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Abstract

We present a convergence rate analysis for biased stochastic gradient descent (SGD),
where individual gradient updates are corrupted by computation errors. We develop
stochastic quadratic constraints to formulate a small linear matrix inequality (LMI)
whose feasible points lead to convergence bounds of biased SGD. Based on this LMI
condition, we develop a sequential minimization approach to analyze the intricate
trade-offs that couple stepsize selection, convergence rate, optimization accuracy, and
robustness to gradient inaccuracy. We also provide feasible points for this LMI and
obtain theoretical formulas that quantify the convergence properties of biased SGD
under various assumptions on the loss functions.
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1 Introduction

Empirical risk minimization (ERM) is a prevalent topic in machine learning research
[7,36]. Ridge regression, €»-regularized logistic regression, and support vector
machines (SVM) can all be formulated as the following ERM problem

1 n
min g(x) = — Y _ fi(x), M
i=l

xeRP

where g : R?” — R is the objective function. Stochastic gradient descent (SGD)
[4,6,26] has been widely used for ERM to exploit redundancy in the training data. The
SGD method applies the update rule

Xkl = Xk — QU (2)

where u; = V f;, (xi) and the index ix is uniformly sampled from {1,2,...,n} in
an independent and identically distributed (IID) manner. The convergence properties
of SGD are well understood. Under strong convexity of g and smoothness of f;,
SGD with a diminishing stepsize converges sublinearly, while SGD with a constant
stepsize converges linearly to a ball around the optimal solution [15,22-24]. In the
latter case, epochs can be used to balance convergence rate and optimization accuracy.
Some recently-developed stochastic methods such as SAG [27,28], SAGA [11], Finito
[12], SDCA [30], and SVRG [19] converge linearly with low iteration cost when
applied to (1), though SGD is still popular because of its simple iteration form, low
memory footprint, and nice generalization property. SGD is also commonly used as
an initialization for other algorithms [27,28].

In this paper, we present a general analysis for biased SGD. This is a version
of SGD where the gradient updates V f;, (xx) are corrupted by additive as well as
multiplicative noise. In practice, such errors can be introduced by sources such as:
inaccurate numerical solvers, digital round-off errors, quantization, or sparsification.
The biased SGD update equation is given by

Xyl = Xk — o (ug + ex). 3)

Here, ux = V f; (xx) is the individual gradient update and e is an error term. We
consider the following error model, which unifies the error models in [3]:

2 2 2 2
llexll” < 8- llugll” + ¢, “4)
where § > 0 and ¢ > 0 bound the relative error and the absolute error in the oracle
computation, respectively. If § = ¢ = 0, then ¢, = 0 and we recover the standard

SGD setup. The model (4) unifies the error models in [3] since:
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1. If ¢ = 0, then (4) reduces to a relative error model, i.e.
lexll < Sllull (5
2. If § = 0, then ¢ is a bounded absolute error, i.e.
llexll < ¢ (6)

We assume that both § and ¢ are known in advance. We make no assumptions about
how ey is generated, just that it satisfies (4). Thus, we will seek a worst-case bound
that holds regardless of whether ¢ is random, set in advance, or chosen adversarially.

Suppose the cost function g admits a unique minimizer x,. For standard SGD
(without computation error), uy is an unbiased estimator of Vg (xx). Hence under many
circumstances, one can control the final optimization error || x; — x, || by decreasing the
stepsize ay. Specifically, suppose g is m-strongly convex. Under various assumptions
on f;, one can prove the following typical bound for standard SGD with a constant
stepsize « [5,22,24]:

Ellxk — x> < p*Ellxo — x.|1* + H, 7

where p2 = 1 — 2ma + O(a?) and H, = O(a). By decreasing stepsize «, one can
control the final optimization error H, at the price of slowing down the convergence
rate p. The convergence behavior of biased SGD is different. Since the error term
er can be chosen adversarially, the sum (u; + ex) may no longer be an unbiased
estimator of V g(xy). The error term e; may introduce a bias which cannot be overcome
by decreasing stepsize «. Hence the final optimization error in biased SGD heavily
depends on the error model of e;. In this paper, we quantify the convergence properties
of biased SGD (3) with the error model (4) using worst-case analysis.

Main contribution. The main novelty of this paper is that our analysis simultaneously
addresses the relative error and the absolute error in the gradient computation. We
formulate a linear matrix inequality (LMI) that directly leads to convergence bounds
of biased SGD and couples the relationship between &, ¢, ox and the assumptions on
fi. This convex program can be solved both numerically and analytically to obtain var-
ious convergence bounds for biased SGD. Based on this LMI, we develop a sequential
minimization approach that can analyze biased SGD with an arbitrary time-varying
stepsize. We also obtain analytical rate bounds in the form of (7) for biased SGD with

. . 2_ 2y
constant stepsize. However, our bound requires p> = 1 — Wc{ + O0(@?) !and
_ 2428%G?
H* N mz_szM. . . . .
by the assumptions on f;. Based on this result, there is no way to shrink H, to 0. This
is consistent with our intuition since the gradient estimator as well as the final opti-

mization result can be biased. We show that this “uncontrollable” biased optimization

+ O(a) where M and G? are some prescribed constants determined

! Whens =c = 0, this rate bound does not reduce to ;o2 =1-2ma+ 0(&2). This is due to the inherent
differences between the analyses of biased SGD and the standard SGD. See Remark 4 for a detailed
explanation.
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error is %. The resultant analytical rate bounds highlight the design trade-offs

for biased SGD.

The work in this paper complements the ongoing research on stochastic optimiza-
tion methods, which mainly focuses on the case where the oracle computation is exact.
The stepsize selection in biased SGD must address the trade-offs between speed, accu-
racy, and inexactness in the oracle computations. Our analysis brings new theoretical
insights for understanding such trade-offs in the presence of biased gradient com-
putation. It is also worth mentioning that the robustness of full gradient methods
with respect to gradient inexactness has been extensively studied [9,13,29]. However,
addressing a unified error model that combines the absolute error and the relative error
is still non-trivial. Our analysis complements the existing results in [9,13,29] by pro-
viding a unified treatment of the error model (4). Notice that it is important to include
the relative error model in the analysis since it covers the numerical round-off error as
a special case. If one treats the round-off error as an absolute error with time-varying
ck, then the specific value of ¢; will depend on the state x; and can not be fixed before-
hand. In contrast, if one models the round-off error as a relative error, the value § can
be fixed as a constant beforehand.

The approach taken in this paper can be viewed as a stochastic extension of the
work in [21,25] that analyzes the linear convergence rates of deterministic optimiza-
tion methods (gradient descent, Nesterov’s method, ADMM, etc.) using quadratic
constraints and semidefinite programs. Notice that the analysis for (deterministic)
biased gradient descent in [21] is numerical. In this paper, we derive analytical formu-
las quantifying the convergence properties of the biased SGD. It is worth mentioning
that one can combine jump system theory with quadratic constraints to analyze SAGA,
Finito, and SDCA in a unified manner [18]. However, the analysis in [18] does not
directly address the trade-offs between the convergence speed p? and the optimization
error H,, and cannot be easily tailored for biased SGD. Another related line of work
that uses semidefinite programs to analyze optimization methods is built upon the idea
of formulating worst-case analysis as the so-called performance estimation problem
(PEP) [14,33,34]. It is recognized that there is a fundamental connection between the
quadratic constraint approach and the PEP framework [35]. Recently, the PEP frame-
work in [14,33,34] has been extended for the stochastic setup [32]. In addition, it is
known that the PEP approach can also be applied to study the bias in the (determinis-
tic) gradient descent method [10]. It is possible to extend the results in [10,32] for a
PEP-based analysis of biased SGD. This is an interesting topic for future research.

