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ABSTRACT
Recent developed application-level virtualization brings a ground-

breaking innovation to Android ecosystem: a host app is able to load
and launch arbitrary guest APK files without the hassle of installa-
tion. Powered by this technology, the so-called “dual-instance apps”
are becoming increasingly popular as they can run dual copies of
the same app on a single device (e.g., login Facebook simultane-
ously with two different accounts). Given the large demand from
smartphone users, it is imperative to understand how secure dual-
instance apps are. However, little work investigates their potential
security risks. Even worse, new Android malware variants have
been accused of skimming the cream off application-level virtu-
alization. They abuse legitimate virtualization engines to launch
phishing attacks or even thwart static detection.

We first demonstrate that, current dual-instance apps design
introduces serious “shared-everything” threats to users, and severe
attacks such as permission escalation and privacy leak have be-
come tremendously easier. Unfortunately, we find that most critical
apps cannot discriminate between host app and Android system.
In addition, traditional fingerprinting features targeting Android
sandboxes are futile as well. To inform users that an app is run-
ning in an untrusted environment, we study the inherent features
of dual-instance app environment and propose six robust finger-
printing features to detect whether an app is being launched by
the host app. We test our approach, called DiPrint, with a set of

∗“Jekyll and Hyde” is a metaphorical term to describe someone with two-sided per-
sonalities - one good and one evil. Here we use this term to indicate that the popular
dual-instance apps have posed significant security risks.
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dual-instance apps collected from popular app stores, Android sys-
tems, and virtualization-based malware. Our evaluation shows that
DiPrint is able to accurately identify dual-instance apps with negli-
gible overhead.

CCS CONCEPTS
• Security and privacy → Software reverse engineering.
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1 INTRODUCTION
With the growing trend of Bring Your Own Device (BYOD) [7,

19, 20] and the richness of Android applications, users are paying
more attention to personal information privacy. In many scenarios,
being able to log in two app accounts simultaneously on the same
device is much in demand, e.g., one social networking app account
is for personal use, and the other is for business purpose. However,
most apps (e.g., Twitter, Linkedin, and Facebook) do not support
multiple active instances so that users have to repeatedly login
in and out to switch account. Moreover, users can not install two
copies of the same apps on a single Android device because of the
unique user id (UID) restriction. In general, Android system creates
a UID for each app to be installed according to its package name.
As a result, many professionals have to carry at least two mobile
devices to meet their needs.

The recent Android application-level virtualization developments
(e.g., VirtualApp [2] and DroidPlugin [28]) iron out this problem
and achieve the goal of “running multiple copies of the same app
on Android” [32, 35, 43, 48]. The key idea of Android application-
level virtualization is that a host app creates a virtual machine-like
environment on top of Android framework, and it relies on Java
dynamic proxy mechanism to launch arbitrary apps (called “guest
apps”) from their APK files without installation. As the host app’s
virtual environment is transparent to Android system, the actions
from a guest app will be treated as the host app actions from An-
droid system’s viewpoint. In this way, multiple instances of the
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same app are able to bypass the UID restriction and run simulta-
neously. Note that this technique is fundamentally different from
the well known dynamic code loading (DCL) mechanism. Instead
of loading a small piece of code (e.g., a dex or jar file) that is tightly
coupled to the base app, virtualization technique could load arbi-
trary APK files that have a complete application entry point and
lifecycles. Powered by this innovation, the so-called “dual-instance
apps” are getting more and more popular in various Android app
markets. Up to now, 42 dual-instance apps are launched in Android
app markets and gain high downloads and popularity. Within more
than one year from May 2017 to December 2018, downloads of
most still-alive dual-instance apps have exponential growth. The
most representative one, “LBE Parallel Space”, gained as much as 7
million downloads after 3-month global launch in May 2016. Until
December 2018, it has been downloaded more than 100 million
times from Google Play1.

In this paper, we argue that the security risks caused by dual-
instance apps have been significantly underestimated. The current
dual-instance app design indeed meets the high demand of users,
but it overlooks the basic Android system security enforcement
in permission separation and data isolation. Especially all guest
apps share the same UID with the host app. That means these apps
also share a common list of permissions, and guest apps may have
many additional permissions that they do not declare. Besides, since
the strict access control based on different UIDs is missing here,
malicious guest apps can acquire the private data of others running
in the same virtualization environment without raising suspicion.
We call all of these as “shared-everything” threats. New generation
malware has capitalized on dual-instance app’s design flaws for
various malicious purposes. Malicious host apps could steal privacy
and update guest apps easily. For example, a new malware sample
uses a customized version of VirtualApp as malicious host app
to launch phishing attacks and steal users’ Twitter credentials by
luring users into running Twitter in its control environment [2];
Malware as guest apps loaded by dual-instance apps is quite a lot.
PluginPhantom [75] relies on DroidPlugin [28] to install malware
from “Assets” directory and steal private files; new adware abuses
dual-instance apps to automatically launch different advertisement
apps without user interactions [74]. To complicate matters further,
recent news has reported that stealthy Android malware can be
crafted to evade the anti-virus scanners in VirusTotal2. They lever-
age application-level virtualization to hide malicious behavior in
multiple guest apps [4, 75].

Our study shows that many severe attacks (e.g., permission es-
calation, privacy leak, and component hijacking) become quite
straightforward under dual-instance environment, and some attacks
may not succeed in real Android system or traditional application-
layer sandboxes [5, 9]. However, most Android developers have not
yet grasped the seriousness of these potential threats. Some online
payment apps are able to detect whether they are running in an
Android emulator or root device. For example, Android Pay will
disable payment function if it detects itself executing in such sensi-
tive environments [62]. Unfortunately, most critical apps cannot
discriminate between dual-instance app environment and Android

1 Parallel Space - Multiple accounts & Two face: http://parallel-app.com/
2Free online virus, malware, and URL scanner: https://www.virustotal.com

system, leaving themselves vulnerable to a larger attack surface.
The reason is traditional fingerprinting features of Android sand-
boxes are completely ineffective for dual-instance apps.

To inform users that an Android app is being launched by a host
app without installation, we develop a tool named DiPrint to auto-
matically fingerprint dual-instance app environment. We study the
principle differences between virtualization-based dual-instance
apps and Android system. We extract inherent features that are the
candidates to indicate dual-instance app environment with static
and dynamic analysis. The combination of multiple fingerprinting
features requires the design change of virtualization mechanism
to be evaded. We evaluate DiPrint with a set of dual-instance apps
collected from four popular Android app stores (Google, 1Mobile,
Tencent, and Qihoo), various Android systems, and unknown mal-
ware collected in the wild. Our results show that DiPrint is able to
identify all of the dual-instance app environments without false
positives. DiPrint’s overhead is negligible as well with an average
of 0.36 ms detection time. Furthermore, we demonstrate that dual-
instance apps are immune to the traditional detection heuristics
of Android sandboxes. DiPrint provides a viable countermeasure
for developers that wish to avoid having their services hoisted into
an untrusted virtualization environment, and critical Android apps
such as mobile payment and banking apps can import DiPrint as
a class to escape potential data loss. In summary, we make the
following contributions.

