Journal of Computational Physics 384 (2019) 270-288

S Journal of
Computational
Physics

Contents lists available at ScienceDirect

Journal of Computational Physics

ELSEVIER www.elsevier.com/locate/jcp

Neural-net-induced Gaussian process regression for function)
approximation and PDE solution i

Guofei Pang, Liu Yang, George Em Karniadakis *

Division of Applied Mathematics, Brown University, Providence, RI 02912, USA

ARTICLE INFO ABSTRACT
Article history: Neural-net-induced Gaussian process (NNGP) regression inherits both the high expressivity
Received 21 June 2018 of deep neural networks (deep NNs) as well as the uncertainty quantification property

Received in revised form 26 December 2018
Accepted 24 January 2019
Available online 22 February 2019

of Gaussian processes (GPs). We generalize the current NNGP to first include a larger
number of hyperparameters and subsequently train the model by maximum likelihood
estimation. Unlike previous works on NNGP that targeted classification, here we apply the

Keywords: generalized NNGP to function approximation and to solving partial differential equations
NN-induced Gaussian process (PDEs). Specifically, we develop an analytical iteration formula to compute the covariance
Neural network function of GP induced by deep NN with an error-function nonlinearity. We compare
Machine learning the performance of the generalized NNGP for function approximations and PDE solutions
Partial differential equation with those of GPs and fully-connected NNs. We observe that for smooth functions the
Uncertainty quantification generalized NNGP can yield the same order of accuracy with GP, while both NNGP and GP

outperform deep NN. For non-smooth functions, the generalized NNGP is superior to GP
and comparable or superior to deep NN.
© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The high expressivity of deep NNs [1] can be combined with the predictive ability of GP regression by taking advantage
of the apparent equivalence between GPs and fully-connected, infinitely-wide, deep NNs with random weights and biases.
This equivalence was first proved by [2] for shallow NNs. In a subsequent paper, the authors of [3] obtained analytically the
covariance functions of the GPs induced by the shallow NNs having two specific activation functions: error and Gaussian
functions. More recently, the authors of [4] extended [3]'s work to the case of deep NNs having generic activation functions,
with reference to the mean field theory of signal propagation [1,5].

The term NNGP was coined by the authors of [4], but until now this method despite its potential merits has not been
used extensively in applications. In particular, the authors of [4] validated the NNGP on two image recognition datasets:
MNIST (handwritten digits data) and CIFAR-10 (color images data), and observed that NNGP outperforms finite width NNs
in terms of classification accuracy. The primary objective of our work is to exploit the flexibility of NNGP in order to

* Corresponding author.
E-mail address: george_karniadakis@brown.edu (G.E. Karniadakis).

https://doi.org/10.1016/j.jcp.2019.01.045
0021-9991/© 2019 Elsevier Inc. All rights reserved.

G. Pang et al. / Journal of Computational Physics 384 (2019) 270-288 271

Input layer First hidden layer Last hidden layer Output layer
(layer 0) (layer 1) (layer L) (layer L+1)
0 L hL
Wiy, by W11, 01
(e lat) eee flo) fat]]
wis,bY wiz bt
(8]0 st] oo i o o]
[] [L] L L []
L - s Mmh :

[]
0 1 L-1 L L
Idm [ZNl ¢ le] eee [ZNL ¢ XNL]

Fig. 1. A fully connected neural net with L hidden layers. For each unit or neuron in hidden layers, there exist one input zﬁ" and one output x': with
[=1,1---, L. Layer O is the input layer. x; is the i-th component of the input vector x, and z{“ is the i-th component of the output vector z. The dimensions
of input and output spaces are d;, and d,y¢, respectively. The width for hidden layer I is N;. At the center of each unit is the activation function ¢(-) that
transforms input to the corresponding output. Between two successive layers, the weight wf} for [=0,1,---,L denotes the contribution of unit j in layer

[to unit i in layer [+ 1. Layer L + 1 is the output layer. The bias in is attached to unit i in layer [+ 1 for [=0,1,---, L. Note that for clarity most of
connecting arrows between layers are omitted.

approximate smooth and discontinuous functions, and furthermore in assessing the effectiveness of NNGP to solve linear and
nonlinear PDEs, compared to the GP and deep NN methods formulated recently in [6-8]. Specifically, so far GP regression
has been successfully applied to solution of PDEs including linear and nonlinear forward problems [6] as well as inverse
problems [9,10]. Use of GP regression can bypass discretizing differential operators by properly placing GP priors, and
can easily handle noisy data as well as the associated uncertainty propagation in time-dependent problems. Hence, the
motivation of the current research is to evaluate if indeed NNGP possesses not only the high expressivity of deep NNs but
also the uncertainty quantification property of GPs. To this end, we will perform three-way comparisons between NNGP, GP
and deep NN for prototypical problems involving function approximation and PDE solution.

The present paper makes two main contributions.

First, to pursue high expressivity, we increase the number of hyperparameters of NNGP by assuming that the prior
variances of weights and biases vary layer by layer and that the weight variances between the input layer and the first
hidden layer are different for different neurons in the input layer. We also train the resulting NNGP regression model by
using maximum likelihood estimation. We note that the authors of [4] assumed only two hyperparameters: one weight
variance and one bias variance, which are kept fixed over different layers; the two hyperparameters are adjusted to achieve
the best performance on validation dataset. However, no training was performed in [4].

Second, we derive the analytical covariance function for the NNGP induced by the deep NN with the error-function non-
linearity. This is motivated by the observation that the analytical covariance function induced by ReLU activated NN, given
in [4], cannot be used to solve the two-dimensional Poisson equation. Denoting by k(x,x’) the analytical covariance func-
tion from the ReLU case where X and X" are input vectors of length two, we observed that the Laplacian of the covariance
function, namely, AyAyk(x, %), which has to be computed in order to solve the problem (see Eq. (24)), will tend to infinity
as x — x.

The paper is organized as follows. In Section 2, we review the equivalence between GPs and infinitely wide NNs, which
is a cornerstone of NNGP. We change the notations for weight and bias variances compared to the previous work [4] in
order to show a different hyperparameter setup. Section 3 introduces the analytically tractable covariance functions induced
by the deep NNs with the ReLU and error-function nonlinearities. We employed a version of Gaussian quadrature, proposed
in [4], to validate numerically the two analytical covariance functions. The methodology on GP regression for function
approximation and PDE solution is briefly reviewed and summarized in Section 4. Section 5 compares the accuracy of GP,
NNGP and NN in function approximation and PDE solution. The uncertainty estimates of GP and NNGP are also presented
in the section. Finally, we conclude in Section 5 with a brief summary.

2. Equivalence between GPs and infinitely wide NNs

In this section, we adopt nearly the same notations as [4] except those for weight and bias variances. We add the
subscript [to the variances avzv and obz in order to represent index of layer and the subscript j to c&, in order to distinguish
the weights coming from different neurons in input layer.

The fully-connected neural net can be represented as in Fig. 1. The equivalence relies on two assumptions: (1) Weight
and bias parameters are all random variables. For [> 1 the weights W'Ej are independent and identically distributed (i.i.d.)
and obey the same distribution D; with zero mean and same variance, namely, WE-J- ~ Dy(0, UVZV //ND. Vi, j. The biases i‘)’i
(I'=1) are ii.d. Gaussian random variables, bi. ~ N0, o,f_l),Vi. The weights and biases are also independent across layers:

the weights Wi} and Wf.?j, (Iy #13) are independent for arbitrary i,i’, j, j’, the biases b‘:.' and bgf (I #15) are independent

272 G. Pang et al. / Journal of Computational Physics 384 (2019) 270-288

I and the biases i’)2 (1 # 1) are independent for arbitrary i, j,i’. Note that in [4]

the weight and bias variances are kept fixed over different layers, i.e., aﬁ, | = 0 and th = ab, but we here assume the

variances vary layer by layer and increase the number of variances to be determlned For [=0, the weights need to be i.i.d.
with respect to the subscript i but only independent with respect to j, namely, w e Do(0, 02), Vi; the biases are still

for arbitrary i,i’, and the weights Wi

w.0,j
i.i.d. Gaussian random variables, b? N0, abyo),Vt. Unlike [4], we remove the assumptlon of being identically distributed
for the weights w?. with respect to j for fixed i. These weights for different neurons (different j) in input layer do not
have to be identically distributed, since the number of neurons in input layer is finite and thus we cannot use the Central
Limit Theorem to conclude that the input of the first hidden layer, z? (x), is a Gaussian random variable for fixed x. Allowing
weight variances to vary for different neurons in input layer, we increase again the number of variances to be determined
in NNGP. (2) The widths of all hidden layers tend to infinity, i.e., N — o0, 1 <[< L. This allows one to use the Central Limit
Theorem to deduce the equivalence relation.

