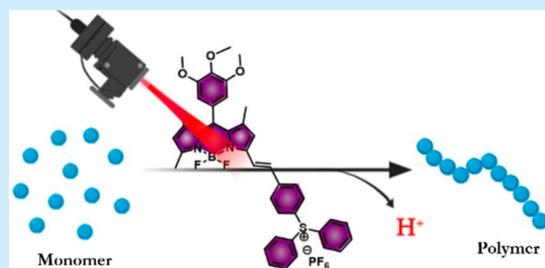


BODIPY-Based Photoacid Generators for Light-Induced Cationic Polymerization

Karthik Sambath,[†] Zhaoxiong Wan,[†] Qi Wang, Hao Chen, and Yuanwei Zhang*

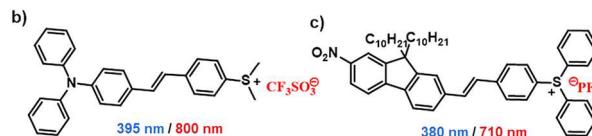
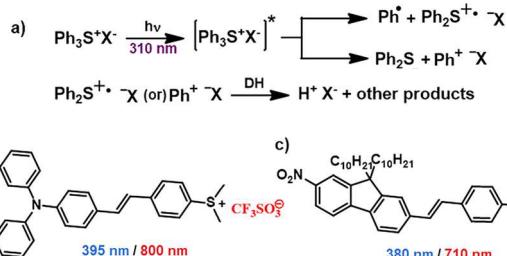
Cite This: <https://dx.doi.org/10.1021/acs.orglett.0c00118>

Read Online


ACCESS |

Metrics & More

Article Recommendations



Supporting Information

ABSTRACT: Photoacid generators (PAGs) are organic compounds that can generate protons (H^+) upon irradiation with certain wavelengths of light. In this work, we designed and synthesized the first BODIPY-based PAGs with D–A and D– π –A conjugation structures and achieved green and red LED light-induced acid generation. By the use of red-light absorbance, red-LED-triggered cationic polymerization was demonstrated as a proof-of-concept application of these PAGs.

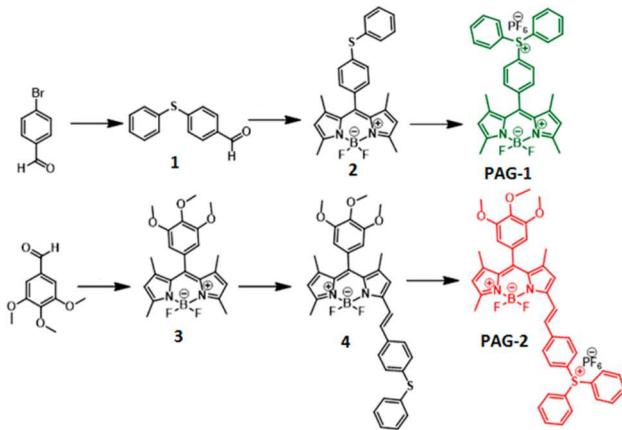
Photoacid generators (PAGs) are light-sensitive organic compounds that produce H^+ upon exposure to certain wavelengths of light. Since the initial studies of PAGs from the 1970s, they have gained enormous interest because of their ability to generate Brønsted superacids in a light-guided way.¹ Using light to activate the formation of H^+ has numerous applications in industry, such as photoinitiation for polymerization,^{2,3} lithography,⁴ and protecting group chemistry.⁵ Furthermore, PAGs recently have been used in biology, including controlling enzyme activity,⁶ oxygen inhibition,⁷ and photodynamic therapy.⁸ Because of their broad applications, many PAGs have been designed, and the area has undergone major shifts with a sharp increase in the number of available PAGs. Aryldiazonium, diaryliodonium, triarylsulfonium, and triarylpophosphonium salts have been synthesized for use as PAGs, and their photochemistry has been investigated.⁹ For example, triarylsulfonium salts with complex halide anions ($X^- = BF_4^-, PF_6^-$) comprise a class of highly efficient PAGs.¹⁰ Upon light absorption, the sulfonium salts can be excited to the singlet surface, where the excited species (C–S bond) fragments via homolytic cleavage to give a phenyl radical and diphenylsulfinyl radical pair or heterolytic cleavage to give phenyl cation and diphenyl sulfide.^{1,11} Consequently, these species undergo secondary reactions, such as radical coupling or H transfer, to produce H^+ (Figure 1a). A main advantage of sulfonium salts is their ability to trigger rapid electron transfer that leads to stable cations and strong acids upon photodissociation.

