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1. Introduction
1.1. FEquidistribution

Let I' < G := PSLa(R) be a non-uniform lattice, and let
xo € THI\H) = T'\G

be a base point in the unit tangent bundle of the punctured surface T'\H, so that the
visual limit point

a= lim xq - a
t—o0

is a cusp of I'. Here a; = diag(e?/?,e7/?) is the geodesic flow; let A = {a;,t > 0}. As
in [KK18], we define a shear of the cuspidal geodesic ray xo - A" to be its left-translate
by

(T2_|_1)—1/4 T(T2—|—1)_1/4
ST =
' 0 (T% +1)1/*

Note that s arises naturally as sy = a1 log(T241) " IVT5 where n, = ((1) T) For example,
identifying G/K with H under g — g ¢ (here K = SO(2) is a maximal compact
subgroup) and taking xo = e, the identity element of G, we have for a right- K-invariant
test function ¥ € C.(I'\G)¥ that its evaluation along such a shear is given by

T d
/ U(xo-a-s7)da = / \Il(Ty—l—iy)?y.
acAt 1/V/T2+1

In [KK18], the authors proved the effective equidistribution of shears (as T — 00) using
“soft” ergodic methods (e.g. mixing) and basic properties of Eisenstein series.” The goal
of this paper is to use more of the spectral theory of automorphic forms to produce
explicit exponents in this problem. For ease of exposition, and to write the best expo-
nents that come from our method, we restrict below to I' conjugate to the congruence

group

3 See also [OS14], where an asymptotic formula is obtained by different means, with an error term weaker
than power savings.
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To(p) = {(Z Z) € PSLy(Z) : ¢ = 0(modp)},

with p a prime number. A special case of Theorem 4.1 below gives the following
bound.

Theorem 1.1. Assume the Ramanujan conjecture for the exponent bounding the Fourier
coefficients of Maass forms on T' (see §3). Then for any ¥ € C(T\G)X, any T > 2,
and any € > 0, there are constants C; = C;(¥), j = 1,2, so that

/ U(xg-a-s7)da =CrlogT + Co + O\P,E(T_l/4+€).

a€At

Remark 1.2. We take the opportunity here to correct an error in the analysis in [KK1§],
which has no effect on the qualitative power gain, but does affect the exponents as
explicitly quantified here. In particular, [KK18, Remark 1.7] is incorrect as stated, and
we do not know how to obtain square-root cancellation by this approach. See Remark 4.5
for the error and how to correct it.

1.2. Counting

As is standard, such equidistribution results can be applied to counting problems
in discrete orbits. In particular, see [KK18, §1.3.1] where we explain that proving the
effective equidistribution of shears settles the remaining lacunary cases of the Duke-
Rudnick-Sarnak /Eskin-McMullen program [DRS93,EM93,Mar04] of effectively counting
discrete orbits on quadrics in archimedean balls. In smooth form, one can produce from
Theorem 1.1 above some rather sharp error exponents, as we now illustrate.

Let F be a real ternary indefinite quadratic form, let G = SO%(R) be the connected
component of the real special orthogonal group preserving F', and assume that I' < G is
the image of T'g(p) under a spin morphism PSLy(R) — SO%(R) (see §6.1). Let ¢ : G —
R>¢ be a smooth bump function about a sufficiently small bi- K-invariant neighborhood
of the identity in G (that is, a region of the form (2.3)), with [, ¥dg = 1. Fix vo € R?
so that the orbit

OZ:VO'F - RS

is discrete, the stabilizer of vg in G is a split torus, H, say, and I' N H is finite. Fix a
right- K-invariant archimedean norm ||-|| on H\G = v¢-G. This data induces a smoothed
indicator function of a norm-7" ball on v € v - G via convolution with :

Ir(v) = / 1 vg <11 (9)dg. (1.3)

geG

In §5 (see Proposition 5.12), we prove the following
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Theorem 1.4. Again assume the Ramanujan conjecture for Maass forms on I'. Then for
any € > 0, there are constants C; = C;(¢), j = 1,2, so that

~ 3
> hr(v) = C1TlogT + CoT + Oy (Tﬁf) .
veO

Unconditionally, the error exponent 5 3 4 € can be replaced by iigg + €, where § = 7/64

is the best currently known bound towards the Ramanujan Conjecture (which stipulates
that 8 = 0 holds).

1.3. Explicit constants

In certain settings of classical interest, one can go a step further and explicitly identify
the constants C; appearing in the main terms above. To showcase this fact, we count
integer points on the inhomogeneous Pythagorean quadric:

Wy @ 22 +y? —22=d,

when d is a perfect square (which corresponds to I' N H finite as above). After un-
smoothing the count in Theorem 1.4 to make the constants independent of the smoothing
function v, we obtain the following.

Theorem 1.5. Let d = n? be a square, with n € Z~q. Define the counting function
Ny(T) = #Wa(Z)N{2® +y° + 22 < T?}.

Again let 9 = 7/64 be the bound towards the Ramanujan Conjecture (that 6 = 0). For
any n < 40+729, 8> = + 20, and T > dP, we have that

Nu(T) = My(T)+ O (T "dP), (1.6)
where the “main term” is given by

My(T) = \/172r_8T

(102(7) + € = Dl + tox(2)(4 — ) ).
Here v = vy(n) is the 2-adic valuation of n, the constant C is given by:

CI lo r
C=27-1-25() - log@) _ g g(‘ a/9l" ) = 0.616174...,
where v = 0.577... is Euler’s constant, ((s) is the Riemann zeta function, T'(s) is the
Gamma function, and ¢ is the Euler totient function, and the factor D(n) is the Dirichlet
coefficient of (¢*-(¢')(s — 1), that is,
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Fig. 1. Plots for d = 122 = 144 and T < 10, 000. (For interpretation of the colors in the figure(s), the reader
is referred to the web version of this article.)

D) = = 3" o(2) los(a).

aln

To illustrate the validity of this complicated formula, we verify it numerically with
plots of Ny(T), M4(T), and their difference, for d = 144; see Fig. 1. For T as large
as 10,000, the counting function reaches around 350, 000, while the difference Ny(T) —
M4(T) remains of size around 400 =< VT, suggesting perhaps that (1.6) may remain
valid with any n < 1/2 and 8 = 1/2.

Remark 1.7. Our results are meaningful as long as 7' > d®/?t20+¢_In particular, assum-
ing Ramanujan we can take 7 to be almost as small as d3/2. When T < v/d we trivially
have Ny(T) = 0 and it is an interesting problem to obtain meaningful asymptotics also
for the range vVd < T < d°/2. (In the rather different setting of d being a fundamen-
tal discriminant, Friedlander-Iwaniec [F113], using different tools showed an asymptotic
formula which is effective for T almost as small as v/d.)

Along the way to proving Theorem 1.5, we need to establish the following result,
counting the number of binary quadratic forms of a fixed square discriminant d with
coefficients in a norm ball. As it is possibly of independent interest, we record it here.
Let

Q(a,b, c) = b* — dac,
and
No.a(T) = {(a,b,c) € Z* : Q(a,b,c) = d, 2a* + b* + 2¢* < T?}. (1.8)
Theorem 1.9. With all notation and assumptions as in Theorem 1.5, we have
72T dn?
Noa(r) = Y2 (1 ).

0g(T) +C ~ D(n) + O (1.10)
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As discussed in [KK18, Remark 1.10], there are many other methods for counting
such expressions. For example, Hulse et al. [HKKL16] used a Multiple Dirichlet Series
technique to count binary forms with a fixed discriminant. In smooth form and counting
in a slightly different region, they obtain a version of (1.10) with square-root error in the
T aspect, but with no visible uniformity in d. It is also not clear how easy it would be
to convert their constants into the completely numerically explicit values as in (1.10).

1.4. Notation

Throughout this paper we denote by G = PSLy(R) and T' a non-uniform lattice in
G. For ease of exposition (and for our applications), we assume that T" is conjugate to
To(p); minor modifications are needed to handle a more general setting. We will use the
notation A(t) < B(t) to mean that there is some constant ¢ > 0 such that A(t) < c¢B(t),
and we will use subscripts to indicate the dependance of the constant on parameters. For
B(t) > 0 the notation A(t) = O(B(t)) means that |A(t)| < B(t). We write A(t) < B(t)
for A(t) < B(t) < A(t).

1.5. Organization

The preliminary §2 reviews spectral decompositions, Eisenstein series, and Sobolev
norms. Then in §3, we improve on our analysis in [KK18], giving stronger estimates
for Fourier expansions at various cusps in terms of approximations to the Ramanujan
Conjectures. We use these, together with some slight improvements on the method in
[KK18], to prove in §4 the sharp equidistribution of shears claimed in Theorem 1.1. The
counting Theorem 1.4 is derived from this in §5, and then used in §6 to prove the explicit
counting Theorems 1.5 and 1.9. Calculations of Fourier expansions for Eisenstein series
on I'g(p) are reserved for the Appendix.

Acknowledgments

We thank Zeev Rudnick for comments on an earlier draft, and the referee for an
extremely thorough and thoughtful report.

2. Preliminaries
2.1. Coordinates

Let K, A, N < G denote the orthogonal group, the diagonal group, and the unipotent
group respectively. Explicitly let

o cos @ sin @ _ y1/2 0 _ (1=
ka_(fsinecose)’ay_< 0o y 2/}’ and n, = 01)”’
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parametrize elements in K, A and N respectively. The decomposition G = NAK gives
coordinates g = nya,k¢ on G, and the Haar measure in these coordinates is

do — dxdydf

PrT (2.1)

The group G acts on the upper half space H = {z = z + iy € C : y > 0} by linear

fractional transformations, explicitly, for g = (‘Z Z), gz = ‘;jidb preserving the hyperbolic

area du = %.
For any lattice T' we identify the quotient T'\H with I'\G/K (in particular, we will
think of functions on T'\H as right K-invariant functions on I'\G). Our normalization

(2.1) is such that the Haar measure of I'\G is equal to the hyperbolic area vr = p(T'\H).

