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This paper systematically investigates the safety implications of a new 4-dimensional air traffic 
management paradigm by quantitatively identifying conditions where conflict-free trajectories can be 
guaranteed by only using 4-dimensional waypoints. Towards this end, a concept called Trajectory 
Inclusion is first introduced based on geometry and physics-driven proofs and analysis. Strategies 
to achieve conflict-free trajectories are then developed and further explained with a leader–follower 
example. It is found out that the time-based waypoints alone can guarantee conflict-free trajectories if 
certain initial conditions are satisfied. In general, the results of this paper enhance the understanding 
of time-based management capabilities, and help formulate better time-based instructions to reduce 
unnecessary tactical maneuvers and improve the overall performance of the airspace, one of the main 
promises Trajectory Based Operations (TBO). Specifically, the algorithmic scheme created for the leader–
follower example can be applied directly to Flight-deck Interval Management, a future concept of TBO.

© 2019 Elsevier Masson SAS. All rights reserved.
1. Introduction

The Next Generation Air Transportation System (NextGen) en-
visions improving the safety and efficiency of airspace operations, 
while reducing the environmental impacts and increasing the ca-
pacity of the air transportation system [1]. At the heart of NextGen 
is Time Based Management for Trajectory Based Operations (TBO), 
an air traffic management system in which every aircraft is repre-
sented by a 4 dimensional trajectory (4DT) [2]. A 4DT includes a 
series of points from departure to arrival representing the aircraft’s 
path in four dimensions: lateral (latitude and longitude), vertical 
(altitude), and time [3]. It plays an important role in NextGen’s 
transition from traditional miles-in-trail [4] traffic management to 
(Extended) Time-based Metering, providing air traffic services to 
meet a scheduled time at which airborne aircraft should cross a 
metering point or arc instead of specifying a minimum spacing for 
flights.

As pointed out by [5], the goal of the transition to a time-
based system is to provide speed or time control to keep flights on 
their optimal path. In TBO, controllers use the metering informa-
tion, such as Scheduled Time of Arrival (STA) and Speed Advisories, 
to issue clearances to the aircraft in order to comply with the as-
signed STA [6]. However, the decision of when to use speed or time 
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control remains an open problem. In fact, the “quality” of the 4DT 
waypoints affects the feasibility and effectiveness of the speed-
based advisory for conflict resolution. On one hand, 4DT waypoints 
can decrease controller workload by allowing the aircraft to ad-
just speed autonomously to meet the crossing restriction, instead 
of issuing speed instructions to pilots to keep the aircraft on time 
[7]. However, on the other hand, inappropriate 4DT waypoints can 
cause unnecessary maneuvers and even render speed-based con-
flict resolution infeasible. Examples can be found in [8].

Therefore, this paper aims to understand, to what extent, 4DT 
waypoints alone, regardless of the speed profiles, can guarantee 
conflict-free trajectories. Previous work [8] shows qualitatively
that the 4DT waypoints alone can guarantee conflict-free trajecto-
ries in some conditions but can also introduce hazards in other 
conditions. This paper tackles this problem by identifying the 
quantitative conditions, where no matter what speed profiles the 
pilots choose to fly, as long as the STAs are respected, conflict-free 
trajectories can be guaranteed.

This paper makes two contributions: (1) the novel introduction 
of Trajectory Inclusion and the geometry-based proof for conflict-
free scenarios; (2) the finding that 4DT waypoints regardless of the 
speed profiles can guarantee conflict-free trajectories and the spe-
cific scheme to achieve them. Furthermore, the results from the 
leader–follower example can be directly applied to address Flight-
deck Interval Management [9], where ADS-B [10] equipped aircraft 
pairs automatically achieve relative spacing by dynamically assign-
ing waypoints to each airplane.
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The rest of the paper is organized as follows. In Section 2, 
related literature is reviewed. Section 3 defines the mathemati-
cal problem and assumptions. In Section 4, a key concept of this 
paper—Trajectory Inclusion—is proposed. Section 5 and Section 6
explain how to use 4DT waypoints to achieve conflict-free trajec-
tories for single time interval and two consecutive time intervals 
respectively by applying Trajectory Inclusion. Section 7 shows how 
to achieve conflict-free trajectories for all time based on the find-
ings in Section 5 and Section 6. Section 8 concludes this paper 
with some final remarks.