To date, most of the available PAGs need high-energy (UV to blue) irradiation to generate H^+ , which limits their applications, especially in biology, because of the high photon energy and scattering.⁹ Though several two-photon PAGs have been reported, conventional PAGs exhibit low two-photon absorption cross sections.⁹ Therefore, recent works in the field have focused on developing PAGs that can be excited at longer

Figure 1. (a) Photolysis mechanism of triarylsulfonium-salt-based PAGs (DH = donor of hydrogen) and (b, c) examples of reported PAGs with (b) styryl and (c) fluorene chromophores and their one-photon (blue) and two-photon (red) absorption wavelengths.

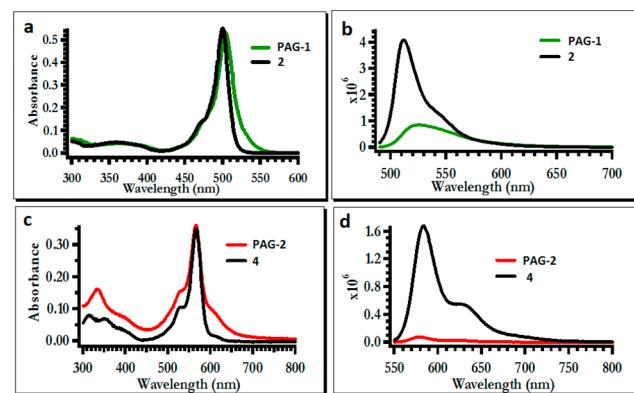
wavelengths in the visible region. Several sulfonium PAGs have been reported with extended absorption in the blue window, using the approach of conjugating sulfonium salts with various visible-light-absorbing chromophores.¹² For example, Jin et al.¹³ and De Waele et al.¹⁴ developed several π -conjugated donor– π –acceptor (D– π –A) sulfonium salts by introducing electron-donating groups at the *para* position of the sulfonium salt (Figure 1b).¹⁵ In addition, Belfield et al.^{16,17} conjugated highly thermally and photochemically stable fluorene with sulfonium and formed A– π –A (Figure 1c) and A– π – π –A (with two sulfonium moieties on the fluorene) PAGs. Though these conjugations red-shifted the one-photon absorption wavelengths to some extent, they are still far from green or

Received: January 9, 2020


even red, and the design of compounds with satisfying activity in the visible range remains an open challenge.

Boron dipyrromethene (BODIPY) chromophores have promising optical properties, such as high fluorescence quantum yields, large molar extinction coefficients, and narrow emission bands, as well as flexible chemical structures.^{18–20} On the basis of previous knowledge,^{21–23} we designed PAGs using a BODIPY chromophore as the donor and triarylsulfonium as the acceptor. Here we report the synthesis, characterization, and photophysical and photochemical properties of BODIPY-based PAG-1 (D–A) and PAG-2 (D–π–A). We studied the acid-generating ability of the newly synthesized PAGs upon irradiation with green and red LEDs, respectively.

In general, photoinduced polymerization is one of the most exciting technologies for advanced manufacturing of polymers, where one of the key components is a photosensitive moiety that can generate active species upon light absorption. In the past decade, to go beyond photoradical generators, intensive research has been devoted to new structures of PAGs.¹⁰ PAGs are capable of triggering a polymerization process by releasing H^+ upon light irradiation, are insensitive toward oxygen, and can lead to a considerable variety of polymer backbones.^{24,25} In this study, we used PAG-2 to demonstrate the capability to initiate ring-opening cationic polymerization using red LED light.