Remark 2.2. For I'y = PSLy(Z) we recall that vr, = 3.

2.2. Sobolev norms

Fix a basis Z = {X1, X2, X3} for the Lie algebra g of G, and given a smooth test
function ¥ € C*°(I'\G), define the “L?, order-d” Sobolev norm S, 4(¥) as

Spa(®) = > N29r\6)-
ord(2)<d

Here 2 ranges over monomials in & of order at most d. Note that since the right action
of # commutes with the left action of G, all norms are invariant in the sense that
Sp,d(U7) = Sp,a(¥) where U7 (z) = ¥U(rz).

We will work with various norms that are convex combinations of these Sobolev norms
and it will be convenient to classify these norms with respect to how large they become
on functions approximating a small bump function. For small 0 < § < 1 let

Bs = KAsK (2.3)
denote a (spherical) d-neighborhood of the identity, where
As ={ay : |log(y)| < 6}

Definition 2.4. Fix a family of smooth functions ¢s5 on K\G/K, supported on Bj, with
average

/ o(g)dg = 1,
G

and denote the corresponding periodized function by
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Us(g) =Y vs(v9)-

yel’

We say that a norm § is of degree « if these periodized functions have norms growing
like S(¥s) =< 6—*. We will slightly abuse notation and sometimes denote by S, a norm
of degree «, without specifying the norm explicitly.

Note for future reference that the Sobolev norm &, 4 is of degree d+2—%, in particular,
the L? norm has degree 1, while the L> norm has degree 2. Note that if S, and Sg
are of degrees o and 3 respectively, tlrien the convex combination SgSé_q is of degree
ga+(1—q)B. Moreover, if & < 3 then Sg = max{S,, Sg} is also of degree 3, hence, after
perhaps replacing Sg with 5’5 we may assume without loss of generality that S, < Sp
whenever a < .

2.5. Fisenstein series

For any cusp a of I" let 'y denote the stabilizer of a in I and 7, € G be a corresponding
scaling matrix such that 7,00 = a and

T T NN = {ny : k € Z}.

In particular, for the congruence groups I'g(p) there are two cusps, one at co of width 1
(that is, the stabilizer of oo is generated by ((1) i)), and the other at 0 of width p with

. . 0 1/\p
scaling matrix 79 = (—\/ﬁ 0 ) = kr/2 - ap.
The Eisenstein series corresponding to a cusp a is defined for fRe(s) > 1 by

Era(z,s) = Z (Im(7; 1y2))* (2.5)

YEL N\

and has a meromorphic continuation to C with a simple pole at s = 1 with residue %
and (since I is congruence) no other poles in Re(s) > 1.

One can regularize the Eisenstein series by subtracting the pole at s = 1, and we
define the corresponding Kronecker limit by

Kr.o(z) = lim (Ep,a(s,z) - ﬁ) - (2.6)

2.4. Spectral decomposition

The hyperbolic Laplace operator A acts (after unique extension) on the space L?(I'\H)
of square-integrable automorphic functions, and is self-adjoint and positive semi-definite.
The spectrum of A is composed of the constant functions, the continuous part (spanned
by Eisenstein series), and discrete part (spanned, in the congruence case, by Maass cusp
forms).
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We denote by E(I'\H) the space spanned by the Eisenstein series and by C(I'\H) its
orthogonal complement which is the space of cusp forms. For I' = T'g(p) the space of
cusp forms further decomposes into the space of old forms Co1q(T"\H) spanned by the set
{p(2),p(pz) : p € C(T1\H)}, and its orthogonal complement Cpeyw (I'\H).

For congruence I', the space of cusp forms has an orthonormal basis composed of
Hecke-Maass forms, that are joint eigenfunctions of the Laplacian and all Hecke op-
erators. We have the following spectral decomposition (see [Iwa95, Theorems 4.7 and
7.3]).

Proposition 2.7. For ¥ € L*(I'\H),

U(z) = pr(®) + D (T, 0x) or(2) (2:8)
k
+Z4W/ (¥, Erqf, +z7’)>Epa(z L +ir)dr,

where up(¥) = fF\]HI z)du(z), and the first sum is over an orthonormal basis of

Maass cusp forms with eigenvalues Ay = 1 + r} with r), € i(0, 1) U [0, 00).

The equality is in L?(I'\H) and pointwise for ¥ € C2°(T'\H). As a direct consequence,
we have the following

Corollary 2.9. For U € C*(I'\H),

1)1 = |ur (¥ |2+Z\ » k)

i i N S, 2
;477 / | (U, Erq(-, 5 +ir))|*dr.

3. Fourier coefficients

In this section, we derive general bounds for Fourier coeflicients of test functions at
various cusps. In principle, most of the steps are standard, but we did not find a reference
in the literature which carries out each of the necessary calculations, so we give details
for the reader’s benefit. Another reason for restricting to I' conjugate to I'g(p) is that the
general theory of Fourier coefficients at arbitrary cusps becomes extremely cumbersome
(see, e.g., [GHL15, Theorem 49]).

First we specify what we mean by the “Ramanujan conjectures.” Let ¢ be a Hecke-
Maass cusp newform for T'g(p), with Laplace Eigenvalue i + 72 For m # 0, its mth
Fourier coefficient (at the cusp a = co) satisfies
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1
Ay 00 (M, Y) /ap z + iy)e(—ma)dr = ay o0 (m)/yKir (2m|m|y),
0

with K,(y) the Bessel function of the second kind. The coefficient further decomposes
as

o () = .0 (DA(m),
where A\(m) is the corresponding Hecke eigenvalue. Let 6 € [0,1/2] be a number so that
IA(m)| <, |m|fFe. (3.1)
In particular,
0=7/64
is known [KS03], while the Ramanujan conjecture predicts that § = 0 holds.

Remark 3.2. Selberg’s eigenvalue conjecture is the Ramanujan conjecture “at infinity,”
and asserts that for the congruence groups I'o(p) there are no Maass cusp forms with
eigenvalue A < 1/4. While the conjecture is known for PSLy(Z) and some small values of
p, for general congruence groups we currently only know that a hypothetical exceptional
Maass form with eigenvalue A = 1/4+r2, r € i(0, 1), has r € i(0,6], 6 = 7/64.

Now, let a be a cusp of a lattice I', and let 7, denote the corresponding scaling matrix.
Then for any test function ¥ € C°(I'\H), the translated function U7 (z) := U(742) is
periodic in & with period one and hence has a Fourier expansion

\I]Tﬂ Z av.a m y) 2mima (33)
meZ

In [KK18, Prop. 2.2], we proved that there are constants 0 < ¢r < oo and 0 < nr < 1
and some norm S (a convex combination of Sobolev norms) such that these coefficients
satisfy

|aw.q(m, y)| <r S(T)[m|eTym

uniformly for all 0 # m € Z and y > 0. The argument there was quite soft (using mixing)
and applied to any lattice. Now we specialize to I' conjugate to T'g(p) to improve the
exponents cr and nr above, as well as to have better control on the degree of the Sobolev
norm §. Our main result is the following.
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Proposition 3.4. Let I' be conjugate to T'o(p). For any ¥ € C°(I'\H) and any cusp a of
T', we have that

3/4 1/4
aw,a(0,y) = ur(¥) + O [ A [y '), (3:5)
Moreover, for any m # 0, any € > 0 and any
oy > 5/3,

we have

lfe 0
avalmy) = 3 <w,¢k>a¢k,a<m,y>+oao,e,p(saowwz |m|), (3.6)

re€i(0,3)

where So, s a norm of degree ag. Moreover, for each of the exceptional forms
= 0— 1/2— —2
a@kyﬂ(mvy) Oe(\m\ |Tk‘+€y / ‘Tk|e W\m|y)

In order to prove Proposition 3.4 we consider the spectral decomposition of ¥ into
Maass forms and Eisenstein series and bound the Fourier coefficients of each. Explicitly,
for the cusp forms we show the following.

Lemma 3.7. Let @i be a Hecke-Maass cusp form on To(p) with eigenvalue % +7%. Then
for any cusp a, any m # 0, and any € > 0, we have for riy >0

| a(m,y)] Kep (ri + 1) 73y 2= |m)? (3.8)
while for r, = ioy, with oy, € (0,1/2)
|Gy (m, )| K [m|0 st eyl /2mongm2mimly, (3.9)

Proof. When ¢ is an eigenfunction of the Laplacian with eigenvalue s(1 — s) we have
that a,,q(0,y) is a linear combination of y* and y'~* and for m # 0 it takes the form

ap,a(m,y) = ag,a(M)V/yKs1/2(2m[mly), (3.10)

with K(y) the Bessel function of the second kind.

We first consider the case when ¢y is a new form. Recall that I'¢(p) has two in-
equivalent cusps, one at co and one at 0. First assume that a is equivalent to co. Com-
bining (3.1) with Hoffstein-Lockhart’s [HL94, Corollary 0.3] stating that ag, o(1) <pe
(r? +1/4)%e™ /2 we obtain the bound

|00 ()] e (Jmlre)“[m|’e™ /2 (3.11)
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for i, > 0 and |ag, oo(m)| = O(|m|*€) for rj € i(0,1/2). Now for r;, > 0 we use the
bound [Str04, eq. 4.15] for the Bessel function,

|Kir ()] <c €™ /2(r 4+ 1)7 Y3 ¢y~ min{1, e™/?27}, (3.12)

to see that (3.8) holds in this case. While for r, = ioy, we use the bound K,(y) <
y~7le=¥ (which follows directly from the formula K, (y) = [~ e¥ ") cosh(ot)dt) to
get (3.9).

