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Abstract—Emerging wireless services with extremely high data
rate requirements, such as real-time extended reality applications,
mandate novel solutions to further increase the capacity of future
wireless networks. In this regard, leveraging large available
bandwidth at terahertz frequency bands is seen as a key enabler.
To overcome the large propagation loss at these very high fre-
quencies, it is inevitable to manage transmissions over highly di-
rectional links. However, uncoordinated directional transmissions
by a large number of users can cause substantial interference in
terahertz networks. While such interference will be received over
short random time intervals, the received power can be large.
In this work, a new framework based on reinforcement learning
is proposed that uses an adaptive multi-thresholding strategy
to efficiently detect and mitigate the intermittent interference
from directional links in the time domain. To find the optimal
thresholds, the problem is formulated as a multidimensional
multi-armed bandit system. Then, an algorithm is proposed
that allows the receiver to learn the optimal thresholds with
very low complexity. Another key advantage of the proposed
approach is that it does not rely on any prior knowledge
about the interference statistics, and hence, it is suitable for
interference mitigation in dynamic scenarios. Simulation results
confirm the superior bit-error-rate performance of the proposed
method compared with two traditional time-domain interference
mitigation approaches.

I. INTRODUCTION

Despite major advancements in fifth-generation (5G) sys-
tems, new solutions are still required to increase the capacity
of wireless networks and handle the continuous exponential
growth in mobile data traffic. In particular, communications
at high frequencies above the conventional sub-6 GHz bands
is seen as a key enabler which allows leveraging the large
available bandwidth and achieving very high data rates [1], [2].
Nonetheless, emergence of new technologies such as wireless
extended reality (XR), connected and autonomous vehicles,
and factory automation will introduce new challenges for
future wireless networks beyond the 5G system. In fact, to
support extremely high data rates needed for such real-time
applications, new wireless solutions must be developed that
enable exploiting the large available bandwidth at very high
frequencies (above 100 GHz) [3].

In addition to the substantial available bandwidth, partic-
ularly at the terahertz (THz) frequency range (commonly
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Fig. 1: An example scenario for uncoordinated directional THz links, creating
intermittent interference at the target UE’s receiver.

referred to as the frequencies within 0.1-10 THz [4]), com-
munications over very high frequencies allow deployment of
small-size antenna arrays with many antenna elements. Hence,
despite the high atmospheric propagation loss at THz bands,
the communication range can be extended by leveraging large
array gains over highly directional THz links. However, such
pencil-beams can cause a significantly large interference, if
the receiver’s beam is accidentally directed toward a dominant
multi-path of an interference link. In addition, transceivers
that operate at high frequencies need to constantly change the
direction of their beams (i.e., perform beam training) due to
mobility of users or changes in the propagation environment.
Therefore, the interference from directional links is typically
intermittent and occur at random time intervals [5]. Moreover,
the interference power can be large and even exceed the
received power over the desired link. An example scenario
is shown in Fig. 1 in which directional transmissions from
interfering users cause intermittent interference at the target
receiver u0. To mitigate the inevitable strong interference from
directional links, space-domain interference reduction methods
use antenna arrays with adaptive beamforming to suppress the
interfering signals by steering the beam to different directions
or by placing nulls in the antenna gain pattern toward the
direction of the interfering signals [6]. This strategy requires
complete knowledge of the position of interferer, channel, and
signal identity [7]. However, in realistic scenarios, such infor-
mation is not typically available at the receiver. Therefore, new
techniques are required to suppress the inter-beam interference



in dynamic scenarios without relying on any prior knowledge
about the interference links.

A plethora of techniques have been studied in the liter-
ature aiming at alleviating the impacts of intermittent in-
terference [8]–[10]. The high amplitude and the short du-
ration of the interference can be exploited to detect and
mitigate the effect of interference. Conventional threshold-
based nonlinear preprocessors such as clipping, blanking, and
their combination fall in this category [9]. Adaptive analog
nonlinear filtering in high acquisition bandwidth is used in [8]
to determine the threshold in orthogonal frequency-division
multiplexing (OFDM) signals. An optimization problem is
formulated in [10] to find the optimum threshold. Recently,
by exploiting emerging machine learning techniques, it has
been shown that deep neural network (DNN) can also be used
as a powerful tool for interference mitigation [11].