The rest of the paper is organized as follows. In Sect. 2, we formulate LMI testing
conditions for convergence analysis of biased SGD. The resultant LMIs are then solved
sequentially, yielding recursive convergence bounds for biased SGD. In Sect. 3, we
simplify the analytical solutions of the resultant sequential LMIs and derive analytical
rate bounds in the form of (7) for biased SGD with a constant stepsize. Our results
highlight various design trade-offs for biased SGD. Finally, we show how existing
results on standard SGD (without gradient computation error) can be recovered using
our proposed LMI approach, and discuss how a time-varying stepsize can potentially
impact the convergence behaviors of biased SGD (Sect. 4).
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1.1 Notation

The p x p identity matrix and the p x p zero matrix are denoted as I, and 0,
respectively. The subscript p is occasionally omitted when the dimensions are clear
by the context. When a matrix P is negative semidefinite, we will use the notation
P < 0. The Kronecker product of two matrices A and B is denoted A ® B.

Definition 1 (Smooth functions) A differentiable function f : R? — R is L-smooth
for some L > 0 if the following inequality is satisfied:

IVFf) =V DI =Llx—yll forallx,yeR".

Definition 2 (Convex functions) Let F(m, L) for 0 < m < L < oo denote the set
of differentiable functions f : R” — R satisfying the following inequality for all
x,y € RP,

[ x—y i|T|: —2mli, (1+%)Ipi||: xX—y i|>0 ®)
Vi@ =Vim] [a+D0, =21, ||[V/@-Viy]="

Note that F (0, co) is the set of all convex functions, F (0, L) is the set of all convex L-
smooth functions, F(m, oo) with m > 0 is the set of all m-strongly convex functions,
and F(m, L) with m > 0 is the set of all m-strongly convex and L-smooth functions.
If f € F(m, L) withm > 0, then f has a unique global minimizer.

Definition3 Let S(m, L) for 0 < m < L < oo denote the set of differentiable
functions g : R? — R having some global minimizer x, € R?” and satisfying the
following inequality for all x, y € R”.

T
— X, —2ml 1+ 271 — X,
] P e | Eove] ELAC
Vg(x) (1+Z)Ip _le Vg(x)
If g € S(m, L) with m > 0, then x, is also the unique stationary point of g. It is
worth noting that F(m, L) C S(m, L). In general, a function g € S(m, L) may not

be convex. If g € S(m, 00), then g may not be smooth. The condition (9) is similar
to the notion of one-point convexity [2,8,31] and star-convexity [20].

1.2 Assumptions

Referring to the problem setup (1), we will adopt the general assumption that g €
S(m, 00) with m > 0. So in general, g may not be convex. We will analyze four
different cases, characterized by different assumptions on individual f;: (I) Bounded
shifted gradients:2 IV fi(x) —mx|| < B for all x € R?; (Il) f; is L-smooth; (III)
fie FO,L);AV) fi € F(m, L).

2 This case is a variant of the common assumption % Z:’ 1 IV fi ()c)ll2 < B. One can check that this case

holds for several £,-regularized problems including SVM and logistic regression.
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Assumption I is a natural assumption for SVM? and logistic regression while
Assumptions II, III, or IV can be used for ridge regression, logistic regression, and
smooth SVM. The m assumed in cases I and IV is the same as the m used in the
assumption on g € S(m, 00).

2 Analysis framework
2.1 An LMI condition for the analysis of biased SGD

To analyze the convergence properties of biased SGD, we present a small linear matrix
inequality (LMI) whose feasible points directly lead to convergence bounds of the
biased SGD (3) with the error model (4).

Theorem 1 (Main Theorem) Consider biased SGD (3) with g € S(m, 00) for some

m > 0, and let x, be the unique global minimizer of g. Given one of the four conditions
on f; and the corresponding M = [%; %;] and G from Table 1, if the following
holds for some choice of nonnegative Ay, Vi, [k, Pk

—p = 2uum + MMy v +MMp =10

Vk + A Moy Mk52 + MM oy 0 <0 (10)
-1 o -1 o |7
0 0 O — [k

where the inequality is taken in the semidefinite sense, then the biased SGD iterates
satisfy

Ellxks1 — X ll? < 0f Ellxk — x.l12 + QA G* + pxe?) (11)

Proof The proof is based on extending the quadratic constraint approach in [21] to the
stochastic case. Specifically, one can show that for each of the four conditions on f;
and the corresponding M and G in Table 1, the following quadratic constraint holds.

T
Xk — Xx Xk — X« B Yer
E|: g i| (M®Ip)[ " i| > —-2G~. (12)

Then one can use some standard arguments from the controls literature to prove the
statement in this theorem. A detailed proof is presented in the appendix. O

Remark 1 Under mild technical assumptions, the result in Theorem 1 can be extended
for the problem in the more general form of min, {E f; (x)}, since its proof does not
depend on the cardinality of the index set that i is sampled from. For simplicity, our
paper focuses on the finite sum setup.

3 The loss functions for SVM are non-smooth, and uy is actually updated using the subgradient information.
For simplicity, we abuse our notation and use V f; to denote the subgradient of f; for SVM problems.
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Notice (11) can be used to prove various types of convergence results. We will briefly
discuss this in Remark 2 and provide more details in later sections. For a fixed §, the
matrix in (10) is linear in (,01%, Vi, lks Mks 0), SO (10) is a linear matrix inequality
(LMI) whose feasible set is convex and can be efficiently searched using standard
semidefinite program solvers. For example, one can implement the LMIs using CVX,
a package for specifying and solving convex programs [16,17]. Since the matrix in
(10) is even linear in o, so the LMI (10) can be used to study the impacts of adaptive
stepsize rules on the performance of biased SGD from a theoretical viewpoint. One
may also obtain analytical formulas for certain feasibility points of the LMI (10) due
to its simple form. Our analytical bounds for biased SGD are based on the following
result.

Corollary 1 Choose one of the four conditions on f; and the corresponding M =
[%; %;] and G from Table 1. Also define M = My, + 2mM,,. Consider biased
SGD (3) with g € S(m, o) for some m > 0, and let x, be the unique global minimizer

of g. Suppose the stepsize satisfies the bound 0 < Moy < 1 *(which is equivalent
to the following upper bound on oy, for the four cases being considered in this paper).

Case I I I v
My m 0 L L+m
M = My +2mM3 m? 212 2mL 2m?
o bound % 00 % ﬁ

Then biased SGD (3) with the error model (4) satisfies the bound (11) with the
following nonnegative parameters

e =g (1+¢7h (13a)

M= az(1+ g+ 8% (13b)

ot = (1 + &) (1 — 2may + Maf(1+8%¢) (13¢)
Mo 52

where gy is a parameter that satisfies & > 0 and § > oo Vo1 Each choice of &
yields a different bound in (11).