2. Literature review

2.1. Time based management

Time Based Management is at the heart of TBO [5]. Both time-
based and speed-based instruction have their roles in Time Based 
Management, but the distinction between the roles are unclear. 
FAA’s order JO 7210.3AA [11] prescribes that time-based meter-
ing allows the routine use of Performance Based Operations and 
only applies spacing when needed. It is consistent with FAA’s 
Performance Based Navigation (PBN) strategy to continue transi-
tion from distance-based to time-based and speed-based air traffic 
management [12]. However, when is “when needed”? In fact, there 
is a general lack of understanding about what a NAS Time-based 
Scheduling and Management system means from the perspectives 
of both Air traffic and System adaptors [12], which coincides with 
the findings in [13] that there are general confusions about the us-
age and implementation of the time-based capabilities.

Based on [14–16], though the exact detailed algorithm is not 
open to the public and names of the modules where the functions 
reside in differ, it is certain that STA is calculated first and then air-
planes are given speed advisories to catch each STA at the respec-
tive Constraint Satisfaction Point (CSP). [17] supports this claim by 
pointing out that 4D trajectory is generated to create control advi-
sories, usually as speed and altitude profiles, on how to meet the 
STA at a waypoint. More specifically, [30] claims the TBFM system 
uses trajectory modeling functions to build a sequence and sched-
ule of aircraft joining an arrival flow and provides a time schedule 
at meter reference points (MRPs). Its sub-function of speed advi-
sories suggests airspeeds that ATC can provide to an aircraft to 
help meet its frozen scheduled time of arrival (STA) at an MRP. [31]
touches upon the time-based and speed-based concepts by study-
ing the difference and interaction between schedule-based man-
agement and spacing-based management at CMPs. [9] discusses 
the concept of operation for Interval Management, which is basi-
cally a speed-based decision-making tool to assist ATC to maintain 
STA and conduct relative spacing. More similar work can be found 
in [32,33].

In summary, many works describe using speed advisory to sat-
isfy STA, but none of them considers to what extent the use of 
STAs affects the use of speed-based advisories, let alone a coordi-
nated use of them both.

2.2. Conflict-free trajectory

There is a relevant body of literature that specifically relates to 
the generation of conflict-free trajectories. [18] proposes a stochas-
tic linear hybrid system to describe the dynamics of an aircraft 
with changing flight modes and a computationally efficient al-
gorithm is developed to estimate aircraft future trajectory. This 
approach makes better predictions because the aircraft’s intent 
information is included in the model. However, this work does 
not mention how to generate appropriate, safe, or “good” intent 
in the first place. In [19], a probabilistic conflict detection algo-
rithm is proposed to determine the evolution of uncertainty in the 
complex nonlinear dynamical systems with high computational ef-
ficiency and then an optimal control method is combined to solve 
the conflict resolution problem. [20] presents a way of obtaining a 
conflict-free solution for all planned trajectories during the strate-
gic phase based on a data-driven conflict-resolution model and a 
multi-objective global optimization algorithm. In [21], a dynamic 
optimizer is proposed for complex (and realistic) lateral and verti-
cal trajectories, producing vertical, lateral and speed profile. Direct 
collocation methods are used to convert the complex problem to 
a continuous multiphase optimal control problem that is solved 
with non-linear programming techniques to minimize fuel burn. 
[22] makes improvements in the areas of computationally efficient 
wind-optimal routing, aircraft conflict detection, and optimal con-
flict resolution. An algorithm is developed to compute a complete 
set of conflict-free optimal wind routes for double the current-
day single flight level air traffic density in less than one minute 
on an average (450 MHz) workstation, which was an order-of-
magnitude improvement over current state-of-the-art algorithms. 
More related work can be found in [23] and [24].

Despite a large variety of models and algorithms used to 
achieve conflict-free trajectories, most of them take STA as given 
and explicitly or implicitly assume to use speed to respect a 4DT 
waypoint and resolve a potential conflict. None of them considers 
using 4DT waypoints effectively to eliminate conflicts in the first 
place and use speed advisories only when time-based instructions 
alone cannot avoid conflict. The most similar work we can find is 
[25], but it still takes 4DT waypoints as given.

