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Abstract—In this paper, the problem of enhancing the virtual
reality (VR) experience for wireless users is investigated by
minimizing the occurrence of breaks in presence (BIPs) that
can detach the users from their virtual world. To measure the
BIPs for wireless VR users, a novel model that jointly considers
the VR applications, transmission delay, VR video quality, and
users’ awareness of the virtual environment is proposed. In the
developed model, the base stations (BSs) transmit VR videos to
the wireless VR users using directional transmission links so as
to increase the data rate of VR users, thus, reducing the number
of BIPs for each user. Therefore, the mobility and orientation
of VR users must be considered when minimizing BIPs, since
the body movements of a VR user may result in blockage of its
wireless link. The BIP problem is formulated as an optimization
problem which jointly considers the predictions of users’ mobility
patterns, orientations, and their BS association. To predict the
orientation and mobility patterns of VR users, a distributed
learning algorithm based on the machine learning framework
of deep echo state networks (ESNs) is proposed. The proposed
algorithm uses concept from federated learning to enable multiple
BSs to locally train their deep ESNs using their collected data and
cooperatively build a learning model to predict the entire users’
mobility patterns and orientations. Using these predictions, the
user association policy that minimizes BIPs is derived. Simulation
results demonstrate that the developed algorithm reduces the
users’ BIPs by up to 16% and 26%, respectively, compared to
centralized ESN and deep learning algorithms.

I. INTRODUCTION

Deploying virtual reality (VR) applications over wireless

networks is an essential stepping stone towards flexible de-

ployment of pervasive VR applications [1]. However, to enable

a seamless and immersive wireless VR experience, it is

necessary to introduce novel wireless networking solutions

that can meet stringent quality-of-service (QoS) requirements

of VR applications in terms of delivering high data rates

and low latency. In wireless VR networks, the sudden data

rate reductions or large delay can negatively impact the

users’ VR experience (e.g., due to interruptions in VR video

streams). Due to such an interruption in the virtual world,

VR users will experience breaks in presence (BIPs) events

This work was supported in part by the National Natural Science Foundation
of China under Grants 61671086, 61629101, and 61871041, in part by
Beijing Natural Science Foundation and Municipal Education Committee
Joint Funding Project under Grant KZ201911232046, in part by the 111
Project under Grant B17007, in part by the U.S. National Science Foundation
under Grants CNS-1836802 and CNS-1941348, and in part by grants No.
ZDSYS201707251409055, No. 2017ZT07X152, No. 2018B030338001, and
No. 2018YFB1800800.

that can be detrimental to their immersive VR experience.

While the fifth-generation (5G) new radio supports operation

at high frequency bands (with abundant bandwidth) as well

as flexible frame structure to minimize latency, performance

of communication links at high frequencies is highly prone to

blockage. That is, if an object blocks the wireless link between

the BS and a VR user, the data rate can drop significantly and

lead to a BIP. In addition to wireless factors such as delay and

data rate, behavioral metrics related to each VR user such as

the user’s awareness can also affect BIPs. Here, awareness is

defined as each wireless VR user’s perceptions and actions in

its individual VR environment. For instance, a user might be

too sensitive to slight variations in VR video quality changes,

while another user might be more tolerant. Therefore, to

minimize the BIPs of VR users, it is necessary to jointly

consider all of the wireless environment and user-specific

metrics that cause BIPs, such as link blockage, user mobility,

user orientation, user association, and user awareness.

Recently, several works have studied a number of problems

related to wireless VR networks [2]–[5]. In [2], the authors

develop a framework for mobile VR delivery to alleviate

the traffic burden over wireless networks. The authors in [3]

study the problem of supporting visual and haptic perceptions

over wireless cellular networks. The work in [4] proposes

a concrete measure for the delay perception of VR users.

Our previous works in [5] studied the problems of resource

allocation and 360◦ content transmission for wireless VR

users. However, most of these existing works do not provide a

comprehensive BIP model that accounts for the transmission

delay, the quality of VR videos, VR applications, and user

awareness. Moreover, the prior art in [2]–[5] does not jointly

consider the impact of the users’ body movements when using

mmWave communications with highly directional links to

support high data rates for VR video transmissions.