Proof We further define
ve = ax (14 &) (1 — oMoy (1 +82¢71)) (14)

We will show that (13) and (14) are a feasible solution for (10). We begin with (10)
and take the Schur complement with respect to the (3, 3) entry of the matrix, leading
to

4 Ensuring such a condition in practice can be challenging for many cases since it heavily relies on the
estimations of problem parameters.
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1= p} = 2uim + MMy v+ MM —o —ay
v+ MMy — o ud? + MM o} of =<0 (15)
—ay Ot]% a,% — Wk

Examining the (3, 3) entry, we deduce that u; > a,%, for if we had equality instead,
the rest of the third row and column would be zero, forcing oy = 0. Substituting
Wk = oz,%(l +¢ k_l) for some ¢x > 0 and taking the Schur complement with respect to
the (3, 3) entry, we see (15) is equivalent to

[1—p£—2vkm+kkM11+§k Ve + AMio — o (1 + &) ] <0 (16)
vk + MMy — o (1+8) McMan + o (1 + g (1 + 524“1:1) -

In (16), & > 0 is a parameter that we are free to choose, and each choice yields a

different set of feasible tuples (,o,%, Ak, Mk, Vi). One way to obtain a feasible tuple is

to set the left side of (16) equal to the zero matrix. This shows (10) is feasible with the

following parameter choices.

=g+ h (17a)
M= —af(1+ 0 + 8% Hmsy (17b)
v = o (14 ) — Moy (17¢)
pF =1 —2um + MMy + & (17d)
Since we always have M, = —1 in Table 1, it is straightforward to verify that (17) is

equivalent to (13) and (14). Notice that we directly have p; > 0 and 1x > 0 because

{k > O In order to ensure pk > 0 and v > 0, we must have 1 — 2may + A;Ioz,%(l
) > 0Oand akle(l—i—Sz{k ) <1 respectlvely The ﬁrst inequality always holds

because M > m? and we have 1 — 2may, + Moe (1 +82§ )y > 1 —2moy +m3a

(1 — motk)2 > 0. Based on the conditions 0 < oy M>; < 1 and ¢ > %, we
conclude that the second inequality always holds as well. Since we have constructed

a feasible solution to the LMI (10), the bound (11) follows from Theorem 1. m]

Given oy, Corollary 1 provides a one-dimensional family of solutions to the LMI
(10). These solutions are given by (13) and (14) and are parameterized by the auxiliary
variable . Corollary 1 does not require py < 1. Hence it actually does not impose
any upper bound on «y in Case II. Later we will impose refined upper bounds on o
such that the bound (11) can be transformed into a useful bound in the form of (7).
We also want to mention that the stepsize bounds in the above corollary are consistent
with the existing results in the machine learning literature. For example, for Case I,
the stepsize bound for the standard SGD method is known to be 1/L (see Theorem
2.1 in [24]).

Remark2 We can use (11) to obtain various types of convergence results. For example,
when a constant stepsize is used, i.e. ¢y = « for all k, a naive analysis can be performed
by setting ¢ = ¢ for all k. In this case, (pk, Vk, 1k, Ak) are set to be constants
(p, v, i, ). Then, (10) and (11) become independent of k. We can rewrite (11) as
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Ellxir1 — x> < 0* Ellxx — x.[I> + QAG? + puc?). (18)

If p < 1, then we may recurse (18) to obtain the following convergence result:

k—1
Ellxe — x> < p* Ello — x, ) + (Z p”’) (2067 + ne?)
i=0

20G? + uc?

< P Ellvo —xl’ + =

19)

The inequality (19) is an error bound of the familiar form (7). Nevertheless, this bound
may be conservative even in the constant stepsize case. To minimize the right-hand
side of (11), the objective function for the semidefinite program (10) at step k should
be chosen as ,o,? Ellx;y — x> + A G? + pxc?). Consequently, setting & to be a
constant may introduce conservatism even in the constant stepsize case. To overcome
this issue, we will introduce a sequential minimization approach next.

2.2 Sequential minimization approach for biased SGD

We will quantify the convergence behaviors of biased SGD by providing upper bounds
for E|lxx — x,]|>. To do so, we will recursively make use of the bound (11). Suppose
8, ¢, and G are constant. Define 7 C ]Ri to be the set of tuples (o, Ak, ik, Vi) that
are feasible points for the LMI (10). Also define the real number sequence {Ui }i>0
via the recursion:

Up > Ellxo —x.° and Usy1 = ppUs + 2G> + puic? (20)

where (or, Ak, ik, Vi) € Zx. By induction, we can show that Uy provides an upper
bound for the error at timestep k. Indeed, if E [|x; — x, ||2 < Uy, thenby Theorem 1, we
have E [lxer1 —%ul® < 0F Ellxg —xal® + 246G + pic? < pfUx +20G> + pc? =
Uk+1. A key issue in computing a useful upper bound Uy, is how to choose the tuple
(Pk»> Mes Ik, Vi) € Tr. If the stepsize is constant (o = «), then 7 is independent of k.
Thus we may choose the same particular solution (p, A, u, v) for each k. Then, based
on (19), if p < 1 we can obtain a bound of the following form for biased SGD:

2AG? + puc?

Ellxe — x.? < p*Uo + —— ps

2n

As discussed in Remark 2, the above bound may be unnecessarily conservative.
Because of the recursive definition (20), the bound U depends solely on Uy and
the parameters {p;, A, ul}]t‘;(}. So we can seek the smallest possible upper bound by
solving the optimization problem:

U,?Etl = minimize Uk+1
{ptv)“t»u’lsvt}];:()
subjectto Uy = ptzU, + 2k,G2 + /L;Cz 0<r<k
(ors Ay e, vp) €75 0<t<k
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A useful fact is that the above optimization problem can be solved in a sequential
manner. Formally, we have

Proposition 1 The following holds for all k.

U™ — minimize ,02UOpt +20G? + puc? (22)
LT e k

Consequently, a greedy approach where U, is optimized in terms of U; recursively
fort =0, ..., k—1yields a bound Uy, that is in fact globally optimal over all possible
choices of parameters {p;, ¢, i+, v,}fzo.

Proof This optimization problem being considered is similar to a dynamic program-
ming and a recursive solution reminiscent of the Bellman equation can be derived for
the optimal bound Uk.

opt
Uk+1
minimize U4
{px,kx,/tr,vx},k;(g
= minimize Subject to U[J,_l = ,OtZU[ + 2)\.,G2 =+ ,LL[CZ 0 <t < k

@:hope) T oty Aty ey vr) € T; O0<t<k

(0, Ay, v) = (o, Ay ks Vi)

minimize /02Uk +20G* + ucz
{pta)\)‘s”’tavt}f:_(;
= minimize

(pr el subjectto Uyy1 = p,zUt + 2)L,G2 + utcz 0<t<k
(o, iy s, vi) € T4 0<t<k
= minimize pZU,?p[ +20G? + pc? (23)
(0, 2,1,v)€Tk
Where the final equality in (23) relies on the fact that p> > 0. m]

Obtaining an explicit analytical formula for U,Spt is not straightforward, since it
involves solving a sequence of semidefinite programs. However, we can make use of
Corollary 1 to further upper-bound U,?pt. This works because Corollary 1 gives an

analytical parameterization of a subset of 7;. Denote this new upper bound by Uy. By
Corollary 1, we have:

0k+1 = miréin(}ize ,ozlA]k +20G? + pc?
>

subjectto :a,%(l —}—;_1)

=1+ +8%7h (24)
0 = (1401 = 2may + Mo (1 +8%¢7 1))
[ > gyl
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Note that Corollary 1 also places bounds on «, which we assume are being satisfied
here. The optimization problem (24) is a single-variable smooth constrained problem.
It is straightforward to verify that 41, A, and p? are convex functions of ¢ when ¢ > 0.
Moreover, the inequality constraint on ¢ is linear, so we deduce that (24) is a convex
optimization problem.

