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Abstract
We present a convergence rate analysis for biased stochastic gradient descent (SGD),
where individual gradient updates are corrupted by computation errors. We develop
stochastic quadratic constraints to formulate a small linear matrix inequality (LMI)
whose feasible points lead to convergence bounds of biased SGD. Based on this LMI
condition, we develop a sequential minimization approach to analyze the intricate
trade-offs that couple stepsize selection, convergence rate, optimization accuracy, and
robustness to gradient inaccuracy. We also provide feasible points for this LMI and
obtain theoretical formulas that quantify the convergence properties of biased SGD
under various assumptions on the loss functions.
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1 Introduction

Empirical risk minimization (ERM) is a prevalent topic in machine learning research
[7,36]. Ridge regression, �2-regularized logistic regression, and support vector
machines (SVM) can all be formulated as the following ERM problem

min
x∈Rp

g(x) = 1

n

n∑

i=1

fi (x), (1)

where g : R
p → R is the objective function. Stochastic gradient descent (SGD)

[4,6,26] has been widely used for ERM to exploit redundancy in the training data. The
SGD method applies the update rule

xk+1 = xk − αkuk, (2)

where uk = ∇ fik (xk) and the index ik is uniformly sampled from {1, 2, . . . , n} in
an independent and identically distributed (IID) manner. The convergence properties
of SGD are well understood. Under strong convexity of g and smoothness of fi ,
SGD with a diminishing stepsize converges sublinearly, while SGD with a constant
stepsize converges linearly to a ball around the optimal solution [15,22–24]. In the
latter case, epochs can be used to balance convergence rate and optimization accuracy.
Some recently-developed stochastic methods such as SAG [27,28], SAGA [11], Finito
[12], SDCA [30], and SVRG [19] converge linearly with low iteration cost when
applied to (1), though SGD is still popular because of its simple iteration form, low
memory footprint, and nice generalization property. SGD is also commonly used as
an initialization for other algorithms [27,28].

In this paper, we present a general analysis for biased SGD. This is a version
of SGD where the gradient updates ∇ fik (xk) are corrupted by additive as well as
multiplicative noise. In practice, such errors can be introduced by sources such as:
inaccurate numerical solvers, digital round-off errors, quantization, or sparsification.
The biased SGD update equation is given by

xk+1 = xk − αk(uk + ek). (3)

Here, uk = ∇ fik (xk) is the individual gradient update and ek is an error term. We
consider the following error model, which unifies the error models in [3]:

‖ek‖2 ≤ δ2‖uk‖2 + c2, (4)

where δ ≥ 0 and c ≥ 0 bound the relative error and the absolute error in the oracle
computation, respectively. If δ = c = 0, then ek = 0 and we recover the standard
SGD setup. The model (4) unifies the error models in [3] since:
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1. If c = 0, then (4) reduces to a relative error model, i.e.

‖ek‖ ≤ δ‖uk‖ (5)

2. If δ = 0, then ek is a bounded absolute error, i.e.

‖ek‖ ≤ c (6)

We assume that both δ and c are known in advance. We make no assumptions about
how ek is generated, just that it satisfies (4). Thus, we will seek a worst-case bound
that holds regardless of whether ek is random, set in advance, or chosen adversarially.

Suppose the cost function g admits a unique minimizer x�. For standard SGD
(without computation error), uk is an unbiased estimator of∇g(xk). Hence undermany
circumstances, one can control the final optimization error ‖xk −x�‖ by decreasing the
stepsize αk . Specifically, suppose g is m-strongly convex. Under various assumptions
on fi , one can prove the following typical bound for standard SGD with a constant
stepsize α [5,22,24]:

E‖xk − x�‖2 ≤ ρ2k
E‖x0 − x�‖2 + H� (7)

where ρ2 = 1 − 2mα + O(α2) and H� = O(α). By decreasing stepsize α, one can
control the final optimization error H� at the price of slowing down the convergence
rate ρ. The convergence behavior of biased SGD is different. Since the error term
ek can be chosen adversarially, the sum (uk + ek) may no longer be an unbiased
estimator of∇g(xk). The error term ek may introduce a biaswhich cannot be overcome
by decreasing stepsize α. Hence the final optimization error in biased SGD heavily
depends on the error model of ek . In this paper, we quantify the convergence properties
of biased SGD (3) with the error model (4) using worst-case analysis.

Main contribution. The main novelty of this paper is that our analysis simultaneously
addresses the relative error and the absolute error in the gradient computation. We
formulate a linear matrix inequality (LMI) that directly leads to convergence bounds
of biased SGD and couples the relationship between δ, c, αk and the assumptions on
fi . This convex program can be solved both numerically and analytically to obtain var-
ious convergence bounds for biased SGD. Based on this LMI, we develop a sequential
minimization approach that can analyze biased SGD with an arbitrary time-varying
stepsize. We also obtain analytical rate bounds in the form of (7) for biased SGD with

constant stepsize. However, our bound requires ρ2 = 1 − m2−δ2 M̃
m α + O(α2) 1 and

H� = c2+2δ2G2

m2−δ2 M̃
+ O(α) where M̃ and G2 are some prescribed constants determined

by the assumptions on fi . Based on this result, there is no way to shrink H� to 0. This
is consistent with our intuition since the gradient estimator as well as the final opti-
mization result can be biased. We show that this “uncontrollable” biased optimization

1 When δ = c = 0, this rate bound does not reduce to ρ2 = 1− 2mα + O(α2). This is due to the inherent
differences between the analyses of biased SGD and the standard SGD. See Remark 4 for a detailed
explanation.
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error is c2+2δ2G2

m2−δ2 M̃
. The resultant analytical rate bounds highlight the design trade-offs

for biased SGD.
The work in this paper complements the ongoing research on stochastic optimiza-

tionmethods, whichmainly focuses on the case where the oracle computation is exact.
The stepsize selection in biased SGDmust address the trade-offs between speed, accu-
racy, and inexactness in the oracle computations. Our analysis brings new theoretical
insights for understanding such trade-offs in the presence of biased gradient com-
putation. It is also worth mentioning that the robustness of full gradient methods
with respect to gradient inexactness has been extensively studied [9,13,29]. However,
addressing a unified error model that combines the absolute error and the relative error
is still non-trivial. Our analysis complements the existing results in [9,13,29] by pro-
viding a unified treatment of the error model (4). Notice that it is important to include
the relative error model in the analysis since it covers the numerical round-off error as
a special case. If one treats the round-off error as an absolute error with time-varying
ck , then the specific value of ck will depend on the state xk and can not be fixed before-
hand. In contrast, if one models the round-off error as a relative error, the value δ can
be fixed as a constant beforehand.

The approach taken in this paper can be viewed as a stochastic extension of the
work in [21,25] that analyzes the linear convergence rates of deterministic optimiza-
tion methods (gradient descent, Nesterov’s method, ADMM, etc.) using quadratic
constraints and semidefinite programs. Notice that the analysis for (deterministic)
biased gradient descent in [21] is numerical. In this paper, we derive analytical formu-
las quantifying the convergence properties of the biased SGD. It is worth mentioning
that one can combine jump system theorywith quadratic constraints to analyze SAGA,
Finito, and SDCA in a unified manner [18]. However, the analysis in [18] does not
directly address the trade-offs between the convergence speed ρ2 and the optimization
error H�, and cannot be easily tailored for biased SGD. Another related line of work
that uses semidefinite programs to analyze optimization methods is built upon the idea
of formulating worst-case analysis as the so-called performance estimation problem
(PEP) [14,33,34]. It is recognized that there is a fundamental connection between the
quadratic constraint approach and the PEP framework [35]. Recently, the PEP frame-
work in [14,33,34] has been extended for the stochastic setup [32]. In addition, it is
known that the PEP approach can also be applied to study the bias in the (determinis-
tic) gradient descent method [10]. It is possible to extend the results in [10,32] for a
PEP-based analysis of biased SGD. This is an interesting topic for future research.