PAG-1 and PAG-2 were synthesized following the sequences of chemical reactions shown in **Scheme 1**. First,

Scheme 1. Synthetic Routes to PAG-1 and PAG-2

thiophenol was reacted with 4-bromobenzaldehyde to afford compound 1. Then BODIPY diphenyl sulfide (2) was obtained by reacting compound 1 with 2,4-dimethylpyrrole. Next, PAG-1 was synthesized by microwave irradiation of compound 2 with diphenyliodonium hexafluorophosphate in a closed vessel. Next, we synthesized PAG-2 with the D–π–A structure in a similar way. The BODIPY core (3) was synthesized using a literature method by treating 3,4,5-trimethoxybenzaldehyde with 2,4-dimethylpyrrole.²⁶ Then trimethoxy BODIPY diphenyl sulfide (4) was obtained by a condensation reaction between compounds 1 and 3. Finally, PAG-2 was obtained by microwave irradiation of compound 4 with diphenyliodonium hexafluorophosphate.

Next, the UV absorption and emission spectra of PAG-1, PAG-2, and their precursor compounds 2 and 4 in methanol were recorded (**Figure 2**). The absorption spectra of PAG-1 and PAG-2 showed an intense peak centered at 509 and 566

Figure 2. (a) Absorption and (b) emission spectra of PAG-1 and compound 2 and (c) absorption and (d) emission spectra of PAG-2 and compound 4.

nm, respectively, and the emission was centered at 521 and 579 nm, respectively. Compared with PAG-1, PAG-2 has an extended conjugation system and displays red-shifted photophysical properties as well as a larger absorption coefficient (ϵ). The fluorescence quantum yields (Φ_f) were calculated using fluorescein and crystal violet perchlorate as standards. The Φ_f values for PAG-1 and PAG-2 in methanol were 0.11 and 0.02, respectively (**Table 1**), whereas those of the precursor compounds 2 and 4 were 0.30 and 0.45, respectively. This clearly indicates that the emission decreases dramatically after the formation of the triphenylsulfonium salt as a result of the electron transfer from the BODIPY chromophore to the triphenylsulfonium moiety in both the D–A and D–π–A structures. Furthermore, the decrease in fluorescence intensity correlates well with the decrease in fluorescence lifetime (τ) when the PAGs are compared with their precursors (**Figures S1 and S2**).

Initially the dark stability was checked, and the results showed that after 24 h in the dark both PAG-1 and PAG-2 had negligible changes in their UV–vis spectra, indicating high dark stabilities (**Figure S3**). Then we studied the photochemistry of these BODIPY-based PAGs. On the basis of their maximum absorption wavelengths and the availability of LED light sources, we used a green LED (505 ± 30 nm) to irradiate PAG-1, while a red LED (595 ± 30 nm) was employed to excite PAG-2. PAG-1 (2 mL of a 1×10^{-5} M solution in 1:1 v/v MeOH/water) in a quartz cuvette (10 mm path) was placed in front of the green LED light source (Thorlabs M505L3). Upon irradiation, samples were analyzed at regular time intervals by UV–vis spectrophotometry and LC–MS analysis. The absorption peaks of PAG-1 decreased as the irradiation time increased, indicating the photolysis under LED light exposure. Similarly, under red LED light (Thorlabs M595), the absorption intensity of PAG-2 decreased in an irradiation-time-dependent manner (**Figure S4**). Though the light response was obvious, in the dark PAG-2 is insensitive to the temperature and pH of the solution (**Figures S5 and S6**). In addition, the photolysis sample solution of PAG-1 was subjected to study by reversed-phase HPLC. Originally, pure PAG-1 exhibited a retention time of 0.84 min, but after 10 min under green LED irradiation we observed four other photoproducts, all having longer retention times than PAG-1, and the amounts of the four photoproduct increased with increasing irradiation time (**Figure S7**). Furthermore, one of the photoproducts matched with the standard sample of