• We investigate the “shared-everything” threats caused by
dual-instance apps. Our case study shows that many severe
attacks can be launched successfully in most dual-instance
apps.

• Our research reveals the principle of hot dual-instance apps
in depth. The tricks of the underlying virtualization mecha-
nism are not well known.

• We develop a tool called DiPrint to detect dual-instance
apps at run time. We study the discrepancies caused by dual-
instance app’s virtualization mechanism and extract robust
fingerprinting features. Other applications can benefit from
our lightweight detection code. The source code of DiPrint
is available at https://github.com/whucs303/DiPrint.

2 BACKGROUND & RELATEDWORK
Android application-level virtualization is an innovative tech-

nique that a host app can load and launch any guest app’s APK file
in a virtual execution environment without installation. With this
technique, two copies of the same app can run side-by-side in an
unmodified Android system. The virtual machine-like environment
created by the host app plays a role of broker to interact with guest
apps and Android system services. In one respect, it provides a
normal execution environment for guest apps and manages their
lifecycle and all requests. On the other hand, it has to conceal the
identities of guest apps from system services. To bypass the sys-
tem’s restriction, the broker takes over system services such as
AMS (ActivityManagerService) and PMS (PackageManagerService)
by intercepting Binder Inter-Process Communication (IPC).

http://parallel-app.com/
https://www.virustotal.com
https://github.com/whucs303/DiPrint


2.1 Previous Work Limitations
Several Android application-level virtualization works have been

proposed to intercept API calls and monitor behaviors of guest
apps [5, 9, 13, 69]. Boxify [5] leverages Android’s “isolated process”
feature to build a virtual environment. Process isolation is the
segregation of different application processes to prevent others
from accessing certain service components and resources. In Boxify,
every guest app runs in different isolated processes with much
fewer privileges than a regular app process. And the broker is
implemented with a reference monitor to mediate over-privileged
requests from guest apps to system. To achieve IPC, Boxify leverages
Android Interface Definition Language (AIDL) service. However,
the asynchronous property of AIDL adds further complications to
the synchronous communication between guest apps, leading to low
robustness. Different from Boxify, the broker of DroidPill [69] runs
in the same process with the guest app. By instrumenting Dalvik
Virtual Machine and patching native library’s Global Offsets Tables
(GOT), the broker takes control of guest apps. NJAS [9] generates
a compatible stub application to load code and resources of the
original app, and the stub application has the same permissions
with the original app. Using the ptrace mechanism, the broker could
monitor executions of guest apps through system call interception.
However, ptrace has to interrupt the processes of guest app and
freeze all threads, whichmay causemessage block and process crash.
Furthermore, NJAS can only handle two types of public app objects
among the five ones (i.e., Component, Authority, Account Type,
Custom Permission, and Intent Action), and it can only launch
one guest app. The hooking techniques they adopt make them
only work on the lower Android versions from Android 4.1 to 5.1.
Boxify’s GOT hook is not adapted to the change of API base address
calculation since Android 6.0 [30], while both NJAS and DroidPill
lack the ability of ART hook. As the mainstream of Android OS has
been upgraded to Android 6.0 or the above versions, the lacks of
compatibility and robustness greatly limit the adoption of previous
application-level virtualization approaches.

In addition, the previous efforts in running two copies of the
same app mainly rely on repackaging [6, 17, 18, 31, 50, 68, 73]. It
produces a new APK file with the same content but a different
package name from the original app. Then the two apps run on a
same device with two different UIDs. Repackaging has to locate
the original app’s important functions and embed extra code in
the original app [72]. This violates Android’s same-origin model
and infringes the third party’s property right [51, 77], putting the
repackaged versions into a legal gray area. Reference hijacking [71]
combines repackaging and rebuilding “framework.jar” to provide a
virtualization environment. However, it still has to add additional
code to guest apps before loading, which also breaks the integrity
of guest apps.

2.2 VirtualApp Innovations
Android application-level virtualization is originally designed

for platform openness [37] or flexible installability [40]. The recent
developments [2, 16, 28, 38] overcome the drawbacks in the previ-
ous work and fully support running multiple instances of the same
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Figure 1: The typical dual-instance app implementation
based on VirtualApp. The dual-instance app (i.e., host app)
launches two copies of App A as guest apps (App A’ and App
A”) in virtualization environment, while the original App A
is running directly inAndroid system side-by-side. TheHost
App shares the same UID with App A’ and App A”.

app in stock Android3. The most representative open source plat-
forms, VirtualApp [2] and DroidPlugin [28], have enjoyed a great
reputation in Android markets, as many dual-instance apps are
built on top of these two virtualization engines. Although Virtual-
App, DroidPlugin, or other custom-made tools may have slightly
different implementation details, their key design ideas are quite
similar. According to our statistics, more than one-third of the dual-
instance apps and more than 76% of the dual-instance malware
are using VirtualApp. And VirtualApp gains thousands of stars in
GitHub. Therefore, our paper takes VirtualApp as an example to
introduce how virtualization-based dual-instance apps work. As
shown in Figure 1, a dual-instance app (i.e., host app) creates an
independent execution space from Android system. When loading
guest apps in dual-instance app context, all of them share the same
UID with the host app but with different process IDs. By using
dynamic code loading and dynamic proxy, host app is able to set
up system service proxies to take control of guest app communi-
cation with system services and other apps, avoiding the process
crash caused by ptrace mechanism. Also, VirtualApp implements
the synchronous IPC using the synchronization feature of Content
Provider, getting rid of the complicated IPC problem raised by Box-
ify. VirtualApp’s design and implementation are so elegant and
stable that it does not rely on particular Android versions, and it
can be compatible with the latest Android 9.0 and virtualize most
apps in markets.

2.3 Detecting Android Dynamic Analysis
Environment

Another line of research related to our work is the detection of
Android dynamic analysis environment, including root devices [41,
56] and Android sandboxes [23, 33, 42, 47]. As most sandboxes are
system-level emulators, the previous work focuses on finding the
discrepancies between Android emulators and real devices [23, 23,
34, 47]. For example, QEMU-based and VirtualBox-based emulators
3Stock Android means the vanilla version of Android, which is the most basic version
of Android OS designed by Google [53].



exhibit a large number of hardware-related differences with real
systems [34, 42]. Rooted devices are identified based on static and
dynamic heuristics [33, 41, 56, 59], such as rooting-related files,
permissions of certain directories, and the traces of the relevant
behavior in the system log. However, the virtualization mechanism
of dual-instance app reveals totally different characteristics from
existing Android dynamic analysis environment. As a result, the
traditional fingerprinting features will fail to detect dual-instance
apps.