To address this challenge, machine learning techniques [6]

can be used to predict the users’ movements and proactively

determine the user associations that can minimize BIPs. How-

ever, the existing works for user movement predictions focus

on scenarios where users are not mobile, and hence, user

association does not change with time. Hence, the data for

each VR user’s movement can be collected by its associated

BS. In contrast, in real mobile VR scenarios, users will move

and change their association and the data related to the users’

movement is dispersed across multiple BSs. The BSs may



not be able to transmit all of their collected data on the

users’ movements to each other, due to the high overhead of

data transmission. Moreover, sending all the information to a

centralized processing server will cause very large latencies

that cannot be tolerated by VR applications. Thus, centralized

machine learning algorithms will not be useful to predict real-

time movements of the VR users. To this end, a distributed

learning framework that can be trained by the collected data

at each BS and cooperatively build a learning model that can

predict the entire users’ mobility and orientations is needed.

The key contribution of this work is to develop a novel

framework for minimizing BIPs within VR applications that

operate over wireless networks. To our best knowledge, this

paper is the first to analyzes how a wireless network with

distributed learning can minimize BIP for VR users and

enhance their virtual world experience. For wireless VR users,

we mathematically model the BIP that jointly considers VR

applications, the delay of VR video and tracking information

transmission, VR video quality, and the users’ awareness. To

minimize the BIP of wireless VR users, we develop a federated

echo state network (ESN) learning algorithm that enables BSs

to locally train their machine learning algorithms using the

data collected from the users’ locations and orientations. Then,

the BSs can cooperatively build a learning model by sharing

their trained models to predict the users’ mobility patterns

and orientations. Based on these predictions, we perform

fundamental analysis to find an efficient user association for

each VR user that minimizes the BIPs. Simulation results

demonstrate that our proposed algorithm can achieve, respec-

tively, 16% and 26% gains in terms of total BIPs compared

to the centralized ESN and deep learning algorithm in [7].

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cellular network that consists of a set B of B BSs

that service a set U of U VR users. In this model, BSs act as

VR controllers that can collect the tracking information related

to the users’ movements via VR sensors and use the collected

data to generate the VR videos for their associated users. In

particular, the uplink is used to transmit tracking information

such as users’ locations and orientations from the VR devices

to the BSs, while the downlink is used to transmit VR videos

from BSs to VR users. For user association, the VR users

can associate with different BSs for uplink and downlink data

transmissions. We consider practical scenarios when the type

of VR application can depend on the location of the user. For

example, a given user that works in a lab may use certain VR

applications for training or research purposes, while using the

VR device for entertainment at home. This information will

be used by BSs to predict users’ locations and orientations

and proactively determine efficient user associations.

A. Transmission Model

We consider both uplink and downlink transmission links

between BSs and VR users. The VR users can operate at

both mmWave and sub-6 GHz frequencies. The VR videos

are transmitted from BSs to VR users over the 28 GHz band.

Meanwhile, the tracking information is transmitted from VR

devices to their associated BSs over a sub-6 GHz frequency

band [8]. This is due to the fact that sub-6 GHz frequencies

with limited bandwidth cannot support the large data rates

required for VR video transmissions. However, it can provide

reliable communications for sending small data sized users’

tracking information. Next, we first introduce the transmission

of the users’ tracking information in the uplink. Then, we

specify the VR video transmission via downlink mmWave

links.

1) Uplink Transmissions of User Tracking Information: Let

(xit, yit) be the Cartesian coordinates for the location of user

i at time t and S be the data size of each user’s tracking

information, including location and orientation. S depends

on the VR system. The rate for transmitting the tracking

information from VR user i to BS j is:

c
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UUL
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log2
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where FUL is the total uplink bandwidth of each BS j which

is assumed to be equal for all BSs, UUL
j represents the number

of VR users associated with BS j over uplink, Uj is the set of

VR users associated with BS j, Pu is the transmit power of

each VR user (assumed equal for all users), gij is the Rayleigh

fading channel gain, dij is the distance between VR user i and

BS j at time t, and ρ2 is the noise power.