Next, for the cusp at 0 we note that the scaling matrix 7y = ( 0 b

with the Hecke operators T'(n) with (n,p) = 1 and satisfies 7, 'To(p)70 = To(p) (see

) commutes

[Asa76]). Hence ;" is also Hecke eigenfunction with the same eigenvalues, and from
multiplicity one for new forms we get that ¢;° = cyj with some scalar ¢ of modulus 1.
Hence, in absolute value, |a,, oo (m)| = |ay, 0(m)| so we have the same bounds also for
the cusp at 0.

Finally, the bound for old forms follows directly from the bound for new forms of
I'y = PSLs(Z). Explicitly, let ¢ be a Hecke-Maass form for I'y with Fourier coefficients
a,(m,y). From this form we get two companion forms ¢1(z) = ¢(2) and 2(2) = p(pz)
invariant under I'g(p). For the cusp at infinity ¢; = ¢ has the same Fourier expansion
at infinity as ¢. For the second form

wa(z) = p(pz) = Zaw(m7py)62ﬂimpm — Z aw(%’py)e%rimz?
m m=0(p)

hence ay, o0(m,y) = ax(m/p,py) if p|m and is zero otherwise. The cusp at zero has
scaling matrix 79 = k2 - ap. Write 0 = k5 so that 79 = oa,. Since 7 = ¢ we get that
1
Qpy,0 = Oy, ,00- Thus the same bound holds also for the cusp at zero. O

= 7% = % = o, whence ay, 0 = Gp,,00. Similarly p3° = 7% = ¢7 = ¢ and

Next, we need to bound the Fourier coefficients of Eisenstein series. For each pair of
cusps a,b of I' the Fourier expansion of the Eisenstein series Er , with respect to the
cusp at a, is given by

Bl (2,5) = Sa,py” + Gap(8)y' "+ D> aqp(sim, y)e(ma).
m##0

Lemma 3.13. For I conjugate to To(p) and any two cusps a,b, we have for r € R that
a0 (5 +ir;m,y)| < y' /27 (14 [r) 71/ (3.14)

Proof. Since Er 4(z, s) is an eigenfunction with eigenvalue s(1 — s) we can write

Aa,b (85, Y) = Pa,p(s:m)2\/yK,_1(2m|mly).
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For the full modular group I'y = PSLy(Z) there is just one cusp at co and the Fourier

coefficients are given explicitly by ¢(s) = cz(fé;)l) and

Tsfl/2<m)

A = o)

(3.15)
where (*(s) = 7%/2¢(s)['(s/2) is the completed Riemann zeta function and 7,(m) =
Zab:\m|(%)s is the divisor function [Iwa95, page 67]. In particular, using the Stirling
approximation for the I'-function

ID(L +ir)| =< e mI"/2]

the bound (3.12) for the Bessel function, together with the standard bounds m <
|r|¢ and |7 (m)| < 79(m) < |m|¢, gives (3.14) in this case. For the congruence groups
To(p) the coefficients ¢q5(s;m) are given by a similar explicit formula (see Proposi-
tion A.7 below), resulting in the same bound. O

Combining the above bounds for Fourier coefficients of Maass forms and Eisenstein
series we can use the spectral decomposition to bound the Fourier coefficients of any
smooth function as follows.

Proof of Proposition 3.4. First, noting that ¥ € C°(Ig(p)\H) iff ¥7 € C*(I'\H) and
the Fourier coefficients satisfy |ay o(m,y)| = |aw~ p(m,y)| with b = 771a, we may assume
that T' = T'o(p).

Let T' = Tg(p) and ¥ € C°(T'\H). Using the spectral expansion we can write (for
any cusp b) and m # 0

avs(my) = Y (W or)ap, omy)+ > (¥, or)ap,s(m,y)
r,€i(0,0) T >0

1 . .
43 o [0 Bl b+ inans(h + irimy)dr
a
R

To bound the contribution of the second sum fix a large parameter M (to be deter-
mined later). Applying the bound (3.8) to the Fourier coefficients we get

Z <\I’, ka>a’§0k>b(m7 y)

re >0

v
<<6y1/2_5ma( ]

o<oren (e 1)1/3=e
A\Ilv(pk
re>M

Using Cauchy-Schwarz, followed by summation by parts (using Weyl’s law stating that
#{rr < M} < M?) we can bound the first sum by
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1z, [ 37 (s 1)=23+ < M3, (W),
0<r <M

HA\IIHZ | Z rk—14/3+€ < M74/3+68272(\Ij)'
re>M

Choosing M = 8_1/281/2 we get that

and the second by

| 2 (T prago(m )l e y'?~|ml’ S5, (V).
re>0
where the norm Ss /34 (V) = Sa,0(V)¥/37¢/28, (V) 1/3+¢/2 is of degree 5/3 + €.
Next for the Eisenstein integrals for each pair of cusps a,b fix a large parameter M
and use (3.14) to bound

1, 1y . 1/2—¢ |<\D,E(-,%+ir))|
/<\II7E(7 2 + ZT)>(107[~,(§ + zr,m,y)dr < Yy / ( / (1 + ,r)l/3—€

R Irl<M
AV E( 2+
/ (o, <,2+zr>>|>dr_
r7/3—¢
|r|>M

As before we can use Cauchy-Schwarz to bound the first integral by O.(Sa o(¥)M?/6+¢)
and the second by O.(Sz 2(¥)M~11/6%¢) 50 taking M = Sa0 1/281/2 the whole integral is
bounded by

\/(‘I’,E(n 5+ ir)ar(m,y)dr] <yt S04 (D),
R

where
87/6-1-5(\1/) — 8270(\11)11/1276/28217/212+6/27

is of degree 7/6 + €.
Collecting the contributions of cusp forms and Eisenstein series of all cusps we get
that

awp(my) = Y <‘I’,sok>a¢k,b(m,y)+0( 1/2=e <|m|f’$gJr (\I')+8%+6(\I/))>.

7 €1(0,0)

Taking e sufficiently small so that g—i—e = ay, and noting that the second term is bounded
by the first concludes the proof of (3.6).
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For the trivial (m = 0) coefficient, again using the spectral expansion, the only con-
tribution comes from the constant function (giving the main term) and the Eisenstein
integrals. We thus need to bound for each pair of cusps

/ <‘Il7 EF,O('; % + ZT)> (y1/2+i7’ + (ba,b(% + ir)yl/Q_iT)dT
R

< yl/2 / \ <\IJ,E1~7,1(~7 % + zr)> |dr.
R

Fix a large parameter M and separate the integral to
/|<W,Er,a(.,%+i7«)>|dy«: / (0, Br o, L+ i) |dr
R |r|<M

+ / | (¥, Er.a(-, 3 +ir)) |dr.

|r|>M

Using Cauchy-Schwarz, we can bound the first integral by

/ | <\I/7EF,u('7 % + M“)> |dr < va2M / | <\I/7EF,u<'7 % + ’N‘)> |2dr

|r|<M R

< VMY,
and

, [ (AT, Era( g5 +ir)) |
/ | <\Ija EF,CL(') % + ZT)> |d’l" = / 1/4 + :2 dr

|r|>M |r|>M

< || AT M3,

We thus get that
/| (U, B, 3 +ir)) [dr < VM| W]y + M7 AT,
R

and the optimal choice of M = % gives the desired bound. O
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3.1. Additional estimates

We end this section with several estimates which follow from our bounds on Fourier
coefficients. First, as consequence of the estimate for aw (0, y) we get the following useful
estimate that we record here for future use.

Corollary 3.16. Let I" be conjugate to T'o(p). For any cusp a with scaling matriz 74, for
any € CX(I'\H) we have the bound

1/2

1
/ e (e i) P | < Si() + Sa(w)y, (3.17)
0

with 81 and S are suitable norms of degree 1 and 2 respectively.

Remark 3.18. When y is small and ¢ approximates a bump function this is an improve-
ment over the trivial bound of Sy 0(¢) which is a norm of degree 2.

Proof. Using (3.5) with the test function ¥(z) = [1)7=(2)|?, we get that

1
[ 1o+ i) Pz = u(w) + O 2 ),
0

For ¥ = [¢)™=|? we have
W) = [S2,0(¥)%, [T]l2 = [Sao(¥)]?, and [|AT[|y < [Sya(3)[>,
Define the norms Sy (¥) = S2,0(1) and
Sa() 1= Su0()*/4Su (1)1,

Clearly Sy is of degree 1 and Ss is of degree 2. Finally taking a square root gives the
result. O

Combining Corollary 3.16 and Proposition 3.4 we obtain another estimate that we
will need.

Proposition 3.19. Let T' be conjugate to To(p) and ¥ € CX(I'\H) orthogonal to the

exceptional spectrum. Then for any oy > gi—gg and m < ﬁ,
ay q\M,
S el o S (@ + S (W (3.20)

= Iml
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with Sa, ; Sa,+1 norms of degrees ay and a;+1 respectively. Similarly, for any exceptional
cusp form . with eigenvalue i +7i < i for any e >0

Z |a’<Pk7 <<e y1/2—0—€’ (321)
m7#0

where the implied constant may depend on @y.