Thus, we have reduced the problem of recursively solving semidefinite programs
(finding U, ko P t) to recursively solving single-variable convex optimization problems
(finding Up). Ultimately, we obtain an upper bound on the expected error of biased
SGD that is easy to compute:

Ellx — x> < U < Uy (25)

Preliminary numerical simulations suggest that Uy seems to be equal to U ,S P under
the four sets of assumptions in this paper. However, we are unable to show U=U ,S Pt

analytically. In the subsequent sections, we will solve the recursion for Uy analytically
and derive convergence bounds for biased SGD.

2.3 Analytical recursive bounds for biased SGD

We showed in the previous section that El|jx; — X2 < 0k for biased SGD, where
Uy is the solution to (24). We now derive an analytical recursive formula for Uy. Let
us simplify the optimization problem (24). Eliminating p, A, u, we obtain

Ury1 = mir;inolize a(l+c H+b0+0)
>
subjectto  ax = oc,% (c2 +28%G* + 1\;18201()
(26)
b = (1 — 2may + Ma,f) Uk + 202G2

leM2182
> QMpio”
; — l—ap My

The assumptions on o from Corollary 1 also imply that a; > 0 and by > 0. We
may now solve this problem explicitly and we summarize the solution to (26) in the
following lemma.

Lemma 1 Consider biased SGD (3) with g € S(m, 00) for some m > 0, and let x,

be the unique global minimizer of g. Given one of the four conditions on f; and the

corresponding M = %; %;] and G from Table 1, further assume oy is strictly

positive and satisfies My, < 1. Then the error bound Uk defined in (26) can be
computed recursively as follows.

2 ay otkM2182
0k = (\/ak + ka) V b Z T—oy Mo
+1 = 2
M1 8 .
ar + b + ay + by, f‘ﬁ a;]{hl otherwise

27)

L= M)
o M2 82
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where ay and by are defined in (26). We may initialize the recursion at any Uy >
E [lxo — x.l1*.

Proof In Case II, we have M»; = 0 so the constraint on ¢ is vacuously true. Therefore,
the only constraint on ¢ in (26) is { > 0 and we can solve the problem by setting
the derivative of the objective function with respect to ¢ equal to zero. The result is
&k = \/% . In Cases I, III, and IV, we have M»>; > 0. By convexity, the optimal g is
either the unconstrained optimum (if it is feasible) or the boundary point (otherwise).
Hence (27) holds as desired. Note that if § = ¢ = 0, then a; = 0. This corresponds to
the pathological case where the objective reduces to b (1 + ¢). Here, the optimum is
achieved as ¢ — 0, which corresponds to © — o0 in (24). This does not cause a prob-
lem because ¢ = 0 so u does not appear in the objective function. The recursion (27)
then simplifies to Uk+1 = by. O

Remark 3 1f M = 0 (Case II in Table 1) or if § = 0 (no multiplicative noise), the

optimization problem (26) reduces to an unconstrained optimization problem whose
solution is

Ups1 = (\/a_/ﬁ— \/E)z

2
= (ak\/ 2+ 282G + MUy + \/ (1 — 2moy + Ma,f) U + 2G2a,§>

(28)

3 Analytical rate bounds for the constant stepsize case

In this section, we present non-recursive error bounds for biased SGD with constant
stepsize. Specifically, we assume o« = « for all k and we either apply Lemma 1 or
carefully choose a constant ¢ in order to obtain a tractable bound for Uy. The bounds
derived in this section highlight the trade-offs inherent in the design of biased SGD.

3.1 Linearization of the nonlinear recursion

This first result applies to the case where 6 = 0 or M»; = 0 (Case II) and leverages
Remark 3 to obtain a bound for biased SGD.

Corollary 2 Consider biased SGD (3) with g € S(m, 00) for some m > 0, and let x,

be the unique global minimizer of g. Given one of the four conditions on f; and the
corresponding M = [%; %;] and G from Table 1, further assume that oy = a > 0

(constant stepsize), My < 1, and either § = 0 or My = 0. Define p,q,r,s > 0 as
follows.

p=M8a>, q=(*4+2G*Ya%, r=1-2ma+Ma* s=2G*> (29)

@ Springer



B.Huetal.

Where M = M1y +2mM,». If /P + /1 < 1 then we have the following iterate error
bound:

E [lxx — x| <

ra/ 2 >
E — Xy U,, 30
<¢pu,+q \/rU,,+v> llxo — xull” + (30)

where the fixed point U, is given by

g PG =) +a+s+2Vps? + ¢’ +qs(—p—1)
" (p—r)2—=2(p+r)+1 '

€1y

Proof By Remark 3, we have the nonlinear recursion (28) for l}k. This recursion is of
the form

2
Ui+ = (\/pUk +q+ \/I’Uk +S> , 32)

where p, g, r, s > 0are givenin (29). It is straightforward to verify that the right-hand
side of (32) is a monotonically increasing concave function of Uy andits asymptote is a
line of slope (/p++/7)?. Thus, (32) will have a unique fixed point when ./p++/r < .
We will return to this condition shortly. When a fixed point exists, it is found by setting
Uy = 0k+1 = U, in (32) and yields U, given by (31). The concavity property further
guarantees that any first-order Taylor expansion of the right-hand side of (32) yields
an upper bound to 0k+1. Expanding about U,, we obtain:

0k+1_0*§( p}}* + 4 )(Uk—U) (33)

\/pU*+q ’\/FU*+A
which leads to the following non-recursive bound for biased SGD.
Euxk—x*uzgﬁks( */_> (0o - 0) + 0.
\/pU +q \/rU*+s

r\/_ > 7y
= («/pUﬁ-q NrU+s 0o+ 0. 34)

Since this bound holds for any Uo > Elxo — x*||2, it holds in particular when we
have equality, and thus we obtain (30) as required. O

The condition that ,/p 4 +/r < 1 from Corollary 2, which is necessary for the exis-
tence of a fixed-point of (32), is equivalent to an upper bound on «. After manipulation,
it amounts to:

2(m—3f)

35
M1 —82) )
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Therefore, we can ensure that \/p + /r < 1 when§ < m/v M, and « is sufficiently
small. If § = 0, the stepsize bound (35) is only relevant in Case II. For Cases I, III,
and IV, the bound M>j« < 1 imposes a stronger restriction on « (see Corollary 1). If

8 # 0, we only consider Case II (M>; = 0) and the resultant bound for « is m—y2L} .

The condition § < m /v M becomes 8 < m/(v/2L).
To see the trade-offs in the design of biased SGD, we can take Taylor expansions
of several key quantities about « = 0 to see how changes in « affect convergence:

2 osgr m (A0 —m?) +2(1-8) Gm?)

U, ~ — + . a4+ 0@?)  (36a)
m2 —82M (m? — §2M)?
_ = 2 _ (SZM
< p AU* 4T AU* ) ~1— ua 4 0(042) (36b)
VpOitq — Ar0uts m

We conclude that when § < m /v M, biased SGD converges linearly to a ball whose
radius is roughly U, > 0. One can decrease the stepsize « to control the final error U,.
However, due to the errors in the individual gradient updates, one cannot guarantee the

2
[

2 2072 .. . . . oy
final error [E || x; — x,||* smaller than %. This is consistent with our intuition;
m

2_52
one could inject noise in an adversarial manner to shift the optimum point away from
X, SO there is no way to guarantee that {x;} converges to x, just by decreasing the

stepsize «.