Although interesting, the performance of all prior threshold-
based methods are highly sensitive to the selected thresh-
olds [8], [9]. Therefore, finding the optimum threshold is the
main challenge for these methods as the threshold must be
dynamically determined according to channel variations and
model mismatches. The proposed approach in [10] is not ro-
bust in model mismatch. Moreover, the DNN-based technique
in [11] requires large labeled dataset for training the model
which may not be available in many applications. Furthermore,
most of existing works focus on mitigating impulsive noise in
sub-6 GHz networks, while limited work exists for managing
the intermittent interference from directional links at high
millimeter wave and THz frequencies.

The key contribution of this work is a novel interference
mitigation framework, based on reinforcement learning (RL),
which enables the receiver to effectively reduce the inter-
ference power received intermittently from highly directional
links in a THz network. The proposed framework develops
a multi-threshold clipping strategy to dynamically change the
cut-off threshold for reducing the interference power. To this
end, a multi-armed bandit (MAB) is designed to determine the
effective values of multi-thresholds in memoryless nonlinear
preprocessor. The proposed approach provides near-optimum
threshold values even in a non-stationary environment. The
key advantage of the proposed approach is to learn the
optimal threshold values online with a very low complexity,
as compared with other learning schemes such as DNN which
requires large training datasets. The simulation results show
the superiority of our approach, in terms of the bit-error-rate
(BER), over conventional techniques without increasing the
complexity of the receiver.

II. SYSTEM MODEL

Consider a THz network shown in Fig. 1 consists of a base
station (BS), a target user equipment (UE) u0, and a set of
interfering UEs in a set U = {u1, ..., uI} that communicate
with one another over direct device-to-device (D2D) links.
The UEs and the BS are equipped with uniform linear arrays
(ULAs) with isotropic antennas. The antenna elements are
equally spaced by a distance d = λ/2, where λ is the
wavelength at the carrier frequency fc = 140 GHz.

OFDM is considered as the underlying multi-carrier tech-
nique for sending information over the cellular and D2D
links. Let, s = [s0, s1, ..., sK−1] represents a frequency
domain OFDM symbol with K subcarriers. According to
the OFDM modulation, the time domain symbol x0 =
[x0,0, x0,1, ..., x0,K−1] is generated by computing the inverse
discrete Fourier transform (IDFT) of s as expressed by

x0 = FHKs, (1)
where H is the Hermitian operator, and FK denotes the K-
point unitary discrete Fourier transform (DFT) matrix. A cyclic
prefix (CP) xCP0 = [x0,K−µ, ..., x0,K−1] with length µ is
inserted at the beginning of the OFDM symbol x0 to mitigate
the inter-symbol-interference (ISI) and simplify the equalizer
structure. The constructed time domain OFDM symbol is
transmitted through the transmitter antenna array.

A. Channel Model

Due to the signal propagation characteristics at high fre-
quencies, i.e., poor penetration through objects and reflection
from surfaces, we consider a single-path fading channel (for
the desired and interference links) as a widely adopted channel
model [12]. In particular, the channel matrix for the desired
link can be modeled as

H = αu(θr)vH(θt), (2)
where θr, θt ∈ [−π/2, π/2] are angle of arrival (AoA) and
angle of departure (AoD), respectively. Here, α is the random
complex fading gain for an arbitrary link and follows i.i.d.
Rayleigh distribution. In addition, u and v are receiver and
transmitter array response vectors, respectively, given by

u(θr) =
[
1, e−j

2πd
λ sin(θr), ..., e−j(N

i
r−1) 2πd

λ sin(θr)
]T
,

v(θt) =
[
1, e−j

2πd
λ sin(θt), ..., e−j(N

i
t−1) 2πd

λ sin(θt)
]T
, (3)