Proof. Replacing ¥ with U7 we may assume that a = co and I' has cusp of width one.
We can find € > 0 and ag > 5/3, sufficiently small so that a; = 0‘10_:3209 ﬁ.
Fix a parameter M > 1 and separate the sum to

Z |a\I/a | _ Z |a\IJo|Lm| + Z |a\Ila

m#0 0<|m|<M |m|>M

and n; =

For the first sum, using Proposition 3.4 we get that

Z a\l/7o|1rfnmay) < Sao(‘lf)yl/2_€Ma.

|m|<M

For the second sum using Cauchy-Schwarz, followed by Parseval, and then applying
Corollary 3.16, we get

1/2

Ay oM, 1
S it g | 3 losatml

m|>M |ml>M

A

S

1 1/2

/ |V (z + iy)|*dx

0
S1(T) + So(W)y/*
Niti .

Now, when 81(¥) 2 S, (W)y/2~¢ let M = (5205 ye=1/2)755 to get that

IN

al-

<

ay,q(m, _1-2e 1-2c
Z m[# < Sal (\Il)y2(1+29) + Sa1+1(\11)y2(1+29)+1/4’
m##0
with the norms S,, (¥) = 51(\11)%8&0(\1')@ and Sy, 4+1(¥) = %
Otherwise take M = 1 so that we only have the second term, which is bounded by

Z |a\1/a | <<Sl( )+82(\I/)y1/4

|m|>1
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But since S;(¥) < S, (¥)y'/27¢, we can bound
S1(0) + Sa(V)y'/* < Say (V)y™ + S 41 (W)y™ /4,

also in this case.
Finally, for each exceptional form with r, = io € (0, 0] we can use (3.9) to bound

)
Z |a<pk, ‘ <<E Z m9+6—a—1y1/2—oe—2ﬂ'my < y1/2—9—e. 0

m#0 m=1

4. Equidistribution of shears

We now use our results on the Fourier coefficients from the previous section to improve
the error term in the equidistribution result of [KK18, Theorem 1.1]. In addition to
improving the error term we also take care to make the dependance of the error on
width of the cusp explicit, as this will be needed for our application. We will show the
following

Theorem 4.1. Let I' be a conjugate of T'o(p) with a cusp at oo of width w > 1. For any
2116209 < a< 3 and any i <m < 2+140 and % <M < % — 0, there are norms Sp, Su;, Sa,
of degrees 0,0 and ag = 1+ o + 3 & regpectively, so that for any ¥ € C(T\H) and

any T > wl/m

As in [KK18], the proof of Theorem 4.1 splits into two parts. The first gives equidis-
tribution in the strip (compare to [KK18, Theorem 3.2]) which in our setting is

Proposition 4.2. Under the same conditions and notations as in Theorem /.1 we have

o0 1 w o0 dd
/ \Il(yT—Hy —//\I/ yar
w
1iT 0 1/T
Sa(Wwz  Sp, (Vwi  So(V)w?
+0 m( 7t oo T rm

The second step uses the theory of Eisenstein series to estimate the strip average by
the Eisenstein distribution (see [KK18, Theorem 3.3]).
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Proposition 4.3. Under the same conditions and notations as in Theorem j.1 we have,

/w 7\11 yda: = ur (V) log(Tw) + (Kr 00, ¥) + O (&OT(T‘I/)) .
0 1T

IS

The proof of Proposition 4.3 follows exactly as that of [KK18, Theorem 3.3] without
any changes. The only difference is the absence of residual spectrum in this case, and the
fact that we are considering K-invariant test functions, allowing us to use the Sobolev
norm Sz 0(¥) = || ¥||2 instead of Sz,1(¥). Theorem 4.1 follows from these two propositions
after noting that the error term O(S“T(T\P)) is subsumed by the other terms. We thus
devote the rest of this section to the proof of Proposition 4.2, taking advantage of the

assumption that I' is a conjugate of the congruence group I'g(p).
4.1. FEquidistribution in the strip

In order to prove Proposition 4.2 write ¥(2) = ay,00(0, %) + ¥+ (z). The main term
will come from the constant term, and we will bound the remaining integrals of ¥+ using
the Fourier expansion. To do this we prove the following lemma.

7+126
3+60

m < ﬁ and 8 € (0, 1;’71 ), there are norms Sy, Sa+1 of orders a and a+1 respectively,
so that for any T > 1 and ¥ € C*(I'\H) orthogonal to all exceptional forms, with

Lemma 4.4. Let T be conjugate to T'y(p) with a cusp at oo of width w. For any « >

KO = Ko(\I/,T) = (%w_2ﬂTﬂl)ﬁ 2 1’

forany C > 1, and any 1 < k < CKy we have

k41 5
n Yy dy Lt wl—m=>~ wi—m=A

Proof. Fix a large parameter N € N to be determined later and write
k+1 1 tit1

dy
/@ <y+zf dy Z /wyﬂf L,
tj

k

with t; = lev"’j. For t; <y <t;41 we can approximate

\I/l(y—ki%) = Ut (y —Hf) +0 (WS))
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where we used that, for the hyperbolic distance,

. t o
d(y + Z%,y +ZTJ) = [log(y/t;)| <log(tj+1/t;) < (Nk+j)~".

Remark 4.5. Tt is here that we correct the error in the proof of [KK18, Lemma 3.6].

Plugging this in gives

tita tit1
Ly dy i, dy Soo1(T)
ot I\ _ / ot 1y O, 1T) )
/ (yHT)y (yHT)y O (Nk+7)2
2] 2]

Now for the first term, expanding ¥ into its Fourier series, using integration by parts
my

to bound |fttvj+1 e2mis dy—y| < -2 and using Proposition 3.19 with 7, and a; = 20— 3
J

mk’
we can bound

tit1 tit1

[ v+ = | avntm 5y [ emE
J Y 0 J )
J J

< w Z |a\11,00(m7%)|
k Im|
m#0

w
< E(Sal(\ll)(w%)m Sy i1 (W) (L ym 1/t
= WI_TH Sal (\I}) w3/4_771 SoaJrl(\Il)
o klmm Tm k3/4—n1 Tm+1/4 °

Summing over 0 < j < N we get that

k1
T Sy (W AT S 11(¥) | Soon (¥
Uy +iH Y « N () w +1(%) 1(9)
T y kl-nm  Tm k3/4—m  Tm+1/4 NEk2

J

Now define the norms

800,1 (\I/)SalJrl (W)Q
S (V) ’

Sa(¥) = 1/ S, (¥)So 1 (), saﬂ(xxf):\/

(that are indeed of degrees o and a + 1). First, for k < K we can take

Soo1 (¥ ¥
N = Ny(k) = [’/ﬁwiﬁ] >1,

to get that
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k41

Y dy w17n1 —pB w%fnlfﬁ
\IIJ_ — ) — So (Y 5 AT S, ) 7 TR
/ (y+ZT)y < a( )kigngTl_F Oé-‘rl( )kgi%T%Jr%

k

1+7,1

Next for Ky < k < CKj we take instead N = [C 2z Np] > 1 to get that

k+1 d
Ly dy
gt Zy22 C
/ (y+zT)y <
k

3_p
14y wl-m-~ 14y wi~m=p
n

> Sa(V) 35— O Sat1 (¥
()ké—TTT +1(¥)

Using this estimate it is possible to evaluate flKO Ut (y + z%)%y We now show how
1+

to boot strap this to extend the range all the way up to K3 = K,™" .

Proposition 4.6. With the same assumptions and notations as in Lemma 4.4, let K1 =
1+
Kyi(9,T) = KO(W,T)TT. Then for Ko > 1, there is a constant ¢ € (1/€%,1) such that

CK1

/\I!L(y—i-z%)% <<max{17loglog(K0)}< o(¥

1

+ 1

1-m—p8 SQQ(\IJ)M%*WI*ﬁ*%
T2+8 ’

M‘,_‘

)
T

4n1+3 + a47]171 .

where Sy is as above and Sy, is a norm of degree ag = T, T

Proof. As a first step, a simple application of Lemma 4.4 with C' = 1, noting that for
both terms the power of k in the denominator is greater than one gives

Ko d Ko—1 k+1 d
Yy ay Yy\ay
ot Z < U Yy
[+ < 3| [ v+
1 k=1 1%
wlfmfﬁ w%*ﬂl*ﬁ

€ Sa(¥) g + Sara (V)

Next let sp denote the partial sums of geometric series s, = Zﬁ:o( ;Zi )7 converging

t0 8500 = 1;'% and let Cp = Kgf_l. Applying Lemma 4.4 with C' = Cy we get the bound

CyKo CyKop—1 k+1
\IJL( + Y )_y < § : \IIL( +4 Yy ) Y
T T
Ce 1Ko F=CraKo |
1+my 14mg

C, 2 Sa(U) wmF 0,7 Sy () wi-mF
(C’z71K0)1_% T% (Co— 1K0)1_ TatE

1 1+my
From our choice of the constants we have that Cy = (KoCy_1) TP so that (C,ZC;KW =
ol
1 and t = (Cy_1Kp)'/?, hence
(0271K0)1 22,] ( -1 O) )
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CrKo
wl—m—=28

. d w%—m—,@
W(y + z%%’ € Ea(0) g+ (Cra Ko) Y/ 2S, (¥)

Ci_1Ko
. S . Sow 1 (W)? o
Now bounding C,—1 Ky < K, = K; and plugging in Ky = ( 5 Z\I,)Q w*QBT’“) m+l
we can bound the second term by

e wi—m-8 S(XQ(\I/)W%_WI_’@_‘“H
K Sa+1(P) Iy T

Titz Tstz
with

SQQ(qj) = Soc—l-l(q/)‘soo 1(\II)WSOL(\IJ)W.

5

We thus get that for each ¢ > 1 we have

@ o y . dy wl-m-8 g (\I;)w%*’ilfﬁ’%
s J N\ I a2
\I/(y—HT) ) < S, (T) 7 + T
Cy_1Ko
Finally, taking ¢ = max{1, [%] + 1} we get that
1 —_—1
1-m
1+ lom (1=mN6 < 1+ 1—m\6 < 1+ 2
Se = 2?771 - 217?1(14;2) =z 2nn11 - 2(1+21) z 27771 ~ log(Ko)?

so that e 72K < CyKo < Kj, hence, C; Ky = cK; for some ¢ > 1/e2. Summing up these
¢ = O(max{1,loglog(Ko)}) terms concludes the proof. O

For large values of £ > K; this estimate is no longer optimal, and instead we will use
the following alternative bound.