The rest of the paper is organized as follows. In Sect. 2, we formulate LMI testing
conditions for convergence analysis of biased SGD. The resultant LMIs are then solved
sequentially, yielding recursive convergence bounds for biased SGD. In Sect. 3, we
simplify the analytical solutions of the resultant sequential LMIs and derive analytical
rate bounds in the form of (7) for biased SGD with a constant stepsize. Our results
highlight various design trade-offs for biased SGD. Finally, we show how existing
results on standard SGD (without gradient computation error) can be recovered using
our proposed LMI approach, and discuss how a time-varying stepsize can potentially
impact the convergence behaviors of biased SGD (Sect. 4).
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1.1 Notation

The p × p identity matrix and the p × p zero matrix are denoted as Ip and 0p,
respectively. The subscript p is occasionally omitted when the dimensions are clear
by the context. When a matrix P is negative semidefinite, we will use the notation
P � 0. The Kronecker product of two matrices A and B is denoted A ⊗ B.

Definition 1 (Smooth functions) A differentiable function f : Rp → R is L-smooth
for some L > 0 if the following inequality is satisfied:

‖∇ f (x) − ∇ f (y)‖ ≤ L ‖x − y‖ for all x, y ∈ R
p.

Definition 2 (Convex functions) Let F(m, L) for 0 ≤ m ≤ L ≤ ∞ denote the set
of differentiable functions f : Rp → R satisfying the following inequality for all
x, y ∈ R

p.

[
x − y

∇ f (x) − ∇ f (y)

]T [ −2mIp (1 + m
L )Ip

(1 + m
L )Ip − 2

L Ip

] [
x − y

∇ f (x) − ∇ f (y)

]
≥ 0. (8)

Note thatF(0,∞) is the set of all convex functions,F(0, L) is the set of all convex L-
smooth functions, F(m,∞) with m > 0 is the set of all m-strongly convex functions,
and F(m, L) with m > 0 is the set of all m-strongly convex and L-smooth functions.
If f ∈ F(m, L) with m > 0, then f has a unique global minimizer.

Definition 3 Let S(m, L) for 0 ≤ m ≤ L ≤ ∞ denote the set of differentiable
functions g : Rp → R having some global minimizer x� ∈ R

p and satisfying the
following inequality for all x, y ∈ R

p.

[
x − x�

∇g(x)

]T [ −2mIp (1 + m
L )Ip

(1 + m
L )Ip − 2

L Ip

] [
x − x�

∇g(x)

]
≥ 0. (9)

If g ∈ S(m, L) with m > 0, then x� is also the unique stationary point of g. It is
worth noting that F(m, L) ⊂ S(m, L). In general, a function g ∈ S(m, L) may not
be convex. If g ∈ S(m,∞), then g may not be smooth. The condition (9) is similar
to the notion of one-point convexity [2,8,31] and star-convexity [20].

1.2 Assumptions

Referring to the problem setup (1), we will adopt the general assumption that g ∈
S(m,∞) with m > 0. So in general, g may not be convex. We will analyze four
different cases, characterized by different assumptions on individual fi : (I) Bounded
shifted gradients:2 ‖∇ fi (x) − mx‖ ≤ β for all x ∈ R

p; (II) fi is L-smooth; (III)
fi ∈ F(0, L); (IV) fi ∈ F(m, L).

2 This case is a variant of the common assumption 1
n

∑n
i=1 ‖∇ fi (x)‖2 ≤ β. One can check that this case

holds for several �2-regularized problems including SVM and logistic regression.
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Assumption I is a natural assumption for SVM3 and logistic regression while
Assumptions II, III, or IV can be used for ridge regression, logistic regression, and
smooth SVM. The m assumed in cases I and IV is the same as the m used in the
assumption on g ∈ S(m,∞).

2 Analysis framework

2.1 An LMI condition for the analysis of biased SGD

To analyze the convergence properties of biased SGD, we present a small linear matrix
inequality (LMI) whose feasible points directly lead to convergence bounds of the
biased SGD (3) with the error model (4).

Theorem 1 (Main Theorem) Consider biased SGD (3) with g ∈ S(m,∞) for some
m > 0, and let x� be the unique global minimizer of g. Given one of the four conditions

on fi and the corresponding M =
[
M11 M12
M21 M22

]
and G from Table 1, if the following

holds for some choice of nonnegative λk, νk, μk ,ρk ,

⎡

⎢⎢⎣

−ρ2
k − 2νkm + λkM11 νk + λkM12 −1 0

νk + λkM21 μkδ
2 + λkM22 αk 0

−1 αk −1 αk

0 0 αk −μk

⎤

⎥⎥⎦ � 0 (10)

where the inequality is taken in the semidefinite sense, then the biased SGD iterates
satisfy

E‖xk+1 − x�‖2 ≤ ρ2
k E‖xk − x�‖2 + (2λkG

2 + μkc
2) (11)

Proof The proof is based on extending the quadratic constraint approach in [21] to the
stochastic case. Specifically, one can show that for each of the four conditions on fi
and the corresponding M and G in Table 1, the following quadratic constraint holds.

E

[
xk − x�

uk

]T
(M ⊗ Ip)

[
xk − x�

uk

]
≥ −2G2. (12)

Then one can use some standard arguments from the controls literature to prove the
statement in this theorem. A detailed proof is presented in the appendix. �

Remark 1 Under mild technical assumptions, the result in Theorem 1 can be extended
for the problem in the more general form of minx {E fi (x)}, since its proof does not
depend on the cardinality of the index set that i is sampled from. For simplicity, our
paper focuses on the finite sum setup.

3 The loss functions for SVMare non-smooth, and uk is actually updated using the subgradient information.
For simplicity, we abuse our notation and use ∇ fi to denote the subgradient of fi for SVM problems.
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Notice (11) canbeused to prove various types of convergence results.Wewill briefly
discuss this in Remark 2 and provide more details in later sections. For a fixed δ, the
matrix in (10) is linear in (ρ2

k , νk, μk, λk, αk), so (10) is a linear matrix inequality
(LMI) whose feasible set is convex and can be efficiently searched using standard
semidefinite program solvers. For example, one can implement the LMIs using CVX,
a package for specifying and solving convex programs [16,17]. Since the matrix in
(10) is even linear in αk , so the LMI (10) can be used to study the impacts of adaptive
stepsize rules on the performance of biased SGD from a theoretical viewpoint. One
may also obtain analytical formulas for certain feasibility points of the LMI (10) due
to its simple form. Our analytical bounds for biased SGD are based on the following
result.

Corollary 1 Choose one of the four conditions on fi and the corresponding M =[
M11 M12
M21 M22

]
and G from Table 1. Also define M̃ = M11 + 2mM12. Consider biased

SGD (3)with g ∈ S(m,∞) for some m > 0, and let x� be the unique global minimizer
of g. Suppose the stepsize satisfies the bound 0 < M21αk ≤ 1 4(which is equivalent
to the following upper bound on αk for the four cases being considered in this paper).