where, N i
r and N i

t denote the number of antennas in the i-
th receiver and transmitter, respectively. Given that AoA and
AoD change much slower compared with the fading channel,
it is assumed that θr and θt are fixed in the duration of
one received OFDM frame [13]. The channel model for the
interference links also follows (2) with different AoA and AoD
for each link. Considering the proposed channel model and
deploying analog beamforming at both the BS and the UEs,
the received OFDM symbol in presence of I interferers and
the receiver noise is

r =
√
PbwH0 H0ŵbx0 +

I∑
i=1

√
PiwH0 Hiŵixi + n,

where Pb and Pi are the average transmit power of the
serving BS and i-th interfering UE, respectively. The channel
matrix of desired and i-th interfering link are represented by
H0 ∈ CN0

r×N
b
t and Hi ∈ CN0

r×N
i
t , respectively. Here, N b

t

represents the number of transmitter antennas in serving BS.
Moreover, ŵb ∈ CNbt is the BS beamforming vector with
‖ŵb‖22 = 1, w0 ∈ CN0

r is the u0 combining vector with
‖w0‖22 = 1, ŵi ∈ CNit is the i-th interfering UE beamforming
vector with ‖ŵi‖22 = 1. n ∼ CN (0, N0BI) denotes the
additive white Gaussian noise (AWGN), with one-sided power
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Fig. 2: One realization of received intermittent interference.

spectral density N0, B is the system bandwidth, and I denotes
the identity matrix.

B. Interference Model

To establish directional THz links, each pair of D2D users
must sweep their beams (by selecting different beamforming
weights) to find the best spatial direction that yields the max-
imum received power. The frequency of beam sweep depends
on the size of beamforming codebook which is generally
determined from the required resolution of the angular search.
As depicted in Fig. 1, during the beam-training phase, the
AoA of the interference signals could be exactly or almost
aligned with the AoA of the desired signal at the input of
the target receiver uo. The power of the interference mostly
depends on how the AoA of the desired link and interference
links are aligned. As the interfering UEs sweep their beams by
selecting different beamforming vectors from their codebook,
the received interference at the target UE will appear at random
time instances and with random power, as shown in Fig. 2. In
fact, the uncoordinated D2D transmissions during the beam
training phase results in shot-like, intermittent interference at
the desired link and the power of interference signals could
vary significantly relative to the power of the desired signal.

To mitigate this interference in the time domain, we adopt
a proper nonlinear function as

r̂ = g(r, a), (4)
where r̂ represents the received signal after interference sup-
pression, g(.) is the nonlinear function, and vector a contains
the set of selected pair thresholds-levels. More details about
g(.) and vector a are provided in sections III and IV, respec-
tively. The frequency domain representation of the received
signal can be obtained by using DFT as

y = FK r̂. (5)
We note that the key advantage of the time-domain inter-
ference mitigation is to reduce the interference power prior
to performing DFT at the OFDM receiver. Otherwise, large
interference would spread over all subcarriers after perform-
ing DFT which can severely impact the performance of the
receiver.

III. PROBLEM FORMULATION

Locally optimal detection of signals in non-Gaussian noise
exploits nonlinear kernel [14]. Based on the locally most
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Fig. 3: Multi-threshold approximation of locally optimal detection.

powerful (LMP) test, for a given noise distribution, the optimal
choice corresponds to

g(nl) = −
f
′

nl

fnl
, (6)

where fnl represents the probability density function of the
interference amplitude and f

′

nl
is its derivative. The exact

shape of the optimum kernel may be too complicated to be
implemented in practice [9]. In addition, the interference pa-
rameters will change according to non-stationary nature of the
dynamic environment. This non-stationary situation enforces
the receiver to optimize the shape of the nonlinear function
g(.) for the optimal detection. In order to find the suboptimal
shape of the nonlinear kernel, we investigate a multi-threshold
clipper as shown in Fig. 3. The proposed threshold-based
clippers can be expressed as a linear combination of M
clippers:

g(rk) =
M∑
m=0

cm
rk
|rk|

um (|rk|), (7)

where rk is the k-th sample of received OFDM symbol r, cm
is the clipping level in non-overlapping support on the m-th
interval [βm, βm+1), and um(.) is the unit box function given
by

um(r) =

{
1, if rk ∈ [βm, βm+1) ,

0, otherwise.
(8)