3 SHARED-EVERYTHING THREATS
The design of virtualization-based dual-instance apps is a “double-

edged sword”. They indeed meet users’ fast-growing demand. But,
on the other hand, such flexibility also brings relatively week se-
curity mechanisms. Due to the sharing UID design of the underly-
ing virtualization engine, the so-called “shared-everything” threats
emerge: a guest app has as many permissions as the host app does,
and it can access the data belonging to the host app or other guest
apps. It never takes long for malware authors to catch up with
the advanced technology trend. According to the latest study from
Tencent security lab [61], among all of the apps that are built on
VirtualApp, only 8.86% of them are benign, and the others are ei-
ther malware or the so-called “Potentially Unwanted Programs”
(PUPs) [57, 58, 65].

3.1 Threat Model
The possible attack vectors to dual-instance apps come in two

ways: 1) malicious host apps; 2) a legitimate host app but with
both benign guest apps and malicious guest apps running together.
In the first case, malicious APKs are embedded into a host app
and will be launched silently when the host app begins to run. As
the host app takes complete control of guest apps, many attacks
to guest apps such as intercepting API calls or stealing sensitive
information become quite straightforward. Recently Google Play
Store has removed many DroidPlugin/VirtualApp based apps, and
most of them are either malware or PUPs [36, 55, 74]. In the second
scenario, attackers trick users into loading malware in a legitimate
host app, and then malware conducts attacks when other benign
guest apps are running. In addition to social media apps, users also
would like to run two copies of a game app so that they can play
two characters at the same time. However, repackaging popular
Android applications such as game apps has become a common way
for malware authors to camouflage malicious code [12, 25, 26, 78].
Therefore, it allows a maliciously repackaged app to snoop on
a legitimate guest app. In either case, benign guest apps can be
compromised. We perform two case studies to demonstrate the
security threats caused by these two attack vectors.

3.2 Case Study: Malicious Host App
Avast security team reported a new malware variant captured

from China in 2016 [3], which is believed to be the first malicious
host app to launch a phishing attack. It is well known that the
Government of China bans some high-ranking websites and apps
including Twitter and Facebook4. This malware wraps Twitter with
a customized version of VirtualApp and sets up a local VPN service
4https://en.wikipedia.org/wiki/Websites_blocked_in_mainland_China

LBE Parallel Space

 

<manifest package="com.lbe.parallel.intl" >

<uses-permission android:name="android.permission.CAMERA" />

<uses-permission android:name="android.permission.RECORD_AUDIO" />

<uses-permission android:name="android.permission.READ_CONTACTS" />

<uses-permission android:name="android.permission.REAS_SMS" />

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

…...

……  // Total 127  permissions

</manifest >

<manifest package="com.tencent.mm" >

……

…...

</manifest >

<manifest package="com.evil.attack" >

// 0 permission

</manifest >

WeChat Evil

UID

1. Permission escalation

Files

2. Steal data and files

3. Inject dynamic library

libattack.so

Figure 2: Evil conducts three typical kinds of attacks in dual-
instance app context.

to break through the “Great Firewall of China” [15]. In this way,
users can directly access Twitter from Mainland China without spe-
cial VPN configurations. In fact, this malware also loads malicious
APKs from its “Assets” directory silently when Twitter is running.
It then steals users’ Twitter account credentials by hooking the
“getText” function of the “EditText” class. To lure users, previous
phishing attacks on mobile devices have to overcome several chal-
lenges such as developing indistinguishable login GUI [21, 52]. In
contrast, application-level virtualization makes phishing attacks
much easier as the malicious host app is able to intercept the user’s
input by nature. Similarly, several malicious host apps target other
hot social media apps such as Instagram and WhatsApp [74].

3.3 Case Study: Malicious Guest App
We select LBE Parallel Space, the most popular dual-instance

app on Google Play, as the host app. Besides, we choose WeChat
as the victim guest app. WeChat is one of the top-ranked instant
messaging apps on Android. At last, we develop an app named “Evil”
to simulate the possible attacks launched by a malicious guest app.
The typical attacking scenario is shown in Figure 2. LBE Parallel
Space is installed on an un-rooted Android device, and it loads both
WeChat and Evil as guest apps. Evil is able to perform the following
three kinds of severe attacks with no permissions or root privilege.
Permission Escalation. Dual-instance apps try to apply for more
system permissions to improve compatibility. Evil has zero permis-
sion, but it can use as many as 127 system permissions applied by
LBE Parallel Space at its disposal, including all of the commonly
used sensitive permissions. We test Evil’s permission escalation by
taking sensitive actions such as locating, taking photos, recording,

https://en.wikipedia.org/wiki/Websites_blocked_in_mainland_China


Table 1: Environment-sensitive app detection results. We
test Google Play top 50 apps in three categories: paymen-
t/banking, social media, and game.

Payment/Banking Social Media Game

Root Device 31 32 37
Emulator 1 5 9
Dual-instance app 0 0 0

and reading contacts and SMS in mobile phone. Evil succeeds in
all cases. LBE Parallel Space fails to provide any security warning
when Evil is conducting the behaviors of permission escalation.
The new permission model introduced since Android 6.0 allows
users to grant a host app’s permissions at run time rather than
at installation time only. However, malicious guest apps will not
stop running even if users deny some permissions of the host app,
because they can reuse other available permissions of the host app.
Steal Private Data. When Evil and WeChat are running in par-
allel under LBE Parallel Space, Evil can get access to WeChat’s
sensitive files and data, including database and chat records. Due
to the permission escalation, Evil does not need WeChat user’s
authorization.
Hijack Benign App. Evil has the ability to inject malicious code
dynamically into other running guest apps. Evil runs the injection
tool based on ptrace mechanism [76] to inject the dynamic-link
library “libattack.so” into the main process of WeChat. “libattack.so”
is then called automatically to intercept “open” function and get the
path of record files from its parameter. In this way, it steals audio
records. It can even modify the path to send another record file to
perform a man-in-the-middle attack.

With the above three attacks together, once a malicious guest
app is loaded, it can use dangerous permissions, steal private data,
and jeopardize benign apps without root privilege or any other per-
missions. On the contrary, as the strict access control is not missing
in real Android system or normal application-layer sandboxes [5, 9],
performing the same attacks to them is difficult, if not impossible.

3.4 Environment-Sensitive Apps
Many critical apps are sensitive to insecure environments: they

can detect whether they are running in an emulator or root device.
Therefore, a natural question arises: whether they can still detect
the risky dual-instance app environments. We test Google Play’s
top 50 critical apps in three categories: payment/banking, social
media, and game. As shown in Table 1, the majority of them can
detect the environment of root device, and some apps are able to
identify Android emulators such as QEMU [8] or VirtualBox [46].
They will reveal different behaviors when identifying such an inse-
cure environment such as notifying users and then quitting. Sur-
prisingly, none of them embeds the code to detect dual-instance
app. That means these critical apps cannot discriminate between
application-level virtualization environment and Android system,
and traditional fingerprinting features are futile here as well. Our
study reveals that most Android developers are not fully aware of
the seriousness of security threats raised by dual-instance apps.