Case I II III IV

M21 m 0 L L + m
M̃ = M11 + 2mM12 m2 2L2 2mL 2m2

αk bound 1
m ∞ 1

L
1

L+m

Then biased SGD (3) with the error model (4) satisfies the bound (11) with the
following nonnegative parameters

μk = α2
k (1 + ζ−1

k ) (13a)

λk = α2
k (1 + ζk)(1 + δ2ζ−1

k ) (13b)

ρ2
k = (1 + ζk)(1 − 2mαk + M̃α2

k (1 + δ2ζ−1
k )) (13c)

where ζk is a parameter that satisfies ζk > 0 and ζk ≥ αk M21δ
2

1−αk M21
. Each choice of ζk

yields a different bound in (11).

Proof We further define

νk = αk(1 + ζk)(1 − αkM21(1 + δ2ζ−1
k )) (14)

We will show that (13) and (14) are a feasible solution for (10). We begin with (10)
and take the Schur complement with respect to the (3, 3) entry of the matrix, leading
to

4 Ensuring such a condition in practice can be challenging for many cases since it heavily relies on the
estimations of problem parameters.
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⎡

⎣
1 − ρ2

k − 2νkm + λkM11 νk + λkM12 − αk −αk

νk + λkM21 − αk μkδ
2 + λkM22 + α2

k α2
k−αk α2

k α2
k − μk

⎤

⎦ � 0 (15)

Examining the (3, 3) entry, we deduce that μk > α2
k , for if we had equality instead,

the rest of the third row and column would be zero, forcing αk = 0. Substituting
μk = α2

k (1+ ζ−1
k ) for some ζk > 0 and taking the Schur complement with respect to

the (3, 3) entry, we see (15) is equivalent to

[
1 − ρ2

k − 2νkm + λkM11 + ζk νk + λkM12 − αk(1 + ζk)

νk + λkM21 − αk(1 + ζk) λkM22 + α2
k (1 + ζk)(1 + δ2ζ−1

k )

]
� 0 (16)

In (16), ζk > 0 is a parameter that we are free to choose, and each choice yields a
different set of feasible tuples (ρ2

k , λk, μk, νk). One way to obtain a feasible tuple is
to set the left side of (16) equal to the zero matrix. This shows (10) is feasible with the
following parameter choices.

μk = α2
k (1 + ζ−1

k ) (17a)

λk = −α2
k (1 + ζk)(1 + δ2ζ−1

k )M−1
22 (17b)

νk = αk(1 + ζk) − λkM21 (17c)

ρ2
k = 1 − 2νkm + λkM11 + ζk (17d)

Since we always have M22 = −1 in Table 1, it is straightforward to verify that (17) is
equivalent to (13) and (14). Notice that we directly have μk ≥ 0 and λk ≥ 0 because
ζk > 0. In order to ensure ρ2

k ≥ 0 and νk ≥ 0, we must have 1 − 2mαk + M̃α2
k (1 +

δ2ζ−1
k ) ≥ 0 andαkM21(1+δ2ζ−1

k ) ≤ 1, respectively. The first inequality always holds
because M̃ ≥ m2 and we have 1− 2mαk + M̃α2

k (1+ δ2ζ−1
k ) ≥ 1− 2mαk +m2α2

k ≥
(1 − mαk)

2 ≥ 0. Based on the conditions 0 ≤ αkM21 < 1 and ζk ≥ αk M21δ
2

1−αk M21
, we

conclude that the second inequality always holds as well. Since we have constructed
a feasible solution to the LMI (10), the bound (11) follows from Theorem 1. �


Given αk , Corollary 1 provides a one-dimensional family of solutions to the LMI
(10). These solutions are given by (13) and (14) and are parameterized by the auxiliary
variable ζk . Corollary 1 does not require ρk ≤ 1. Hence it actually does not impose
any upper bound on αk in Case II. Later we will impose refined upper bounds on αk

such that the bound (11) can be transformed into a useful bound in the form of (7).
We also want to mention that the stepsize bounds in the above corollary are consistent
with the existing results in the machine learning literature. For example, for Case III,
the stepsize bound for the standard SGD method is known to be 1/L (see Theorem
2.1 in [24]).

Remark 2 Wecan use (11) to obtain various types of convergence results. For example,
when a constant stepsize is used, i.e.αk = α for all k, a naive analysis can be performed
by setting ζk = ζ for all k. In this case, (ρk, νk, μk, λk) are set to be constants
(ρ, ν, μ, λ). Then, (10) and (11) become independent of k. We can rewrite (11) as
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E‖xk+1 − x�‖2 ≤ ρ2
E‖xk − x�‖2 + (2λG2 + μc2). (18)

If ρ < 1, then we may recurse (18) to obtain the following convergence result:

E‖xk − x�‖2 ≤ ρ2k
E‖x0 − x�‖2 +

(
k−1∑

i=0

ρ2i

) (
2λG2 + μc2

)

≤ ρ2k
E‖x0 − x�‖2 + 2λG2 + μc2

1 − ρ2 . (19)

The inequality (19) is an error bound of the familiar form (7). Nevertheless, this bound
may be conservative even in the constant stepsize case. To minimize the right-hand
side of (11), the objective function for the semidefinite program (10) at step k should
be chosen as ρ2

k E‖xk − x�‖2 + (2λkG2 + μkc2). Consequently, setting ζk to be a
constant may introduce conservatism even in the constant stepsize case. To overcome
this issue, we will introduce a sequential minimization approach next.

2.2 Sequential minimization approach for biased SGD

Wewill quantify the convergence behaviors of biased SGD by providing upper bounds
for E‖xk − x�‖2. To do so, we will recursively make use of the bound (11). Suppose
δ, c, and G are constant. Define Tk ⊆ R

4+ to be the set of tuples (ρk, λk, μk, νk) that
are feasible points for the LMI (10). Also define the real number sequence {Uk}k≥0
via the recursion:

U0 ≥ E ‖x0 − x�‖2 and Uk+1 = ρ2
kUk + 2λkG

2 + μkc
2 (20)

where (ρk, λk, μk, νk) ∈ Tk . By induction, we can show that Uk provides an upper
bound for the error at timestep k. Indeed, if E ‖xk − x�‖2 ≤ Uk , then byTheorem1,we
have E ‖xk+1 − x�‖2 ≤ ρ2

k E‖xk −x�‖2+2λkG2+μkc2 ≤ ρ2
kUk +2λkG2+μkc2 =

Uk+1. A key issue in computing a useful upper bound Uk is how to choose the tuple
(ρk, λk, μk, νk) ∈ Tk . If the stepsize is constant (αk = α), then Tk is independent of k.
Thus we may choose the same particular solution (ρ, λ, μ, ν) for each k. Then, based
on (19), if ρ < 1 we can obtain a bound of the following form for biased SGD:

E‖xk − x�‖2 ≤ ρ2kU0 + 2λG2 + μc2

1 − ρ2 . (21)

As discussed in Remark 2, the above bound may be unnecessarily conservative.
Because of the recursive definition (20), the bound Uk depends solely on U0 and
the parameters {ρt , λt , μt }k−1

t=0 . So we can seek the smallest possible upper bound by
solving the optimization problem:

U opt
k+1 = minimize

{ρt ,λt ,μt ,νt }kt=0

Uk+1

subject to Ut+1 = ρ2
t Ut + 2λtG

2 + μt c
2 0 ≤ t ≤ k

(ρt , λt , μt , νt ) ∈ Tt 0 ≤ t ≤ k
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A useful fact is that the above optimization problem can be solved in a sequential
manner. Formally, we have

Proposition 1 The following holds for all k.