For the proposed multi-threshold clipper c0 = β0, cM
approaches zero and βM approaches max(r) to cover all
the dynamic range of the incoming signal. In other words,
as shown in Fig. 3, the proposed multi-threshold clipper
compromises between clipping and blanking in the presence
of interference by cutting the incoming signal with different
thresholds at different levels. It worths mentioning that the
value of β0 should ensure distortion-less processing of the
incoming signal when there is no interference. In practice,
the value of M can be determined as a trade-off between
performance of the system and complexity of the receiver.
In general, finding the clipping levels cm and the threshold
values βm is computationally expensive as both cm and βm
are continuous variables. In order to reduce the complexity and
find a suboptimal solution, we assume that βm can take a value
in a predefined set B while satisfying following requirements

βm ∈ B, βm < βm+1,
β0 >

1
2 max(x0), βM ' max(r),

(9)

where set B contains n×M different coefficients which can
be selected uniformly from values between β0 and βM . In
addition, n is a constant which determines the quantization



precision and can vary depending on the application. The
same strategy can be invoked to find the suboptimal values
for clipping levels cm such that

cm ∈ C, cm ≥ cm+1, c0 = β0, cM ' 0, (10)
where set C includes M different values which can be selected
uniformly from values between c0 and cM . Therefore, our
problem is to find M optimum pairs (β∗m, c

∗
m) such that

(β∗m, c
∗
m) = argmin

(βm,cm)

BER. (11)

In the following, we propose a learning based approach to
solve the optimization problem in (11) subject to the con-
straints in (9) and (10) to determine the clipping levels cm
and the threshold values βm for a given M .

IV. PROPOSED RL-BASED INTERFERENCE MITIGATION
FRAMEWORK

In this section, we will develop a novel solution, based on
MAB, to solve the proposed interference mitigation problem
in (11).

A. Multi Armed Bandit: Preliminaries

MAB is a class of sequential learning and decision-making
problems in which an agent attempts to make an optimal
decision within a stochastic environment and minimize its
long-term regret [15]. The so-called regret, can be defined
as the expected total reward loss with respect to the optimal
situation where the best decision is always taken. Since the
regret distribution is unknown, the agent needs to explore each
arm (action) to provide a good estimate of the expected regret
from each arm to avoid converging to a local optimum action.
In order to find the optimum actions we use decaying ε-greedy
policy where the value of ε slowly decays over time. Assuming
a network with one agent and finite number of A arms in a
set A, pulling arm a ∈ A at time t causes a random Ra(t)
regret for the agent. The average regret of an action a after
Ja selections can be updated by

Qa(t) = Qa(t− 1) +
1

Ja(t)
(Ra(t)−Qa(t− 1)) , (12)

where Qa(t) and Qa(t− 1) are the average regret of action a
at times t and t − 1, respectively. In fact, (12) represents the
incremental implementation of sample average that requires
to keep track of Qa(t) and Ja(t) to compute the average
regret for each action at its next occurrence. Pseudo code
for action selection in ε-greedy policy based on incremental
implementation is shown in Algorithm 1. In this algorithm, the
value of Qa(0) for any action a ∈ A is initialized with a small
number at the beginning which can also be used as a simple
way to encourage exploration. This optimistic initialization
ensures that all actions are tried several times and the system
does a fair amount of exploration prior to the convergence.