4 DEEP VIRTUALAPP INSPECTION
We have demonstrated that running apps in dual-instance app’s

virtualization environment is at great risk. This section aims to
demystify the latest virtualization-based dual-instance apps. Their
key characteristics are indispensable to understanding the “shared-
everything” threats raised by this new technique and our mitigation.
We perform tedious reverse engineering work to study the under-
lying virtualization mechanism of various dual-instance apps. We
sum up the following common characteristics5.

4.1 Excessive Permissions
Typically, Android apps declare the permissions that they need

in the manifest file at installation time, and it is up to users to decide
whether to grant the required permissions at run time. The recent
statistics show that each benign app applies for 5 permissions on
average [11]. As a contrast, due to sharing UID, most host apps have
to apply for a plethora of permissions so that they can be compatible
with guest apps as much as possible. This also removes the single
guest app restriction of NJAS [9]. However, many of these applied
permissions are never used by normal guest apps. We analyze
all of the 42 dual-instance apps downloaded from four popular
Android app stores. According to our study, VirtualApp requires
as much as 186 permissions by default, and dual-instance apps
apply for 129 permissions on average. Surprisingly, the maximum
number is up to 234. Statistically, the permissions required by dual-
instance apps range from 90 to 234, andmore than 70% dual-instance
apps have at least 120 permissions, including the most popular
ones. Meanwhile, about 74% of dual-instance apps with more than
120 permissions have over 100K downloads. Obviously, excessive
permissions violate the principle of least privilege and may cause
permission escalation in guest apps.

4.2 Hooking ClassLoader
This essential step explains where and how to load guest apps

without installation, because only host app’s dex information is
visible to Android system initially. Android apps can load classes,
dex files, and APK files from any folder by calling ClassLoader.
PathClassLoader and DexClassLoader, which are inherited from
BaseDexClassLoader, are two frequently used ClassLoader types.
The former only loads dex files, while the latter can load APK,
dex, and jar files from an arbitrary directory. DexClassLoader calls
a native function openDexFileNative to find the path of dex files.
During installation, an app’s APK file is unzipped into dex files,
whose information is saved as dexElement in the DexPathList. As
shown in Figure 3, when loading a dex, Android system traverses
the dexFileElement list in order until it finds the target. To force
Android system to load a guest app, VirtualApp first copies the dex
file of guest app to its own directory. Then VirtualApp changes the
parameter of openDexFileNative by using the native hooking frame-
work, Cydia Substrate [54]. The purpose is to insert the guest app’s
dex file into the DexPathList ahead of others. Note that Virtual-
App patches Cydia Substrate so that it can achieve native hooking
without root privilege. In this way, Android system will first match
the dexElement of guest app and then load it from VirtualApp’s
directory.
5We take the dual-instance apps that are built on VirtualApp as an example to present.
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Figure 3: VirtualApp hooks openDexFileNative function to
load guest apps without installation.

4.3 Component Lifecycle Management
Given loading guest apps without installation, another challenge

rears its head: to launch a guest app, the host app must interact with
Android system to maintain the lifecycle of guest app components
such as Activity, Service, Content Provider, and Broadcast Receiver.
However, guest apps’ components are not registered in the host
app’s manifest file beforehand because the host app cannot predi-
cate the specific component names of guest apps. VirtualApp solves
this dilemma by predefining dummy components in its manifest file
and hooking Android system service APIs. VirtualApp first defines
some dummy components and permissions in its own manifest file,
including Activity, Service and Content Provider. Android system
can certainly maintain the lifecycle of such dummy components.
Then VirtualApp utilizes dynamic proxy and reflection techniques
to intercept the APIs that are used to manage the lifecycle of compo-
nents. The purpose is to substitute the target components in guest
apps for predefined dummy components. In particular, Virtual-
App will modify API parameters or function logic to substitute the
BinderProxy of system services such as ActivityManagerService,
PackageManagerService, AccountManagerService, and Notifica-
tionManagerService.

Taking Activity component as an example, Figure 4 shows how
VirtualApp maintains the lifecycle of guest app components. AMS
server (“system_server” in Figure 4) manages the task stacks and
Activity lifecycle. When launching Activity, application process has
to communicate with system_server several rounds through a proxy
of AMS (i.e., ActivityManagerProxy). ApplicationThread, which
actually is a Binder object, is the bridge between AMS server and
application process. After management, system_server will return
the control to application process through ApplicationThreadProxy.
After that, ApplicationThread will notify ActivityThread to start
a new activity. At run time, the host app first intercepts startAc-
tivity to wrap the guest app’s TargetActivity intent into the intent
of StubActivity, which has been predefined in the host app man-
ifest ( 1○). In this way, the host app can deceive AMS server into
creating a new activity for StubActivity ( 2○). Then the host app
manages to forward TargetActivity rather than StubActivity to
ActivityThread. To achieve this, the host app hooks handleLaun-
chActivity of ApplicationThread class and the callback function of
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Figure 4: The workflow of starting the Activity of guest app
(“TargetActivity”). Two key steps are: 1) predefining dummy
components (e.g., “StubActivity”) in the manifest file of
host app; 2) wrapping/unwrapping “TargetActivity” with
“StubActivity” by hooking Android system service APIs ( 1○
& 3○).

ActivityThread class to extract TargetActivity ( 3○). Meanwhile, the
host app process binds service and application with the new guest
app process ( 4○). At last, the guest app’s Activity component will
be launched successfully ( 5○). The processes of handling Service,
Content Provider, and Broadcast Receiver for guest apps are similar.
Additionally, as for Broadcast Receiver, the host app registers static
broadcast dynamically.

4.4 Storage Redirection
In general, each app has its own private storage space, and UID

property restricts other apps cannot access the private data. How-
ever, the strict access control based on different UIDs cannot be
applied in dual-instance apps. By means of storage redirection, dual-
instance apps use reflection to translate the installation directory
of guest apps to physical storage used by the host app. Typically, an
app’s installation directory is “/data/app/[guest-package]”, while
the guest app installation directory is changed to “ /data/data/[host-
package]/virtual/data/app/[guest-package]” or other storage of host
app with the hook of native IO functions. Then host app bypasses
Android system’s access control policy of data isolation and man-
ages all of the guest app data.

5 DUAL-INSTANCE APP FINGERPRINTING
FEATURES

To mitigate the "shared-everything" threats, this section investi-
gates how apps can infer whether they are being loaded by a dual-
instance app based on the key characteristics of virtualization-based
dual-instance apps. We implement our approach as an open-source
tool named DiPrint.

5.1 Challenges
Fingerprinting Android emulators [8, 14, 29, 46, 64, 67] has been

well studied due to its importance in malware defense [22, 27, 34,



Table 2: Dual-instance app fingerprinting features.