Table 1. Photophysical Properties of PAG-1 and PAG-2

	$\lambda_{\text{max}}^{\text{abs}}$ (nm) ^a	$\lambda_{\text{max}}^{\text{em}}$ (nm) ^b	ϵ ($10^3 \text{ M}^{-1} \text{ cm}^{-1}$) ^c	Φ_f ^d	τ (ns) ^e	Φ_{H^+} ^f	$\epsilon \cdot \Phi_{\text{H}^+}$ ($\text{M}^{-1} \text{ cm}^{-1}$)
PAG-1	509	521	61.5	0.11	2.3	0.07	4300
PAG-2	566	579	129	0.02	1.2	0.04	5160

^aWavelength of maximum absorption. ^bWavelength of maximum emission. ^cExtinction coefficient. ^dFluorescence quantum yield. ^eFluorescence lifetime. ^fPhotoacid generation quantum yield.

compound 2, suggesting a photolysis pathway similar to that indicated in Figure 1. On the basis of these results, a possible photolysis mechanism is proposed (Scheme S2), in which the benzyl radical ($\text{Bz}\cdot$) attacks the conjugated systems to form the degradation byproducts and release H^+ .

Next, we investigated the photoacid generation quantum yield (Φ_{H^+}) using a previously reported steady-state method.⁸ The H^+ generation was analyzed using the absorption spectrum of a pH-sensitive dye, 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS). As the pH decreases, HPTS undergoes a pH-dependent shift of the absorption maximum from 455 to 405 nm. PAG-1 and PAG-2 (4.0×10^{-4} M and 4.6×10^{-4} M, separately) were dissolved in 0.1 mM HPTS in Locke's solution and subjected to irradiation under the mounted LED with desired wavelength of 505 or 595 nm, respectively. UV-vis spectra of HPTS were measured at different time intervals during LED irradiation of the sample for up to 60 min to generate the calibration curve (Figure S8). The proton generation rate was estimated to be 2.36×10^{-8} and 1.66×10^{-8} mol $\text{L}^{-1} \text{ s}^{-1}$ for PAG-1 and PAG-2, respectively. The Φ_{H^+} values for PAG-1 and PAG-2 were determined to be 7% and 4%. As a further demonstration that PAGs can generate H^+ in a light-guided manner, we irradiated a pH paper soaked with PAG-2 in $\text{MeOH}/\text{H}_2\text{O}$ solution under a homemade photomask. After exposure to red LED light, the pH strip clearly showed a color change indicating increased acidity (Figure 3). In addition, the lines and edges of the acidic area demonstrated a highly light-dependent pattern of H^+ release.

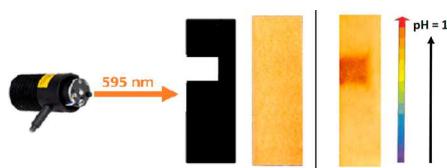
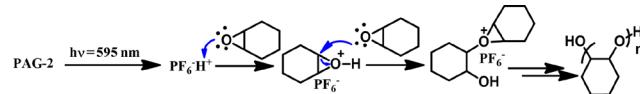



Figure 3. Light-induced pH drop on a pH paper with PAG-2 (10 mM in $\text{MeOH}/\text{H}_2\text{O}$). The setup of the LED light irradiation on pH paper under a homemade photomask is shown at the left, and the resulting color change of the pH paper is shown at the right.

Compared with PAG-1, PAG-2 exhibited a longer wavelength of maximum absorption as well as a higher $\epsilon \cdot \Phi_{\text{H}^+}$ value, and thus, we picked PAG-2 for use in the application of photoinduced cationic polymerization of cyclohexene oxide (Scheme 2).^{27,28} In brief, photoinitiated cationic ring-opening

Scheme 2. Reaction Scheme for Photoinduced H^+ Generation and Ring-Opening Cationic Polymerization of Cyclohexene Oxide

polymerizations of epoxide monomers are widely used in commercial applications,²⁹ such as coatings, printing inks, and microelectronic photoresists.³⁰ The monomers used in cationic polymerization feature low toxicity compared with the acrylate systems employed in radical polymerization.³¹ In our study, a solution of cyclohexene oxide and PAG-2 (0.8% mass ratio) was irradiated with 595 ± 30 nm LED light ($80 \text{ mW}/\text{cm}^2$) for 30 min, during the course of which we observed a negligible increase in the sample temperature. Then the resulting reaction mixture was analyzed with MS, and the results clearly showed that the cyclohexene oxide started to form oligomers with a periodic pattern of mass peaks with a difference in m/z of 98 (Figure 4). The peaks with m/z from 531.29 to 1119.73 are