U opt
k+1 = minimize

(ρ,λ,μ,ν)∈Tk
ρ2U opt

k + 2λG2 + μc2 (22)

Consequently, a greedy approach where Ut+1 is optimized in terms of Ut recursively
for t = 0, . . . , k−1 yields a boundUk that is in fact globally optimal over all possible
choices of parameters {ρt , λt , μt , νt }kt=0.

Proof This optimization problem being considered is similar to a dynamic program-
ming and a recursive solution reminiscent of the Bellman equation can be derived for
the optimal bound Uk .

U opt
k+1

= minimize
(ρ,λ,μ,ν)∈Tk

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

minimize
{ρt ,λt ,μt ,νt }k−1

t=0

Uk+1

subject to Ut+1 = ρ2
t Ut + 2λtG

2 + μt c
2 0 ≤ t ≤ k

(ρt , λt , μt , νt ) ∈ Tt 0 ≤ t < k

(ρ, λ, μ, ν) = (ρk, λk, μk, νk)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= minimize
(ρ,λ,μ,ν)∈Tk

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize
{ρt ,λt ,μt ,νt }k−1

t=0

ρ2Uk + 2λG2 + μc2

subject to Ut+1 = ρ2
t Ut + 2λtG

2 + μt c
2 0 ≤ t < k

(ρt , λt , μt , νt ) ∈ Tt 0 ≤ t < k

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= minimize
(ρ,λ,μ,ν)∈Tk

ρ2U opt
k + 2λG2 + μc2 (23)

Where the final equality in (23) relies on the fact that ρ2 ≥ 0. �


Obtaining an explicit analytical formula for U opt
k is not straightforward, since it

involves solving a sequence of semidefinite programs. However, we can make use of
Corollary 1 to further upper-bound U opt

k . This works because Corollary 1 gives an

analytical parameterization of a subset of Tk . Denote this new upper bound by Ûk . By
Corollary 1, we have:

Ûk+1 = minimize
ζ>0

ρ2Ûk + 2λG2 + μc2

subject to μ = α2
k (1 + ζ−1)

λ = α2
k (1 + ζ )(1 + δ2ζ−1)

ρ2 = (1 + ζ )(1 − 2mαk + M̃α2
k (1 + δ2ζ−1))

ζ ≥ αk M21δ
2

1−αk M21

(24)
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Note that Corollary 1 also places bounds on αk , which we assume are being satisfied
here. The optimization problem (24) is a single-variable smooth constrained problem.
It is straightforward to verify that μ, λ, and ρ2 are convex functions of ζ when ζ > 0.
Moreover, the inequality constraint on ζ is linear, so we deduce that (24) is a convex
optimization problem.

Thus, we have reduced the problem of recursively solving semidefinite programs
(finding U opt

k ) to recursively solving single-variable convex optimization problems

(finding Ûk). Ultimately, we obtain an upper bound on the expected error of biased
SGD that is easy to compute:

E ‖xk − x�‖2 ≤ U opt
k ≤ Ûk (25)

Preliminary numerical simulations suggest that Ûk seems to be equal to U opt
k under

the four sets of assumptions in this paper. However, we are unable to show Ûk = U opt
k

analytically. In the subsequent sections, we will solve the recursion for Ûk analytically
and derive convergence bounds for biased SGD.

2.3 Analytical recursive bounds for biased SGD

We showed in the previous section that E‖xk − x�‖2 ≤ Ûk for biased SGD, where
Ûk is the solution to (24). We now derive an analytical recursive formula for Ûk . Let
us simplify the optimization problem (24). Eliminating ρ, λ, μ, we obtain

Ûk+1 = minimize
ζ>0

ak(1 + ζ−1) + bk(1 + ζ )

subject to ak = α2
k

(
c2 + 2δ2G2 + M̃δ2Ûk

)

bk =
(
1 − 2mαk + M̃α2

k

)
Ûk + 2α2

kG
2

ζ ≥ αk M21δ
2

1−αk M21

(26)

The assumptions on αk from Corollary 1 also imply that ak ≥ 0 and bk ≥ 0. We
may now solve this problem explicitly and we summarize the solution to (26) in the
following lemma.

Lemma 1 Consider biased SGD (3) with g ∈ S(m,∞) for some m > 0, and let x�

be the unique global minimizer of g. Given one of the four conditions on fi and the

corresponding M =
[
M11 M12
M21 M22

]
and G from Table 1, further assume αk is strictly

positive and satisfies M21αk ≤ 1. Then the error bound Ûk defined in (26) can be
computed recursively as follows.

Ûk+1 =
⎧
⎨

⎩

(√
ak + √

bk
)2 √

ak
bk

≥ αk M21δ
2

1−αk M21

ak + bk + ak
1−αk M21
αk M21δ2

+ bk
αk M21δ

2

1−αk M21
otherwise

(27)
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where ak and bk are defined in (26). We may initialize the recursion at any Û0 ≥
E ‖x0 − x�‖2.

Proof In Case II, we have M21 = 0 so the constraint on ζ is vacuously true. Therefore,
the only constraint on ζ in (26) is ζ > 0 and we can solve the problem by setting
the derivative of the objective function with respect to ζ equal to zero. The result is

ζk =
√

ak
bk
. In Cases I, III, and IV, we have M21 > 0. By convexity, the optimal ζk is

either the unconstrained optimum (if it is feasible) or the boundary point (otherwise).
Hence (27) holds as desired. Note that if δ = c = 0, then ak = 0. This corresponds to
the pathological case where the objective reduces to bk(1 + ζ ). Here, the optimum is
achieved as ζ → 0, which corresponds toμ → ∞ in (24). This does not cause a prob-
lem because c = 0 so μ does not appear in the objective function. The recursion (27)
then simplifies to Ûk+1 = bk . �


Remark 3 If M21 = 0 (Case II in Table 1) or if δ = 0 (no multiplicative noise), the
optimization problem (26) reduces to an unconstrained optimization problem whose
solution is

Ûk+1 =
(√

ak + √
bk

)2

=
(

αk

√
c2 + 2δ2G2 + M̃δ2Ûk +

√(
1 − 2mαk + M̃α2

k

)
Ûk + 2G2α2

k

)2

(28)

3 Analytical rate bounds for the constant stepsize case

In this section, we present non-recursive error bounds for biased SGD with constant
stepsize. Specifically, we assume αk = α for all k and we either apply Lemma 1 or
carefully choose a constant ζ in order to obtain a tractable bound for Ûk . The bounds
derived in this section highlight the trade-offs inherent in the design of biased SGD.

3.1 Linearization of the nonlinear recursion

This first result applies to the case where δ = 0 or M21 = 0 (Case II) and leverages
Remark 3 to obtain a bound for biased SGD.