Lemma 4.7. Let T be conjugate of To(p) with a cusp at oo of width w. For any ay > gigz

and m < 2+49 there are norms Su,, Sa,4+1 such that for any ¥ € C(I'\H) orthogonal
to all exceptional forms, for any k > 1 we have

w(k+1) ( ) ( ) ( )

€ y.dy Sa1 v Sa1+1 v 800’1 v
/ VYT S g T A T e
wk

Proof. For kw <y < (k + 1)w we can estimate

Uy +id) =y + i) +0 (S“%(\P)) :

so that
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w(k+1) p w(k+1) " S (W)

ol Yy _ / ot wk . dy 0,1 _
| veih? i)Yo (252
wk wk

Expanding the first term in Fourier series

w(k+1) k ; w(k+1) .
/ Uty + i) Z ay,co(m, = / et 2V
wk m#0 wk Y

Integrating by parts we can bound

w(k+1) k+1

/ ehlﬂd—y - /eQmmy@ <L
y / y |~ Imlk?’

wk

and using Proposition 3.19 we bound

w(k+1) % d . w(k+1) J
1 LW Y 2mimy QY
N4 (y_HT)? < Z|aq,,oo(m,f)| / ¢y
wk m#0 wk
|aw 0 (m, £)|
<@y
k = \m|
< 8041(\11) Sa1+1(\11)

k2—mTm k7/A=mTm+1/4’

concluding the proof. O
We can now give the

Proof of Proposition 4.2. First assume that ¥ is orthogonal to all exceptional forms (if
any such exist). Noting that

/ Uy +id)— _/\I/y+z+O(T°2()>,
T 1
T<+1
and that
o0 1 w o0
/aq}’m y @ _//\P(eriy)dydx’
y w Y
1 01T

we just need to bound fl Ut(y+i )?y
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Let B == — 171 and let Ky = Ko(‘ll T)= (‘%‘%\g)zw—wT"l) el be as in Lemma 4.4

and K; = KOQ’71 = (Sg’ z\(p\l)}) )mw” T4 be as in Proposition 4.6. Note that the condition

that 7 > w'/™ implies that w2 > 2" > 1 and since Sco,1 is of degree 3, and
a < 3 we also have that Seo, E(‘I)l) > 1 so that indeed Ky > 1. Now by Proposition 4.6

cKy 1 1 1-2n
y.\dy S.(V)wz S, (V)wi™ 3m
/ Ut (y + T)_ < max{1,loglog(Ko)} < ;é + 2(T)”Tl+% .

1

Next, using Lemma 4.7 we can bound

o0 ; w(k+1) .
has Y 91 / ol Y\ 0y
[ < 2 v+iZ)
cK, k>cKi/w | Jf
< Say (V) | Saut1(V) | wSs01(¥)
Tm Tn1+1/4 K1 ’

The first two terms are clearly bounded by the similar terms appearing above and plug-
ging in the value of K, the third term is

WSoo,1(P) -1 L fwmtB\ T
e Soo |\ n 80( U)m — .
- A s (L

Notice that 80071(\11)17%5 (¥ )%1 is a norm of degree 7% - 3(L — 1) (which is smaller

than « as long as @ < 3), and with our choice of 5 = 5 —n; we see that
L 1\ nr 1
wTIlJrB 1 w?z m w?z

( TF ) “\77) 7%

wSooyl(\I/) Sa (¥
K, A

whence

T Su(W)wt 8o (U
/‘IfL y+zg gy < loglog(Ko) ( ( nng + 251
1

o= &

i
T3 T=+ > '
Finally, since K¢ grows polynomially with 7" and the norms of ¥, replacing the exponent
1 with a slightly smaller exponent and, if needed, slightly increasing the degrees o and
ag, we may drop the loglog(Kjy) term.
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Next, to deal with exceptional forms. Repeating the same arguments for ¥ = ¢, an
exceptional cusp form, and using (3.21) instead of (3.20), we get that for any ne < % -0

=

K]
N‘N

o0
y w
y+z— o | <z
1

We should note that, although the implied constant will depend on ¢y, or more precisely

on some norms S(¢x), we may bound any such contributions by O,(1), since for any

fixed level p there are at most finitely many exceptional forms (and p is treated as fixed).
Now for the general case write ¥ = Wy 4+ ¥y, with

Vo= D> (T, 00)0n

r€4(0,1/2)
the projection of ¥ to the space spanned by the exceptional forms. We can thus bound

o0 o0 oo d
/ %—y < /\I/ex(yﬂ——y / y+@—?y~
1 1 1

Estimating [(V, i) < ||¥]|1]|¢kllec < ||¥]/1 and noting that So(¥) = ||¥|]; is a norm
of degree 0 (and that there are at most finitely many exceptional forms), we have

=

w

Ny \_/

Y\ dy So(¥
lIjex T)
1/ (y+zT) Y <Lpm2 T

Since ¥, is orthogonal to all exceptional forms we can apply the first part to bound

T d WU )w?d  Say (Tpr)wh
1

~—

p
n n
T% ot

oo|—

To complete the proof, observe that for any of our norms, we have S(¥ox) < Sp(¥), and
also that So(¥pr) < So(¥) holds for any a > 0. O

4.2. Two sided cuspidal geodesics

For the cases of interest here, the lattice ' has cusps at co and at 0 and it is natural
to consider shears of the two sided cuspidal geodesic connecting them, that is,

oo
/\IJ Ty—Hy y
0
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It is easy to see that pr is invariant under scaling, pur(¥) = pr(¥*) and a simple

computation shows that under o = ( 0 ) it transforms via pur(¥9) = pu_7(¥). In fact,

10
using that U7(z) = U(=!) and making a change of variables gives the identity.

oo o0 d
/ U(Ty + zy / (—Ty +iy) yy (4.8)
1 1

T2+1 VIZTH1

Applying our results on shears of cuspidal geodesic rays we get the following.

Corollary 4.9. Let T’ be conjugate to To(p) with cusps at oo and 0. Let wy,ws denote
the widths of the cusps of I' and T'? at oo respectively and let w = \/wiwy. For any o €

(7311629‘9,3) m € (3,52, m € (3,552) and T > w'/™ we have for any ¥ € C(T'\H),

NT(\IJ) = 2MF(\IJ) log(Tw) + <ICF’OO, \I’> + <ICF$(), \I/>

S, (T T Sy (U)ws
+Oa,m,m< ( 0(F) )

1
w? Jw
T +s T%

~—

» Sl
2

NE
’ﬂ

where Sy, Sq, are as in Theorem j.1.

Proof. Note that if ¥(z) has period w; and ¥° has period wy then ¥(z) = ¥, [ eLz)

satisfies that both W and ¥ have a period of w = \/wiws. Since pr (V) = pr(¥), using
Theorem 4.1 with ¥ and U7 in each part of (4.8) gives the claimed result. O

5. Lattice points in cones

We now apply our results on equidistribution of shears to get effective counting esti-
mates for counting lattice points in cones of the form

Cr={ze€H: |Re(z)] <TIm(2)}, T — oo. (5.1)

For T" < PSLy(Z) conjugate to I'o(p) and 7 € PSLy(Q), we define the counting function

cD)y=#{yel 7 Yyielr}. (5.2)
Theorem 5.3. For any n < 40+729 and By > 1+ 20, we have for T > (w,;w.5)"" that
E0) = 25 (108(T%rioer) = 24 0 (Ko, )+ K, () + O(“50) ).

Here w, denotes the width of the cusp at oo of I'” = 771I'7, a, = 700, and b, = 70.
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As a first step we show that the cones Cp are well rounded.

Lemma 5.4. Let ¢ € G such that gi € Cp with T > 1. Then for any h € Bs with
0<d< %0, we have ghi € Cp(1455)-

Proof. For any h € Bs we have that |Re(hi)| < sinh(d) < 2§ and |TJm(hi) — 1] < 24.
Write gi = x + iy so that g = nya,ke for some 0. Since Bs is K-invariant, kgh = h € Bs
as well. Hence writing hi = & + in, we have that ghi = = + y(£ + in) = 2/ + iy’ with
|€] <26 and |n — 1| < 2§. We can thus write

2] _ Jo+ €yl <|i<1+|§y/x|>
Y ny Ty n

We now consider two cases, first assume that % > 1, in which case

M<T<H25

1_25> < T(1 +56)

Next, when |z| <y we bound

!
o' |z + &yl Sy(1+|£|) < 1+25§1+55‘ -
ny ny 1-26

y/

Now let x¢, denote the indicator function of Cr and consider the function

Pr(9) =Y Xer (r7'7g.4) (5.5)
yel

Note that Fr, € L*(I'\G/K) and that evaluating at the identity we have Fr (1) =
Ng..(T). From the well roundedness of Cr we get the following:

Lemma 5.6. For § > 0 small, let 15 € C°(K\G/K) be supported on Bs with [, s =1,
and let

Us(g) = > vs(v9)- (5.7)
yel
Then Vs € L*(T\G/K) and
(Fra—ss).r ¥s) <N (L) < (Fraiss) Ys), (5.8)

where the inner product the standard inner product in L*(T\G/K).
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Proof. Unfolding Vs we can write
(Fre.¥s) = [ Fro(@)valo)dg
G

By Lemma 5.4 we have that for any g € Bs
Fra-s),r(9) SN, () < Fra4ss),7(9),
concluding the proof. 0O

Remark 5.9. As is well known, this inner product (Fr ,, Us) not only is an approximation
to the sharp cutoff NZ_(T), but it is also itself a smooth counting function, since

(Fr-,9s) =Y xer(7)
~yel

where

Xer () = /XCT(T_lvg)ws(g)d%
eG

g

is a smoothed cutoff, cf. (1.3).