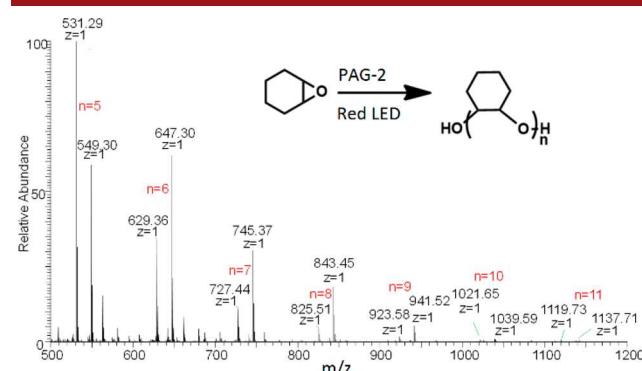


Figure 4. MS of cyclohexene oxide oligomers formed under PAG-2-photoinitiated cationic reaction upon irradiation with red LED light. Inserted red numbers n indicate the calculated numbers of monomer repeating units.

calculated as repeating units of monomers from number 5 to 11. In the control groups without PAG-2 and without LED light, we did not find any polymer product in MS analysis. Furthermore, the conversion yield of the polymerization was determined to be around 21% after 30 min of irradiation, and the kinetic curve showed continuous reaction (Figure S9). These data directly showed that cyclohexene oxide oligomers formed by cationic polymerization via proton activation.

In conclusion, we conjugated the triphenylsulfonium moiety with BODIPY chromophores and developed two new PAGs with D-A and D- π -A configurations. The conjugated PAGs show absorption ability at longer wavelengths in the visible spectrum (green and red). The mechanism of the photoinduced H^+ generation was measured and analyzed. The H^+ formation and ability to lower the pH in a light-dependent manner was demonstrated using a standard pH paper under a photomask. In addition, photoinduced cationic polymerization was tested as a proof of concept of the application, and we observed oligomer formation in MS. While PAGs have been available since the 1970s, in the last decade the interest in light-activated chemical reactions has led to significant advances. Overall, the extended absorption wavelengths of these PAGs should allow them to perform more applications in

polymerization to create complex materials using simple methods.

■ ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.orglett.0c00118>.

Experimental procedures, compound characterization, photophysical measurements, and proposed photo-degradation mechanism ([PDF](#))

■ AUTHOR INFORMATION

Corresponding Author

Yuanwei Zhang — *New Jersey Institute of Technology, Newark, New Jersey; [orcid.org/0000-0003-2111-0981](#); Email: yuanwei.zhang@njit.edu*

Other Authors

Karthik Sambath — *New Jersey Institute of Technology, Newark, New Jersey*

Zhaoxiong Wan — *New Jersey Institute of Technology, Newark, New Jersey*

Qi Wang — *New Jersey Institute of Technology, Newark, New Jersey*

Hao Chen — *New Jersey Institute of Technology, Newark, New Jersey; [orcid.org/0000-0001-8090-8593](#)*

Complete contact information is available at:

<https://pubs.acs.org/10.1021/acs.orglett.0c00118>

Author Contributions

[†]K.S. and Z.W. contributed equally.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This project was supported by the startup fund of the Department of Chemistry and Environmental Science at New Jersey Institute of Technology (NJIT) and an NJIT Faculty Seed Grant. H.C. acknowledges support from the National Science Foundation (CHE-1915878).