It follows from [3] and [11] that for analytical derivation of the covariance function the distribution Dy must be Gaussian.
The specific forms of Dj, [> 1 do not really matter, since using the Central Limit Theorem one always obtains the Gaussian
distribution whatever Dy is.

The i-th component of the input of the second hidden layer is computed as

din

zl %) = ZWU K@ +bl @w=¢> wlx+b|. (1)
k=1

In the rest of paper, we use bold letter, say ¥ and K, to represent column vector or matrix. The dependence on the input
vector X is emphasized in the above equations. Since weights and biases W(}k and b? are i.i.d., the output of the first hidden
layer x}(x) is also i.i.d. with respect to the subscript j. Because zi.l (x) is a sum of i.i.d. terms, the use of the Central Limit
Theorem yields that ZE1 (x) is a Gaussian random variable when N1 — co. Similarly, from the multidimensional Central Limit
Theorem, any finite collection of {zl.l (x1),--- ,z} (x)} will form a joint multivariate Gaussian distribution, which is exactly
the definition of a Gaussian process. Note that X1, --- , Xy are k arbitrary input vectors.

Denoting by GP(u(x),k(x,x’)) the GP with the mean function z(-) and the covariance function k(-,-), we learn that
z}(x) ~ GP (' (x), k' (x,%")) when N1 — oc. Also, {z}(x). z} (%), --- ~Z}v2(x)} are independent GPs with same mean and co-
variance functions. The mean function of GP z} (x) is zero due to the zero mean of the distribution Dy, and the covariance
function is computed as

Ny
K'(x.%) =E@z (0)z! &) =E Z wixl®) +b] (Z wlxl @) + b})

k=1

Ni N1
=E|| > wipE®) +b] (ZW3R¢(ZE(X’))+b})

j=1 k=1

Ny
= Z]E(.ij)ZJE [6 0o wn] +Ewb)?

2 Nq
- NL Z [6 e @] +o?,
=0 [¢(z0<x))¢(z0(x n]+ots.

&1 (8 is the Kro-

Ub}) = E(w!)E(bl) = 0, and between weight and activation function

EI:(W.l.)qu(ZQ(X))qb(ZQ(X’))] = E(w?.) E[(f)(z.(x)w(z.(x’))] The last equality in Eq. (2) comes from the independence
dm

In the above derivation, we use the independence relations between weights E(W}ngk) = Sjkaz

necker delta), between weight and bias E(w

of qﬁ(ZO(X))qﬁ(ZO(X)) with respect to j. The input of the first hidden layer is denoted by zo(x) kxk — bO and the

expectation E(-) is taken over the distribution of Wi and bﬁ Actually, z O(X) is a GP only 1f the dlstrlbutlon Dy is Gaus:;lan

J
In this case, the covariance function of the GP z?(x) is

G. Pang et al. / Journal of Computational Physics 384 (2019) 270-288 273

din din
K@ ®) =B @20 &) =E| | Y wixj+b) | | Y wix +b}
j=1 k=1

dip

=Y Ewi)xjxj +Eb])* (3)
j=1
din

_ 2 Ny 2
= ZUw,o,jXJ"j + Tp.0-
j=1
The input vector components x; and x} are deterministic and thus IE(XJ.-X’J.) = xjxs..

3. Two NN-induced covariance kernels of GP

The arguments of the previous section can be extended to deeper layers by induction. For layer [(> 2), using the
multidimensional Central Limit Theorem, we learn that Z£ (x) and zf._l(x) are both GPs. Specifically, Zi.(x) has zero mean
function and the covariance function computed as

K x) =B @A) =02 E[p@ e @]+, (4)

The expectation in Eq. (4) is taken over the GP governing zi.’l(x). and this amounts to integrating over the joint distribution
of two Gaussian random variables 2:71 (x) and Zr] (x') given x and X". The covariance function is rewritten as

Kxx)=op, [¢)P T @ NpE T). AT @) dZ T WdZ T &) + o, (5)
[R2

where the density function of the joint distribution of zf.(x) and zi(x’) is

T
I-1 =1y L 1 ZH(X)] 1[21-_1(‘*)]
P @2 (X))_ZJTPZ%GXP(2[211_'1(,‘,) = ()

with the covariance matrix

s [J;E(]zi-‘l(x)ﬂ E(z ' 0z ®) } _ [Kl wox) K x) } _ o
Eg '@z @) BT @) Kl x) KL
Eq. (5) is actually an iteration formula, given by
Kix,x) =02 Fy (kH x.2) K18 K (x, x’)) tod, =12, L, 5
K x.%) =xTAX + 0},
where the diagonal matrix A is defined by A =diag(avzv!0~1,ai‘0_’2‘-~ ’szu.o,dm)' Note that k'=1(x,x") = k!~'(x',x) due to

symmetry of the kernel. The trivariate function Fg4() represents the two-fold integral in Eq. (5), which depends on specific
form of activation function ¢(-). For certain ¢(-), the function F4() is analytically tractable. Two iteration formulas that are
analytically derivable will be given in the next two subsections.

3.1. Kernel from the ReLU nonlinearity

Letting the activation function be a rectifier ¢ (x) = max(x, 0), we can derive the analytical expression for Fy(), and the
corresponding iteration formula is [4,11]

2
o
Kx, x) = %ﬂ"\/k’*Wx,x)k‘” (X', %) (sine‘—1 +(m —0'_1)C059l_1) tog =12 L

61 = cos™! (K %)) , (9)

VKSR, KR, &)
K (x, %) =xT AX + U;O.

Here we have increased the number of undetermined variances compared to the original formula in [4] in which cr‘i = aﬁ,,

2

2
crgr = sz, and A = g—“’l. There are totally d;; + 1+ 2L undetermined parameters #: o 0.j

(} =1,2,--- ,din): U}io’a\ff,i

274 G. Pang et al. / Journal of Computational Physics 384 (2019) 270-288

Kernel from ReLU Kernel from error-function
2 ; : . . 2 : ! : :
=0 ——— =2 e leD = 12
. I=0 =3 by “ =0 I=3 4
S L [P PR
ea Y =1 =4 L5 o 3 =1 . =4
q =2 =4 1t \ . =2 |=4 J o

05F - 1

—_— . . 4 —

= . o =

= A Sennanent” ! x
ok]
05 1

Lines: Analytical
Dots: Numerical

it 5 4

. i/

. . . L 1.5 . L e .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Angle 0 between two input vectors / 27 Angle 6 between two input vectors / 27

-1.5

Fig. 2. Comparison of the analytical and numerical iteration formulas for the covariance functions from the ReLU (left) and error-function (right) nonlinear-
ities. The covariance function k!(x, x') of the GP zf (x) is computed analytically and numerically for I =0, 1, 2, 3, 4(L = 4). For ease of comparison, the input
vectors x, ¥’ € R? (dj, =2) are normalized to [|x||2 = ||¥||z = 1. The angle between the two vectors is §# = cos— ! (x7x’). All the weight variances are set to
be 1.6 and the bias variances are 0.1.

(l=1,2.---,L), and 62, (I=1,2,---,L). These parameters (a.k.a. hyperparameters in GP regression) can be learned by

using maximum likelihood estimation.

Since the trivariate function Fg() is not analytically tractable for a generic nonlinearity, such as hyperbolic tangent,
sigmoid, exponential linear unit (ELU), the authors of [4] developed an efficient Gaussian quadrature scheme to approximate
the two-fold integral in Eq. (5). Fig. 2 (left) compares the numerical results computed by the Gaussian quadrature scheme
with the analytical results computed by Eq. (9), showing good agreement.