Remark 4 One can check that the left side of (36b) is not differentiable at (¢, o) =
(0, 0). Consequently, taking a Taylor expansion with respect to @ and then setting
¢ = 0 does not yield the same result as first setting ¢ = 0 and then taking a Taylor
expansion with respect to « of the resulting expression. This explains why (36b) does
not reduce to p> = 1—2ma+ O (a?) when ¢ = § = 0. Itis worth noting that the higher
order term O («2) in (36b) depends on c. Indeed, it blows up as ¢ — 0. Therefore,
the rate formula (36b) only describes the stepsize design trade-off for a fixed positive
¢ and sufficiently small «. Similar situation even holds for the case where G = 0. As
long as ¢ # 0, the rate formula is not going to reduce to ,o2 =1—2ma + O(a?) due
to the fact that the left side of (36b) is not differentiable at (¢, @) = (0, 0).

The non-recursive bound (30) relied on a linearization of the recursive formula
(32), which involved a time-varying . It is emphasized that we assumed that either
8 = 0 or M1 = 0. In the other cases, namely § > 0 and M>; > 0 (Case I, III, or
IV), we cannot ignore the additional condition ¢ > % and we must use the
hybrid recursive formula (27). This hybrid formulation is more problematic to solve
explicitly. However, if we are mostly interested in the regime where « is small, we can
obtain non-recursive bounds similar to (30) by carefully choosing a constant ¢ for all
k. We will develop these bounds in the next section.

3.2 Non-recursive bounds via a fixed { parameter

When « is small, we can choose ¢ = ma and we obtain the following result.
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Corollary 3 Consider biased SGD (3) with g € S(m, 00) for some m > 0, and let x,
be the unique global minimizer of g. Given one of the four conditions on f; and the

corresponding M = [%; %;] and G from Table 1, further assume that oy = o > 0

(constant stepsize), and My, (a + %) <15 Finally, assume that

0<p?<1 where > =1— "=M8 o (711 1 6%) — 2mP)a® + Mma®.  (37)

m

Note (37) holds for o sufficiently small. Then, we have the following error bound for
the iterates

Ellxx — x> < 5* E |lxo — x> + U (38)
where U, is given by

282G+ + m(c? 4+ 2G(1 + 8Y)a + 2m>G2a?
T (m2 — M) — m(M(1 + 82) — 2m2)a — Mm2a?

(39)

Proof Set { = ma in the optimization problem (26). This defines a new recursion

for a quantity Uy that upper-bounds Uy since we are choosing a possibly sub-optimal
OtM2152
1—aM»y

Hence our choice of ¢ is a feasible choice for (26). This leads to:

¢. Our assumption M»; (a + %) < 1 guarantees that { > when { = mo.

U1 = ax(1 + - + b (1 + ma)
= 32Uk + (@*(c* +28°GH)(1 + ;1) +20*G*(1 + ma))
This is a simple linear recursion that we can solve explicitly in a similar way to the

recursion in Remark 2. After simplifications, we obtain (38) and (39). O

The linear rate of convergence in (38) is of the same order as the one obtained in
Corollary 2 and (36b). Namely,

2 e
Pt P IMO) L 0@ (40)

Likewise, the limiting error U, from (39) can be eixpanded as a series in « and we

obtain a result that matches the small-a limit of U, from (36a) up to linear terms.

Namely,

N C2 + 282G2 N m (C‘Z(M — mz) +2 (1 — 82) G2m2>
m? — M§? (m? — §2M)2

a+0@?) @)

5 When Mp; = 0, this condition always holds. When § = 0, this condition is equivalent to My < 1.
Hence the above corollary can be directly applied if Ma; = 0oré = 0.1f M1 > Oand § > 0, the condition

2 . .. .
M»y (tx + %) < 1 can be rewritten as a condition on « in a case-by-case manner.
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Table 2 Upper bound on § for
the four different cases
described in Table 1

Case I 1I 111 v

M= M1 +2mMyp m? 212 2mL 2m?

m m m
& bound 1 7L 50 / Tim

Therefore, (38) can give a reasonable non-recursive bound for biased SGD with small
« even for the cases where M>; > O and § > 0.

Now we discuss the acceptable relative noise level under various assumptions on
fi. Based on (40), we need m? — M8% > 0 to ensure p% < 1 for sufficiently small .

The other constraint M»; (a + fn—2> < 1 enforces M»8% < m. Depending on which

case we are dealing with, the conditions § < m/ \/ﬁ and M18% < m impose an upper
bound on admissible values of §. See Table 2.

We can clearly see that for £,-regularized logistic regression and support vector
machines which admit the assumption in Case I, biased SGD is robust to the relative
noise. Given the condition § < 1, the iterates of biased SGD will stay in some ball,
although the size of the ball could be large. Comparing the bound for Cases II, III,
and IV, we can see the allowable relative noise level increases as the assumptions on
fi become stronger.

As previously mentioned, the bound of Corollary 3 requires a sufficiently small «.

Specifically, the stepsize o must satisfy My (a + %) < 1 and (37), which can be
solved to obtain explicit upper bounds on «. Details are omitted.

Sensitivity analysis. Based on (40), the convergence rate 5> can be estimated as 1 —
2182 L . . .
%a for small o, which is independent of c. Hence the misspecification in the

m2—Ms>
m
to § is 2M S /m. Hence, if we perturb the value of § by e, the change in the value of

p? is roughly equal to 2M Sace /m. Similarly, we can perform a sensitivity analysis for
the final optimization error term U, by taking the derivative of the right side of (41)
with respect to § (or c).

value of ¢ does not impact the value of 52. The derivative of 1 — « with respect

Conservatism of Corollary 3. Corollary 3 gives a reasonable non-recursive bound for
biased SGD with small «. However, if we consider Case II, it can be much more
conservative than Corollary 2 for relatively larger & . We use a numerical example to
illustrate this. Consider m = 1, L = 100, G = 5, and ¢ = 1. We set § = 0.0021 <

0.0071 = m/\/ﬁ. Based on (35), we know Corollary 2 works fora < 7 x 1072, Based
on (37), we can show Corollary 3 works for @ < 4.55 x 107>, Obviously, Corollary 2
works for a larger range of «. By numerical simulations, it is straightforward to verify
that U, — oo and p — 1 if we apply Corollary 3 to the case where o = 4.56 x 107>,
In contrast, if we apply Corollary 2 to the case where & = 4.56 x 107>, we can obtain
U, = 4.8207. The associated convergence rate is 1 — 1.74 x 107>, Clearly, Corollary 2
gives a much more reasonable bound in this case. We have tried different problem
parameters and have observed similar trends. In general, for Case II, Corollary 3 is
more conservative than Corollary 2 if relatively large « is considered. The advantage
of Corollary 3 is that it is general enough to cover Cases I, III, and IV.
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4 Further discussion
4.1 Connections to existing SGD results

In this section, we relate the results of Theorem 1 and its corollaries to existing results
on standard SGD. We also discuss the effect of replacing our error model (4) with IID
noise.