Corollary 2 Consider biased SGD (3) with g ∈ S(m,∞) for some m > 0, and let x�

be the unique global minimizer of g. Given one of the four conditions on fi and the

corresponding M =
[
M11 M12
M21 M22

]
and G from Table 1, further assume that αk = α > 0

(constant stepsize), M21α ≤ 1, and either δ = 0 or M21 = 0. Define p, q, r , s ≥ 0 as
follows.

p = M̃δ2α2, q = (c2 + 2G2δ2)α2, r = 1 − 2mα + M̃α2, s = 2G2α2. (29)
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Where M̃ = M11 + 2mM12. If
√
p+√

r < 1 then we have the following iterate error
bound:

E ‖xk − x�‖2 ≤
(

p
√

Û�√
pÛ�+q

+ r
√

Û�√
rÛ�+s

)k

E ‖x0 − x�‖2 + Û�, (30)

where the fixed point Û� is given by

Û� = (p − r)(s − q) + q + s + 2
√
ps2 + q2r + qs(1 − p − r)

(p − r)2 − 2(p + r) + 1
. (31)

Proof By Remark 3, we have the nonlinear recursion (28) for Ûk . This recursion is of
the form

Ûk+1 =
(√

pÛk + q +
√
rÛk + s

)2

, (32)

where p, q, r , s > 0 are given in (29). It is straightforward to verify that the right-hand
side of (32) is amonotonically increasing concave function of Ûk and its asymptote is a
line of slope (

√
p+√

r)2. Thus, (32)will have a uniquefixed pointwhen
√
p+√

r < 1.
Wewill return to this condition shortly.When a fixed point exists, it is found by setting
Ûk = Ûk+1 = Û� in (32) and yields U� given by (31). The concavity property further
guarantees that any first-order Taylor expansion of the right-hand side of (32) yields
an upper bound to Ûk+1. Expanding about Û�, we obtain:

Ûk+1 − Û� ≤
(

p
√

Û�√
pÛ�+q

+ r
√

Û�√
rÛ�+s

) (
Ûk − Û�

)
(33)

which leads to the following non-recursive bound for biased SGD.

E ‖xk − x�‖2 ≤ Ûk ≤
(

p
√

Û�√
pÛ�+q

+ r
√

Û�√
rÛ�+s

)k

(Û0 − Û�) + Û�

≤
(

p
√

Û�√
pÛ�+q

+ r
√

Û�√
rÛ�+s

)k

Û0 + Û� (34)

Since this bound holds for any Û0 ≥ E ‖x0 − x�‖2, it holds in particular when we
have equality, and thus we obtain (30) as required. �


The condition that
√
p+√

r < 1 from Corollary 2, which is necessary for the exis-
tence of a fixed-point of (32), is equivalent to an upper bound onα. Aftermanipulation,
it amounts to:

α <
2(m − δ

√
M̃)

M̃(1 − δ2)
(35)
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Therefore, we can ensure that
√
p + √

r < 1 when δ < m/
√
M̃ , and α is sufficiently

small. If δ = 0, the stepsize bound (35) is only relevant in Case II. For Cases I, III,
and IV, the bound M21α ≤ 1 imposes a stronger restriction on α (see Corollary 1). If

δ �= 0, we only consider Case II (M21 = 0) and the resultant bound for α is m−√
2Lδ

L2(1−δ2)
.

The condition δ < m/
√
M̃ becomes δ < m/(

√
2L).

To see the trade-offs in the design of biased SGD, we can take Taylor expansions
of several key quantities about α = 0 to see how changes in α affect convergence:

Û� ≈ c2 + 2δ2G2

m2 − δ2M̃
+

m
(
c2(M̃ − m2) + 2

(
1 − δ2

)
G2m2

)

(m2 − δ2M̃)2
α + O(α2) (36a)

(
p
√

Û�√
pÛ�+q

+ r
√

Û�√
rÛ�+s

)
≈ 1 − (m2 − δ2M̃)

m
α + O(α2) (36b)

We conclude that when δ < m/
√
M̃ , biased SGD converges linearly to a ball whose

radius is roughly Û� ≥ 0. One can decrease the stepsize α to control the final error Û�.
However, due to the errors in the individual gradient updates, one cannot guarantee the
final error E ‖xk − x�‖2 smaller than c2+2δ2G2

m2−δ2 M̃
. This is consistent with our intuition;

one could inject noise in an adversarial manner to shift the optimum point away from
x� so there is no way to guarantee that {xk} converges to x� just by decreasing the
stepsize α.

Remark 4 One can check that the left side of (36b) is not differentiable at (c, α) =
(0, 0). Consequently, taking a Taylor expansion with respect to α and then setting
c = 0 does not yield the same result as first setting c = 0 and then taking a Taylor
expansion with respect to α of the resulting expression. This explains why (36b) does
not reduce to ρ2 = 1−2mα+O(α2)when c = δ = 0. It is worth noting that the higher
order term O(α2) in (36b) depends on c. Indeed, it blows up as c → 0. Therefore,
the rate formula (36b) only describes the stepsize design trade-off for a fixed positive
c and sufficiently small α. Similar situation even holds for the case where G = 0. As
long as c �= 0, the rate formula is not going to reduce to ρ2 = 1− 2mα + O(α2) due
to the fact that the left side of (36b) is not differentiable at (c, α) = (0, 0).

The non-recursive bound (30) relied on a linearization of the recursive formula
(32), which involved a time-varying ζk . It is emphasized that we assumed that either
δ = 0 or M21 = 0. In the other cases, namely δ > 0 and M21 > 0 (Case I, III, or

IV), we cannot ignore the additional condition ζk ≥ αM21δ
2

1−αM21
and we must use the

hybrid recursive formula (27). This hybrid formulation is more problematic to solve
explicitly. However, if we are mostly interested in the regime where α is small, we can
obtain non-recursive bounds similar to (30) by carefully choosing a constant ζ for all
k. We will develop these bounds in the next section.

3.2 Non-recursive bounds via a fixed � parameter

When α is small, we can choose ζ = mα and we obtain the following result.
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Corollary 3 Consider biased SGD (3) with g ∈ S(m,∞) for some m > 0, and let x�

be the unique global minimizer of g. Given one of the four conditions on fi and the

corresponding M =
[
M11 M12
M21 M22

]
and G from Table 1, further assume that αk = α > 0

(constant stepsize), and M21

(
α + δ2

m

)
≤ 1.5 Finally, assume that

0 < ρ̃2 < 1 where ρ̃2 = 1 − m2−M̃δ2

m α + (M̃(1 + δ2) − 2m2)α2 + M̃mα3. (37)

Note (37) holds for α sufficiently small. Then, we have the following error bound for
the iterates

E‖xk − x�‖2 ≤ ρ̃2k
E ‖x0 − x�‖2 + Ũ� (38)

where Ũ� is given by

Ũ� = 2δ2G2 + c2 + m(c2 + 2G2(1 + δ2))α + 2m2G2α2

(m2 − M̃δ2) − m(M̃(1 + δ2) − 2m2)α − M̃m2α2
(39)

Proof Set ζ = mα in the optimization problem (26). This defines a new recursion
for a quantity Ũk that upper-bounds Ûk since we are choosing a possibly sub-optimal

ζ . Our assumption M21

(
α + δ2

m

)
≤ 1 guarantees that ζ ≥ αM21δ

2

1−αM21
when ζ = mα.