2) Downlink VR Video Transmission: In downlink, antenna

arrays are deployed at BSs to perform directional beamforming

over the mmWave frequency band. For simplicity, a sectored

antenna model [9] is used to approximate the actual array

beam patterns. This simplified antenna model consists of

four parameters: the half-power beamwidth φ, the boresight

direction θ, the antenna gain of the mainlobe Q, and the

antenna gain of the sidelobe q. Let ϕij be the phase from

BS j to VR user i. The antenna gain of the transmission link

from BS j to user i is:

Gij =

{

Q, if |ϕij − θj | 6
φ
2 ,

q, if |ϕij − θj | >
φ
2 .

(2)

Since the VR device is located in front of the VR user’s

head, the mmWave link will be blocked, if the user rotates. Let

χit be the orientation of user i at time t and ϑ be the maximum

angle using which BS j can directly transmit VR videos to a

user without any human body blockage. φ′
ij denotes the phase

from user i to BS j. For user i, the blockage effect caused by

its own body can be given by:

bi (χit) =

{

1, if
∣

∣ϕ′
ij − χit

∣

∣ 6 ϑ,

0, if
∣

∣ϕ′
ij − χit

∣

∣ > ϑ.
(3)

We assume that each VR user’s body constitutes a single

blockage area and nijt represents the number of VR users

located between user i and BS j at time t. If there are no users

located between user i and BS j that block the mmWave link,

(bi (χit)+nij = 0), the communication link between user i and

BS j is line-of-sight (LoS). If the mmWave link between user

i and BS j is blocked by the user i’s own body (bi (χit) = 1)

or blocked by other users located between user i and BS j



(nij > 0), the communication link between user i and BS j

is said to be non-line-of-sight (NLoS).

Considering path loss and shadowing effects, the path loss

for a LoS link and a NLoS link between VR user i and BS j

in dB will be given by [9]:

hLoS
ij (xit, yit) = L0 + 10χLoS log (dij (xit, yit)) + µσLoS

, (4)

hNLoS
ij (xit, yit) = L0 + 10χNLoS log (dij (xit, yit)) + µσNLoS

,

(5)

where L0 = 20 log
(

d0fc4π
ν

)

is the free space path loss. Here,

d0 represents the reference distance, fc is the carrier frequency

and ν is the light speed. χLoS and χNLoS represent the path loss

exponents for the LoS and NLoS links, respectively. µσLoS
and

µσNLoS
represent Gaussian random variables with zero mean,

respectively. σLoS and σNLoS represent the standard deviations

for LoS and NLoS links in dB, respectively. The downlink

data rate of VR video transmission from BS j to user i is:

cDL
ij (xit, yit, bi (χit) , nij)

=















FDLlog2

(

1 +
PBGij

10
hLoS
ij /10

ρ2

)

, if bi (χit) + nij = 0,

FDLlog2

(

1 +
PBGij

10
hNLoS
ij /10

ρ2

)

, if bi (χit) + nij > 0,

(6)

where FDL is the bandwidth allocated to each user and PB is

the transmit power of each BS j.

B. Break in Presence Model

In a VR application, the notion of a BIP represents an event

that leads VR users to realize that they are in a fictitious, vir-

tual environment, thus ruining their immersive experience. In

other words, a BIP event transitions a user from the immersive

virtual world to the real world [10]. For wired VR, BIP can

be caused by various factors such as hitting the walls/ceiling,

loss of tracking with the device, or talking to another person

from the real world [10]. For wireless VR, BIP can be also

caused by the delay of VR video and tracking information

transmission, the quality of the VR videos received by the

VR users, and the inaccurate tracking information received by

BSs.

To model such BIPs, we jointly consider the de-

lay of VR video and tracking information transmission

and the quality of VR videos. We first define a vector

li,t
(

cDL
ij (xit, yit, bi (χit) , nij)

)

= [li1,t, . . . , liNL,t] that rep-

resents a VR video that user i received at time t with lik,t ∈
{0, 1}. lik,t = 0 indicates that pixel k is not successfully

received by user i, and lik,t = 1, otherwise. We also define a

vector mi,t (GA) = [mi1,t, . . . ,miNL,t]
T

that represents the

weight of the importance of each pixel constructing a VR

video, where mik,t ∈ [0, 1] and GA represents a VR applica-

tion such as an immersive VR game or a VR video. mik,t = 1
indicates that pixel k is one of the most important elements

for the generation of GA. Here, in each VR application GA, a

number of pixels can be compressed at the BS and recovered

by the user. Hence, the pixels that can be compressed by the

BSs not important. However, some of the pixels cannot be

compressed by the BS and, hence, they need to transmit to the

VR users. Therefore, each pixel will have different importance

and mik,t ∈ [0, 1]. Then, the BIP of VR user i caused by the

wireless transmission will be given by:

PW
it

(

xit, yit, χit,a
UL
i,t ,a

DL
i,t

)

=

1{

A

aUL
ij,t

cUL
ij (xit,yit)

+
D(li,t(aDL

ik,t
cDL
ik(xit,yit,bi(χit),nik)))

aDL
ik,t

cDL
ik(xit,yit,bi(χit),nik)

6γD

}

∨ 1{li,t(aDL
ik,t

cDL
ik

(xit,yit,bi(χit),nik))mi,t(GA)>γQ},

(7)
where 1{x} = 1 as x is true, 1{x} = 0, otherwise.

1{x}∨1{y} = 1 as y or x is true, 1{x}∨1{y} = 0, otherwise.

aUL
i,t =

[

aUL
i1,t, . . . , a

UL
iB,t

]

is a vector that represents user i’s

uplink association with aUL
ik,t ∈ {0, 1} and

∑

k∈B

aUL
ik,t = 1.

Similarly, aDL
i,t =

[

aDL
i1,t, . . . , a

DL
iB,t

]

is a vector that repre-

sents user i’s downlink association with aDL
ik,t ∈ {0, 1} and

∑

k∈B

aDL
ik,t = 1. γD and γQ represent the target delay and

video quality requirements, respectively. In (7), A
cUL
ij (xit,yit)

represents the time used for tracking information transmission

from user i to BS j.
D(li,t(cDL

ik(xit,yit,bi(χit),nik)))
cDL
ik

(xit,yit,bi(χit),nik)
represents

the transmission latency for sending the tracking information

from BS k to user i. For simplicity, hereinafter, PW
it is referred

as PW
it

(

xit, yit, χit,a
UL
i,t ,a

DL
i,t

)

. (7) shows that if the delay of

VR video and tracking information transmission exceeds the

target delay threshold allowed by VR systems or the quality

of VR video cannot meet the video requirement, users will

experience a BIP (PW
it =1). From (7), we can also see that, the

BIP of user i caused by wireless transmission depends on user

i’s location, orientation, VR applications, and user association.

(7) represents the BIP caused by wireless networking factors

such as transmission delay and video quality. Next, we show

the BIP model that jointly considers wireless transmission, the

VR applications, and the users awareness. The BIP of user i

can be given by [11]:

Pi

(

xit, yit, GA, χit,a
UL
i,t ,a

DL
i,t

)

=
1

T

T
∑

t=1

(

GA + PW
it +GAP

W
it + ǫi + ǫGA|i + ǫB

)

, (8)

where ǫi is the user i’s awareness measured by VR users,

ǫGA|i is joint effect caused by user i’s awareness and VR

application GA, and ǫB is a random effect. ǫi, ǫGA|i, and

ǫB follow the Gaussian distribution [11] with zero mean and

variances σ2
i , σ2

GA|i, and σ2
B , respectively. In (8), the value of

Pi

(

xit, yit, GA, χit,a
UL
i,t ,a

DL
i,t

)

quantifies the average number

of BIPs that user i can identify during a period. From (8), we

can see that as the VR application for user i changes, the value

of BIP will change. For example, a given user watching VR

videos will experience fewer BIPs compared to a user engaged

in an immersive first-person shooting game. This is due to the

fact that in an immersive game environment, users are fully

engaged with the virtual environment, as opposed to some VR

applications that require the user to only watch VR videos.

In (8), we can also see that the BIPs depend on the users’

awareness. This means that different users will have different

actions and perceptions when they interact with the virtual



environment and, hence, different VR users may experience

different levels of BIP.