If there is no noise at all, c = § = 0 and none of the approximations of Sect. 3 are
required to obtain an analytical bound on the iteration error. Returning to Theorem 1
and Corollary 1, the objective to be minimized no longer depends on ;. Examin-
ing (13), we conclude that optimality occurs as { — 0 (u — oo). This leads directly
to the bound

E xei1 — x> < (1 = 2may + Ma)) E |xx — x> +2G%a?, (42)

where oy, is constrained such that M3 ;. < 1. The bound (42) directly leads to existing
convergence results for standard SGD. For example, we can apply the argument in
Remark 2 to obtain the following bound for standard SGD with a constant stepsize
=«

Nk 2G2
Elx; — x| < (1 — 2ma + Mozz) Elxo — xo > + ———— (43)
2m — M«

where « is further required to satisfy 1 — 2ma + Ma? < 1. For Cases I, III, and
1V, the condition M>;« < 1 dominates, and the valid values of « are documented in
Corollary 1. For Case II, the condition & < 2m /M dominates and the upper bound on
aism/L>.

The bound recovers existing results that describe the design trade-off of standard
(noiseless) SGD under a variety of conditions [22-24]. Case I is a slight variant of the
well-known result [23, Prop. 3.4]. The extra factor of 2 in the rate and errors terms
are due to the fact that [23, Prop. 3.4] poses slightly different conditions on g and f;.
Cases II and III are also well-known [15,22,24].

Remark 5 1If the error term ¢y, is IID noise with zero mean and bounded variance, then
a slight modification to our analysis yields the bound

Ellxitt = xal® < (1= 2mag + Ma) E | — x> + 2G> + 0%)af,  (44)
where 62 > E ||ex||>. The detailed proof is omitted.
4.2 Adaptive stepsize via sequential minimization
In Sect. 3, we fixed oy = « and derived bounds on the worst-case performance of
biased SGD. In this section, we discuss the potential impacts of adopting time-varying

stepsizes. First, we refine the bounds by optimizing over o as well. What makes this
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approach tractable is that in Theorem 1, the LMI (10) is also linear in «. Therefore,
we can easily include o as one of our optimization variables.

In fact, the development of Sect. 2.2 carries through if we augment the set 7 to be
the set of tuples (o, Ak, i, Vi, @) that makes the LMI (10) feasible. We then obtain
a Bellman-like equation analogous to (23) that holds when we also optimize over «
at every step. The net result is an optimization problem similar to (26) but that now
includes « as a variable:

Vie1 = minimize ax(1 4+ ¢~ Y + br(1 +¢)
a>0,¢>0

subject to ar = o (c2 + 282G + M§? Vk) 45)

by = (1 — 2ma + Mot2> Vi +202G>
aMy(1+8*cH <1

As we did in Sect. 2.2, we can show that [ || x; — x4 ||2 < Vj for any iterates of biased
SGD. We would like to learn two things from (45): how the optimal « changes as a
function of k in order to produce the fastest possible convergence rate, and whether this
optimized rate is different from the rate we obtained when assuming o was constant
in Sect. 3.

To simplify the analysis, we will restrict our attention to Case II, where M>; = 0
and M = 2L2. In this case, the inequality constraint in (45) is satisfied for any o > 0
and ¢ > 0, so it may be removed. Observe that the objective in (45) is a quadratic
function of «.

a(l+ D40+ =040V —2m(1+ O Ve + (1 4+ 7 H(? +2G*82
+ MV8? +2G*¢ + MVi)a? (46)

This quadratic is always positive definite, and the optimal « is given by:

aopt _ "}ng _ (47)
KT (@4 282G2 + 82M V) + G2 + MVi)¢
Substituting (47) into (45) to eliminate «, we obtain the optimization problem:
o+ DV(P + QG+ MV + ) — mP Vi)
Vk+1 = minimize - (48)
£>0 2+ (2G2+MV) (82 +¢)

By taking the second derivative with respect to ¢ of the objective function in (48), one
can check that we will have convexity as long as (2G? + MV)(1—=8%) > ¢2. In other
words, we have convexity as long as the noise parameters c and § are not too large. If
this bound holds for V; = 0, then it will hold for any V; > 0. So it suffices to ensure
that 2G2(1 — §2) > 2.

Upon careful analysis of the objective function, we note that when ¢ = 0, we
obtain Vi1 = V. In order to obtain a decrease for some ¢ > 0, we require a negative
derivative at £ = 0. This amounts to the condition: ¢ 4+ (2G2 + MV;)8? < m2Vy. As
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Vi gets smaller, this condition will eventually be violated. Specifically, the condition
holds whenever m> — M8% > 0 and

c? 4+ 28%G?
Vi> ———
m2 — M§?
Note that this is the same limit as was observed in the constant-o limits l},, and 0,,

when o — 01n (36a) and (41), respectively. This is to be expected; the biased gradient
2+426%G?
m2—Més?

the final optimization result, and this can not be overcome by any stepsize rules. Notice

that we have not ruled out the possibility that V; suddenly jumps below % at

some k and then stays unchanged after that. We will make a formal argument to rule
out this possibility in the next lemma. Moreover, the question remains as to whether
this minimal error can be achieved faster by varying oy in an optimal manner. We
describe the final nonlinear recursion in the next lemma.

information introduces an uncontrollable bias (which is quantified as ) into

Lemma 2 Consider biased SGD (3) with g € S(m, 00) for some m > 0, and let x, be
the unique global minimizer of g. Suppose Case Il holds and (M, G) are the associated

values from Table 1. Further assume 2G*(1 — §%) > ¢* and Vy > ‘;‘2"3‘;5622 = V..

1. The sequential optimization problem (48) can be solved using the following non-
linear recursion

Vi

Vigt = ———
TG+ mvy)?

x (\/(ZGZ + (M —m) Vi) ((2G? + MVi)(1 — §2) — c2)

2
+ \/m2 Vi(c? +82(2G2 + ka))> (49)

and Vi, satisfies Vi > V, for all k.

2. Suppose Uy = Vo > E|xo— x.|1? (all recurrences are initialized the same
way), then {Vi}i=o0 provides an upper bound to the iterate error satisfying
E lxg — x.)1* < Vi < Uk

3. The sequence {Vi}ik>0 converges to V,:

2 22

cc+25°G

lim Vi=v, = 2%

k—o0 m2 — M§?

Proof See “Appendix B”. O

To learn more about the rate of convergence, we can once again use a Taylor series
approximation. Specializing to Case II (where M > 0), we can consider two cases.
When Vj is large, perform a Taylor expansion of (49) about V; = oo and obtain:

mé+~/ (M—m?)(1—52)
< i ) Vi +0(1)

Vi1 =
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In other words, we obtain linear convergence. When V; is close to V,, the behavior
changes. To see this, perform a Taylor expansion of (49) about V; = V, and obtain:

(m? — M§?)3

1/ Vi — V., 2 oV, —V* 3
4m2(c2(M_m2)+2G2m2(] —82))( k )"+ O((Vk )7)

Vil = Vi —

(50)

We will ignore the higher-order terms, and apply the next lemma to show that the
above recursion roughly converges at a O (1/k) rate.

Lemma 3 Consider the recurrence relation
vk+1=vk—nv,§ fork=0,1,... (1))

where vg > 0and 0 < n < vy ! Then the iterates satisfy the following bound for all
k>0.

