n

φ(na ) log(a),

as claimed. �
Proof of Theorem 1.5. Partitioning Ṽd(Z) ∩BT into Γ2 orbits and summing in each orbit 
gives

Nd(T ) =
2n−1∑
j=0

N τ−1
j

CTn
(Γ2) + N τ̃−1

j

CTn
(Γ2).

Using Theorem 5.3 and the estimates Tn = T√
2n + O( n

T ) and |ωjω
′
j | ≤ 4n2 we estimate 

each of the cone counting functions

N τ−1
j

CTn
(Γ2) =

√
2T
πn

(
log(T

2ωjω
′
j

2n2 ) − 2 + π(KΓ2,aj
(i) + KΓ2,bj

(i)) + O(n
(2β1+1)η

Tη )
)
,

with β1 = β − 1
2 as before, and similarly for N τ̃−1

j

CTn
(Γ2). Summing over 0 ≤ j < 2n, by 

Lemma 6.6 the contribution of the Kronecker terms is 
√

32T (KΓ2,∞(i) + KΓ2,1(i)) and 
by Lemma 6.7 the contribution of the terms log(ωjω

′
jω̃jω̃

′
j) is

2n−1∑
j=0

log(ωjω
′
jω̃jω̃

′
j) = 8n log(2n) − 2n log(2)

2ν − 8
∑
a|n

φ(na ) log(a),

so that
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Nd(T ) =
√

32T
π

(
2 log(T ) − 2 + log(2) + π(KΓ2,∞(i) + KΓ2,1(i))

− log(2)
2ν+1 − 2

n

∑
a|n

φ(na ) log(a) + Oη(n
2β

Tη )
)
.

We now want to express the Kronecker terms in terms of special values of Dedekind 
eta function. To do this, note that Γ2 = Γ0(2)τ with τ =

(
1 0
1 1

)
and hence EΓ2,a(z, s) =

EΓ0(2),τa(τz, s) and also KΓ2,a(z) = KΓ0(2),τa(z, s). In particular

KΓ2,∞(i) + KΓ2,1(i) = KΓ0(2),0( i+1
2 ) + KΓ0(2),∞( i+1

2 ).

Using Proposition A.11 for Γ = Γ0(2) we have

KΓ,∞(z) = 1
π

(
2γ − 2ζ

′

ζ
(2) − log

(
4y|η(2z)|8
|η(z)|4

)
− 8 log(2)

3

)
,

and

KΓ,0(z) = 1
π

(
2γ − 2ζ

′

ζ
(2) − log

(
4y|η(z)|8
|η(2z)|4

)
+ log(2)

3

)
.

Hence

π(KΓ,0( i+1
2 ) + KΓ,∞( i+1

2 )) = 4γ − 4ζ
′

ζ
(2) − 13 log(2)

3 − 2 log(|η(i + 1)η( i+1
2 )|2).

Using the transformation law for the Dedekind eta function

|η(z + 1)|2 = |η(z)|2, |η(−1
z )|2 = |z||η(z)|2,

we have that |η(i + 1)η( i+1
2 )|2 =

√
2|η(i)|4 =

√
2Γ(1/4)4

16π3 so that

π(KΓ,0( i+1
2 ) + KΓ,∞( i+1

2 )) = 4γ − 4ζ
′

ζ
(2) − 13 log(2)

3 − 2 log(2) − 2 log(Γ(1/4)4

16π3 ),

and plugging this back in we get that

Nd(T ) =
√

128T
π

(
log(T ) + C − 1

n

∑
a|n

φ(na ) log(a) + log(2)(1
3 − 1

2ν+2 ) + O(n
2βη

Tη )
)
,

with the constant

C = 2γ − 1 − 2ζ
′

ζ
(2) − 5 log(2)

2 − log(Γ(1/4)4

16π3 ),

as before. This completes the proof. �
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Appendix A. Eisenstein series for Γ0(p)

As for the full modular group, Γ1 = PSL2(Z), the theory of Eisenstein series for the 
congruence groups Γ0(p) is also well understood; in particular, the Fourier coefficients 
can be expressed explicitly and there is an explicit formula for the Kronecker limit. Since 
we could not find a suitable reference for these formulas, we will include short proofs 
here, but we claim no originality.4