Category Feature

a. Path 1. Host app’s APK path in guest app process
2. APK source code and dynamic-link library path

b. UID 3. Multiple processes with the same UID
4. Check undeclared permissions

c. Code Injection & 5. Stack tracking of exception
Hooking 6. Suspicious library to provide native hooking

39, 45, 47, 66]. However, our detection target posts a new chal-
lenge: dual-instance apps are immune to traditional fingerprinting
features. Most discrepancies between Android emulators and real
devices do not exist in application-level virtualization. QEMU-based
and VirtualBox-based emulators share plenty of hardware-related
discrepancies with real systems [34]. The rationale behind is system-
level virtualization technology rarely builds a fundamental trans-
parent environment [24]. These discrepancies mainly come from
the defects of software-emulated hardware (e.g., Bluetooth, power
management, and USB), and they provide a large number of avail-
able options for detection heuristics. By contrast, application-level
virtualization does not virtualize hardware, so we cannot reuse the
previous hardware-related features to detect dual-instance apps.

The second challenge comes from the diversity of virtualization
implementation. Apart from VirtualApp and DroidPlugin, 47% of
commercial dual-instance apps in our evaluation rely on custom-
made virtualization engines. The detection heuristics that only
match package name or app signature can be evaded by simple
modifications. For example, many commercial dual-instance apps’
processes contain the following keywords: “parallel”, “clone”, or
“multi”, but our approach does not search them. Instead, we exploit
the common design characteristics and configurations.

5.2 Characterizing Fingerprinting Features
To fool Android system, the host app has to patch guest apps in

manyways, and a set of guest app’s system features will be modified
by the host app. Our strategy of selecting detection features is to
capture such common modifications with the combination of static
and dynamic analysis. Figure 5 shows the workflow of fingerprint-
ing feature generation. Given the static information collected from
the manifest and bytecode (e.g., permissions, hook method, and
libraries), dynamic analysis performs runtime check and exception
tracking to extract runtime discrepancies as fingerprinting features,
which are listed in Table 2. We classify them into three categories,
and each one contains two features. All of them represent the key
characteristics of dual-instance apps that we have summarized in
Section 4. Feature 2 and 6 detect dual-instance apps by checking
the presence of particular paths or suspicious library. The others
(feature 1, 3, 4, and 5) are more robust, and an evasion attempt from
them requires the design change of virtualization mechanism.

Category a. Path. The fingerprinting features in this category
are related to “Storage Redirection” (Section 4.4).When installing an
app in anAndroid device, Android system copies the original APK to
the directory of “/data/app/[package]/” and renames it as “base.apk”.
Meanwhile, the application data is saved in “/data/data/[package]/”.
Different applications have their own storage directory to ensure

data isolation. However, current dual-instance app design does not
meet this security policy. The host app redirects the APK of guest
app to the directory of its own when loading guest apps, and then
it parses the guest app’s APK to get the entry point and component
information. Therefore, guest apps will not load resources or code
from the default path but from the subdirectory of host app. Note
that the host app can access the private directory to copy guest
app’s APK evenwithout root privilege. The trick to access these files
is by calling “getPackageManager().getApplicationInfo(package of
guest app, 0).sourceDir”. Similar to Linux, the “proc” file system in
Android contains a variety of process information such as memory
data and network traffic data. From there, DiPrint can get the path
of its own code and dynamic-link libraries. In particular, DiPrint
will detect the following two path related features.
Feature 1. Host app’s APK path in guest app process. Host
app loads a guest app after creating a process and preparing the
virtual environment for it. In essence, the processes of guest app
are created by the host app, which loads the resources of host app
in the process memory of guest app during initialization. Hence, we
can find two different “base.apk” paths in the process memory: one
belongs to the guest app, and the other is the host app. Additionally,
Android provides interfaces to view user process memory image
based on “proc” file system. According to this observation, DiPrint
searches the existence of another different APK path in its own
process memory by reading "/proc/self/maps".
Feature 2. APK source code and dynamic-link library path.
The apps installed in Android system typically load APK source
code from “/data/app/[package]”, but most guest apps are loaded
from the host app’s subdirectories. Similarly, dynamic-link libraries
of guest apps are loaded in the same way. DiPrint will load a
home-made library, “myLibrary.so”, and get the dynamic-link li-
brary path from "/proc/self/maps". The home-made library load-
ing path in dual-instance apps is different from the real system.
“/data/app/[package]/arm/myLibrary.so” is the typical path in An-
droid system, while the path in dual-instance apps becomes a sub-
directory of the host app6.

Category b. UID. The idea of this category comes from the prop-
erty of “Excessive Permissions” (Section 4.1). In Android, UID repre-
sents the identity of each app during installation, and the processes
with the same UID share a same collection of permissions. One of
the dual-instance app’s key characteristics is that the host app and
guest apps have the same identity for Android system and permis-
sions as well. We detect them using the following two features.
Feature 3. Multiple processes with the same UID. Figure 1
shows guest apps share the same UID but different PIDs with the
host app. Besides, we find another fact that most host apps will
spawn at least two processes: one is user interface process, and the
other is service process. As a running guest app knows its pack-
age name by nature, with other running process information, the
guest app can determine whether there exist additional processes
but with the same UID. The APIs “getRunningTasks” and “getRun-
ningAppProcesses” have been deprecated since Android 6.0. We can
get process information, including PID and UID, by “ps” command,
which is available in all Android versions without any permission.

6/data/data/[host-package]/virtual/data/app/[guest-package]/lib/myLibrary.so



Figure 5: The workflow of fingerprinting feature generation.

Feature 4. Check undeclared permissions. To detect whether

guest apps have access to undeclared permissions, DiPrint simu-

lates permission escalation attacks as we discussed in Section 3.3

and check whether it can succeed. DiPrint first collects the required

permissions of itself or the apps that embed DiPrint’s code, and

then it checks the undeclared permissions by calling API “check-

CallingOrSelfPermission”. At last, it launches a set of actions that

require undeclared, dangerous permissions such as READ_SMS,

ACCESS_FINE_LOCATION, CAMERA, and RECORD_AUDIO.

Category c. Code Injection & Hooking. In order to deceive

both Android system services and guest apps, the host app has to

hijack the interactions between them. To achieve this, the host app

performs code injection and hooking in several places such as hook-

ing ClassLoader (Section 4.2) and hooking AMS (Section 4.3). The

features in this category check the presence of such code injection

and hooking.

Feature 5. Stack tracking of exception. Figure 4 shows an ex-

ample that the host app intercepts the communication between

AMS and guest apps. In addition, the host app also creates proxies

of other system services. To detect the involvement of host app in

the guest app’s call chain, our solution is to throw exceptions in

the 13 lifecycle functions of 4 components and then analyze the

related stack traces. For example, we can throw exceptions in the

“onCreate”, “onStart”, “onResume”, “onPause”, and “onStop” of Ac-

tivity. For instance, host apps call their own “callActivityOnCreate”

method after calling normal “callActivityOnCreate” method. To

find the presence of host app, DiPrint compares the stack trace of

exception with the stack trace collected from Android system.