C. Problem Formulation

From (8), we can see that the BIP of each user depends

on the user’s locations and orientations as well as its associ-

ations. Using an effective learning algorithm to predict users’

locations and orientations, BSs can proactively determine

the users’ association to improve the downlink and uplink

data rates and minimize BIP for each VR user. The BIP

minimization problem can be given as follows:

min
x̂it,ŷit,χ̂it,a

UL
i,t,a

DL
i,t

∑

i∈U

Pi

(

x̂it, ŷit, GA, χ̂it,a
UL
i,t ,a

DL
i,t

)

(9)

s. t. Uj 6 V, ∀j ∈ B, (9a)

aUL
ij,t ∈ {0, 1} , ∀i ∈ U , ∀j ∈ B, (9b)

aDL
ij,t ∈ {0, 1} , ∀i ∈ U , ∀j ∈ B, (9c)
∑

j∈B

aUL
ij,t = 1, ∀i ∈ U , (9d)

∑

j∈B

aDL
ij,t = 1, ∀i ∈ U , (9e)

where x̂it, ŷit, and χ̂it are the predicted locations and ori-

entation of user i at time t. Uj is the number of VR users

associated with BS j over downlink and V is the maximum

number of users that can be associated with each BS. (9b) and

(9d) show that each user can associate with only one uplink

BS while (9c) and (9e) indicate that each user can associate

with only one BS at downlink. From (9), we can see that

the BIPs of each user will depend on the user association as

well as the users’ locations and orientations. Meanwhile, the

user association depends on the locations and orientations of

the VR users. As the users’ locations and orientations will

continuously change as time elapses, BSs must proactively

determine the user association to reduce the BIPs of VR

users. Hence, it is necessary to introduce a learning algorithm

to predict the users’ locations and orientations in order to

determine the user association and minimize BIPs of VR users.

III. FEDERATED ECHO STATE LEARNING FOR

PREDICTIONS OF THE USERS’ LOCATION AND

ORIENTATION

Federated learning is a decentralized learning algorithm

[12] that can operate by using training datasets that are

distributed across multiple devices (e.g., BSs), instead of being

centralized at one location or device [13]. For our system,

one key advantage of federated learning is that it can allow

multiple BSs to locally train their ESNs using their collected

data and cooperatively build a learning model by sharing

their locally trained models. Compared to existing federated

learning algorithms [13] that use matrices to record the users’

behavior and cannot analyze the correlation of the users’

behavior data, we propose an ESN-based federated learning

algorithm that can use an ESN to efficiently analyze the data

related to the users’ mobility and orientation since an ESN

that is a recurrent neural network is good at analyzing time-

related data. Moreover, ESNs only need to train an output

weight matrix, hence, they reduce the training complexity of

the federated learning algorithms. Next, we first introduce

the components of the federated ESN learning model. Then,

we explain the entire procedure of using our federated ESN

learning algorithm to predict the users’ mobility patterns and

and orientation.

A. Components of Federated ESN Learning Algorithm

A federated ESN learning algorithm consists of four compo-

nents: a) agents, b) input, c) output, and d) local ESN model,

which are specified as follows:

• Agent: In our system, each BS j must implement at most

U learning algorithms.

• Input: The input of the federated ESN learning algorithm

that is implemented by BS j for the predictions of each

VR user i is defined by a vector xij = [xij,1, · · · ,xij,T ]
T

that represents the information related to user i’s mo-

bility and orientation where xij,t = [ξij1,t, . . . , ξijNx,t]
represents user i’s information related to mobility and

orientation at time t. This information includes user i’s

locations, orientations, VR applications, and the time

that user i associates with BS j. Nx is the number

of properties that constitute a vector xij,t. The input

of the proposed algorithm will be combined with the

ESN model to predict users’ orientation and mobility

patterns. BSs will use these predictions to determine user

associations.

• Output: For each user i, the output of the federated

ESN learning algorithm at BS j is a vector yij,t =
[

ŷijt+1, . . . , ŷijt+Y

]

of user i’s locations and orienta-

tions where ŷijt+k = [x̂it+k, ŷit+k, χ̂it+k] with x̂it+k

and ŷit+k being the predicted location coordinates of user

i at time t+ k and χ̂it+k being the estimated orientation

of user i at t + k. Y is the number of future time slots

that a federated ESN learning algorithm can predict. The

predictions of the locations and orientations can be used

to determine the user’s association.

• Local ESN model: For each BS j, a local ESN model is

used to build the relationship between the input of all BSs

and the predictions of the users’ mobility and orientation.