We first note that when Γ is a finite index subgroup of Γ1, one can express the 
Eisenstein series for Γ1 in terms of the Eisenstein series corresponding to the different 
cusps of Γ. Explicitly, we have

Lemma A.1. Let σ1, . . . , σk denote a complete set of representatives of Γ1/Γ, and let 
ai = σ−1

j ∞ (these are not necessarily inequivalent cusps for Γ). Then

EΓ1(z, s) =
k∑

j=1
ωs−1
j EΓ,aj

(z, s), (A.2)

where ωj denotes the width of the cusp ai.

Proof. Since N ∩ σjΓσ−1
j ⊆ N ∩ σjΓ1σ

−1
j = N ∩ Γ1 it is generated by nωj

=
(

1 ωj

0 1

)
where the width ωj ∈ N of aj is the index of Γaj

in Γ1 ∩ N . We can thus write for 
Re(s) > 1 and each coset σj∑

γ∈Γaj
\Γ

Im(σjγz)s =
∑

γ∈
〈
nωj

〉
\Γ1

σ−1
j γ∈Γ

Im(γz)s = ωj

∑
γ∈(N∩Γ1)\Γ1

σ−1
j γ∈Γ

Im(γz)s,

and dividing by ωj and summing over all cosets gives

EΓ1(z, s) =
∑

(Γ1∩N)\Γ1

Im(γz)s

=
k∑

j=1
ω−1
j

∑
γ∈Γaj

\Γ
Im(σjγz)s.

On the other hand, since τaj
= σ−1

j aωj
is a scaling matrix for aj we have∑

γ∈Γaj
\Γ

Im(σjγz)s =
∑

γ∈Γaj
\Γ

Im(aωj
τ−1
aj

γz)s = ωs
jEΓ,aj

(z, s),

and the result follows. �
4 Added in print: see [Vas96] where similar calculations are carried out.
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Subtracting the residue and taking the limit as s → 1 we get the following

Corollary A.3. For Γ a finite index subgroup of Γ1 the Kronecker limit satisfies

KΓ1(z) =
k∑

j=1
KΓ,aj

(z) + 3
πk

k∑
j=1

log(ωj).

In particular, applying this to the subgroup Γ = Γ0(p) of Γ1 = PSL2(Z) we get the 
following identities

EΓ1,∞(z, s) = EΓ0(p),∞(z, s) + psEΓ0(p),0(z, s), (A.4)

KΓ1(z) = KΓ0(p),∞(z) + pKΓ0(p),0(z) + 3p log(p)
(p + 1)π . (A.5)

A.1. Fourier coefficients

For each pair of cusps a, b the Fourier expansion of the Eisenstein series EΓ,b with 
respect to the cusp at a, is given by

Eτa
Γ,b(z, s) = δa,by

s + φa,b(s)y1−s +
∑
m�=0

aa,b(s;m, y)e(mx),

and since EΓ,b(z, s) is an eigenfunction with eigenvalue s(1 − s) we can write

aa,b(s;m, y) = φa,b(s;m)2√yKs− 1
2
(2πmy).

For the full modular group Γ1 = PSL2(Z) there is just one cusp at ∞ and the Fourier 
coefficients are given explicitly by φ(s) = ζ∗(2s−1)

ζ∗(2s) and

φ(s,m) =
τs−1/2(m)
ζ∗(2s) , (A.6)

where ζ∗(s) = π−s/2ζ(s)Γ(s/2) is the completed Riemann zeta function and τs(m) =∑
ab=|m|(

a
b )s is the divisor function [Iwa95, page 67].

For the congruence groups Γ0(p) the Fourier coefficients can also be given by a similar 
formula and satisfy a similar bound.