Feature 6. Suspicious library to provide native hooking. To

hook native functions, virtualization engines have to customize

a dynamic-link library that will be injected into guest apps. For

instance, to redirect APK loading path, VirtualApp embeds Sub-

strate framework [54] as “libva++.so”, DroidPlugin loads “libsub-

strate.so”, and MultiDroid7. injects “libdaclient.so”. According to

our study, most dual-instance apps reuse “libiohook.so” and “lib-

jnibridge.so” to provide native hooking, which are the different

versions of “libva++.so”. In addition, these suspicious libraries are

not loaded from the directory of guest app. With the knowledge

of loading path and the libraries owned by Android system and

DiPrint, we search “/proc/[pid]/maps” file to find the suspicious

library that could provide native hooking.

7MultiDroid is the underlying virtualization engine of LBE Parallel Space

6 DIPRINT IMPLEMENTATION

To the best of our knowledge, we are the first academic paper

to provide a swift response to the emerging threats raised by the

popular dual-instance apps. The prototype of our approach, DiPrint,

contains two components: fingerprinting feature generation (Fig-

ure 5) and runtime dual-instance app detection. The whole tool

includes 697 lines of python code, 524 lines of Java code, and 31 lines

of C code. In the static analysis of fingerprinting feature generation,

DiPrint adopts Apktool v2.3.4 [63] to reverse engineer Android

APK files on computer and gets the bytecode and manifest of apps

beforehand. To retrieve information of permissions, hook methods,

and dynamic-link libraries, we parse the related files with python

script. In the dynamic analysis, DiPrint adopts runtime check and

exception tracking on-device based on the information extracted

from the static analysis. In the runtime dual-instance app detection,

developers only need to invoke the detection method by creating

an object of DiPrint Class without the modification and root of An-

droid system, which is lightweight and convenient for third-party

developers.

1 DiPrint diprint = new DiPrint();
2 if (diprint.detect())
3 Notify users or Terminate;

Afterward, developers could select different solutions once DiPrint

detects the existence of dual-instance app environment, such as

alerting users, limiting sensitive functions or terminating execution.

7 EVALUATION

We perform our experiments with several objectives in mind.

First and foremost, we want to evaluate whether DiPrint’s fin-

gerprinting features are effective to identify dual-instance apps,

including both commercial and malicious apps. We also test the

false positives when DiPrint is running on various Android devices.

After that, we conduct a comparative evaluation to demonstrate

the traditional detection heuristics of Android sandboxes do not

work on dual-instance apps. At last, we discuss DiPrint’s robustness

against evasions.

7.1 Experimental Setups

Commercial Dual-Instance Apps. We select commercial dual-

instance apps from popular Android application markets and get rid

of the crashed ones during running. We attribute these failures to

the imperfect implementation of the underlying virtualization en-

gine, which is a sophisticated system program. In addition to Google

Play, we also include another three markets (1Mobile Market [1],



Table 3: The distribution of dual-instance apps in four pop-
ular Android App stores.

App Store Google 1Mobile Tencent Qihoo Total

Number 28 4 4 6 42
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Figure 6: Exponential growth of dual-instance apps from
May 2017 to December 2018.

Tencent App Gem [60], and Qihoo 360 Mobile Assistant [49]). Fi-
nally, we get a total of 42 dual-instance apps, and the distribution is
shown in Table 3. To demonstrate the popularity of dual-instance
apps, we compare the download numbers of the apps that are on the
market in both May 2017 and December 2018. As shown in Figure 6,
we can see an exponential growth for most of them. The downloads
of 57% of them increase at least one order of magnitude (e.g., from
500, 000 to 5 million). The most prominent one even bumps up its
downloads to a hundredfold.
Real Android Systems. Testin8 is an app testing service and pro-
vides on-demand testing platforms. We test DiPrint on Testin to
evaluate DiPrint’s false positives over a variety of real Android
devices. In total, DiPrint is launched in 109 real systems of differ-
ent device brands, and the Android versions range from 4.0 to 9.0.
Table 4 lists the examples of tested Android devices, which span a
wide spectrum of Android versions and brands.
AndroidMalware.As newAndroid malware has begun exploiting
the innovation of application-level virtualization, we collect top
Android malware samples that are active in September 2018 (2, 243
in total) from a leading security company. The only prior knowledge
we have is that this malware dataset contains virtualization-based
malware. After our experiment, we submit our detection results
to that security company and compare with the analysis results
from security professionals. As common malware could not load
guest apps as virtualization-based malware, we cannot run DiPrint
directly on top of them. We leverage Android Asset Packaging Tool
to retrieve permission information directly from malware samples
and detect the other 5 features dynamically by linking the Android
device to a computer with Android Debug Bridge tool. In this way,
we could get the running information of malware samples and
detect virtualization-based malware.
8https://www.testin.net

Table 4: Examples of real Android systems in Testin.

Android Version Device Number Device Brand

4.0 - 4.4.4 33 Huawei G620, Redmi 1S,
Galaxy Core Max, ...

5.0 - 5.1.1 24 Galaxy Note 3, OPPO A33,
Huawei Mate 7, ...

6.0 - 6.0.1 10 vivo Y66L, letv le 2,
Nubia Z11, ...

7.0 - 7.1.2 26 Galaxy S7 Edge, vivo X9s,
Xiaomi Max 2, ...

8.0 - 8.1.0 14 Huawei P20, OnePlus 3,
Lenovo Z5, ...

9.0 2 Pixel 2 XL, Pixel

7.2 Experimental Results
Table 5 shows the experimental results of runtime dual-instance

app detection. According to the different underlying virtualiza-
tion engines, we classify commercial dual-instance apps and An-
droid malware into different categories (Category 1∼7). In summary,
DiPrint succeeds in all cases with both zero false positives and zero
false negatives. Besides, DiPrint is able to differentiate dual-instance
apps from real Android systems and traditional application-layer
sandboxes such as Boxify[5] and NJAS[9].
Commercial Dual-Instance Apps.We first reverse engineer the
virtualization engines used by commercial dual-instance apps. We
find that VirtualApp and DroidPlugin are the most popular op-
tions because of their open source. Even so, 47% of them still adopt
custom-made virtualization engines. Among all DiPrint’s finger-
printing features, Feature 1, 3, 4, and 5 show 100% success rate,
which demonstrates their robustness. In spite of this, we still no-
tice the other two features fail in several cases. After further in-
vestigation, we find that some host apps do not load guest app
resources from their subdirectories but from the original path (e.g.,
“/data/app/guest-app/”), causing the failure of Feature 2. However,
the cost of doing this is the dual-instance copies may crash in the
host app environment after the original app updates component in-
formation. The reason is the original component information saved
in the host app does not match the latest version of APK. In con-
trast, loading guest apps from the subdirectories of host app (e.g.,
“/data/data/host-app/data/app/guest-app/”) can avoid this update
problem by manually copying the updated version to the subdirec-
tories of host app. As for the failure of Feature 6 (suspicious lib to
provide native hooking), some dual-instance apps use Java hooking
instead of native hooking, which does not need to inject native
hooking libraries into the process of guest app.
Virtualization-based Malware. By runtime dynamic detection,
we find that about 17.0% of active malware samples in September
2018 are virtualization-based malware. The third-party security
company confirmed our detection results. DiPrint’s accuracy com-
petes with security professionals but with much smaller overhead
for static analysis security company adopts needs more time to
parse APKs and analyze code. Compared with security companies,
DiPrint detects vulnerable environment dynamically with more
timely warnings to users and a more convenient integrating way to
developers. For the results of fingerprinting feature hit, we only find