We thus need to evaluate the inner product (Fr ., ¥5). The following simple lemma,
relates these to the shears of two sided cuspidal geodesics.

Lemma 5.10. For any ¥ € C°(I'\H) we have

T oo
(Fp., ¥ //\IIT xy + 1Y) d (5.11)
-T 0
Proof. Unfolding Fr, and making some changes of variables gives

(Frp,0) = / xew (r1gi) U (gi)dg
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\I/T(.’Ey + Zy) dxdy

U7 (zy + iy) C;—ydx

— T\S
O\g NS —

I
!

as claimed. O

We are in position now to prove Theorem 1.4, which follows immediately (see, e.g.,
[Kon09, (4.8)] and Remark 5.9) from the following:

Proposition 5.12. Let ¥ € C°(T'\H) be positive with mean one and supported the unit
. . 0

neighborhood of some point. Assume that o > 7311629 ,m € (4, 2+49) and ny € (4, 5—0),

and let ay be as in Theorem 4.1.

Then

2T
<FT,77 \I/> = or (10g(T wTwTU) —2 —|— UF(<KFT 00 \I/T> —|— <KFT’0, \I’T>)>

NE

=

ENE

+ 0011771 (Sa(qj)(wrwro) + Saz (\I])(WTWTU)éT7/SWZI>

O ((rna) 1 0griocn) 1911 ) + O (o) ror) 1T ).

(5.13)

Proof. By Lemma 5.10, we have

<FT,7‘7 \Ij> =

S

/\I!T(:vy +iy) 2 da. (5.14)
0

Let
M = (wTwTo_)l/(in).

Then for || > M, we may apply Corollary 4.9 to the inner integral to obtain

i 2
/\I’T zy +iy) Y = = 4 (Krr oo, U7) o+ (Kpr 0, U7)
0

S(X(\Ij)(‘*dﬂ'(f“’ﬂ7)i Sa (W)(WTWTJ)%
+Oa 1 n1 s n1
! ( o] % /5%
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+OT]2 (SO(\I’)(UJ:]—QWTU) 711_) .

|z %
Integrating over M < |z| < T gives the first three terms in (5.13) plus
O(M log(Mw,wrs) + M(| (Kt~ 00, $7) | + | (K17 0, U7) ))
Since the Kronecker limit Kp- o € L*(I"\H), this term is bounded by
O((M106(Misrors) + MW ).

which is subsumed by the last term in (5.13).
For |z| < M, we argue as follows. First fix z and apply (4.8) to the y integral:

o0 o0

/\IIT Ty + iy gy = / \I'T(nyrzy) + sim,
0 i
T+o

where “sim” refers to a similar term with 7 replaced by 70 and x by —z. Break the y

[= ]+

VP FT @r

integral into

1

Vitaz2
Now, since I'” has a cusp at infinity of width w, the quotient T"\H has a fundamental
domain contained in the set {z + iy : |z| < w;/2, y > 0}, and since the Siegel set
{z +iy : |z|] < w;/2, y > w,} has hyperbolic measure one, it is contained in this
fundamental domain (recall that the fundamental domain for PSLy(Z) and hence also
for I'" has hyperbolic measure > 1). On this one fundamental domain, " is supported
on the unit neighborhood of some point xy + iyo, which is contained in some strip of the
form

{r+iy:zeR, ye (%, 2y)}

Hence U7 (zy + iy) = 0 for all y > w, outside of this strip implying that

e’} 2y0
T 7dy
/\If (zy +iy) 2| < H‘I’Iloo/ y < W

Wr y0/2

For the first interval, we trivially bound
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Wy

[ veyrih| < [¥)xlog e,
1/vV/x2+1

Repeating the same argument with 7 replaced by 7o we see that for |z| < M

[y i < o log(wriona),
0

and hence
M oo
/ / U (o + 1) 22| € oo (wrire) ) log (wrir)
M 0

concluding the proof. O
We are finally in position to give the following

Proof of Theorem 5.3. Let o and 7; be as in Proposition 5.12. Let n = 2(’71“) and
B1 = 5— and denote by w = \/w;w,,. We can also choose nn < 12 < 1/2—6. Our §-bump
functlon U5 satisfies:

Sa(Us) < 07%  Say(Ts) <672, || Wsloo < 672

where S,,S,, are as in Theorem 4.1.

Now we further simplify the Eisenstein terms appearing in Proposition 5.12. Since
Err (2,8) = Ef , (2,5) removing the residue we get that Krr (2) = Kf , (2) and
hence, (Kr~ oo, ¥3)r~ = (Kr,q., ¥s5)r. Since Kr q, (z) is smooth and ¥s is supported on
a d-neighborhood of ¢ we can estimate (Kr 4, , Us)r = Kr,q, (1) + O(0) so the Eisenstein
term can be approximated by

(Krr 00, ¥5)rr = Kp,q, (1) + O(0).
Making an optimal choice of
§ = W Fe T~ 20 e | (5.15)

the first error term dominates and we get

2T
(Fr.,,Us) = o (log(T?w?) — 2 + vr(Kr,a, (i) + Kr.q,, (1))

+0 (Wi,
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Finally, using (5.8) relating the counting problem to the inner product (after replacing
T with T'(1 £59)) we get that

NEAD) = 25 (108(T2%) — 2 + r (Kra, () + K, () + O((52)7) . ©

T

Remark 5.16. As can be expected, the main term does not depend on 7. The secondary
term does depend on 7, but only involves knowledge of which cusps are used for the
Eisenstein term, and the widths of these cusps.

6. Counting integer solutions

In this section, we establish the results claimed in §1.3, handling Theorems 1.5 and
1.9 simultaneously.

6.1. Decomposition into orbits

Consider the variety
Vy @ b? —4dac=d,
where d is fixed. Identifying the triple (a, b, ¢) with the quadratic form
Q(z,y) = ax® + bay + cy?,
gives a natural PSLy action on Vy, via
Q7(v) = Q(vg"),

where g € PSLy acts linearly on v = (z,y) from the right (here g is the transpose of
g). More explicitly, the action of g € PSLy on triples (a,b,c) € Vj is given by the linear
action

(a,b,¢)9 := (a,b,c)u(g),

where ¢ : PSLy — SOp2_4,. is the spin morphism given by

a? 2ab b2
L(ZS): ac ad+bc bd
2 2cd d?

In particular, I'; = PSLy(Z) acts on the integer points V3(Z) and we can decompose

Vd(Z) il((?vlrla



D. Kelmer, A. Kontorovich / Journal of Number Theory 208 (2020) 1—46 33

into finitely many orbits. The number h(d) of orbits is, in general, very mysterious; for
instance, when d is a square free fundamental discriminant then h(d) is the class number
of the quadratic extension Q(v/d). However when d = n? is a perfect square, the number
of orbits can be computed explicitly. In the following lemma, we compute it and give a
full set of representatives for the orbits.

Lemma 6.1. For d = n? a square we have h(n?) = n. Moreover, the set {(0,n,0)7]0 <
Jj < n} with 7; = (éj/ln) is a full set of representatives for the classes of

Va(Z)] PSLa(Z).

Proof. We identify a point (a,b,¢) € V4(Z) with the corresponding quadratic form
Q(z,y) = ax?® + bry + cy? having discriminant d = b*> — 4ac. Then PSLy(Z) acts on
the set of quadratic forms by Q7(v) = Q(vv') where v = (z,y) and v € PSLy(Z) is
acting linearly on the right.

Recall that a binary quadratic form @ has a square discriminant, if and only if the
form factors as a product of linear forms

Q(z,y) = (Az + By)(Cz + Dy),

in which case the discriminant is given by (AD — BC)2. We thus get a map, from the set
M, (Z) of 2 x 2 integral matrices with determinant n, onto the set of integral quadratic
forms of discriminant n?, sending M = (g g) to the form Qu(x,y) = (Az + By)(Cx +
Dy) (this map is not injective since the same form can have several factorizations). A
direct computation shows that Q}, = Q -, and since

Ap={(57))eMu(Z): AD=n, 0< C < D},

is a full set of representatives for M,,(Z)/ PSLa(Z), the set {Qnr : M € A, } is a full set
of representatives for classes of quadratic form of discriminant n? (some of these might
be equivalent though). A form in this set of representatives can be written explicitly as

Qum(z,y) = Az(Cx + Dy) = ACz® + nay,

and we see that the classes with A # 1 are redundant. A smaller full set of representatives
is thus given by the forms Cz? 4 nzy with 0 < C' < n, and it is not hard to verify
directly that these are all inequivalent. Finally, observing that Cz? + nzxy is equivalent
to nay — Cy? concludes the proof. O

Remark 6.2. Instead of looking at all integer points in Vy(Z) one can consider only
primitive points (i.e., points with ged (a,b,¢) = 1). It is easy to see that I'y also acts
on the set of primitive points, and the same proof shows that the set {(0,n,7)|0 < j <
n, (n,j) =1} is a full set of representatives for the orbits of primitive points.
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Using our orbit decomposition of V; we can also get a corresponding decomposition
of the variety

Wy @ 2?2 +y?—22=d.

-y

The map (z,y,2) — ( ) is a bijection between Wy and V; and the integer

5 T 5
points W4(Z) map to the set

Va(Z) = {(a,b,c) EValbE€Z, a,c€ LZ, a+ce Z}.

From this map we see that the congruence subgroup
- 10 01
r={yer:ge{(s?). (5o )1

(with 7 € PSLy(Z/2Z) the projection of 7), acts on Vy4(Z) (and hence also on Wy(Z)).
Using the classification of the orbit of the I'y action on Vy(Z) we get the following
classification for the 'y action on Vy(Z).