Proposition A.7. For Γ = Γ0(p) we have

φ∞,∞(s;m) = φ0,0(s;m) = 1
p2s − 1

{
−φ(s;m) (p,m) = 1
ps+1/2φ(s; m

p ) − φ(m; s) p|m
,

φ∞,0(s;m) = φ0,∞(s;m) = 1
p2s − 1

{
−psφ(s;m) (p,m) = 1
psφ(s;m) −√

pφ(s; m
p ) p|m

.
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Proof. Since the scaling matrix τ0 normalizes Γ = Γ0(p) we have that Eτ0
Γ,∞(z, s) =

EΓ,0(z, s) implying that φ∞,0(s; m) = φ0,∞(s; m), and since τ2
0 is the identity in PSL2(R)

then Eτ0
Γ,0(z, s) = EΓ,∞(z, s) implying that φ∞,∞(s; m) = φ0,0(s; m).

Now looking at the expansion at infinity of (A.4) we get that

φ(s;m) = φ∞,∞(s;m) + psφ0,∞(s;m),

and the expansion at 0 gives

√
pφ(s; m

p ) = φ∞,0(s;m) + psφ0,0(s;m),

where it is understood that φ(s; mp ) = 0 when (p, m) = 1. We thus get that(
1 ps

ps 1

)(
φ0,0(s;m)
φ0,∞(s;m)

)
=
(

φ(s;m)√
pφ(s; m

p )

)
,

and inverting the matrix concludes the proof. �
A.2. Kronecker limits

The Kronecker limit corresponding to a cusp a is defined as the limit

KΓ,a(z) = lim
s→1

(
EΓ,a(s, z) −

1
vΓ(s− 1)

)
. (A.8)

When Γ1 = PSL2(Z) the Kronecker limit formula expresses KΓ1(z) explicitly in terms 
of the Dedekind η-function (see, e.g., [IK04, (22.42), (22.63)–(22.69)])

KΓ1(z) = 3
π

(
2γ − 2ζ

′

ζ
(2) − log(4y|η(z)|4)

)
, (A.9)

where γ = 0.577 · · · is Euler’s constant, ζ(s) is the Riemann zeta function, and η(z) is 
the Dedekind eta function. In particular, using the special value η(i)4 = Γ(1/4)4

16π3 we see 
that at z = i we have

KΓ1(i) = 3
π

(
2γ − 2ζ

′

ζ
(2) − log(Γ(1/4)4

4π3 )
)
. (A.10)

One can derive a similar formula for the congruence groups Γ = Γ0(p).

Proposition A.11. For Γ = Γ0(p) we have

KΓ,∞(z) = 3
(p + 1)π

(
2γ − 2ζ

′

ζ
(2) − log

(
4y|η(pz)|

4p
p−1

|η(z)|
4

p−1

)
− 2 log(p)p2

(p2 − 1)

)
,

and
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KΓ,0(z) = 3
(p + 1)π

(
2γ − 2ζ

′

ζ
(2) − log

(
4y|η(z)|

4p
p−1

|η(pz)|
4

p−1

)
+ log(p)(p− 1)2

(p2 − 1)

)
.

Proof. Since representatives for Γ∞\Γ are given by matrices 
( ∗ ∗
c d

)
with c ≥ 0 integer 

with c = 0 mod p and d ∈ Z with (c, d) = 1, after multiplying the Eisenstein series by

ζp(2s) =
∑

(n,p)=1

n−2s = ζ(2s)(1 − p−2s),

and expanding we get for Re(s) > 1

ζp(2s)EΓ,∞(z, s) = ζp(2s)ys +
∑

(n,p)=1

1
n2s

∑
(c,d)=1

c=0 mod p

ys

|cz + d|2s

= ζp(2s)ys +
∞∑
c=1

c=0 mod p

∑
(d,p)=1

ys

|cz + d|2s

= ysζp(2s) +
∞∑
c=1

c=0 mod p

∑
d∈Z

ys

|cz + d|2s − 1
p2s

∞∑
c=1

∑
d∈Z

ys

|cz + d|2s .

Using Poisson summation on the inner sum gives

∑
d∈Z

1
|cz + d|2s =

√
πΓ(s− 1

2 )
Γ(s) (cy)1−2s + (cy)1−2s

∑
m�=0

e(−mcx)
∫
R

e(mcyt)
(1 + t2)s dt

and dividing by ζp(2s) we see that

EΓ,∞(z, s) = ys + (p−1)
√
πΓ(s−1

2 )ζ(2s−1)
(p2s−1)Γ(s)ζ(2s) y1−s

+ py1−s

(p2s − 1)ζ(2s)

∞∑
c=1

c1−2s
∑
m�=0

e(−mpcx)
∫
R

e(mpcyt)
(1 + t2)s dt

− y1−s

(p2s − 1)ζ(2s)

∞∑
c=1

c1−2s
∑
m�=0

e(−mcx)
∫
R

e(mcyt)
(1 + t2)s dt.