3.2. Kernel from the error-function nonlinearity

The authors of [11] have proposed a general strategy to construct kernels for multilayer inducing NNs, based on the base
kernel in single-layer NNs. Nevertheless, the authors only considered the base kernel induced by the ReLU-activated NNs,
and derived the corresponding analytical iteration formula (9). In this paper, we consider a different base kernel, which is
induced by the error-function-activated NNs. Actually, the base kernel has already been derived in [3], but it has not been
realized that this base kernel can also be incorporated in the aforementioned general strategy to generate an analytical

iteration formula similar to (9).
We first briefly review the general strategy proposed in [11]. It is well known that a kernel function can be represented

by the inner product of two vectors in feature space: k(x.X') = v (x) - ¥ (¥'), where ¥ (X) projects the input x into feature
space (see section 2.1.2 of [12]). Letting the base kernel k!(x,x) = ¥ (x) - ¥(¥') and assuming O"i-f = l,crbz_l =0 for brevity
of notation, we can construct the kernel function for the next hidden layer by composing the projection operator ¥(-):

12, &) =Y (Y (X)) - Y (P (&) =k (Y (%), y(*)). (10)
Generally, we have the recursive formula

K x) =Ty x), v (x)), 1=2.3,-- L. (11)

If the base kernel k!(-,-) is analytically tractable, we can derive the kernels for all other hidden layers using the above
formula. For the ReLU nonlinearity, the base kernel reads [11]

1
K'(x, %) = o I%]2 1% (12 (sin 6° 4 (T —8°) cos8?), (12)

where 89 = cos™! (\%) and KO(x,&') =x-&". Due to ¥ ()[2 = V/k1(x, %), it follows from (10) that

1
Kx, &) =k'(y(x), y(x) = Ewkl(x,x)\/kl(x',x')(siny + (T — y)cosy), (13)

where

G. Pang et al. / Journal of Computational Physics 384 (2019) 270-288 275

0 / 1 ’
y =cos™! Lo®. v @&) =cos™! SNV ol. (14)
VIO (), y @)Ky (8), ¥ (x)) V(& x)k1 (2, X"

It is straightforward to obtain the kernels k'(-,-) for | = 2. We see that we have derived the iteration formula (9) for
2 _ 2 _
oy =10,,=0.

When avzv =1, obzJ =0, the base kernel for the error-function nonlinearity reads [3]

2 2k0(x, &'
k'(x.x)==sin"! * %) (15)
d V20D +20¥13)
Analogous to the ReLU case, we can finally derive the iteration formula for the error-function case:
20, 2k 1(x, ¥/
k{(x.x’)z Wl Gin—1 () +o’§l,[=]_2,...!f_.
V(1 + 2K, %) (14261 x0)) ‘ (16)

0 TAx' 1 o2
k(% &) =x" AX' + 05 .

To validate the above formula, we compare the analytical results from the above formula with the numerical results from
the aforementioned Gaussian quadrature scheme, and as we see in Fig. 2 (right) the new iteration formula (16) is correct.

We specifically call the GPs with the kernels that are induced iteratively by NNs “NNGP” for short. NNGP is actually
a specific case of GP, but we still distinguish it from the standard GP involving an ad hoc kernel (e.g., square exponential
and Matern kernels). An exception is the output of the first hidden layer, xi1 (x). The output is also a GP and its covariance
function is [3,12]

1 2k%(x, x')

(17)
J(1+ 20 2) (14200 0))

2
k(x,)= —sin~
T

We still regard the GP with this kernel as a standard GP rather than a NNGP, as the kernel k(x,X’) corresponds to an
incomplete, shallow NN without output layer. In Section 5.2.2 we will compare the predictive ability of this kernel with our
generic kernel k!(x, ') computed by formula (16).

4. GP regression

The essence of GP regression is the conditional distribution of quantities of interest, q, given the known observations
0, where q and o are both Gaussian random vectors. Thanks to the analytical tractability of Gaussian distribution, we can
derive analytically mean vector and covariance matrix of the conditional distribution. Supposed that q and o have the joint
multivariate Gaussian distribution with zero mean vector and block-wise covariance matrix

q| Ky Kg
el)
the conditional distribution p(q|o) is also a multivariate Gaussian distribution with the mean vector

m(q) = Ky K, 'o (19)

and the covariance matrix

K(q)=Kgq — KqgoK;,'Kog (20)

(see (A.5) and (A.6) of [12]). Zero-mean and onzoise-variance Gaussian white noise is assumed in observations.

Note that observations and quantities of interest are usually evaluated at specific time-space coordinates. To preserve a
multivariate Gaussian distribution (18) at arbitrary time-space coordinates, the observations and the quantities of interest
can be seen as samples of GPs. In other words, 0 = [X,(x1), - ,XO(XNO)]T is a sample of X,(x) ~ GP(0.k,(x.X)) and q =
[Xq(x1),--- ,Xq(qu)]T is a sample of Xg(x) ~ GP(0, kq(x, X)), where the index set x represents arbitrary time and/or space
coordinates. Particularly, for solving PDEs, the observations o consist of samples from different GPs. Different covariance
function ko (-, -) will capture different trends and features that the observations o exhibit.

Before computing mean and covariance of conditional distribution from formulas (19) and (20), we need to first learn
parameters of covariance function as well as the noise variance anoise‘ These parameters are also known as hyperparameters
and can be learned by using maximum likelihood estimation (MLE) [12,13]. In practice, we find the optimal hyperparameters
(including undetermined parameters # in covariance function and the noise variance o2 .) that minimize the negative log

noise
marginal-likelihood [12]

276 G. Pang et al. / Journal of Computational Physics 384 (2019) 270-288

1 _ 1 N
ioTKm} (6.02,,)0+ 5 10g|Koo 6. 0| + ?" log27, (21)
where | - | denotes the determinant and the covariance matrix for observations (or training data) K,, depends on # and

noise”
In what follows, we will show how the GP regression can be adapted to different problems of function approximation

and PDE solution by selecting different forms of observations o.
4.1. Function approximation

Let g=[f(x)] and 0 =[f(x1) +€,---. f(xn,) + €]T where € is Gaussian white noise having variance anoise‘ The objec-

tive is to approximate the unknown scalar-valued function f(x) given the observations o. After prescribing the covariance
function Kk, (-, -) for computing the covariance matrix K,, and then training the regression model by the MLE, we derive the
function approximation by using formula (19). Moreover, the use of the variance computed from (20) yields the confidence
interval. Denoting by X (N, by dj; matrix) the collection of the evaluation points {x;} (usually called training inputs), we
formulate the covariance matrix in (18) by:

Koo = [ko X, X) + 0] |

noise
Kgo =K}, = [ko(x. X)]. (22)
Kog = [ko(x.%)].

4.2. PDE solution

First we consider the following time-independent linear PDE

Leu(X) = f(x),x € Q € R%n,

(23)
ux)=g(x),xec a2,

where Ly is a linear differential operator. The source term f(-) and the boundary condition term g(-) are the only in-
formation we know, and thus we put them in the observations by letting o = [oE.o}]T =[gxu1) + €y, -, gXyN,) +
€u, fXp 1) +€f,--, f(xf!Nf) + ef]T, where we select Ny boundary points as the evaluation points for 0, and Ny domain
points as the evaluation points for oy. The variances of the Gaussian white noises €, and € are cr,f and a}, respectively.

We assume that the solution q = [u(X)] is a GP with zero mean and covariance function ky(x,x’), and the source term is
another GP that depends on u, whose covariance function is written as [6]

ky(x. &) = LyLyky (. X). (24)

Denoting by X, (Ny by dj; matrix) the collection of the boundary evaluation points {x, ;} and by Xy (Ny by dj; matrix)
the collection of domain evaluation points {Xy_j}, we formulate the covariance matrix in (18) as [6]

P J<u(xu,xu)+a§0ise,ur Lyky (Xy. X 5)
00— Laky(X 7. Xy) Lylyky(Xy. Xf) + 02 ’

nm’se,f’
Koo =K, =[ki(® Xu) Lyku(®x. Xp)].
Kgq = [ku(x,%)].
For time-dependent problem, the above GP regression model also works as we can regard the time variable as the
(djp + 1)-th dimension of space-time domain (see Section 4.3.1 of [6]).

An alternative way to handle the time-dependent problems is numerical GP regression [7]. Consider the following time-
dependent PDE

Bug, H =Lyux.0),xc Qe R,
u(x,0) = h(x). (26)

ux,t)=g(x,t),xe 0.