2

Lemma 6.3. For d = n* a complete set of representatives for the I's orbits of Vd(Z) is

given by

{(0,n,0)7, 0 < j < 2n}U{(0,n,0)7 :0<j < 2n},

):

Proof. Let (a,b,c) € Vy4(Z) then (2a,2b, 20) € V44(Z). From the classification of I'y
orbits of Vi4(Z) there is v € T'y with (a,b,¢) = (0,n,5/2)" with 0 < j < 2n. We can
write v as oy with ¥ € I'y and 0 € {((1) (1)) ( ) 1 ?)} in the set of representatives
for I'; /Ty. We can thus write the point (a,b,c) as (0,n,5/2)7 or as (0,n,n + j/2)7 or
(n+ ;,nJrj, 2)7 for some 0 < j < 2n. Now, (a,b,c) € Vd( ) and 7 preserves this space,

1j/n
01

1+

where T; = (
1

) is as above and T; = (

)|
- Sk

so in the first two cases we must have that j/2 € Z. Hence, a full set of representatives
is indeed (0,n, j) = (0,n,0)” and (n+,n+4,%) = (0,m,0)% for 0 < j < 2n. O

Remark 6.4. Consider the norm || - ||« on R? defined by

|(a,b,c)||? = 2a* 4 b* + 2¢2,
and let By = {(a,b,c) € R3 : ||(a,b,c)||l. < T}. Note that Vy4(Z)N By is in bijection with
the set {(x,y,2) € Wa(Z) : 2% + y? + 2% < T?} so Nuy(T) = #(Va(Z) N Br). Moreover,

under this bijection, the primitive points of Wy(Z) correspond exactly to the I's-orbits
of the classes (0,n,0)7 and (0,n,0)™ with (n,j) = 1.
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Decomposing the integer points of Vy(Z) N Br and Vd(Z) N Br into the finitely many
orbits, it is enough to count points in each orbit separately. For this we need to estimate
terms of the form

#Hy el [(0,n,0)7]l, < T}
with 7 = 7; or 7 = 7; as above and the lattice I' = I'; or I' = I'y respectively. We
now show that these counting functions are given in terms of the cone counting function
defined in (5.2).
Lemma 6.5. For any lattice I" and 7 € G we have

#{v €T [[(0,n,0)7]|, < T} = NE, (I)

with T, = \/ & —

SIS

Proof. Write 7y = aynzk so that 7vi = yx + iy. Since (0,n,0)* = (0,n,0) and our
norm is K-invariant we can explicitly compute

1(0,7,0)77[]> = n®(1 + 22?),

so that indeed ||(0,7n,0)77||. < T if and only if |x| < T,, which is equivalent to 7.7 €
Cr,. O

6.2. Square discriminants

Our goal here is to prove Theorem 1.9 by estimating

n—1
HVU(Z)N By = #{y €T1:(/(0,n,0)77||. < T}

=0
n—1 1

= Z Nes, (T'1).
i=0

1 1

Note that F? has a cusp at oo of width 1 and FI"?  has a cusp at oo of width
2
wj = (n"—j)z, Hence, from Theorem 5.3 we get that

ot 2T, n? . n2b1n
NcTn (T'1) = E (2 log(Ty,) + log((n’j)z) + 2vr, Kr, (1) + O(T—ﬁ)) )

with 8, = 8 — % > 1+ 26. Recalling the assumption T' > d? = n?? in the statement of
Theorem 1.9, we have that T;, > 1 and we can estimate T,, = % + O(%), and
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log(Ty,) = log(T") — 4 log(2) — log(n) + O(),

so that

V2T

nvr,

NCT;_: (I'y) = (2 log(T') —log(2) — 2log((n, j)) + 2vr, Kr, (4) + O(”(Zf;%m)) .

Summing over all orbits we get that

72T 287
#V4y(Z)N By = \/_T log(T) — 31og(2) + ZKr, (4) Zlog n,j) + 0" . )

] 1

Plugging in the value of Kr, (¢) from (A.10) and noting that

3 log(n ) = 3 6(2) logl)

aln

concludes the proof of (1.10).
6.3. Sum of squares

Next we prove Theorem 1.5 by estimating Ny(T) = Vd( ) N Br. Again, split the
integral pomts into the ﬁmtely many I's orbit and count in each orbit. We thus need to

estimate ./\/ _(I'2) and J\/ (I2).

—1
Let a; =7, Yoo, b = T 10 and let w;, wj denote the width of the cusps at oo of T/
—1

and F;j 7, appearing in the formula for ./\/CTJT (I'2). Similarly let a; =7 b = 7~'_1O
and let w;, w’ the corresponding cusp widths.

Recall that 'y has only two inequivalent cusps, one at oo and another at 1. After
verifying which pair of cusps we get for each orbit, we show that the contribution of the
Kronecker terms to the counting function is as follows.

Lemma 6.6. With the above notation we have

2n—1

D (Kraya, (i) + Kray, (0) + Ky g, (6) + K, 5 () = 4n(Kr 00 (8) + Ky 1 (0))-
§=0

Proof. Since Tfloo = oo and ?Jfloo = —1 (which is I'y equivalent to the cusp at 1)

we see that a; = oo and a; = 1. Next ijl() = % is I';-equivalent to the cusp at

infinity by the action of some v = (“ b) € I'y such that % = *yoo = 4, that is,

cd
with a = and b = ( . Such an element v lies in 'y iff (nj)g is even, so that

=

n:]

\./
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00 ﬁ =0 (mod 2 1
b, = L n]J | (mod 2) . Similarly, 7, 0= 27:4—3 is I'y-equivalent to the cusp at
Gz — - Unod 4
oo by v € I'y with § = 2;43-3' so that a = @;zjn) and b = (23"2‘” Hence v can be taken
1utm) g (mod 2)
from Ty iff 2227 is even implying that b; = (2n,9)% . We thus get
R ’ U427 — 1 (mod 2)

that the term K; = Kr, q; (i) + Kr, b, (?) + Kr, 5, (i) + Kr, 5, (1) is given by
31CF2700( )+ ICFQ (74) (7:3)2 = % =0 (HlOd 2)
ICj = ICFz,OO(Z) + 3K:F2 (Z) ﬁ - J((QJJJQ;) =1 (mod 2)
2Kr,,00(i) + 2K, 1 (1) iz # J((QJ:?") (mod 2).

Writing n = 2%m with m odd we see that the first case happens when j = 0 (mod 2%*1)
(hence for g values of 0 < j < 2n), the second case when j = 0 (mod 2¢) but j # 0
(mod 2°*1) (for another gt values of j) and the last case when j # 0 (mod 2%) (for
2n(1 — —a) values of 7). Now summing over all 0 < j < 2n we get our result. 0O

Summing up the contributions from the widths of the cusps, we get

Lemma 6.7. With notation as above, let n = 2Ym with m odd. Then

2n—1
Z log(w;jwjw;w;) = 8nlog(2n) — n 10g(2) 82(;5 2)log(a

aln

-1
Proof. Fix 0 < j < 2n. Since 7; commutes with IV the width of the cusp at co of F;j

is the same as for I'y so w; = 2. Similarly, ;]_71 <(1) i) T = (_21 é) €elysow;=1.

Next w;- is the smallest integer k such that

Tj_lo' (é llf) ol = <1J_rk" ) fk_g) eIy,

hence
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and a similar computation gives that

2 .
L"J/_ — (;i:bj)z’ (j,an) =1 (mOd 2) and (]72;”) =0 (mod 2)
’ %7 otherwise.

Writing n = 2¥m with m odd, it is not hard to see that

4 X v
{(277;.)4, j =0 (mod 2")

wiswha =
S (26?)44, otherwise,
so that
2n—1 2n—1
Zlog ij w;w (2)(1 2%)
n—1
= 2nlog(8n*) =83 log((n, ) + 2nlog(2) — 2552
j=0
= 8nlog(2n) — 2108 SZ¢ ) log(a

aln

as claimed. 0O

Proof of Theorem 1.5. Partitioning f/d(Z) N Br into I'y orbits and summing in each orbit
gives

2n—1

N ZNCT 1_‘2)'i'-/\/’c ( )
7=0

Using Theorem 5.3 and the estimates T, = % + O(%) and |w;w)| < 4n* we estimate
each of the cone counting functions

ot V2T T2w;u) . (281+1)
NC;‘n (Fg) = ™ (lOg( 2n?2 ]) -2+ ﬂ-(lcrzyﬂj (Z) + K:Fmb ( )) + O(;ﬁ)> )

~—1
with 81 = 8 — § as before, and similarly for ./\/'CT; (T'2). Summing over 0 < j < 2n, by
Lemma 6.6 the contribution of the Kronecker terms is v/327(Kr, o0 (1) + Kr,.1(i)) and
by Lemma 6.7 the contribution of the terms log(w;w’w;w?) is

2n—1

Z log(wjwjw;w;) = 8nlog(2n) — n log SZgb 2)log(a

aln

so that



D. Kelmer, A. Kontorovich / Journal of Number Theory 208 (2020) 1—46 39

Na(r) = YL (210g(1) — 2+ 1og(2) + 10K e i) + K (0)
lg§+1 - _Z¢ () log(a (%))
aln

We now want to express the Kronecker terms in terms of s§>ecial values of Dedekind

eta function. To do this, note that I'y = I'y(2)” with 7 = (1 (1]