Hence our choice of ζ is a feasible choice for (26). This leads to:

Ũk+1 = ak(1 + 1
mα

) + bk(1 + mα)

= ρ̃2Ũk + (
α2(c2 + 2δ2G2)(1 + 1

mα
) + 2α2G2(1 + mα)

)

This is a simple linear recursion that we can solve explicitly in a similar way to the
recursion in Remark 2. After simplifications, we obtain (38) and (39). �


The linear rate of convergence in (38) is of the same order as the one obtained in
Corollary 2 and (36b). Namely,

ρ̃2 ≈ 1 − (m2 − M̃δ2)

m
α + O(α2) (40)

Likewise, the limiting error Ũ� from (39) can be expanded as a series in α and we
obtain a result that matches the small-α limit of Û� from (36a) up to linear terms.
Namely,

Ũ� ≈ c2 + 2δ2G2

m2 − M̃δ2
+

m
(
c2(M̃ − m2) + 2

(
1 − δ2

)
G2m2

)

(m2 − δ2M̃)2
α + O(α2) (41)

5 When M21 = 0, this condition always holds. When δ = 0, this condition is equivalent to M21α ≤ 1.
Hence the above corollary can be directly applied if M21 = 0 or δ = 0. If M21 > 0 and δ > 0, the condition

M21

(
α + δ2

m

)
≤ 1 can be rewritten as a condition on α in a case-by-case manner.
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Table 2 Upper bound on δ for
the four different cases
described in Table 1

Case I II III IV

M̃ = M11 + 2mM12 m2 2L2 2mL 2m2

δ bound 1 m√
2L

√
m
2L

√
m

L+m

Therefore, (38) can give a reasonable non-recursive bound for biased SGD with small
α even for the cases where M21 > 0 and δ > 0.

Now we discuss the acceptable relative noise level under various assumptions on
fi . Based on (40), we need m2 − M̃δ2 > 0 to ensure ρ̃2 < 1 for sufficiently small α.

The other constraint M21

(
α + δ2

m

)
≤ 1 enforces M21δ

2 < m. Depending on which

case we are dealing with, the conditions δ < m/
√
M̃ and M21δ

2 < m impose an upper
bound on admissible values of δ. See Table 2.

We can clearly see that for �2-regularized logistic regression and support vector
machines which admit the assumption in Case I, biased SGD is robust to the relative
noise. Given the condition δ < 1, the iterates of biased SGD will stay in some ball,
although the size of the ball could be large. Comparing the bound for Cases II, III,
and IV, we can see the allowable relative noise level increases as the assumptions on
fi become stronger.
As previously mentioned, the bound of Corollary 3 requires a sufficiently small α.

Specifically, the stepsize α must satisfy M21

(
α + δ2

m

)
≤ 1 and (37), which can be

solved to obtain explicit upper bounds on α. Details are omitted.

Sensitivity analysis. Based on (40), the convergence rate ρ̄2 can be estimated as 1 −
m2−M̃δ2

m α for small α, which is independent of c. Hence the misspecification in the

value of c does not impact the value of ρ̄2. The derivative of 1− m2−M̃δ2

m α with respect

to δ is 2M̃δα/m. Hence, if we perturb the value of δ by ε, the change in the value of
ρ̄2 is roughly equal to 2M̃δαε/m. Similarly, we can perform a sensitivity analysis for
the final optimization error term Ū� by taking the derivative of the right side of (41)
with respect to δ (or c).

Conservatism of Corollary 3. Corollary 3 gives a reasonable non-recursive bound for
biased SGD with small α. However, if we consider Case II, it can be much more
conservative than Corollary 2 for relatively larger α . We use a numerical example to
illustrate this. Consider m = 1, L = 100, G = 5, and c = 1. We set δ = 0.0021 <

0.0071 = m/
√
M̃ . Based on (35), we knowCorollary 2works forα < 7×10−5. Based

on (37), we can show Corollary 3 works for α < 4.55× 10−5. Obviously, Corollary 2
works for a larger range of α. By numerical simulations, it is straightforward to verify
that Ū� → ∞ and ρ̄ → 1 if we apply Corollary 3 to the case where α = 4.56×10−5.
In contrast, if we apply Corollary 2 to the case where α = 4.56×10−5, we can obtain
Û� = 4.8207. The associated convergence rate is 1−1.74×10−5. Clearly, Corollary 2
gives a much more reasonable bound in this case. We have tried different problem
parameters and have observed similar trends. In general, for Case II, Corollary 3 is
more conservative than Corollary 2 if relatively large α is considered. The advantage
of Corollary 3 is that it is general enough to cover Cases I, III, and IV.
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4 Further discussion

4.1 Connections to existing SGD results

In this section, we relate the results of Theorem 1 and its corollaries to existing results
on standard SGD. We also discuss the effect of replacing our error model (4) with IID
noise.

If there is no noise at all, c = δ = 0 and none of the approximations of Sect. 3 are
required to obtain an analytical bound on the iteration error. Returning to Theorem 1
and Corollary 1, the objective to be minimized no longer depends on μk . Examin-
ing (13), we conclude that optimality occurs as ζ → 0 (μ → ∞). This leads directly
to the bound

E ‖xk+1 − x�‖2 ≤ (1 − 2mαk + M̃α2
k )E ‖xk − x�‖2 + 2G2α2

k , (42)

where αk is constrained such thatM21αk ≤ 1. The bound (42) directly leads to existing
convergence results for standard SGD. For example, we can apply the argument in
Remark 2 to obtain the following bound for standard SGD with a constant stepsize
αk = α

E‖xk − x�‖2 ≤
(
1 − 2mα + M̃α2

)k
E‖x0 − x�‖2 + 2G2α

2m − M̃α
, (43)

where α is further required to satisfy 1 − 2mα + M̃α2 ≤ 1. For Cases I, III, and
IV, the condition M21α ≤ 1 dominates, and the valid values of α are documented in
Corollary 1. For Case II, the condition α ≤ 2m/M̃ dominates and the upper bound on
α is m/L2.

The bound recovers existing results that describe the design trade-off of standard
(noiseless) SGD under a variety of conditions [22–24]. Case I is a slight variant of the
well-known result [23, Prop. 3.4]. The extra factor of 2 in the rate and errors terms
are due to the fact that [23, Prop. 3.4] poses slightly different conditions on g and fi .
Cases II and III are also well-known [15,22,24].

Remark 5 If the error term ek is IID noise with zero mean and bounded variance, then
a slight modification to our analysis yields the bound

E ‖xk+1 − x�‖2 ≤ (1 − 2mαk + M̃α2
k )E ‖xk − x�‖2 + (2G2 + σ 2)α2

k , (44)

where σ 2 ≥ E ‖ek‖2. The detailed proof is omitted.

4.2 Adaptive stepsize via sequential minimization

In Sect. 3, we fixed αk = α and derived bounds on the worst-case performance of
biased SGD. In this section, we discuss the potential impacts of adopting time-varying
stepsizes. First, we refine the bounds by optimizing over αk as well. What makes this
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approach tractable is that in Theorem 1, the LMI (10) is also linear in αk . Therefore,
we can easily include αk as one of our optimization variables.

In fact, the development of Sect. 2.2 carries through if we augment the set Tk to be
the set of tuples (ρk, λk, μk, νk, αk) that makes the LMI (10) feasible. We then obtain
a Bellman-like equation analogous to (23) that holds when we also optimize over α

at every step. The net result is an optimization problem similar to (26) but that now
includes α as a variable:

Vk+1 = minimize
α>0, ζ>0

ak(1 + ζ−1) + bk(1 + ζ )

subject to ak = α2
(
c2 + 2δ2G2 + M̃δ2Vk

)

bk =
(
1 − 2mα + M̃α2

)
Vk + 2α2G2

αM21(1 + δ2ζ−1) ≤ 1

(45)

As we did in Sect. 2.2, we can show that E ‖xk − x�‖2 ≤ Vk for any iterates of biased
SGD. We would like to learn two things from (45): how the optimal α changes as a
function of k in order to produce the fastest possible convergence rate, andwhether this
optimized rate is different from the rate we obtained when assuming α was constant
in Sect. 3.