The differential operator [y can be nonlinear (say, Burgers' equation). We denote by Ly the linearized counterpart of Ly. For
linear operator, Ly = Ly. The use of Eular backward scheme leads to u™(x) — AtLyu(x) = u"~1(x). According to the known
information from initial-boundary conditions, we define the observations at n-th time step as 0" = [og, oL”T =[u"(xp 1)+

G. Pang et al. / Journal of Computational Physics 384 (2019) 270-288 277

€n, o UNRp) + € U (X)) + €y, U Ryo1) + €117 and g" = [u"(x)]. Note that u"(x, ;) = g(xp ;,nAL) and
uu(xj) = h(x;). Thus, we actually apply GP regression at each time step. Assuming u"(x) is a GP with zero mean and
covariance kernel k,n(x, x") and denoting by X}, (Np by di; matrix) the collection of the boundary evaluation points selected
at n-th time step and by X"~! (N"~! by dj, matrix) the collection of the domain evaluation points sampled at (n — 1)-th
time step, we formulate the covariance matrix as [7]

(I — AtLkyn (X" 1 XY (I — AtLe)(I — AtLy)kyn (X", X1 + 02

noise.n—1

Koo [kun (X2, XY 402 (I — AtLy)kyn (X7, X" 1)]
oom ’
I

v (27)
Kqron = Kgngn = [kun (%, X)) (I — AtLy)kyn (%, xm-1)7,

f(qnqn = [kyn(x, X)].

Generally, we let the covariance function be the same for all n, namely kyr(x,X') = ko (%, X';0,), except with varied
undetermined parameters #,. Considering the propagation of the uncertainty in time marching, we need to take into account
the uncertainty of the predictions in previous time step (i.e., u"~!(x) predicted at X"~ !). We rewrite the predictive or
posterior variance in (20) as [7]

I((qn) = Kqﬂqﬂ - anon I(;,lon I(ann

0 0

-1
+ I(qﬂonKOnon [0 K(u”q (an‘l))

}K;ﬂo,,l(onqn.

5. Numerical results

We perform a three-way comparison between NNGP, NN, and GP for function approximation and PDE solution for pro-
totypical problems. The hyperparameters of NNGP and GP are trained by minimizing the negative log marginal-likelihood
function. The conjugate gradient algorithm (see the function minimize() in GPML Matlab code (version 3.6) [14]) is employed
for the optimization.

Because of the non-convex nature of the objective function, to avoid trapping into the local minima, we run our op-
timization algorithm code ten times with different initializations. Among the ten groups of optimized hyperparameters,
for GP/NNGP we choose the one yielding the smallest negative log marginal-likelihood, and for NN we select the one
producing the lowest loss for NN. The initializations of hyperparameters for GP/NNGP are taken as the first ten entries
of the Halton quasi-random sequence [15] and these initializations are kept deterministic. The initializations of network
weights are obtained from Xavier's initialization algorithm [16], which is provided by the TensorFlow package. Also, for
each initialization at most 200 function evaluations are allowed in conjugate gradient search in GP/NNGP. For NNGP, the
central finite difference scheme with the step size 10~% is used in computing the gradients of covariance function with
respect to hyperparameters while for GP the analytical derivation is employed. Additionally, we compute [relative error
[|tapproximate — Uexact||2/||Uexact||2 in quantifying accuracy of function approximation and PDE solution, where u is a vector
formed by the function values or PDE’s solutions evaluated at test points. For function approximation examples and solving
the Poisson equation, we adopt in NN the Adam algorithm implemented in TensorFlow package to minimize loss functions.
For solving the Burgers’ equation, we adopt the continuous-time NN approach instead of the discrete-time one since the
former can yield slightly high accuracy compared to the latter [8]. The L-BFGS-B optimizer in the TensorFlow package is
employed to minimize the loss function for the Burgers' equation in order to achieve faster convergence compared to the
Adam optimizer case.

5.1. Function approximation
The covariance matrices of GP/NNGP are formulated according to (22).

5.1.1. Step function

We approximate the step function f(x) =1,x > 0; f(x) =0, otherwise. Ten evenly distributed training inputs and 100
equispaced test points are chosen. Fig. 3 shows the approximation by the GPs with two commonly used kernels: squared
exponential (SE) and Matern [12]. The first kernel can describe well the data exhibiting smooth trend while the second one
is suitable for finite regularity. However for the step function, a non-smooth function, the performance of these kernels is
poor. The NNGP predictions shown in Figs. 4 and 5 are much better. In the domain away from the discontinuity, the NNGP
approximation is good with small uncertainty. Particularly, the ReLU-induced kernel even succeeds in capturing the discon-
tinuity. The uncertainty around x =0 is obviously larger than that in other regions. This is probably caused by the missing
information between two training points adjacent to x = 0. This explanation also works for the error-function-induced ker-
nel in Fig. 4. An important observation is that the ReLU induced kernel is more suitable for non-smooth functions than
the error-function induced kernel. Another observation regarding NNGP is that deepening the inducing NN does not change
the approximation accuracy (kept in the same order of magnitude) for the step function. One possible explanation for this

278 G. Pang et al. / Journal of Computational Physics 384 (2019) 270-288

Squared exponential
Relative error: 1.44e-01

5/2-order Matern
Relative error: 1.39e-01

1.5 1.5
= 7 1
& &
E £ 05
49" ,E" [JTwo-std band
= : = Approximate
S égap:t)xlmale o 0 — — — -Exact 1
O Training points O Training points
E ' -0.5
-1 -0.5 0 0.5 1 -1 0.5 0 0.5 1
Input: x Input: x

Fig. 3. Approximating the step function: GPs with SE (left) and Matern (right) kernels. “Two-std band” denotes the mean vector of the conditional dis-
tribution (m(q) computed from (19)) plus/minus twice the standard deviation (diagonals of /K(g) computed from (20)). The quantities of interest are

q— f(X;) where X; (100 by 1 matrix) is the collection of test points.

Fig. 4. Approximating the step function: NNGP with error-function induced kernel. “One-layer” indicates that there is totally one hidden layer in the

inducing NN (L =1).

Output: f(x)

Output: f(x)

Output: f(x)

Output: f(x)

1 layer, error-function induced kernel
Relative error: 9.14e-02

1 T
[ITwostdband |
Approximate |
05|~ Exact
O Training points

|
|
I

0

-1 -0.5 0 0.5 1

Input: x

5 layer, error-function induced kernel
Relative error: 8.39e-02

17 T
[1Two-std band |
Approximate
— — — -Exact
0.5 O Training points
|
|
/Al
0
-1 -0.5 0 0.5 1

0.5

0.5

Input: x

One-layer, ReLU induced kernel
Relative error: 2.64e-03

[] Two-std band
Approximate
— — —-Exact
QO Training points

Input: x

Five-layer, ReLU induced kernel
Relative error: 5.27e-03

[ITwo-std band
Approximate
— — — - Exact
O Training points

-1 -0.5 0
Input: x

0.5 1

3 layer, error-function induced kernel
Relative error: 8.13e-02

1F T
i~ []Two-std band
= Approximate
+ —— —-Exact
é 05 O Training points
=
C
0
-1 -0.5 0 0.5 1
Input: x
7 layer, error-function induced kernel
Relative error: 7.15e-02
1r T 77
™ :l Two-std band
= Approximate
= — — — -Exact
i 0.5 O Training points
£
5
o]
0
-1 -0.5 0 0.5 1
Input: x

Three-layer, ReLU induced kernel
Relative error: 4.38¢-03

1 [
’E []Two-std band
= Approximate
5 05}~ —Exact
g O Training points
o

0 —o—ov ‘

-1 -0.5 0 0.5 1
Input: x
Seven-layer, ReLU induced kernel
Relative error: 5.41e-03

1
g I:l Two-std band
- Approximate
B 05| — — Exact
% O Training points
o

0 o4

-1 -0.5 0 0.5 1
Input: x

Fig. 5. Approximating the step function: NNGP with the ReLU induced kernel.

Fig. 6. Approximating

Output: f(x)

Three-layer, 5-unit, error-function nonlinearity —Three-layer, 10-unit, error-function nonlinearity

Qutput: f(x)

One-layer, 5-unit, error-function nonlinearity

G. Pang et al. / Journal of Computational Physics 384 (2019) 270-288

One-layer, 10-unit, error-function nonlinearity

Relative error: 1.03e-01 Relative error: 1.19e-01

1] ;—e—-o-—'e—-o——e 1 @0 o0 4
Approximate | — Approximate |
— — — - Exact i L — — — -Exact I
O Training points | - O Training points |
05 = ‘
5 0.5 |
a2,
1 = I
| =
| o
0p—e——0 60| 1 0p—6—6—0-- 8- E
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Input: x Input: x

Relative error: 1.28e-01 Relative error: 1.25e-01

1F o606 06— 1F - P———o—4
Approximate | !
— — — Exact | = Approximate :
O Training points : ‘H -— Exgm.) |
05t § 0.5+ O Training points
2
| = ;
| o |
I
0—e—6—0—6" . 0 —{F—e,—{y—e—‘, .
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Input: x Input: x

279

the step function: NN with the error-function nonlinearity (“5-unit” indicates that there exist 5 units/neurons in each hidden layer).