Ery(2),7a(72,8) and also Kr, q(2) = Kry(2),ra(2, ). In particular

and hence Er, q(z,s) =

Ky .00 (1) + Ky 1 (1) = Krg(2),0(550) + Kro(2),00 (55

Using Proposition A.11 for I' = T'4(2) we have

e = £ (21250 - (50 - 2252

T ¢ 3
and
1 ¢ a1 | 108(2)
Ipro(z) = ; <2’y — 22(2) — log( n2z)* ) + 3 .
Hence

C/
¢

Using the transformation law for the Dedekind eta function

m(Kro(H2) + Koo (52)) = 4y — 42 (2) — 2122 _21o0g(|n(i + 1)n(5L) ).

n(z + 1) = ()7, In(ZHP = lelln(=)]%,

we have that |n(i + 1)n(=2)|? = v2[n(i)|* = Fllﬁﬁ:i so that

/ 4
TR0 (552) + Koo (1)) = 4 — 45(2) - 25252 31og(2) — 2108(T{ L),

and plugging this back in we get that

A@(T)—”?T( T)+C - L 3 0(2) logta) + log@)(4 - ) + O(2 >)

aln

with the constant

!
C=2y—1- 2%(2) — Blog@) _og(

as before. This completes the proof. O
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Appendix A. Eisenstein series for T'g(p)

As for the full modular group, I'y = PSLy(Z), the theory of Eisenstein series for the
congruence groups ['o(p) is also well understood; in particular, the Fourier coefficients
can be expressed explicitly and there is an explicit formula for the Kronecker limit. Since
we could not find a suitable reference for these formulas, we will include short proofs
here, but we claim no originality.*

We first note that when T' is a finite index subgroup of I'j, one can express the
Eisenstein series for I'; in terms of the Eisenstein series corresponding to the different
cusps of I'. Explicitly, we have

Lemma A.l. Let o1,...,04 denote a complete set of representatives of T'1/T', and let

a; = Ujloo (these are not necessarily inequivalent cusps for ). Then

k

Er,(z,s) = ijflEp,aj (z,8), (A.2)
j=1

where w; denotes the width of the cusp a;.

Proof. Since N N O‘jFO’{l CNN oﬂ‘m;l = N NTy it is generated by n., = ((1) “f)

where the width w; € N of a; is the index of Iy, in I'y N N. We can thus write for
Me(s) > 1 and each coset o

Y odmogye) = > dm(y)i=w; Y, Im(y2)’,
€L\ 'y€<nw.>\F1 YE(NNT1)\I'y
! afl’yEF

-1
o; vel

and dividing by w; and summing over all cosets gives

Er, (z,8) = Z Jm(yz)®

(FlﬁN)\Fl

k
:Zw}l Z Jm(ojvz)*.
j=1

YEL;\I

On the other hand, since 7, = o ta,

;G is a scaling matrix for a; we have

Z Jm(ojv2)° = Z Jm(awjra_jlvz)s = wjEr q,(2,5),
"/ernj\r ’YEFaj \T'

and the result follows. O

4 Added in print: see [Vas96] where similar calculations are carried out.
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Subtracting the residue and taking the limit as s — 1 we get the following

Corollary A.3. For I' a finite index subgroup of I'y the Kronecker limit satisfies

k
3
Kr, (2 Z Kr.a;(2) + p— 12:21 log(w;).

In particular, applying this to the subgroup I' = T'y(p) of T’y = PSL2(Z) we get the
following identities

Er, oo(2,8) = Erg(p),00(2,8) + D° Ery(p),0(2, 5) (A.4)

3plog(p)
Kr,(2) = Krop),00(2) + PKro(p),0(2) + —— = (p+ )1’ (A-5)

A.1. Fourier coefficients

For each pair of cusps a,b the Fourier expansion of the Eisenstein series Er with
respect to the cusp at a, is given by

B2y (5) = basot” + bao(8)5' ™ + 3 ey (5, p)e(ma),
m##0

and since Er (%, s) is an eigenfunction with eigenvalue s(1 — s) we can write

aq,6(S;mM,Y) = Pa,b(s; m)2\/17KS_% (2mrmy).

For the full modular group I'y = PSLy(Z) there is just one cusp at oo and the Fourier

coefficients are given explicitly by ¢(s) = < 4(2(82;)1) and

Ts—l/Q(m)
¢*(25)

where (*(s) = 77%/2((s)['(s/2) is the completed Riemann zeta function and 7,(m) =

P(s,m) = (A.6)

2ab—|m|(§)" is the divisor function [Iwa95, page 67].
For the congruence groups I'g(p) the Fourier coefficients can also be given by a similar
formula and satisfy a similar bound.

Proposition A.7. For I' = T'y(p) we have

1 —¢(s;m) (pym) =1
Boo,00(831M0) = P 0(8;m) = pr— {p

1 —p°(s;m
¢oo,0(s;m) = ¢0,OO(S;m) = p2s -1 { .
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Proof. Since the scaling matrix 79 normalizes I' = I'g(p) we have that E[° (z,s) =
Er o(z,s) implying that ¢ 0(s;m) = ¢ 0 (8;m), and since 7¢ is the identity in PSLa(R)
then £y (z,8) = Er oo(2, s) implying that ¢eo,co(s5m) = do,o(s;m).

Now looking at the expansion at infinity of (A.4) we get that

P(831M) = Poo,00(83M) + P 0,00 (5;m),
and the expansion at 0 gives

VFO(53 B) = bucolsim) + p*nols5m).
where it is understood that ¢(s; %) = 0 when (p,m) = 1. We thus get that

Lop*\ ((oolsim) | _ [ &(ssm)

P 1)\ boeolsim) VPolsiy) )
and inverting the matrix concludes the proof. 0O
A.2. Kronecker limits

The Kronecker limit corresponding to a cusp a is defined as the limit

Kr al2) = lim (Ep’a(s,z) - m) | (A8)

When I'y = PSL3(Z) the Kronecker limit formula expresses Kr, (z) explicitly in terms
of the Dedekind n-function (see, e.g., [[K04, (22.42), (22.63)—(22.69)])

3 ¢
Kr) = 2 (2= 250) - loxtalna)). (19)
where v = 0.577 - - - is Euler’s constant, ((s) is the Riemann zeta function, and n(z) is
4
the Dedekind eta function. In particular, using the special value n(i)* = % we see
that at z = ¢ we have
L3 ¢ ra/4
o) = 2 (=250 - sL0). (A10)
One can derive a similar formula for the congruence groups I' = Ty (p).
Proposition A.11. For T' = T'y(p) we have
3 ¢ dyln(p=)| 72T 2log(p)p?
Kp,mz:7(27—2—2—10g<y"p - ,
=G o c® In(z)| 71 (r* — 1)

and
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Krole) = gty (210 - o (M) PR ).

Proof. Since representatives for I'so\I' are given by matrices () with ¢ > 0 integer

with ¢ = Omod p and d € Z with (c,d) = 1, after multiplying the Eisenstein series by

S o= cEs - ),

(n,p)=1

and expanding we get for JRe(s) > 1

S

1 y
G(29)Er oo(2.8) = G290 + > 5 Y Pz
n lcz + d|

(np)=1  (cd)=1

c=0mod p

= Gp(2s)y” + Z Z |cz+d\25

c=1  (d,p)=1

c=0mod p
— 2 —
=Y Cp S Z Z |CZ+d|25 p25 ;dezz |CZ+d|2‘5
c—O modp
Using Poisson summation on the inner sum gives
_VAL(s—3) 1o 1-2s / e(meyt)
= — —=dt
m# R
and dividing by ¢,(2s) we see that
o, -D)VAT(s=3)¢(2s—1) |
Eroo(z8) =y + <p25—1)r(s2><<2s)
1—92s mpcyt
o e X o) [
m#0 R
1—s e
Yy Z 1_28 e mcyt
— e o c —mcz / 3
(7% — 1)((25) 2= mﬂ) J ave)

The only pole comes from the term containing ((2s — 1) = ﬁ +v4+0(s—1).

Subtracting the residue Ress=1 Er,00(2, s) = ﬁ and taking the limit as s — 1 we get

that

(2s—1) ,_, 3 )

)
Kr.co(2) =y + lim @ Y TR eoD

s—1

(( —UWF(S 2)¢
(p?* = D(s)
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(1+412)
to get that
e(mpeyt) .\, _ L X orimper o —2wimpez
Z Z —mpez) mt—ﬂzz(z:e +e )
c=1 m7é0 R c=1 m=1
=1, 5 N
=1 Z Z _(627”7711762 + e—27mmpCZ)
m=1 c=1 ¢
> —
= —7 Z (log(l _ eQﬂ'impz) + lOg(l _ e—27rzm,pz)).
m=1

Recalling that the Dedekind n-function is given by

_ 7mz/12 H 27rzmz

we have that > o, log(1 — €2™™*) = log(n(z)) — ZZ hence

e mpcyt 2

E —mpca / 5 dt = —mlog(|n(p2)|?) — T~
1+1t2)

c=1 m;éO R

Similarly, we also have

Z S el-men) [ AU it = —rlog(in(z)P) - =32
R

=1 € m=0 (1+#)
so that
o (=) VAT(s = 5)¢(2s =1) 3
ICF,oo(z) = 21_% ( (pQS 1 F(S)C(ZS) Y 7r(p + 1)(3 - 1))
+610g(|n(Z)|2|77(p2)|*2”).

m(p? —1)
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Next, to compute the limit, write {(2s — 1) = ﬁ + v+ O(s —1) to get that the
limit above is given by

(p—1)y' VAT (s—3) 3 )
6y |y 20FOTGIEE) wern 6y d (p—D)y' VAl (s—3)
(p+Dm = oot s—1 Tt Dr | ds|_, \ 2@FDIeRES )

Finally, evaluate the derivative at s =1

- 1 ) ,
& - (<p2;;;§‘l)g(§§§;2;g>> - (pf D <_1°g(y) - % — 2log(2) - 2z<2))
to get that
/ ap )
ot g - s i
The formula for the cusp at 0 now follows from (A.5) and (A.9). O
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