Table 5: The effectiveness experiment of runtime dual-instance app detection. The columns 3∼8 showDiPrint’s fingerprinting
feature (see Table 2) hit numbers. “Y” means that a fingerprinting feature hit, and “N” indicates a fingerprinting feature miss.
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Real Android Systems2 109 0 0 0 0 0 0 0.22 None

Commercial Dual-Instance Apps
Category 1 15 15 15 15 15 15 13 0.41 VirtualApp
Category 2 5 5 3 5 5 5 3 0.28 DroidPlugin
Category 3 2 2 2 2 2 2 2 0.52 MultiDroid
Category 4 20 20 14 20 20 20 13 0.33 Custom-made Engines3

Android Malware Samples
Category 5 294 294 294 294 294 294 147 0.29 VirtualApp
Category 6 63 63 63 63 63 63 42 0.37 DroidPlugin
Category 7 24 24 24 24 24 24 16 0.43 Custom-made Engines
Non-Virtualization-Based Malware 1,862 0 0 0 0 0 0 0.21 None

Representative Examples
Boxify[5] Y Y N Y Y Y N/A4

NJAS[9] Y Y N N Y Y N/A4

com.in.parallel.accounts (GooglePlay) Y Y Y Y Y Y 0.32 VirtualApp
com.ludashi.dualspace (GooglePlay) Y N Y Y Y Y 0.29 VirtualApp
com.qihoo.magic (360) Y Y Y Y Y Y 0.14 DroidPlugin
com.lbe.parallel.intl (GooglePlay) Y Y Y Y Y Y 0.26 MultiDroid
com.youlong.multiaccount (GooglePlay) Y N Y Y Y Y 0.36 Custom-made Engine
com.excelliance.multiaccount (GooglePlay) Y Y Y Y Y Y 0.33 Custom-made Engine
Malware 1: com.twittre.android Y Y Y Y Y Y 0.23 VirtualApp
Malware 2: PluginPhantom Y Y Y Y Y Y 0.41 DroidPlugin
Active Attacker5 N N N Y Y N 0.81 VirtualApp

1We list the average detection time for each dataset.
2Real Android Systems: DiPrint’s detection results for 109 real Android systems from Testin.
3Custom-made Engine is the dual-instance app context framework that is made by the developer and has classical characteristics.
4Both Boxify and NJAS are not available to us. We infer the detection results according to their system designs.
5Active attackers can adopt possible bypassing ways once DiPrint is known.

some outliers in the feature of native hooking libraries. Another
interesting fact is up to 94% of virtualization-based malware rely on
VirtualApp or DroidPlugin. Due to the complexity of application-
level virtualization engine, its development cost is relatively high.
Therefore, malware authors would rather reuse the available solu-
tions to make a quick profit.

We further inspect the identified virtualization-based malware.
We find that 59% of them launch phishing attacks and steal user’s
private data, and the others disguise themselves as legal game
apps to hijack payment information when users purchase in-game
virtual goods. We submit all of the 2, 243 malware to VirusTotal,
and the anti-virus detection rates of virtualization-based malware
samples are much lower than other malware. VirusTotal has 60
malware scanning services to detect uploaded samples, but less
than 15 malware scanning services are able to label each sample we
submit as malware or PUPs. Moreover, no single anti-virus scanner
can recognize all of the virtualization-based malware in Category
5∼7.

Real Android Systems, Boxify, NJAS, and Representative Ex-
amples. The first line of Table 5 summarizes the detection results
on 109 real Android devices provided by Testin. DiPrint does not
generate any false alarm because none of Android devices matches
any DiPrint’s fingerprinting feature. We are also interested in know-
ing DiPrint’s results against two traditional application-level virtu-
alization sandboxes, Boxify [5] and NJAS [9]. However, neither of
them is available to us. We have to infer DiPrint’s results according
to their implementation principles. Both Boxify and NJAS reveal
the following four similar features with dual-instance apps: 1) the
processes of guest apps are created by the host app, which means
we can find the existence of host app in the process memory of
guest app; 2) a host app also needs to load dex and dynamic-link
libraries from its subdirectory or another directory; 3) they inter-
cept system services and the starting process of four components;
4) they use GOT hook or ptrace mechanism to create dynamic-link
libraries and inject them to the process of guest app. Therefore,
they reveal the same detection results in fingerprinting feature 1,
2, 5, and 6. However, the major difference is that guest apps have



different UIDs with the host app in both Boxify and NJAS (feature
3). Besides, only Boxify’s guest app can have excessive permissions,
while NJAS allows a customized permission set (feature 4). Also,
we present detection details for six top dual-instance apps with
high downloads in app markets and two famous virtualization-
based malware mentioned in Section 1: one is to steal users’ Twitter
credentials, and the other can evade the anti-virus scanners.
Overhead. The last but one column of Table 5 shows the detection
time. Overall, DiPrint’s runtime detection overhead is negligible
with an average of 0.36 ms. DiPrint’s another component, finger-
printing feature generation, is a one-time effort. It can complete
the process of fingerprinting feature generation in 30 seconds.

7.3 Comparison with Traditional
Fingerprinting Features

This section tests whether traditional fingerprinting features of
dynamic analysis environment can still recognize the virtualization
engines of dual-instance apps. It turns out that the fingerprinting
features of Android sandboxes are completely ineffective for dual-
instance apps.

As Android sandboxes are mainly used for dynamic malware
analysis, they need a system-level virtualization solution to restrict
the effects of malicious behavior. One fundamental challenge of
system-level virtualization is to realistically simulate various hard-
ware effects [24]. That is the reason why most detection heuristics
of Android sandboxes attempt to find the hardware-related discrep-
ancies with real systems. DroidAnalyst [23] and Sand-Finger [42]
propose a taxonomy of detection methods to check the presence of
sandbox environments. We sum up the detection heuristics from
these two work into the features shown in Table 6. In addition, we
also include the two hypervisor heuristics proposed by Thanasis
et al [47]: virtual PC update and cache consistency. They are fairly
robust to detect QEMU-based emulators. We compare the results
of traditional sandbox fingerprinting features among a sandbox,
VirtualApp, and a real Android device. As shown in Table 6, these
features can identify the sandbox but fail to distinguish between
VirtualApp and a real system.

Mirage [10] presents several dynamic evasion attacks through
another common hardware in mobile device, accelerometer. In
general, the return values of accelerometer are different between
emulators and real devices. We run an emulator and VirtualApp
on the same Android device (360 N4S with Android 6.0.1) and
check their accelerometer return values. Table 7 shows that, not
surprisingly, VirtualApp returns the same results as the real system.
It is worth noting that DroidPlugin exhibits the same results with
VirtualApp.