1
Vg <

< —7 (52)
nk + vo_l

Proof The recurrence (51) is equivalent to nugy+; = nug — (r;vk)2 with 0 < nvg < 1.
Clearly, the sequence {nuvi}r>0 is monotonically decreasing to zero. To bound the
iterates, invert the recurrence:
1 1 1 1 1
= 7=+ =
N+t Mok — (u)~ o 1 —nue = nug

Recursing the above inequality, we obtain: U%k > n_})o + k. Inverting this inequality

yields (52), as required. O
Applying Lemma 3 to the sequence vy = Vi — V, defined in (50), we deduce that
when V} is close to its optimal value of V,, we have:
(m2 _ M62)3
4m2(c2(M — m2) +2G2m2(1 — §2))
(53)

Vi~ Vi +
g nk+ (Vo — Vi) !

with: n =

We can also examine how « changes in this optimal recursive iteration by taking (47)
and substituting the optimal ¢ found in the optimization of Lemma 2. The result is
messy, but a Taylor expansion about V; = V, reveals that

opt _ (m? — M§2)?

- 1/ Vi — V* oV — V* 2 .
" 2m(c2(M_m2)+2G2m2(1 _52))( k )+ O((Vi )%)

So when Vj is close to V,, we should be decreasing oy to zero at a rate of O(1/k) so
that it mirrors the rate at which Vi — V, goes to zero in (53).
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Finally, we want to mention that calculating a,(c)pt requires one to know the problem

parameters (m, M ,8,¢, G, Vp) in advance. This restricts the applicability of such
adaptive stepsize rules for practical problems. Nevertheless, our results in this section
bring new theoretical insights for the potential impacts of time-varying stepsizes on
the performance of biased SGD. In summary, adopting an optimized time-varying
stepsize still roughly yields a rate of O(1/k), which is consistent with the sublinear
convergence rate of standard SGD with diminishing stepsize. It is possible that the
well-known lower complexity bounds for standard SGD in [1] can be extended to the
inexact case, although a formal treatment is beyond the scope of this paper.

Appendix
A Proof of Theorem 1

First notice that since i is uniformly distributed on {1, ...,n} and x; and i are
independent, we have:

1 n
E(u | 1) = BV fio ) | xe) = = 3V fiGe) = Vo)
i=1
Consequently, we have:
—x ' [=2mi, I -
o (i
Ug Ip  0p Uy

where the inequality in (54) follows from the definition of g € S(m, 00).
Next we prove (12), let’s start with Case I, the boundedness constraint ||V f; (xx) || <
B implies that |lug|| < B for all k. Rewrite as a quadratic form to obtain:

T
Xk — Xx 0 0 Xk — Xy 2
R AR | B

The boundedness constraint ||V f; (xx) — mxg|| < B implies that:

o) = [xk —x*i|T|:—2m1p Ip] [xk —x{| -0
k)= [ Vet I, 0,]| Ve |~

(54)

2 2 2
lug —mxx —x)° < [(ux — mxg) +mx, ||~ + |(ux —mxg) — mx,||
2 2 2
=2 |lug — mxi ||~ 4 2m= ||x.||

< 28% 4 2m? |x, )2

As in the proof of Case I, rewrite the above inequality as a quadratic form and we
obtain the second row of Table 1.
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To prove the three remaining cases, we begin by showing that an inequality of the
following form holds for each f;:

|: Xk — Xx i|T|:M]11p M]zlp:||: Xk — Xx ]>O (56)
Vi) = Vi) | [(Malp, =21, ||V /filxr) =V filx) ]|~

The verification for (56) follows directly from the definitions of L-smoothness and
convexity. In the smooth case (Definition 1), for example, ||V f; (xx) — V fi (x| <
L|lxx — x.||. So (56) holds with M| = 2L%, M1» = M>; = 0. The cases for F(0, L)
and F(m, L) follow directly from Definition 2. In Table 1, we always have M, = —1.
Therefore,

xk)

T
o R My I, Moy | | Xk — X
U My I, Mpl), Uk

I — TTMu T, Mial, ] [ — x, 1 o A 2
_ZZ[Vﬁ(xk)] |:M211; o,,p} [Vﬁ(xk)]_;;:”vﬁ(xk)” 7)

i=1

Since % Yo Vfilx,) = Vg(x,) = 0, the first term on the right side of (57) is equal
to

li[ Xk — Xx ][M]][p Mlzlpi||: Xk — Xx ]
n Vi) = Vfilx) | [Mal, 0p V fi(xx) — V fi(xs)

i=1

Based on the constraint condition (56), we know that the above term is greater than or
equal to % Z?:l IV fi(xk) — V fi(xy) ||2. Substituting this fact back into (57) leads to

the inequality:
-
E X — Xy My Iy MipIp | | Xk — X X
Uy My I, MxlI), Uk

n

1
=3 (20 = VG = IV fi 1)
i=l1

A%

n

1
=Y (VA =2V fi 2 =21V fixa)l?)
n i=1

n

2 2
—= ) IVAGDI (58)

i=1

v

Taking the expectation of both sides, we arrive at (12), as desired. Now we are ready
to prove our main theorem. By Schur complement, (10) is equivalent to (15), which
can be further rewritten as
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1—pf - —o -2m 1 0 My Mp 0 00 0
—ar o wl (4w 10 0| +a| My Mp Of+um|0 82 0 |]|®1,=<0
0 0

- o af 0 0 0 o0 0 0 -1
(59
Since Xg41 — X = Xk — Xy — o (ur + ex), we have
T
Xk — Xx 1 —o —a Xk — Xx
2 2 2
77 —ar o o | ®I) ug = |lxk+1 — xll” (60)
(9 — O(]% Ol,% (4%

Now we can left and right multiply (59) by [(xx — x)T, u}; eZ] and [(x; —
x)7, uz, eZ]T, and apply the inequalities (4), (54), and (12) to get the desired con-
clusion. O

B Proof of Lemma 2

We use an induction argument to prove Item 1. For simplicity, we denote (48) as
Vis1 = h(Vy). Suppose we have Vi = h(Vi_1) and Vi_1; > V,. We are going to
show Vi41 = h(Vy) and Vi > V,. We can rewrite (48) as

Vi1 = minimize  Ag(1 + Z7Y + Be(1+ Zy) 1)
>

where Ay, By, and Z; are defined as

m2V2 <c2 1 G + ka)az)
(2G? + MV;)?
B — (2G2Vi+ (M = m?)V2)(2G? + MV (1 = 8%) =)
(2G? + MVy)?
7= (2G? + 1({\/,()(52 + &) + c?
(2G? + MV)(1 — 82) — ¢2

A =

Note that A; > 0 and B; > 0 due to the condition 2G2(1 — 82) > ¢2. The objective
in (61) therefore has a form very similar to the objective in (26). Applying Lemma 1,
we deduce that V41 = (VA + B)?2, which is the same as (49). The associated

ZZP Lis g—:. To ensure this is a feasible choice, it remains to check that the associated

;,? Pt~ Oaswell. Via algebraic manipulations, one can show that ¢ > 0is equivalent to
Vi > V.. We can also verify Ay is amonotonically increasing function of Vi, and By, is
a monotonically nondecreasing function of Vj. Hence & is a monotonically increasing
function. Also notice V; is a fixed point of (49). Therefore, if we assume V, = h(Vi_1)
and Vi_; > V,, we have Vy = h(Vy_1) > h(V,) = V.. Hence we guarantee {; > 0
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and Viy1 = h(Vg). By similar arguments, one can verify Vi = h(Vp). And it is
assumed that Vy > V,. This completes the induction argument.