B. Proposed Interference Mitigation Framework as an MAB
Problem

In this problem, the receiver of u0 acts as an agent and try
to find the best clipping thresholds and levels at each time to
minimize the BER as a regret. According to MAB formulation,

Algorithm 1 : The proposed algorithm based on MAB

1: for a ∈ A do . (Initialization)
Qa(0)← small number
Ja(0)← 0

2: Repeat forever:

a∗ ←

{
argmin

a
Qa(t), with probability 1− ε

random action, with probability ε

BERa∗(t)← determine regret for a∗

Ja∗(t)← Ja∗(t− 1) + 1
Qa∗(t)← Qa∗(t−1)+ 1

Ja∗ (t)
[BERa∗(t)−Qa∗(t−1)]

Algorithm 2 : Clipping level sets with length M

1: Initialization:
JM ← 0, Path← [ ]

2: for i = 1 to M do
Di ← Find all path from (1,1) to (i,M)
Ji ← Number of path in Di

JM ← JM + Ji
Path← Append Di to Path

any pair of (βm, cm) can be perceived as a two dimensional
action and considering conditions in (9) and (10), the total
number of different actions can be given by

LA =

=M︷ ︸︸ ︷
(nM)!

M !(nM −M)!
×JM , (13)

where (.)! is factorial operation and =M denotes the number
of sets with length M inside a set of length n × M and
JM is the number of clipping level sets with length M . In
order to find JM and the corresponding elements in each set,
we can break down the problem by finding the number of
paths (and trajectories) between top left to one of the most
right elements (last column) in a matrix with the constraints
that from each element you can either move only to right or
diagonal to satisfy the constraint in (10). The pseudo code for
finding the value of JM and the corresponding trajectory is
provided in Algorithm 2. For example, Table I provides the
value of JM for some M .

After finding all possible action sets, one can invoke Algo-
rithm 1 to find the best action set in response to environment
for minimizing the considered regret function which is BER in
this work. In this framework, the number of possible actions
increases exponentially with M and n (e.g., even for small
values M = 5, n = 2, there are 31752 different action sets)
which increases the convergence time toward optimum action
or even in decaying ε-greedy scenario the optimum action
will be missed. To address this convergence issue, one can
reduce the resolution by choosing n = 1 for M equally spaced
sections and try to find the best value for β0. In this case, β0
can be given by

β0 = κβ̂0, 0.5 ≤ κ ≤ 10, (14)
where κ is a correction coefficient and a course estimation of



TABLE I
NUMBER OF CLIPPING LEVEL SETS

M 1 2 3 4 5 6 7
JM 1 3 10 35 126 462 1716

β̂0 can be found based on Neyman-Pearson criterion [10]. In
practice, the range of κ can be quantized to q levels determined
by the required performance and complexity. Following this
simplification, the total number of different actions reduces to:

LA = q × JM . (15)
With this simplification, the convergence time of the proposed
method significantly reduces.

V. SIMULATION RESULTS

We consider a THz network composed of one serving BS,
a target user, and I interferers based on Poisson point process
(PPP) with intensity λI interferers per square meter. The
OFDM symbols include 1024 subcariers and the bandwidth
of the system is 1GHz. The fading channel is generated
according to the model presented in II-A and the channel
estimation is done after interference suppression by using pilot
subcarriers which are equally spaced between subcarriers. The
BER performance is used to compare the proposed MAB-
based interference mitigation with two baseline approaches,
namely, blanking and clipping. The threshold value for blank-
ing and clipping is obtained based on the approach provided
in [10]. The serving BS knows the channel matrix H0 for op-
timum beamforming and the AoA for interferers are sampled
uniformly from [−π/2, π/2] in every 1ms.

In all simulation, we set the modulation constellation to
QPSK, the energy of bit over noise is Eb/N0 = 0 dB,
M = 3, n = 1, the interval 0.5 ≤ κ ≤ 10 is equally
quantized by q = 20 levels, and ε decays from one with factor
1/(Number of actions × 10) to ensure that all actions would
be selected for enough number of times. As the desired signal
and the interference will pass through different fading channels
and the beamforming gain is different for each of them, the
system performance is evaluated at different transmit signal to
interference power ratios (SIR). Without loss of generality, it
is assumed that the transmit power for all interferers are equal
and they are using N I

t = 128 antennas at the transmitter side.
Fig. 4 shows that the MAB-based approach converges to

the optimum solution after evaluating all available action sets
based on decaying ε-greedy algorithm. After converging to
the optimum action set, the average regret in Fig. 4a will
remain fixed unless the interference model or its parameters
change in time. Therefore, the selected action set in Fig. 4b
and its corresponding regret in Fig. 4a would always change
unless it is in the stationary situation. Fig. 4 demonstrates that
when there is no interference in the received signal, the agent
(receiver in UE u0) would always select a specific action which
do not harm the received signal.