Output: f(x)

OQutput: f(x)

One-layer, 5-unit, ReLU nonlinearity

One-layer, 10-unit, ReLU nonlinearity

Relative error: 1.33e-01 Relative error: 1.28e-01

1 —e—o—6—6—3 1 —8 —8--0-—96
| — |
Approximate | ~ Approximate |/
~ — — Exact ' - — — —Exact ‘
051 ©O Training points : 5 05| O Traning points "
2 /
| 2 |
I =z \
I < I
0% 06 ‘
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Input: x Input: x
Three-layer, 5-unit, ReL U nonlinearity Three-layer, 10-unit, ReLU nonlinearity
Relative error: 1.32e-01 Relative error: 1.60e-01
1 | 1
I/ — |
Approximate | A Approximate |
— — —-Exact | - — — — -Exact |
0.5 O Training points : = 05 O Training points }
2,
| + |
I 2 |
/1 = /I
oo . ! . 0o e ! .
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Input: x Input: x

Fig. 7. Approximating the step function: NN with the ReLU nonlinearity.

observation is that choosing a deeper inducing NN will produce more hyperparameters, which are slightly more difficult
to train. In principle, the deeper the inducing NN is, the more random initial guesses for the hyperparameters we need to
select for optimizing likelihood function. Figs. 6 and 7 show the predictions of NN, which are less accurate than NNGP's.
Unlike GP/NNGP, NN does not quantify any uncertainty for approximation.

It should also be noted that if letting weight and bias variances be kept the same across layers, which was considered in
[4], we can also obtain accurate results using the ReLU nonlinearity. However, this is only the case for shallow inducing NNs.
As Fig. 8 demonstrates, with the increasing depth of inducing NNs, the performance of NNGP degrades. This could imply
that as the inducing NNs become deeper, we need to introduce more free parameters to release the approximation ability
of NNGP. Only two parameters 03\, and sz were considered in [4] and this is inconsistent with the high expressivity of a
deep NN. Therefore, in the following numerical examples, we will only consider the weights and biases whose variances

vary across layers.

280 G. Pang et al. / Journal of Computational Physics 384 (2019) 270-288
Three-layer, ReLLU induced kernel

One-layer, ReLU induced kernel
Relative error: 3.75e-03

Relative error: 2.69e-03

[1Two-std band [JTwo-std band
Approximate Approximate
— — — ~Exact — — — - Exact

O Training points O Training peints

Output: u(x)
=
o

Output: u(x)
(=]
»

ob—e—o-] 0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Input: x Input: x
Five-layer, error-function-induced kernel Seven-layer, ReLU induced kernel
Relative error: 3.19e¢-02 Relative error: 1.33e-02
1r 1
— I:lTwu-s@ band _— [ITwo-std band
‘_P—j’ 08 Approximate \g’ 08 Approximate
5 06 o] E:aa'?‘ng points = 0.6 —— — Bt
+ ni 1 - .
a 04k ‘:"»—\ 0.4 O Training points
= =
o 02f O 02
0¢ 0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Input: x Input: x

Fig. 8. Approximating the step function: NNGP with the RelU induced kernel. Here, following [4], the weights and biases are assumed to have the same
variances across layers, namely o2, = o2 for I >0, 02, = o for [>0 and oi.OJ =o02.

Approximating Hatmann 3D function

1005| T T T T T T T T T T T T
RN
107 E gt g =
e it e i EEURUR GRSV
- .
3 I TR U o
5102 e R *
£
=
3 10% E
~ / —--m---70 training/ 30 test points
. r / ---#e---140 training/ 60 test points
107 350 training/ 150 test points E
Pt —4— 700 training/ 300 test points
10-5 1 1 Il Il 1 1 1 1 1 1 Il Il 1 1 Il Il
o I T T B : T THRY S ~ S ~ S ~ S ~ S~ SR ~ B ~ B
P $ 58 FF e dlsdelddy
s 588848 SFFFFEFiey
s & & & & @ & ¢ & & & £ £ £ £
§ & § S < & < & & & &

Fig. 9. Approximating the Hartman 3D function: error comparison. (“nngp-erf-17 means the NNGP with the one hidden layer and error-function induced
kernel; “gp-SE” denotes the GP with the squared exponential kernel; “nn-erf-3-20" indicates the three-layer, 20-unit-wide NN with the error-function

nonlinearity.)

5.1.2. Hartmann 3D function
The Hartmann function is frequently used for testing global optimization algorithms. Here we consider the trivariate case.

The function is much smoother than the step function and thus we can expect GP to perform well. To test the approximation
accuracy, we first generate N (N = 100, 200, 500, and 1000) points by choosing the first N entries of the Halton sequence,
and then randomly permutate the points, followed by selecting the first 70% points as training points and the remaining
30% points as the test points.

Fig. 9 compares NN, NNGP, and GP in terms of approximation accuracy. Since the Hartmann 3D function is smooth, the
NNGP with error-function induced kernel and the GP with squared exponential kernel are both very accurate. ReLU is not
suitable for smooth function in contrast to approximating the non-smooth step function. Additionally, the GP and NNGP both
outperform NN. It is observed again that NN does not give any uncertainty estimate, whereas GP and NNGP do. Another
observation is that increasing the depth of the inducing NN in NNGP does not change the accuracy.

G. Pang et al. / Journal of Computational Physics 384 (2019) 270-288

16 domain/ 12 boundary points
(N=16and N =12)

64 domain/ 48 boundary points

(N,=64 and N_=48)

1G .) 130600000400)
O Xu * * ¥
* * *
* X * % *
08 * 0.8 % * * *
* ¥
* * *
*) * % . ¥
0.6 % 0.63
* - *
] * = * * *
* & ¥ % *
04 0.4% % %
* * *
* D " * * %
* x ¥ *
* * *
0.2 0.2 k% *
* * x * *
* *
* * ;ﬁ
* * * %
ot o) 6—e—o-o6o66ooo&Fod
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
xX X

Fig. 10. Solving 2D Poisson equation: Two setups of training inputs for both fabricated solutions.

Solving 2D Poisson equation
with the fabricated solution 1
T

100 g . T -
4
T——¢ ——¢
5 107 D R S Shs
= i
g *
> g, S A et SO
2z 4 vl e i -
= - '/ -
= 10 B
< w i ‘
o] P —4&— 10 domain/ 8 boundary points
ool — @ 16 domain/ 12 boundary points
- 32 domain/ 16 boundary points
Y P]
107 Fae i = 2= 64 domain/ 32 boundary points
] 1 Il 1 1 1 Il Il 1
;Fof & & & & § F 3
S SR SR S .
Q Q wl z
3 & & & & &

Fig. 11. Solving 2D Poisson equation with the exact solution u(x, y) = sin(mx)(y? + exp(—y)). (“nn-tanh-3-20" represents the three-layer, 20-unit-wide NN
with the hyperbolic tangent nonlinearity.

5.2. PDE solution

We use the proposed covariance function from error-function nonlinearity to solve the following two PDEs. We replace
the covariance function ky(x.X’) in Eq. (25) as well as kyn(x.x") in Eq. (27) with the new kernel (16). The derivation of
kernel's derivatives for the case of Poisson equation is given in Appendix.

5.2.1. 2D Poisson equation
Consider the equation
—Aux.y) = f(x.). (x.y) € (0, 1), (29)
with two fabricated solutions (1) sin(:ﬂ'r)()(y2 + exp(—y)) and (2) sin(7x) cos(2zr(y2 + x)). Dirichlet boundary conditions
are assumed. The second solution is more complex than the first one and thus we use more training points in the second
solution case. The training inputs X ¢ are chosen from the first N entries of the Halton sequence and X, is equispaced on
the boundary, which are shown in Fig. 10.