7.4 Feature Robustness
Sandbox evasion and anti-evasion [44, 70] are just like a never-

ending cat and mouse game. DiPrint is conceptually simple. We
have demonstrated its high accuracy and efficiency, but a natural
question is: how a skilled attacker can impede DiPrint once our ap-
proach is known. This section discusses the robustness of DiPrint’s
fingerprinting features.

In general, a dual-instance app installs and launches guest apps
from its own subdirectory. To bypass Feature 2, host apps could

read dex files and dynamic-link libraries directly from the original
path of guest apps. However, this evasion is at the cost of stability.
When a guest app is loaded for the first time, the host app will
cache guest app’s information such as Application, Package, and
components in order to launch quickly in the next time. If the
original app updates with the modification of Application, Package
or components, then the APK file (including dex file and dynamic-
link libraries) in the original path will be changed as well. As a
result, if host apps read APK file directly from the original path of
guest apps, the information of the code will be different from the
cache saved in host app, which may lead to the crash of guest app. In
contrast, if the host app copies the original APK to its subdirectory,
it will always load guest app from the code that does not change
unless users reinstall the latest version of original app.

Feature 6 is another feature that can be defeated because Java
hooking mechanism provides an alternative to native hooking. Nev-
ertheless, the other features are quite robust as they do not mis-
match any case in our evaluation. Feature 1, 3 and 4 are the basic
design of dual-instance app; Feature 5 comes from the system ser-
vice proxies used in dual-instance apps. The possible way to evade
them requires the design changes of virtualization mechanism. To
bypass feature 1, 3 and 5, a determined attacker can hide the trace
of hooking or tamper with hooking results with another layer of
hooking. Attackers can hook the memory-reading API and process-
reading API and return without the host app’s information to hide
feature 1. Similarly, attackers could bypass feature 3 by hooking
the shell-execution API and returning a fake UID that is different
from the other app’s UIDs. As for feature 5, host app could hide
the information of itself by rewriting the Android stack trace when
guest app tries to catch exceptions. However, this is never a trivial
task considering hooking happens everywhere in dual-instance
apps, which always leaves abnormal traces in the stack trace. In ad-
dition, because of the shared UID, guest apps could use all common
permissions unless users refuse to grant the permissions to host
app that will result in blocking the normal functions. DiPrint not
only checks the undeclared permissions by calling "checkCallingOr-
SelfPermission", but also conducts actions that need permissions.
Hence, feature 4 cannot be bypassed. The last line of Table 5 repre-
sents the worst case that an active attacker can achieve. He succeeds
in bypassing four features, but the left two features, permissions
and stack tracking, are resilient to evasions.

8 DISCUSSION & FUTUREWORK
Due to the huge demand from mobile users, blocking dual-

instance service to avoid the potential risks is a short-sighted so-
lution. We put forward suggestions for both Android developers
and users to mitigate this emerging threat. For Android developers,
they can integrate DiPrint in their code to remind users that the app
is running in an insecure virtualized environment. When normal
users are using dual-instance apps, they should not load a large
number of apps at the same time. Especially, to prevent privacy leak
and property loss, they should not run critical apps such as mobile
payment and banking apps in a dual-instance app. Any unidentified
or suspicious app cannot be loaded either to avoid malicious guest
apps. As malware could hide itself as a dual-instance app to lure
users into installing it, mobile phone manufacturers can customize



Table 6: Comparative evaluation with traditional sandbox fingerprinting features. VirtualApp returns the same results as a
real Android device.

Category Features Sandbox VirtualApp

a. Hardware

Sensor (Bluetooth, Light Sensor) N1 Y
Build.HARDWARE Goldfish/ranchu Real_Brand2

Build.TAGS test-keys release-keys

Other build properties
"generic", "unknown",
"sdk", "Genymotion", ... N/A3

b. Network

IP address 10.0.2/24 Real_IP2
successful Ping N Y

Network interface eth0
wlan0, sit0,

rmnet_data7, lo, ...

c. PhoneID
IMEI 000000000000000 Real_IMEI2
IMSI 310260000000000 Real_IMSI2

Network provider N Y

d. File Existing files
/init.goldfish.rc,
/proc/misc, ...

/sys/devices/virtual/switch,
/proc_uid_stat, ...

e. Dynamic heuristics

Dynamic accelerometer stay static change dynamically
Power management stay static change dynamically

Running time4 less than 10min more than 10min
Debugger connected Y N

f. QEMU heuristics [47] Virtual PC update N Y
Cache consistency N Y

1“Y” indicates that sandbox or VirtualApp does have the feature, and “N” indicates the absence.
2Real_brand, Real_IP, Real_IMEI, and Real_IMSI are specific values in different Android devices.
3N/A: no keywords.
4Real devices often run longer than 10 minutes, but sandboxes are often reset after each analysis.

Table 7: Comparative evaluation of detecting accelerometer
return values.

Emulator Real System VirtualApp

getName1 Goldfish 3-axis Accelerometer BMI160 BMI160
getVendor2 Android Open sorce project BOSCH BOSCH

getFifoMaxEventCount3 0 10000 10000
1Name of accelerometer.
2Vendor of accelerometer.
3The max number of events handled in batches by accelerometer.

a benign dual-instance app in their Android systems so that users
do not download untrusted third-party tools. Currently, some mo-
bile phone manufacturers, such as Xiaomi and HUAWEI, already
have customized OS-level virtualization solutions. Because of the
higher privilege, the security of OS-level virtualization is also hard
to guarantee. As the principle of application-layer virtualization
and its security threats is totally different from OS-level’s, we will
take it into consideration in future work.

Our approach could detect a dual-instance app effectively, but
it can not determine whether the environment is malicious or
not. Especially, malware may bypass anti-virus scanners by hid-
ing malicious behavior in multiple guest apps. We plan to study
virtualization-based malware in depth and put forward more fine-
grained detection features. In addition to dynamic detection, the
static analysis of APK file before installation is another choice to
defend against virtualization-based malware in advance. We leave
it as our future work.

9 CONCLUSION
The popular virtualization-based dual-instance apps have be-

come a “double-edged sword”, as they bring new security threats
to users. Under dual-instance app context, malicious apps are able
to easily elevate privileges, steal sensitive information, and hijack
benign apps. Therefore, critical apps such as banking and social net-
working apps should be aware of being launched by a dual-instance
app. In this paper, we first study the security risks of dual-instance
apps in depth. To detect dual-instance app at run time, we have
studied the common properties of dual-instance app context and
extracted effective heuristics as fingerprinting features. The ex-
perimental results show that our open source tool, DiPrint, can
efficiently detect all dual-instance apps collected from popular An-
droid app markets and virtualization-based malware with zero false
positives. Our work exposes the severe security threats raised by
dual-instance apps. We do hope dual-instance app developers and
security companies will pay more attention to the existing security
flaws and the new trend of virtualization-based malware.
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