The local ESN model consists of the input weight matrix

W in
j ∈ R

NW×T , recurrent matrix W j ∈ R
NW×NW ,

and the output weight matrix W out
j ∈ R

Y×(NW+T ).

The values of W in
j and W j are generated randomly.

However, the output weight matrix W out
j need to be

trained according to the inputs of all BSs. A parallel ESN

model in which the ESNs are connected in series is used

for the proposed algorithm.

B. ESN Based Federated Learning Algorithm for Users’ Lo-

cation and Orientation Predictions

Next, we introduce the entire procedure of training the pro-

posed ESN-based federated learning algorithm. Our purpose

of training ESN is to find an optimal output weight matrix

in order to accurately predict the users’ mobility patterns and

orientations.

To introduce the training process, we first explain the ESN

neuron state. The neuron states of the proposed algorithm



implemented by BS j for the predictions of user i are:

µj,t = W jµj,t−1 +W in
j xij,t. (10)

Based on the states of neurons and the inputs, the ESN can

estimate the output, which is:

ŷij,t = W out
j,t

[

xij,t

µj,t

]

. (11)

From (11), we can see that to enable an ESN to predict the

users’ mobility patterns and orientations, we only need to

adjust the value of the output weight matrix. However, each

BS can collect only partial data for each user and, hence, we

need to use a distributed learning algorithm to train the ESNs.

To introduce the distributed learning algorithm, we first define

two matrices which are given by:

Hj =







xij,1 µj,1
...

xij,T µj,T






and Ej = [eij,1, . . . , eij,T ] ,

where eij,t is the desired locations and orientations of each

VR user, given the ESN input xij,t. Then, the training purpose

can be given as follows:

min
W out

1

2





B
∑

j=1

∥

∥

∥W
outHT

j −Ej

∥

∥

∥

2



+
λ

2

∥

∥W out
∥

∥. (12)

(12) is used to find the optimal output weight matrix W out

according to which the BSs can predict the entire users’

locations and orientations without the knowledge of the users’

data collected by other BSs. From (12), we can see that, each

BS j needs to adjust its output weight matrix W out
j and find

the optimal output weight matrix W out. The update of W out
j

is given by:

W out
j,t+1 =ς−1

[

I −HT
j

(

ςI +HjH
T
j

)

HT
j

]

×
(

HT
j Ej − nj,t + ςW out

t

)

, (13)

where ς is the learning rate and W out
t is the optimal output

weight matrix that the ESN model of each BS needs to find.

From (13), we can see that W out
j,t+1 is the output weight matrix

that is generated at BS j. W out
j,t+1 can only be used to predict

partial mobility patterns and orientations given the users’ data

collected by BS j. W out
j,t+1 is different from the output weight

matrices of other BSs. The optimal output weight matrix is:

W out
t+1 =

BςŴ
out

t+1 +Bn̂t

λ+ ςB
, (14)

where Ŵ
out

t+1 and n̂
out
t+1 can be calculated as follows:

Ŵ
out

t+1 =
1

B

B
∑

j=1

W out
j,t+1, n̂t =

1

B

B
∑

j=1

nj,t. (15)

In (13), nj,t is the deviation between the output weight matrix

W out
j,t+1 of each BS j and the optimal output weight matrix

W out
t+1 that the ESN model of each BS needs to converge,

which is given by:

nj,t+1 = nj,t + γ
(

W out
j,t+1 −W out

t+1

)

. (16)

Algorithm 1 Federated ESN learning algorithm for mobility

and orientation predictions

Input: Training data set (local), xij .

Initialization: Each BS j generates the ESN model for each user including
W

in
j (local), W j (global), and W

out
j (local).

1: Obtain the matrices Hj and Ej based on (10).

2: for time t do

3: Compute W
out
j,t+1 using (13).

4: Calculate Ŵ
out

t+1 and n̂
out
t based on (15).

5: Calculate W
out
t+1 based on (14).

6: Compute nj,t+1 based on (16).

7: Compute ‖rj,t+1‖ and ‖sj,t‖.