Fig. 5 illustrates the BER performance of the proposed
MAB-based technique versus SIR for different number of
antennas. As shown in Fig. 5 the MAB technique improves
the quality of the received signal specially at low SIRs. Since
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Fig. 5: BER performance of MAB-based interference mitigation for different
number of antennas. Eb/N0 = 0 dB, λI = 8e−4, and NI

t = 128.

interference power is much smaller than the power of the
desired signal at high SIRs, the interference is likely to be
hidden in the received signal, and hence, it is difficult to
detect and mitigate the interference by clipping the signal in
the time domain. Thus, at high SIR (i.e., SIR > −2dB) the
performance of MAB would be the same as when there is
no mitigation technique. However, the proposed MAB-based
mitigation approach shows its potency by providing optimum
thresholds and level values at low SIR (i.e., SIR < −5dB)
when the interference signals are distinguishable. This low
SIR region is very important for THz communication as SIR
is typically low if beam training is imperfect. According to
Fig. 5, the performance of the MAB technique will slightly
degrade as the SIR increases from -30 dB to -10 dB. At
these SIR values, the amplitude of the interference starts to
decay which makes it hard to distinguish the interference from
the desired signal. Another interesting result from Fig. 5 is
that at low SIR region, having higher number of antennas
at the transceivers of the desired link would not improve
the performance of the proposed MAB-based interference
reduction approach. This is due to the fact that by increasing
the number of antennas and the corresponding beamforming
gain, the received amplitude of the desired signal exceeds the
amplitude of the interference signal and the MAB approach
would not be able to detect the intermittent interference.
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Fig. 6 demonstrates the BER performance of proposed
approach for different intensity of interferes versus SIR. It
is clear from Fig. 6 that the BER performance will degrade
as the number of interferes increases according to parameter
λI . As expected, the MAB-based approach is more effective
at low SIR region where interference has higher amplitude.

Fig. 7 compares the BER performance of the proposed
MAB-based technique with blanking (BLN) and clipping
(CLP) versus SIR for different numbers of antennas. As shown
in Fig. 7, the MAB-based approach outperforms both baseline
methods in all scenarios. Finding the optimum threshold for
BLN and CLP is very challenging at high SIRs as the level
of peakedness decreases and it is difficult to find a proper
threshold to distinguish between desired and contaminated
signals. Thus, improper value for these threshold will corrupt
the desired signal and significantly degrade the performance.
Therefore, a fixed strategy for determining a single threshold
for BLN and CLP will fail in many cases, especially in non-
stationary scenarios. Although at very low SIR values (i.e.,
SIR < −22dB) the performance of the proposed approach
and BLN are close in some scenarios, the proposed scheme
yields better BER in high SIR region. In fact, it is trivial
to find the optimum threshold for BLN when the power of
interference is much higher than desired signal and in this
situation, discarding the received signal has better performance
than clipping the signal.

VI. CONCLUSIONS

In this paper, we have proposed a novel framework to mit-
igate intermittent interference, resulting from uncoordinated
beam training transmissions, in dense wireless THz networks.
In fact, we have developed a new adaptive multi-thresholding
interference mitigation scheme which allows minimizing the
non-stationary interference power in the time domain. To find
the optimum thresholds, we have formulated the problem
as a multi-armed bandit (MAB) framework with multiple
thresholds and levels as a two-dimensional action set. The
proposed MAB-based approach minimizes the BER as the re-
gret function in the learning process and yields near-optimum
values for multi-threshold clipping levels. The simulation re-
sults have shown that the proposed approach is fast-converging
and can effectively reduce the search space. Results also have
shown that the proposed MAB-based approach outperforms
conventional methods such as blanking and single-threshold
clipping schemes.
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