To simplify the analysis, we will restrict our attention to Case II, where M21 = 0
and M̃ = 2L2. In this case, the inequality constraint in (45) is satisfied for any α > 0
and ζ > 0, so it may be removed. Observe that the objective in (45) is a quadratic
function of α.

ak(1 + ζ−1) + bk(1 + ζ ) = (1 + ζ )Vk − 2m(1 + ζ )Vkα + (1 + ζ−1)(c2 + 2G2δ2

+ M̃Vkδ
2 + 2G2ζ + M̃Vkζ )α2 (46)

This quadratic is always positive definite, and the optimal α is given by:

α
opt
k = mVkζ

(c2 + 2δ2G2 + δ2M̃Vk) + (2G2 + M̃Vk)ζ
(47)

Substituting (47) into (45) to eliminate α, we obtain the optimization problem:

Vk+1 = minimize
ζ>0

(ζ + 1)Vk
(
c2 + (2G2 + M̃Vk)(δ2 + ζ ) − m2Vkζ

)

c2 + (
2G2 + M̃Vk

) (
δ2 + ζ

) (48)

By taking the second derivative with respect to ζ of the objective function in (48), one
can check that we will have convexity as long as (2G2 + M̃Vk)(1− δ2) ≥ c2. In other
words, we have convexity as long as the noise parameters c and δ are not too large. If
this bound holds for Vk = 0, then it will hold for any Vk > 0. So it suffices to ensure
that 2G2(1 − δ2) ≥ c2.

Upon careful analysis of the objective function, we note that when ζ = 0, we
obtain Vk+1 = Vk . In order to obtain a decrease for some ζ > 0, we require a negative
derivative at ζ = 0. This amounts to the condition: c2 + (2G2 + M̃Vk)δ2 < m2Vk . As
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Vk gets smaller, this condition will eventually be violated. Specifically, the condition
holds whenever m2 − M̃δ2 > 0 and

Vk >
c2 + 2δ2G2

m2 − M̃δ2

Note that this is the same limit as was observed in the constant-α limits Û� and Ũ�

when α → 0 in (36a) and (41), respectively. This is to be expected; the biased gradient
information introduces an uncontrollable bias (which is quantified as c2+2δ2G2

m2−M̃δ2
) into

the final optimization result, and this can not be overcome by any stepsize rules. Notice
that we have not ruled out the possibility that Vk suddenly jumps below c2+2δ2G2

m2−M̃δ2
at

some k and then stays unchanged after that. We will make a formal argument to rule
out this possibility in the next lemma. Moreover, the question remains as to whether
this minimal error can be achieved faster by varying αk in an optimal manner. We
describe the final nonlinear recursion in the next lemma.

Lemma 2 Consider biased SGD (3) with g ∈ S(m,∞) for some m > 0, and let x� be
the unique global minimizer of g. SupposeCase II holds and (M,G) are the associated

values from Table 1. Further assume 2G2(1 − δ2) ≥ c2 and V0 > c2+2δ2G2

m2−M̃δ2
= V�.

1. The sequential optimization problem (48) can be solved using the following non-
linear recursion

Vk+1 = Vk

(2G2 + M̃Vk)2

×
(√

(2G2 + (M̃ − m2)Vk)
(
(2G2 + M̃Vk)(1 − δ2) − c2

)

+
√
m2Vk(c2 + δ2(2G2 + M̃Vk))

)2

(49)

and Vk satisfies Vk > V� for all k.
2. Suppose Û0 = V0 ≥ E ‖x0 − x�‖2 (all recurrences are initialized the same

way), then {Vk}k≥0 provides an upper bound to the iterate error satisfying
E ‖xk − x�‖2 ≤ Vk ≤ Ûk .

3. The sequence {Vk}k≥0 converges to V�:

lim
k→∞ Vk = V� = c2 + 2δ2G2

m2 − M̃δ2

Proof See “Appendix B”. �

To learn more about the rate of convergence, we can once again use a Taylor series

approximation. Specializing to Case II (where M̃ > 0), we can consider two cases.
When Vk is large, perform a Taylor expansion of (49) about Vk = ∞ and obtain:

Vk+1 ≈
(

mδ+
√

(M̃−m2)(1−δ2)

M̃

)
Vk + O(1)
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In other words, we obtain linear convergence. When Vk is close to V�, the behavior
changes. To see this, perform a Taylor expansion of (49) about Vk = V� and obtain:

Vk+1 ≈ Vk − (m2 − M̃δ2)3

4m2
(
c2(M̃ − m2) + 2G2m2(1 − δ2)

) (Vk − V�)
2 + O((Vk − V�)

3)

(50)

We will ignore the higher-order terms, and apply the next lemma to show that the
above recursion roughly converges at a O(1/k) rate.

Lemma 3 Consider the recurrence relation

vk+1 = vk − ηv2k for k = 0, 1, . . . (51)

where v0 > 0 and 0 < η < v−1
0 . Then the iterates satisfy the following bound for all

k ≥ 0.

vk ≤ 1

ηk + v−1
0

(52)

Proof The recurrence (51) is equivalent to ηvk+1 = ηvk − (ηvk)
2 with 0 < ηv0 < 1.

Clearly, the sequence {ηvk}k≥0 is monotonically decreasing to zero. To bound the
iterates, invert the recurrence:

1

ηvk+1
= 1

ηvk − (ηvk)2
= 1

ηvk
+ 1

1 − ηvk
≥ 1

ηvk
+ 1

Recursing the above inequality, we obtain: 1
ηvk

≥ 1
ηv0

+ k. Inverting this inequality
yields (52), as required. �


Applying Lemma 3 to the sequence vk = Vk − V� defined in (50), we deduce that
when Vk is close to its optimal value of V�, we have:

Vk ∼ V� + 1

ηk + (V0 − V�)−1 with: η = (m2 − M̃δ2)3

4m2
(
c2(M̃ − m2) + 2G2m2(1 − δ2)

)

(53)

We can also examine how αk changes in this optimal recursive iteration by taking (47)
and substituting the optimal ζ found in the optimization of Lemma 2. The result is
messy, but a Taylor expansion about Vk = V� reveals that

α
opt
k ≈ (m2 − M̃δ2)2

2m
(
c2(M̃ − m2) + 2G2m2(1 − δ2)

) (Vk − V�) + O((Vk − V�)
2).

So when Vk is close to V�, we should be decreasing αk to zero at a rate of O(1/k) so
that it mirrors the rate at which Vk − V� goes to zero in (53).

123



B. Hu et al.

Finally, we want to mention that calculating α
opt
k requires one to know the problem

parameters (m, M̃, δ, c,G, V0) in advance. This restricts the applicability of such
adaptive stepsize rules for practical problems. Nevertheless, our results in this section
bring new theoretical insights for the potential impacts of time-varying stepsizes on
the performance of biased SGD. In summary, adopting an optimized time-varying
stepsize still roughly yields a rate of O(1/k), which is consistent with the sublinear
convergence rate of standard SGD with diminishing stepsize. It is possible that the
well-known lower complexity bounds for standard SGD in [1] can be extended to the
inexact case, although a formal treatment is beyond the scope of this paper.