■ REFERENCES

- (1) Dektar, J. L.; Hacker, N. P. Photochemistry of triarylsulfonium salts. *J. Am. Chem. Soc.* **1990**, *112* (16), 6004–6015.
- (2) Klikovits, N.; Knaack, P.; Bomze, D.; Krossing, I.; Liska, R. Novel photoacid generators for cationic photopolymerization. *Polym. Chem.* **2017**, *8*, 4414–4421.
- (3) Jin, M.; Hong, H.; Xie, J.; Malval, J.-P.; Spangenberg, A.; Soppera, O.; Wan, D.; Pu, H.; Versace, D.-L.; Leclerc, T.; Baldeck, P.; Poizat, O.; Knopf, S. π -conjugated sulfonium-based photoacid generators: an integrated molecular approach for efficient one and two-photon polymerization. *Polym. Chem.* **2014**, *5*, 4747–4755.
- (4) Fallica, R.; Ekinci, Y. Photoacid generator-polymer interaction on the quantum yield of chemically amplified resists for extreme ultraviolet lithography. *J. Mater. Chem. C* **2018**, *6*, 7267–7273.
- (5) Klán, P.; Solomek, T.; Bochet, C. G.; Blanc, A.; Givens, R.; Rubina, M.; Popik, V.; Kostikov, A.; Wirz, J. Photoremoveable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy. *Chem. Rev.* **2013**, *113* (1), 119–191.
- (6) Xia, Y.; Peng, L. Photoactivatable Lipid Probes for Studying Biomembranes by Photoaffinity Labeling. *Chem. Rev.* **2013**, *113* (10), 7880–7929.
- (7) Ligon, S. C.; Husár, B.; Wutz, H.; Holman, R.; Liska, R. Strategies to Reduce Oxygen Inhibition in Photoinitiated Polymerization. *Chem. Rev.* **2014**, *114* (1), 557–589.
- (8) Yue, X.; Yanez, C. O.; Yao, S.; Belfield, K. D. Selective Cell Death by Photochemically Induced pH Imbalance in Cancer Cells. *J. Am. Chem. Soc.* **2013**, *135* (6), 2112–2115.
- (9) Martin, C. J.; Rapenne, G.; Nakashima, T.; Kawai, T. Recent progress in development of photoacid generators. *J. Photochem. Photobiol. C* **2018**, *34*, 41–51.
- (10) Zivic, N.; Kuroishi, P. K.; Dumur, F.; Gigmes, D.; Dove, A. P.; Sardon, H. Recent advances and challenges in the design of organic photoacid and photobase generators for polymerizations. *Angew. Chem., Int. Ed.* **2019**, *58*, 10410–10422.
- (11) Zhou, W.; Kuebler, S. M.; Carrig, D.; Perry, J. W.; Marder, S. R. Efficient Photoacids Based upon Triarylamine Dialkylsulfonium Salts. *J. Am. Chem. Soc.* **2002**, *124* (9), 1897–1901.
- (12) Shirai, M.; Tsunooka, M. Photoacid and photobase generators: Chemistry and applications to polymeric materials. *Prog. Polym. Sci.* **1996**, *21* (1), 1–45.
- (13) Jin, M.; Xu, H.; Hong, H.; Malval, J.-P.; Zhang, Y.; Ren, A.; Wan, D.; Pu, H. Design of D- π -A type photoacid generators for high efficiency excitation at 405 and 800 nm. *Chem. Commun.* **2013**, *49* (76), 8480–8482.
- (14) De Waele, V.; Hamm, M.; Vergote, T.; Chaumeil, H.; Jin, M.; Malval, J.-P.; Baldeck, P.; Poizat, O. Excited-State Dynamics of a D- π -A Type Sulfonium-Based Alkoxystilbene Photoacid Generator. *Chem. Mater.* **2015**, *27* (5), 1684–1691.
- (15) Wu, X.; Jin, M.; Xie, J.; Malval, J.-P.; Wan, D. Molecular Engineering of UV/Vis Light-Emitting Diode (LED)-Sensitive Donor- π -Acceptor-Type Sulfonium Salt Photoacid Generators: Design, Synthesis, and Study of Photochemical and Photophysical Properties. *Chem. - Eur. J.* **2017**, *23* (62), 15783–15789.
- (16) Yanez, C. O.; Andrade, C. D.; Belfield, K. D. Characterization of novel sulfonium photoacid generators and their microwave-assisted synthesis. *Chem. Commun.* **2009**, No. 7, 827–829.
- (17) Yanez, C. O.; Andrade, C. D.; Yao, S.; Luchita, G.; Bondar, M. V.; Belfield, K. D. Photosensitive Polymeric Materials for Two-Photon 3D WORM Optical Data Storage Systems. *ACS Appl. Mater. Interfaces* **2009**, *1* (10), 2219–2229.
- (18) Loudet, A.; Burgess, K. BODIPY dyes and their derivatives: synthesis and spectroscopic properties. *Chem. Rev.* **2007**, *107*, 4891–4932.
- (19) Kowada, T.; Maeda, H.; Kikuchi, K. BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. *Chem. Soc. Rev.* **2015**, *44*, 4953–4972.
- (20) Zhang, D.; Martín, V.; García-Moreno, I.; Costela, A.; Pérez-Ojeda, M. E.; Xiao, Y. Development of excellent long-wavelength BODIPY laser dyes with a strategy that combines extending π -conjugation and tuning ICT effect. *Phys. Chem. Chem. Phys.* **2011**, *13* (28), 13026–13033.
- (21) Popere, B. C.; Della Pelle, A. M.; Thayumanavan, S. BODIPY-Based Donor-Acceptor π -Conjugated Alternating Copolymers. *Macromolecules* **2011**, *44* (12), 4767–4776.
- (22) Huang, L.; Li, Z.; Zhao, Y.; Zhang, Y.; Wu, S.; Zhao, J.; Han, G. Ultralow-power near infrared lamp light operable targeted organic nanoparticle photodynamic therapy. *J. Am. Chem. Soc.* **2016**, *138*, 14586–14591.
- (23) Huang, L.; Li, Z.; Zhao, Y.; Yang, J.; Yang, Y.; Pendharkar, A. I.; Zhang, Y.; Kelmar, S.; Chen, Y.; Wu, W.; Zhao, J.; Han, G. Enhancing photodynamic therapy through resonance energy transfer constructed near-infrared photosensitized nanoparticles. *Adv. Mater.* **2017**, *29*, 1604789.
- (24) Michaudel, Q.; Kottisch, V.; Fors, B. P. Cationic polymerization: from photoinitiation to photocontrol. *Angew. Chem., Int. Ed.* **2017**, *56*, 9670–9679.