The covariance matrices of GP/NNGP are obtained by (25). Figs. 11 and 12 give the error plots of NN, NNGP, and GP
for fabricated solution 1 and 2, respectively. Totally 441 evenly distributed test points are taken to evaluate the relative
error. The NN results are obtained according to the approach proposed in [8]. To keep a fair comparison, the same training
inputs are selected in the NN case. It is observed from the figures that for different fabricated solutions, the approximation
accuracy of the GP and NNGP is comparable. Also, the NN accuracy is nearly one order of magnitude lower than that of

GP/NNGP.

282 G. Pang et al. / Journal of Computational Physics 384 (2019) 270-288

Solving 2D Poisson equation with
the fabricated solution 2
107 ET T T T T T

= 102
8m
g
£
g
U 7/
o8k s 4
—4— 85 domain/ 24 boundary points
®- -85 domain/ 48 boundary points
140 domain/ 48 boundary points
10-4I 1 £ 1 1 1 Il L Il
g f ¢ & &8 § ¥ 5 F
L L O
=3 Q : >
s s g : : :
S S & & & &

Fig. 12. Solving 2D Poisson equation with the exact solution u(x, y) = sin(7rx) cos(27 (y2 + x))).

Uncertainty estimate
T

S
=
=
€
- E
[37)
2
I} & e GP (75 domain/ 20 boundary points) b
@ ====:GP(85 domain/ 24 boundary points)
10%E 4 =4 NNGP (75 domain/ 20 boundary points) 4 E

=-0~-NNGP(85 domain/ 24 boundary points)

L |
0 05 1 1.5
Local coordinate on the cut line y=x (0<x<1, O<y<1)

Fig. 13. Solving 2D Poisson equation with the fabricated solution 2: uncertainty estimates for GP and one-layer NNGP evaluated on the cut line y =x. The
y-axis represents the standard deviation of the conditional or posterior distribution computed by (20). The relative errors evaluated on the cut line are
0.049, 0.029, 0.022, and 0.0081 from the top curve to the bottom one. It is seen that the uncertainty is strongly correlated with the prediction error.

Fig. 13 shows the uncertainty estimates of GP and one-layer NNGP evaluated on the cut line y = x of the square domain,
for the case of fabricated solution 2. We see that for both methods uncertainty is reduced with increasing number of training
points. Moreover, the uncertainty is strongly correlated with the prediction error as smaller uncertainty corresponds to lower
error. Note that the uncertainty at the endpoints of the cut line, namely, (x, y) =(0,0) and (x, y) = (1, 1), is exactly zero,
due to the boundary condition.

5.2.2. 1D Burgers' equation
Consider the equation [7]
02
dug b +ux,)Bu;x. t) =Ed u(z_x)’(x’ t)e[O,]]z, (30)
X T ox
with u(—1,t) = u(] t) = 0. The initial condition is u(x,0) = —sin(;x). After the linearization through replacing the non-
linear term u" <% “ by 13” , where 1" is the mean vector computed for the previous time step by (19), we derive the

differential operator Ly= Onﬂ 322 nn 1 . The covariance matrices of GP/NNGP are formulated by (27). It should be noted
that the NN approach does not need lmearlzatlon since it directly assumes the nonlinear term to be the product of two
correlated neural networks [8]. Thus, the NN approach is more flexible in solving nonlinear PDEs.

The temporal step-size in the Eular backward scheme is fixed to be At =0.01. According to the numerical study in [7],
the temporal discretization error is generally of the order O(Aft). Decreasing At from 0.01 to 0.001 will improve solution
accuracy, but after that point the accuracy saturates. Nevertheless, we observe that setting At = 0.01 can already produce

accurate solutions. To evaluate the relative error at each time step, we place 400 equispaced test points in the space domain

G. Pang et al. / Journal of Computational Physics 384 (2019) 270-288 283

GP
Time: 0.00 Time: 0.20 Time: 0.40
Time step: 0.01 - . Relati : 1.20e-0
A Relative error: 8.97e-03 elative error: 1. 1
1 Noise-free case 1

-1<x<1 -1<z<1 -1<2<1

Time: 0.60 Time: 0.80 Time: 1.00
Relative error: 2.15e-01 Relative error: 2.75e-01 Relative error: 1.20e-01

-1<2<1 -1<2<1 -1<2<1

Fig. 14. Solving 1D Burgers’ equation with noise-free initial condition: GP with kernel (17). The blue solid curve is the exact solution computed according
to [17], the red circle is the training points at n =0 (namely N° = 24), and the red dashed curve is the numerical solution. The x-axis ticks denote the
locations of 31 randomly sampled training points at n > 1 (N" = 31). The orange shadowed region is the two-standard-deviation band. (For interpretation
of the colors in the figure(s), the reader is referred to the web version of this article.)

NNGP-1-layer Time: 0.20 Time: 0.40

Time: 0.00 Relative error: 8.91¢-03 Relative error: 3.10e-02
Time step: 0.01
oise-free case 1+ 1+

® 0) o)
S 0 = 0 X 0
S = =
-1 -1 -1
I NN AN A RTINTINITNINI LLLULULI LU DORLLE LY i
-1<z<1 -1<z<1 -1<z<1
Time: 0.60 Time: 0.80 Time: 1.00
Relative ¢rror: 5.74e-02 Relative error: 1.86e-02 Relative error: 6.84e-03
1 1+ 10
—
8
Ry 0
=
- _1 -
[TNN TR TE TN TTiT i [WINIE NI TR
-1<z<1 -1<z<1 -1<z<1

Fig. 15. Solving 1D Burgers’ equation with noise-free initial condition: NNGP with one-layer, error-function induced kernel. Number of training points at
n=0is N°=24 and for n>1is N" =31.

[—1,1]. We also solve the same equation using the NN approach proposed in [8]. One main difference between the NN
approach and the numerical GP/NNGP regression is the sampling strategy for training inputs. For NN, we sample the training
inputs in the time-space domain (x,t) € [0, 112, whereas for GP/NNGP, we sample the training inputs merely in the space
domain and then perform time-marching. To make the comparison as fair as possible, we sample 10000 training points
for NN, as in GP/NNGP we have at most 100 (number of time step) x 100 (number of training inputs in space) = 10000
(number of time-space sampling points). The Latin hypercube sampling strategy is adopted in sampling the training inputs
in NN, GP, and NNGP. To accelerate training of numerical GP/NNGP, the initial guess of hyperparameters for current time
step is taken as the optimized hyperparameters attained at previous time step. This strategy is reasonable since for a small
time step two successive GPs are highly correlated and therefore the respective hyperparameters should be close.

The kernel (17), rather than the SE considered in solving Poisson equation, is taken in GP. We choose a non-stationary
kernel instead of a stationary one, because the solution exhibits discontinuity that cannot be well captured by stationary
kernel. Additionally, the NN with four hidden layers of 40-unit width and the hyperbolic tangent nonlinearity is employed
in the NN approach. The width and depth of NNs and the type of nonlinearity are carefully tuned in order to make the NN
approach achieve its best performance.

284 G. Pang et al. / Journal of Computational Physics 384 (2019) 270-288

NNGP-3-layer

Time: 0.00 Time: 0.20 Time: 0.40
Time step: 0.01 Relative error: 8.91e-03 Relative error: 2.47e-02
Y0, Noise-free case 1 1r
8 0 0
e = 0 £ 0
S < 4, = =
-1 A -1
NIRRT, 0000000000 0000 R O L0000 0 AR LIRS
-1<z<1 -1<z<1 -1<z<1
Time: 0.60 Time: 0.80 Time: 1.00
Relative error: 6.43e-03 Relative error: 2.87e-03 Relative error: 1.56e-03
1 1 1+

-1<2<1 -1<z<1 -1<z<1

Fig. 16. Solving 1D Burgers’ equation with noise-free initial condition: NNGP with three-layer, error-function induced kernel. Number of training points at
n=0is N=24 and at n>1is N*=101.

. N-\I Time: 0.20 Time: 0.40
Time step: 0.01 Relative error: 5.21¢-03 Relative error: 5.04¢-03
Time: 0.0

1 Noise-free case 1 1
—_ —_— —_
2 8 8

= 0 + 0 < 0
S— S S—
3 = 3

-1 -1 -1

1<z<1 1<r<l 1<z<1
Time: 0.60 Time: 0.80 Time: 1.00
Relative error: 8.66e-03 Relative error: 1.47e-02 Relative error: 1.58¢-02

1 1 1
Cownt — ~
8 8 8

+« 0 + 0 < 0
— S~—" S—
3 3 3

-1 -1 -1

“1<z<1 1<z<l 1<z<1

Fig. 17. Solving 1D Burgers’ equation with noise-free initial condition: NN with four hidden layers of 40-unit width as well as hyperbolic tangent nonlin-
earity. The maximum error appears near the discontinuity point.