Item 2 follows from a similar argument to the one used in Sect. 2.2. Finally, Item

3 can be proven by choosing a sufficiently small constant stepsize « to make Uy
arbitrarily close to V,. Since V, < Vi < Uy, we conclude that limy_, o Vx = Vi, as
required. O

References

w

10.

11.

12.

13.

14.

15.

16.

17.

19.

20.

. Agarwal, A., Bartlett, PL., Ravikumar, P., Wainwright, M.J.: Information-theoretic lower bounds on

the oracle complexity of stochastic convex optimization. IEEE Trans. Inf. Theory 58(5), 3235-3249
(2012)

. Arora, S., Ge, R., Ma, T., Moitra, A.: Simple, efficient, and neural algorithms for sparse coding. In:

Conference on Learning Theory, pp. 113-149 (2015)

. Bertsekas, D.: Nonlinear Programming, 2nd edn. Athena scientific, Belmont (2002)
. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMP-

STAT 2010, pp. 177-186 (2010)

. Bottou, L., Curtis, F., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev.

60(2), 223-311 (2018)

. Bottou, L., LeCun, Y.: Large scale online learning. Adv. Neural Inf. Process. Syst. 16, 217 (2004)
. Bubeck, S.: Convex optimization: algorithms and complexity. Found. Trends® Mach. Learn. 8(3—4),

231-357 (2015)

. Chen, Y., Candes, E.: Solving random quadratic systems of equations is nearly as easy as solving linear

systems. In: Advances in Neural Information Processing Systems, pp. 739-747 (2015)

. d’Aspremont, A.: Smooth optimization with approximate gradient. SIAM J. Optim. 19(3), 1171-1183

(2008)

De Klerk, E., Glineur, F., Taylor, A.: On the worst-case complexity of the gradient method with exact
line search for smooth strongly convex functions. Optim. Lett. 11(7), 1185-1199 (2017)

Defazio, A., Bach, F., Lacoste-Julien, S.: Saga: A fast incremental gradient method with support for
non-strongly convex composite objectives. In: Advances in Neural Information Processing Systems
(2014)

Defazio, A., Domke, J., Caetano, T.: Finito: A faster, permutable incremental gradient method for
big data problems. In: Proceedings of the 31st International Conference on Machine Learning, pp.
1125-1133 (2014)

Devolder, O., Glineur, F., Nesterov, Y.: First-order methods of smooth convex optimization with inexact
oracle. Math. Program. 146(1-2), 37-75 (2014)

Drori, Y., Teboulle, M.: Performance of first-order methods for smooth convex minimization: a novel
approach. Math. Program. 145(1-2), 451-482 (2014)

Feyzmahdavian, H., Aytekin, A., Johansson, M.: A delayed proximal gradient method with linear
convergence rate. In: 2014 IEEE International Workshop on Machine Learning for Signal Processing,
pp. 1-6 (2014)

Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S.,
Kimura, H. (eds.) Recent Advances in Learning and Control. Lecture Notes in Control and Information
Sciences, pp. 95-110. Springer (2008). http://stanford.edu/~boyd/graph_dcp.html

Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1. http://
cvxr.com/cvx (2014)

. Hu, B,, Seiler, P,, Rantzer, A.: A unified analysis of stochastic optimization methods using jump system

theory and quadratic constraints. In: Proceedings of the 2017 Conference on Learning Theory, vol. 65,
pp. 1157-1189 (2017)

Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction.
In: Advances in Neural Information Processing Systems, pp. 315-323 (2013)

Lee, J.C., Valiant, P.: Optimizing star-convex functions. In: 2016 IEEE 57th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 603-614 (2016)

@ Springer


http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx
http://cvxr.com/cvx

B.Huetal.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Lessard, L., Recht, B., Packard, A.: Analysis and design of optimization algorithms via integral
quadratic constraints. SIAM J. Optim. 26(1), 57-95 (2016)

Moulines, E., Bach, F.: Non-asymptotic analysis of stochastic approximation algorithms for machine
learning. In: Advances in Neural Information Processing Systems, pp. 451-459 (2011)

Nedi¢, A., Bertsekas, D.: Convergence rate of incremental subgradient algorithms. In: Stochastic
Optimization: Algorithms and Applications, pp. 223-264 (2001)

Needell, D., Ward, R., Srebro, N.: Stochastic gradient descent, weighted sampling, and the randomized
Kaczmarz algorithm. In: Advances in Neural Information Processing Systems, pp. 1017-1025 (2014)
Nishihara, R., Lessard, L., Recht, B., Packard, A., Jordan, M.: A general analysis of the convergence
of ADMM. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 343-352
(2015)

Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400-407 (1951)
Roux, N., Schmidt, M., Bach, F.: A stochastic gradient method with an exponential convergence rate for
strongly-convex optimization with finite training sets. In: Advances in Neural Information Processing
Systems (2012)

Schmidt, M., Roux, N., Bach, F.: Minimizing finite sums with the stochastic average gradient. Math.
Program. 162(1-2), 83-112 (2017)

Schmidt, M., Roux, N.L., Bach, FR.: Convergence rates of inexact proximal-gradient methods for
convex optimization. In: Advances in Neural Information Processing Systems, pp. 1458-1466 (2011)
Shalev-Shwartz, S., Zhang, T.: Stochastic dual coordinate ascent methods for regularized loss. J. Mach.
Learn. Res. 14(1), 567-599 (2013)

Sun, R., Luo, Z.Q.: Guaranteed matrix completion via non-convex factorization. IEEE Trans. Inf.
Theory 62(11), 6535-6579 (2016)

Taylor, A., Bach, F.: Stochastic first-order methods: non-asymptotic and computer-aided analyses via
potential functions. In: Proceedings of the 2019 Conference on Learning Theory, pp. 2934-2992 (2019)
Taylor, A., Hendrickx, J., Glineur, F.: Smooth strongly convex interpolation and exact worst-case
performance of first-order methods. Math. Program. 161(1-2), 307-345 (2017)

Taylor, A., Hendrickx, J.M., Glineur, F.: Exact worst-case performance of first-order methods for
composite convex optimization. SIAM J. Optim. 27(3), 1283-1313 (2017)

Taylor, A., Van Scoy, B., Lessard, L.: Lyapunov functions for first-order methods: Tight automated
convergence guarantees. In: Proceedings of the 35th International Conference on Machine Learning,
pp. 4897-4906 (2018)

Teo, C., Smola, A., Vishwanathan, S., Le, Q.: A scalable modular convex solver for regularized risk
minimization. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 727-736 (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	Analysis of biased stochastic gradient descent using sequential semidefinite programs
	Abstract
	1 Introduction
	1.1 Notation
	1.2 Assumptions

	2 Analysis framework
	2.1 An LMI condition for the analysis of biased SGD
	2.2 Sequential minimization approach for biased SGD
	2.3 Analytical recursive bounds for biased SGD

	3 Analytical rate bounds for the constant stepsize case
	3.1 Linearization of the nonlinear recursion
	3.2 Non-recursive bounds via a fixed ζ parameter

	4 Further discussion
	4.1 Connections to existing SGD results
	4.2 Adaptive stepsize via sequential minimization

	Appendix
	A Proof of Theorem 1
	B Proof of Lemma 2
	References