(25) Aoshima, S.; Kanaoka, S. A renaissance in living cationic polymerization. *Chem. Rev.* **2009**, *109*, 5245–5287.

(26) Sambath, K.; Zhao, T.; Wan, Z.; Zhang, Y. Photo-uncaging of BODIPY oxime ester for histone deacetylases induced apoptosis in tumor cells. *Chem. Commun.* **2019**, *55*, 14162–14165.

(27) Plommer, H.; Reim, I.; Kerton, F. M. Ring-opening polymerization of cyclohexene oxide using aluminum amine-phenolate complexes. *Dalton Trans.* **2015**, *44*, 12098.

(28) Yahiaoui, A.; Belbachir, M.; Soutif, J. C.; Fontaine, L. Synthesis and structure analysis of poly(1,2-cyclohexene oxide) over solid acid catalyst. *Mater. Lett.* **2005**, *59*, 759–767.

(29) Nakashima, T.; Tsuchie, K.; Kanazawa, R.; Li, R.; Iijima, S.; Galangau, O.; Nakagawa, H.; Mutoh, K.; Kobayashi, Y.; Abe, J.; Kawai, T. Self-contained photoacid generator triggered by photocyclization of triangle terarylene backbone. *J. Am. Chem. Soc.* **2015**, *137*, 7023–7026.

(30) Bulut, U.; Crivello, J. V. Investigation of the reactivity of epoxide monomers in photoinitiated cationic polymerization. *Macromolecules* **2005**, *38*, 3584–3595.

(31) Sangermano, M.; Roppolo, I.; Chiappone, A. New horizons in cationic photopolymerization. *Polymers* **2018**, *10*, 136.