The only pole comes from the term containing ζ(2s − 1) = 1
2(s−1) + γ + O(s − 1). 

Subtracting the residue Ress=1 EΓ,∞(z, s) = 3
π(p+1) and taking the limit as s → 1 we get 

that

KΓ,∞(z) = y + lim
( (p− 1)

√
πΓ(s− 1

2 )ζ(2s− 1)
2s y1−s − 3

)

s→1 (p − 1)Γ(s)ζ(2s) π(p + 1)(s− 1)
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+ p

(p2 − 1)ζ(2)

∞∑
c=1

1
c

∑
m�=0

e(−mpcx)
∫
R

e(mpcyt)
(1 + t2) dt

− 1
(p2 − 1)ζ(2)

∞∑
c=1

1
c

∑
m�=0

e(−mcx)
∫
R

e(mcyt)
(1 + t2) dt.

We can evaluate the integral ∫
R

e(at)
(1 + t2)dt = πe−2π|a|

to get that

∞∑
c=1

1
c

∑
m�=0

e(−mpcx)
∫
R

e(mpcyt)
(1 + t2) dt = π

∞∑
c=1

1
c
(

∞∑
m=1

e2πimpcz + e−2πimpcz̄)

= π
∞∑

m=1

∞∑
c=1

1
c
(e2πimpcz + e−2πimpcz̄)

= −π
∞∑

m=1
(log(1 − e2πimpz) + log(1 − e−2πimpz̄)).

Recalling that the Dedekind η-function is given by

η(z) = eπiz/12
∞∏

m=1
(1 − e2πimz),

we have that 
∑∞

m=1 log(1 − e2πimz) = log(η(z)) − πiz
12 hence

∞∑
c=1

1
c

∑
m�=0

e(−mpcx)
∫
R

e(mpcyt)
(1 + t2) dt = −π log(|η(pz)|2) − π2py

6 .

Similarly, we also have

∞∑
c=1

1
c

∑
m�=0

e(−mcx)
∫
R

e(mcyt)
(1 + t2) dt = −π log(|η(z)|2) − π2y

6

so that

KΓ,∞(z) = lim
s→1

( (p− 1)
√
πΓ(s− 1

2 )ζ(2s− 1)
(p2s − 1)Γ(s)ζ(2s) y1−s − 3

π(p + 1)(s− 1)

)
+6 log(|η(z)|2|η(pz)|−2p)

2 .

π(p − 1)



D. Kelmer, A. Kontorovich / Journal of Number Theory 208 (2020) 1–46 45
Next, to compute the limit, write ζ(2s − 1) = 1
2(s−1) + γ + O(s − 1) to get that the 

limit above is given by

6γ
(p + 1)π + lim

s→1

(p−1)y1−s√πΓ(s−1
2 )

2(p2s−1)Γ(s)ζ(2s) − 3
π(p+1)

s− 1 = 6γ
(p + 1)π + d

ds

∣∣∣∣
s=1

(
(p−1)y1−s√πΓ(s−1

2 )
2(p2s−1)Γ(s)ζ(2s)

)
.

Finally, evaluate the derivative at s = 1

d

ds

∣∣∣∣
s=1

(
(p−1)y1−s√πΓ(s−1

2 )
2(p2s−1)Γ(s)ζ(2s)

)
= 3

(p + 1)π

(
− log(y) − 2 log(p)p2

(p2 − 1) − 2 log(2) − 2ζ
′

ζ
(2)
)

to get that

KΓ,∞(z) = 3
(p + 1)π

(
2γ − 2ζ

′

ζ
(2) − log(4y|η(pz)|

4p
p−1

|η(z)| 4
p−1

) − 2 log(p)p2

(p2 − 1)

)
.

The formula for the cusp at 0 now follows from (A.5) and (A.9). �
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