We first consider the case where the initial condition is noise-free. Figs. 14, 15, and 16 show the numerical solutions
computed by the GP, the NNGP with one-hidden-layer (L = 1), and the NNGP with three-hidden-layer (L = 3), respectively.
We can see that the NNGP has higher solution accuracy than the GP. Importantly, different from previous examples, in-
creasing the depth of inducing NN in NNGP improves the results in the current example. The high accuracy of NNGP is
attributed to a larger number of hyperparameters compared to the GP case. More hyperparameters presumably implies
higher expressivity for function approximation, which means that we can use the kernel to approximate a wider spectrum
of functions. For simple function or solution (as in the Hartmann 3D function and Poisson equation examples), the advan-
tage of higher expressivity is not fully realized, but for complex ones, such as the step function and the Burgers' equation
here, the advantage can be clearly seen.

The NN results are shown in Fig. 17. Although NN can derive sufficiently accurate solutions, it does not give any un-
certainty estimate. Fig. 18 collects the errors from GP, NNGP, and NN for noise-free case. The NNGP and NN achieve errors
of the same order of magnitude, while the GP performs worst. This is because NNGP and NN both have a large set of

parameters to be tuned and thus possess higher expressivity.

G. Pang et al. / Journal of Computational Physics 384 (2019) 270-288 285

Solving 1D Burgers’ equation
with noise-free initial condition

10° T T T T T T
—+— t=0.2
- @ =04 *
= &
1=0.6 / \Q\
= 3= 1=0.8 F O
L 10 * L/~
g - 1=1.0 pr ol
3 o/
g o - - . - P d 'I’f/
g R .- --9
= »* RS I' /
/~ . :/
102 | . } L ! R e +
| N / Vi
* r/
~ .7."—...__41_,
10-3 1 1 1 L 1 1
& & s 3 & s ¥
i P w o & S ¥
g < IS IS +
< < g

Fig. 18. Solving 1D Burgers' equation with noise-free initial condition: Accuracy comparison of NN, NNGP, and GP. “nngp-1" means the NNGP with one
hidden layer and error-function induced kernel, “31" and “101” denote the numbers of training points N" =31 and 101 for n > 1, respectively. It is fixed
that N° = 24 for all the NNGP examples. Kernel (17) is adopted in the GP. “nn-tanh-4-40" represents the NN with four hidden layers of 40-unit width as

well as hyperbolic tangent nonlinearity.

GP Time: 0.20 Time: 0.40
Time: 0.00 Relative error: 9.59-02 Relative error: 1.69-01
Time step: 0.01 1k 1
1 Noise case
— — —
5 =] 8]
=} = 0 = 0
T S S
-1 -1 1r
-1<z<1 -1<z<1 —-1<z<1
Time: 0.60 Time: 0.80 Time: 1.00
Relative error: 1.95¢-01 Relative error: 2.38e-01 Relative error: 1.40e-01
1 1+ 1
| LU i
-1<z<1 -1<z<1 -1<z<1
2. =0.15%): GP with kernel (17). Number of training points at n =0 is

Fig. 19. Solving 1D Burgers’ equation with noisy initial condition (noise variance o, ;.

N°=24and atn=>1is N"=31.

Next we consider the case where the initial condition is contaminated by Gaussian white noise of zero mean and variance
0.15%. The NN approach for the noise case is beyond the scope of the present paper, since without proper regularization
methods (such as dropout [18], early stopping, and weighted L1/L2 penalty), the NN will easily encounter overfitting. Unlike
the NN case, the GP and NNGP inherently include the model complexity penalty in the negative log-marginal likelihood and
have less risk in overfitting (see the discussion in Section 5.4.1 of the book [12]).

Numerical solutions computed by the GP and the NNGP are plotted in Figs. 19, 20, and 21. NNGP still has higher solution
accuracy than the GP due to the higher expressivity. Data noise amplifies uncertainty represented by the orange shadowed
region. The GP and the NNGP can handle noise well, because noise variance can be directly learned from the training data
and the corresponding uncertainty is quantified by the conditional (or posterior) distribution. Fig. 22 compares the solution
accuracy of GP and NNGP. For long-term simulations, the accuracy of the NNGP is roughly one order higher than that of GP.

For NNGP, increasing the depth, L, of inducing NN does not guarantee the increase of accuracy. For example, one-layer
NNGP with 101 training points outperforms three-layer NNGP with 101 training points, as is shown in Fig. 22. A larger L
amounts to a larger number of hyperparameters, which merely increases the possibility in fitting complex functions better.

Actually, L can also be seen as another hyperparameter of NNGP.

286
NNGP-1-layer Time: 0.20
Time: 0.00 Relative error: 7.85e-02
1 \Time step: 0.01 1
Noise case
® =)
S £ or)
= 3 =
A+
LU UL e il
-1<2<1 -1<z<1
Time: 0.60 Time: 0.80
Relative error: 6.65¢-02 Relative error: 4.09e-02
1- 1r
0} £ w
= 0 +< 0 +
= = =
E] E =
-1- -1
LLLLE 00 L) LR UL B (TN TR TRTIIRTI T IRy
1<z <1 -1<z<1

Fig. 20. Solving 1D Burgers’ equation with noisy initial condition (
kernel. Number of training points at n =0 is N° =24 and at n >

NNGP-3-layer

i i 2
noise variance o2,
1is N"=31.

Time: 0.20

Time: 0.00 Relative error: 9.03e-02
1 ime step: 0.01 1+
Noise case
0 0 =
=) = 0 =
El 3 S
“1r
0.0 0 00 000 0
-1<z<1 -1<z<1
Time: 0.60 Time: 0.80
Relative error: 2.10e-02 Relative error: 1.89%e-02
1 ' 1+
) In =
X =0 <
= = E]
AF
Ty 0
“1<z<1 1<z <1
02

Fig. 21. Solving 1D Burgers’ equation with noisy initial condition (noise variance

noise

induced kernel. Number of training points at n=0is N° =24 and at n = 1 is N* = 101.

-1

-

G. Pang et al. / Journal of Computational Physics 384 (2019) 270-288

Time: 0.40
Relative error: 5.31e-02

LU D
-1<z<1

Time: 1.00
Relative error: 4.66e-02

| MINITN TR TR
-1<z<1

Time: 0.40
Felative error: 5.78¢-02

1 (
0
-1 ‘
L0000 0000 0 000 L O L
—-1<z<1
Time: 1.00
|Relative error: 1.95e-02
1
0
-1

-1<z<1

Solving 1D Burgers’ equation

=0.152): NNGP with the one hidden layer and error-function induced

= 0.15%): NNGP with the three hidden layers and error-function

107!

Relative error

with noisy initial condition
T T

107

f)ﬂgp\,ha, L
nng.b-a_‘?’ L

Fig. 22. Solving 1D Burgers’ equation with noisy initial condition (noise variance o> = 0.152): Accuracy comparison of GP and NNGP.

10y [
07 T

"gp.g.

=
&
<

QKJ-;'U, =

G. Pang et al. / Journal of Computational Physics 384 (2019) 270-288 287

Table 1
Comparison of GP, NNGP, and NN (Accuracy) for function approximation and PDE solution.
Function/Solution ~ Feature Accuracy comparison Kernel/nonlinearity
GP NNGP NN
Step function Non-smooth ~ NNGP> {GP, NN} SE/Matern erf/ReLU erf/RelLU
Hartmann 3D Smooth {NNGP, GP}> NN SE/Matern erf/RelU erf/ReLU
Poisson eq. Smooth {NNGP, GP}> NN SE erf erf/tanh
Burgers’ eq. Non-smooth ~ {NNGP, NN}> GP kernel (17) erf tanh
Table 2

Comparison of GP, NNGP, and NN (whether to estimate uncertainty and the computational cost for
training) for function approximation and PDE solution.