8: If ‖rj,t+1‖ 6 γA or ‖sj,t‖ 6 γA, the algorithm converges.
9: end for

W out
t+1 is the global optimal output weight matrix that can be

used to predict the entire mobility patterns and orientations of

a given user. This means that using W out
t+1, each BS can predict

the entire user’s mobility patterns and orientations as the BS

only collects partial data related to the user’s mobility and

orientations. As time elapses, W out
j,t+1 will finally converge

to W out
t+1. In consequence, all of BSs can predict the entire

mobility patterns and orientations of each user. To measure

the convergence, we define two vectors which can be given

by rj,t = W out
j,t − W out

t and sj,t = W out
t − W out

t−1. As

‖rj,t+1‖ 6 γA or ‖sj,t‖ 6 γA, the proposed algorithm

converges. As the learning algorithm converges, each BS can

use its own ESN to predict the entire mobility and orientation

of each VR user. According to these predictions, BSs can

determine the user association to minimize the BIPs of VR

users. Algorithm 1 summarizes the entire process of using

ESN based federated learning algorithm for the predictions

of the users’ mobility patterns and orientations. Based on the

predictions of the users’ orientations and mobility patterns, we

can use a reinforcement learning algorithm given in [14] to find

a sub-optimal solution. The reinforcement learning algorithms

can learn the VR users state and exploit different actions to

adapt the user association according to the the predictions of

the users’ mobility and orientation. After the learning step,

each BS will find a sub-optimal user association.

IV. SIMULATION RESULTS

For our simulations, we consider a circular area with radius

r = 500 m, U = 20 wireless VR users, and B = 5
BSs distributed uniformly. The orientation data is collected

from a first-person shooter game at the Youtube Website. In

particular, we record the users’ orientations from 25 videos of

the first-person shooter VR game. For comparison purposes,

we consider the deep learning algorithm in [7] and the ESN

algorithm in [15], as two baseline schemes. All statistical

results are averaged over a large number of independent runs.

Fig. 1 show the predictions of the VR users’ orientations

as time elapses. To simplify the model training, the collected

data related to orientations are mapped to [−0.5, 0.5]. From

Fig. 1, we observe that the proposed algorithm can predict the

users’ orientations more accurately than the centralized ESN

and deep learning algorithms. Figs. 1(b) and 1(c) also show

that the prediction error mainly occur at time slot 8 to 12.
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Fig. 1. Predictions of the VR users’ orientations as time elapses.
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Fig. 2. Total BIPs experienced by VR users as the number of BSs varies.

This is due to the fact that the proposed algorithm can build a

learning model that predicts the entire mobility and orientation

of each user. In particular, the output weight matrices of all

ESN algorithms implemented by each BS will converge to a

common matrix. Hence, BSs can predict the entire mobility

and orientations of each VR user.

Fig. 2 shows how the total BIP of all VR users changes

as the number of BSs varies. From Fig. 2, we can see that,

as the number of BSs increases, the total BIP of all VR users

decreases. That is because as the number of BSs increases, the

VR users have more connection options. Hence, the blockage

caused by human bodies will be less severe, thereby improving

the data rates of VR users. Fig. 2 also shows that the proposed

algorithm can achieve up to 16% and 26% reduction in the

number of BIPs, respectively, compared to centralized ESN

algorithm and deep learning algorithm for a network with 9

BSs. These gains stem from the fact that the centralized ESN

and deep learning algorithms can partially predict the mobility

and orientation of each VR user as they rely only on the local

data collected by a BS. In contrast, the proposed algorithm

facilitates cooperation among BSs to build a learning model

that can predict the entire users’ mobility and orientations.

V. CONCLUSION

In this paper, we have developed a novel framework for

minimizing BIPs within VR applications that operate over

wireless networks. To this end, we have developed a BIP

model that jointly considers the VR applications, transmis-

sion delay, VR video quality, and the user’s awareness. We

have then formulated an optimization problem that seeks to

minimize the BIP of VR users by predicting users’ mobility

and orientation, as well as determining the user association.

To solve this problem, we have developed a novel federated

learning algorithm based on echo state networks. The proposed

federated ESN algorithm enables the BSs to train their ESN

with their locally collected data and share these models to

build a global learning model that can predict the entire

mobility pattern and orientations of each VR user. Using these

predictions, each BS can determine the user association in both

uplink and downlink. Simulation results have shown that, when

compared to the centralized ESN and deep learning algorithms,

the federated ESN approach achieves significant performance

gains in terms of BIPs.
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