Appendix

A Proof of Theorem 1

First notice that since ik is uniformly distributed on {1, . . . , n} and xk and ik are
independent, we have:

E
(
uk

∣∣ xk
) = E

(∇ fik (xk)
∣∣ xk

) = 1

n

n∑

i=1

∇ fi (xk) = ∇g(xk)

Consequently, we have:

E

([
xk − x�

uk

]T[−2mIp Ip
Ip 0p

] [
xk − x�

uk

] ∣∣∣∣ xk

)
=

[
xk − x�
∇g(xk)

]T[−2mIp Ip
Ip 0p

] [
xk − x�
∇g(xk)

]
≥ 0

(54)

where the inequality in (54) follows from the definition of g ∈ S(m,∞).
Next we prove (12), let’s start with Case I, the boundedness constraint ‖∇ fi (xk)‖ ≤

β implies that ‖uk‖ ≤ β for all k. Rewrite as a quadratic form to obtain:

[
xk − x�

uk

]T [
0p 0p
0p −Ip

] [
xk − x�

uk

]
≥ −β2 (55)

The boundedness constraint ‖∇ fi (xk) − mxk‖ ≤ β implies that:

‖uk − m(xk − x�)‖2 ≤ ‖(uk − mxk) + mx�‖2 + ‖(uk − mxk) − mx�‖2
= 2 ‖uk − mxk‖2 + 2m2 ‖x�‖2
≤ 2β2 + 2m2 ‖x�‖2

As in the proof of Case I, rewrite the above inequality as a quadratic form and we
obtain the second row of Table 1.
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To prove the three remaining cases, we begin by showing that an inequality of the
following form holds for each fi :

[
xk − x�

∇ fi (xk) − ∇ fi (x�)

]T [
M11 Ip M12 Ip
M21 Ip −2Ip

] [
xk − x�

∇ fi (xk) − ∇ fi (x�)

]
≥ 0 (56)

The verification for (56) follows directly from the definitions of L-smoothness and
convexity. In the smooth case (Definition 1), for example, ‖∇ fi (xk) − ∇ fi (x�)‖ ≤
L‖xk − x�‖. So (56) holds with M11 = 2L2, M12 = M21 = 0. The cases for F(0, L)

andF(m, L) follow directly fromDefinition 2. In Table 1, we always haveM22 = −1.
Therefore,

E

([
xk − x�

uk

]T [
M11 Ip M12 Ip
M21 Ip M22 Ip

] [
xk − x�

uk

] ∣∣∣∣ xk

)

= 1

n

n∑

i=1

[
xk − x�

∇ fi (xk)

]T [
M11 Ip M12 Ip
M21 Ip 0p

] [
xk − x�

∇ fi (xk)

]
− 1

n

n∑

i=1

‖∇ fi (xk)‖2 (57)

Since 1
n

∑n
i=1 ∇ fi (x�) = ∇g(x�) = 0, the first term on the right side of (57) is equal

to

1

n

n∑

i=1

[
xk − x�

∇ fi (xk) − ∇ fi (x�)

] [
M11 Ip M12 Ip
M21 Ip 0p

] [
xk − x�

∇ fi (xk) − ∇ fi (x�)

]

Based on the constraint condition (56), we know that the above term is greater than or
equal to 2

n

∑n
i=1 ‖∇ fi (xk) − ∇ fi (x�)‖2. Substituting this fact back into (57) leads to

the inequality:

E

([
xk − x�

uk

]T [
M11 Ip M12 Ip
M21 Ip M22 Ip

] [
xk − x�

uk

] ∣∣∣∣ xk

)

≥ 1

n

n∑

i=1

(
2‖∇ fi (xk) − ∇ fi (x�)‖2 − ‖∇ fi (xk)‖2

)

= 1

n

n∑

i=1

(
‖∇ fi (xk) − 2∇ fi (x�)‖2 − 2‖∇ fi (x�)‖2

)

≥ −2

n

n∑

i=1

‖∇ fi (x�)‖2 (58)

Taking the expectation of both sides, we arrive at (12), as desired. Now we are ready
to prove our main theorem. By Schur complement, (10) is equivalent to (15), which
can be further rewritten as
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⎛

⎝

⎡

⎣
1 − ρ2

k −αk −αk

−αk α2
k α2

k−αk α2
k α2

k

⎤

⎦ + νk

⎡

⎣
−2m 1 0
1 0 0
0 0 0

⎤

⎦ + λk

⎡

⎣
M11 M12 0
M21 M22 0
0 0 0

⎤

⎦ + μk

⎡

⎣
0 0 0
0 δ2 0
0 0 −1

⎤

⎦

⎞

⎠ ⊗ Ip � 0

(59)

Since xk+1 − x� = xk − x� − αk(uk + ek), we have

⎡

⎣
xk − x�

uk
ek

⎤

⎦
T ⎛

⎝

⎡

⎣
1 −αk −αk

−αk α2
k α2

k−αk α2
k α2

k

⎤

⎦ ⊗ Ip

⎞

⎠

⎡

⎣
xk − x�

uk
ek

⎤

⎦ = ‖xk+1 − x�‖2 (60)

Now we can left and right multiply (59) by [(xk − x�)
T, uTk, e

T
k ] and [(xk −

x�)
T, uTk, e

T
k ]T, and apply the inequalities (4), (54), and (12) to get the desired con-

clusion. �


B Proof of Lemma 2

We use an induction argument to prove Item 1. For simplicity, we denote (48) as
Vk+1 = h(Vk). Suppose we have Vk = h(Vk−1) and Vk−1 > V�. We are going to
show Vk+1 = h(Vk) and Vk > V�. We can rewrite (48) as

Vk+1 = minimize
ζ>0

Ak(1 + Z−1
k ) + Bk(1 + Zk) (61)

where Ak , Bk , and Zk are defined as

Ak =
m2V 2

k

(
c2 + (2G2 + M̃Vk)δ2

)

(2G2 + M̃Vk)2

Bk = (2G2Vk + (M̃ − m2)V 2
k )((2G2 + M̃Vk)(1 − δ2) − c2)

(2G2 + M̃Vk)2

Zk =
(
2G2 + M̃Vk

)
(δ2 + ζk) + c2

(2G2 + M̃Vk)(1 − δ2) − c2

Note that Ak ≥ 0 and Bk ≥ 0 due to the condition 2G2(1 − δ2) ≥ c2. The objective
in (61) therefore has a form very similar to the objective in (26). Applying Lemma 1,
we deduce that Vk+1 = (

√
Ak + √

Bk)
2, which is the same as (49). The associated

Zopt
k is

√
Ak
Bk
. To ensure this is a feasible choice, it remains to check that the associated

ζ
opt
k > 0 aswell. Via algebraicmanipulations, one can show that ζk > 0 is equivalent to
Vk > V�.We can also verify Ak is a monotonically increasing function of Vk , and Bk is
a monotonically nondecreasing function of Vk . Hence h is a monotonically increasing
function. Also notice V� is a fixed point of (49). Therefore, if we assume Vk = h(Vk−1)

and Vk−1 > V�, we have Vk = h(Vk−1) > h(V�) = V�. Hence we guarantee ζk > 0
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and Vk+1 = h(Vk). By similar arguments, one can verify V1 = h(V0). And it is
assumed that V0 > V�. This completes the induction argument.

Item 2 follows from a similar argument to the one used in Sect. 2.2. Finally, Item
3 can be proven by choosing a sufficiently small constant stepsize α to make Ûk

arbitrarily close to V�. Since V� ≤ Vk ≤ Ûk , we conclude that limk→∞ Vk = V�, as
required. �
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