GP NNGP NN
Uncertainty v v b
Cost O(mGPN?mmmg) O(W!NNCPNE,U,,“—,@) O(mNNNwnghrNrmining)

6. Summary

A larger number of hyperparameters enables NNGP to achieve higher or comparable accuracy for both smooth and
non-smooth functions in comparison with GP, which can be seen from Table 1. The deep NN that induces NNGP contributes
its prior variances of network parameters (weights and biases) as well as its depth to the hyperparameter list of NNGP,
which endows NNGP with high expressivity. On the other hand, NNGP is able to estimate uncertainty of predictions, which is
crucial to noisy-data handling and active learning [19]. Unlike NN, Bayesian NN can provide uncertainty estimate. However,
the conventional Bayesian NN [20] could be time-consuming to train due to approximation of a high-dimensional integral
over weight space.

Due to the need for inverting the covariance matrix, NNGP has cubic time complexity for training (see Table 2). In
Table 2, for GP and NNGP Niygiping is the size of training set, and mgp and myngp are numbers of evaluations of negative
log marginal-likelihood in conjugate gradient algorithm for GP and NNGP, respectively. For NN, the accurate estimate of time
complexity for training is still an open question [21]. Generally, the training of a fully-connected NN is faster than that of
GP, because one does not need to invert a matrix. For each training point, the forward and backward propagation only need
linear cost, namely O(Nyeighr), Where Nyejgne is the total number of weights in the network. Nirgining for NN means batch
size; in this paper we fed the whole training set to optimization algorithm and thus the batch size is exactly the size of
training set. myy is number of iterations in optimization algorithm. In numerical examples of this paper, training set size
does not exceed 1000. However, for very large datasets, GP and NNGP will be less attractive compared to NN. In future
work, we intend to leverage scalable GPs recently developed in [22-24] to tackle large dataset problems.

Acknowledgements

We thank Mr. Dongkun Zhang and Dr. Maziar Raissi for useful discussions. This work was supported by AFOSR
(FA9550-17-1-0013) and National Science Foundation (DMS-1736088). The first author was also supported by the National
Natural Science Foundation of China (11701025). The second author was also supported by a gift from Swiss company
BH-Robotics.

Appendix A. Derivatives of NNGP kernel from the error-function nonlinearity

Absorbing the constant coefficients % and 2 into the variances, the kernel derived from the error-function nonlinearity,
namely (16), can be further simplified to

1 Kkl (x, %) 5
o2 =12, L
\/(] + k-1 (%,x)(1 + k-1 (X', X)) ’ (A1)

0 T Ao o -2
k' (x,X) =x" AX + 050

Kx, x) = crf, ,sin”

To solve PDEs, we need to compute the derivatives of the kernel k!(x, x'). We take the 2D Poisson equation as an example.
We need to know the explicit forms of — (% + 33—;2) K(x,x') and (% + %) (332—1, + 8‘3—;,) k’(x. x') where x =[x, y]” and
x' =[x, y'1". The partial derivatives up to fourth order needs to be derived. Denoting by the trivariate function F4() the

arcsin() term in the above iteration formula, the use of chain rule yields

288 G. Pang et al. / Journal of Computational Physics 384 (2019) 270-288

akl(x, x") 2 aF, okl l(x, %) N aF, ok l(x,x) aFy
e x ?
Ax Wl gkl-1(x, x) ax ak=1(x, x) ax aki=1(x', x")
kxx) #2Fy ok l(x,x) 32F, AT, x|kl T(x, x)
KX)o
ax2 W\ 82k-1(x,x) 0x k=1 (x, x)aki—1(x, x) ax ax

aFy 24 (xx)
aki=1(x, x) ax2 (A2)
32F, akl—1(x, x) 3%Fy k(x X))\ KT (x, X))
=1 (x, x)ak!—1 (x, x) dx 32k-1(x, &) ax ax

N aFy %k l(x.x)
ak=1(x, x') dx2

Generally, the iteration formulas for kernel and its derivatives can be written as

k@ x) (T w9 K k) 07T (R X)
axiox'i M axtax' i T axax'd T axlax T

0<i'<i0<j <], (A.3)

where i, j€0,1,2 and Fo,o = Fy. The initial values for the iteration are the known kernel k® and its derivatives. It should
be noted that the explicit form of the function F;; will become rather lengthy and ugly for higher order derivatives, but
fortunately, we have derived for the readers these lengthy formulas using Maple. The Matlab code computing the covariance
functions and its partial derivatives up to fourth order can be downloaded at https://github.com/Pang1987/nngp_kernel
derivative,

References

[1] Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, Surya Ganguli, Exponential expressivity in deep neural networks through transient
chaos, in; Advances in Neural Information Processing Systems, 2016, pp. 3360-3368,
[2] Radford M. Neal, Bayesian Learning for Neural Networks, PhD thesis, University of Toronto, 1995.
[3] Christopher KI Williams, Computing with infinite networks, in: Advances in Neural Information Processing Systems, 1997, pp. 295-301.
[4] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, Jascha Sohl-Dickstein, Deep neural networks as Gaussian pro-
cesses, preprint, arXiv:1711.00165, 2017.
[5] Haim Sompolinsky, Andrea Crisanti, Hans-Jurgen Sommers, Chaos in random neural networks, Phys. Rev. Lett. 61 (3) (1988) 259.
[6] Maziar Raissi, Paris Perdikaris, George Em Karniadakis, Inferring solutions of differential equations using noisy multi-fidelity data,]. Comput. Phys. 335
(2017) 736-746,
[7] Maziar Raissi, Paris Perdikaris, George Em Karniadakis, Numerical Gaussian processes for time-dependent and non-linear partial differential equations,
preprint, arXiv:1703.10230, 2017.
[8] Maziar Raissi, Paris Perdikaris, George Em Karniadakis, Physics informed deep learning (Part I): data-driven solutions of nonlinear partial differential
equations, preprint, arXiv:1711.10561, 2017.
[9] Guofei Pang, Paris Perdikaris, Wei Cai, George Em Karniadakis, Discovering variable fractional orders of advection-dispersion equations from field data
using multi-fidelity Bayesian optimization,]. Comput. Phys, 348 (2017) 694-714.
[10] Maziar Raissi, Paris Perdikaris, George Em Karniadakis, Machine learning of linear differential equations using Gaussian processes, J. Comput. Phys. 348
(2017) 683-693.
[11] Youngmin Cho, Lawrence K. Saul, Kernel methods for deep learning, in: Advances in Neural Information Processing Systems, 2009, pp. 342-350.
[12] Carl Edward Rasmussen, Christopher K.I. Williams, Gaussian Processes for Machine Learning, the MIT press, 2006.
[13] Loic Le Gratiet, Multi-Fidelity Gaussian Process Regression for Computer Experiments, PhD thesis, Université Paris-Diderot-Paris VII, 2013.
[14] Carl Edward Rasmussen, Hannes Nickisch, Gaussian processes for machine learning (GPML) toolbox,]. Mach. Learn. Res. 11 (2010) 3011-3015.
[15] Ladislav Kocis, William J. Whiten, Computational investigations of low-discrepancy sequences, ACM Trans. Math. Softw. 23 (2) (1997) 266-294.
[16] Xavier Glorot, Yoshua Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, 2010, pp. 249-256.
[17] Cea Basdevant, M. Deville, P. Haldenwang, .M. Lacroix,]. Ouazzani, R. Peyret, P. Orlandi, A.T. Patera, Spectral and finite difference solutions of the
burgers equation, Comput, Fluids 14 (1) (1986) 23-41,
[18] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov, Dropout: a simple way to prevent neural networks from
overfitting, J. Mach, Learn, Res. 15 (1) (2014) 1929-1958,
[19] Eric Brochu, Vlad M. Cora, Nando De Freitas, A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning, preprint, arXiv:1012.2599, 2010.
[20] Radford M. Neal, Bayesian Learning for Neural Networks, vol. 118, Springer Science & Business Media, 2012.
[21] Le Song, Santosh Vempala, John Wilmes, Bo Xie, On the complexity of learning neural networks, preprint, arXiv:1707.04615, 2017,
[22] James Hensman, Nicolo Fusi, Neil D. Lawrence, Gaussian processes for big data, preprint, arXiv:1309.6835, 2013.
[23] Sivaram Ambikasaran, Daniel Foreman-Mackey, Leslie Greengard, David W. Hogg, Michael O'Neil, Fast direct methods for Gaussian processes, IEEE
Trans. Pattern Anal. Mach. Intell. 38 (2) (2016) 252-265.
[24] Alexander Litvinenko, Ying Sun, Marc G. Genton, David Keyes, Likelihood approximation with hierarchical matrices for large spatial datasets, preprint,
arXiv:1709.04419, 2017.