3. Problem definition

3.1. The leader–follower example

This paper develops methods to achieve conflict-free trajecto-
ries by only using 4DT waypoints regardless of the potential speed 
profiles. A leader–follower example (Fig. 1) is studied. Two air-
planes, AC1 and AC2, fly from waypoints to waypoints following 
the same 3D trajectory (i.e. a 3D “flow”) with any speed that the 
pilots choose to fly. Although vectoring and holding can also be 
used for safety clearance, they are not considered in this paper, for 
the following reasons. First, they are not the first choice for safety 
clearance due to their fuel inefficiency and attention-demanding 
nature. Second, and more importantly, they are only used “when a 
speed solution alone does not exist” [12]. This paper seeks to use 
4DT waypoints to minimize the use of speed resolution, and hence 
can effectively eliminate the necessity to use the costly vectoring 
and holding in the first place.

Note that the “x” axis denotes positions along the 3D trajec-
tory. Time (“t”) is the fourth dimension and will be explicitly 
represented in Fig. 2 momentarily. In an earth-centered inertial 
coordinate system, the axis x (i.e. a 3D “flow”) can be a straight 
line representing air corridors, or any curved path with altitude 
changes and turns such as in the standard routes for arrival and 
departure. As long as the aircraft fly in a flow, the results of this 
paper are applicable.

It is a simple but non-trivial example. In fact, it is an important 
enough example to be one of the three types of trajectory conflicts 
described in [26]. The authors called it “Trailing Conflict” and it is 
worth studying “as it is often the case on airways”. Moreover, in 
2014, NASA released “A Concept of Operations for Far-Term STBO” 
[27], which listed trailing conflicts as one of the operational sce-
narios called “Lead/Follow Conflict” to highlight the unique time-
based capabilities of the far-term NextGen ConOps. More recently 
in 2017, [28] also studied trailing conflicts for future Trajectory 
Based Operations, where it is characterized as “Single-Altitude, On-
Airway Airborne Spacing Operation”.
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Fig. 1. The leader–follower example in a 3D flow.

Fig. 2. The 4DT representation of the leader–follower example.

Fig. 3. Conflict-free trajectories for time interval t ∈ [0, T ] as an example.

3.2. Problem definition

Fig. 2 is the 4DT representation of the leader–follower exam-
ple. The vertical axis denotes the 3D flow and the horizontal 
axis denotes the fourth dimension, time. The entire 4DT trajec-
tory is broken down into time intervals T , and a 4DT trajectory 
is a set of 3D waypoints defined at all the time stamps, i.e., 
{x, t|t = 0, T ,2T ,3T , . . . }. If we can guarantee no conflict in each 
time interval, then we can guarantee conflict-free trajectories for 
all time. For the purpose of illustration, T is assumed the same 
among all the time intervals. In fact, as long as the length of the 
time intervals satisfy Assumption 3, they can be different and the 
results of this paper are still applicable.

Hence, the entire problem boils down to guaranteeing conflict-
free trajectories for each single time interval. Taking time interval 
t ∈ [0, T ] for example (Fig. 3), the initial conditions (positions and 
speed) of the two airplanes are assumed known at t = 0, which are 
X1(0), v1(0) and X2(0), v2(0) respectively. The curved line repre-
sents the trajectory of the aircraft along [0, T ], and the straight 
dash line starting at t = 0 represents the initial speed of the air-
craft, whose slope is the magnitude of the speed. The task is to 
select waypoints for both airplanes at t = T , i.e. X1(T ) and X2(T ), 
so that regardless of the potential speed profiles the pilots choose 
to fly, their trajectories, line X1(0)X1(T ) and line X2(0)X2(T ), do 
not intersect.

3.3. Definition and assumptions

Definition.

x ∈ [x, x]
• When x is a variable: the variables in this paper can be posi-

tion, speed, acceleration and so on. x and x denote respectively 
the upper bound and lower bound of the quantity of the vari-
able.
• When x is a point: x and x denote respectively the most ad-
vanced point and the least advanced point that Point x can be. 
The measurement of their positions are variables and denoted 
by Xx and Xx .

Assumption 1.

v ∈ [v, v] and v > 0, v > 0

The speed bound is uncertain, determined by both determinis-
tic factors and non-deterministic factors such as altitude and wind. 
In fact, speed restrictions are already calculated in current Flight 
Management System in real time. Many factors are taken into con-
sideration, such as wind model, flight phase, altitude, flight plan 
speed restrictions, flaps configuration and airframe speed enve-
lope limitations [29]. Deciding the exact speed bound is out of the 
scope of this paper, but we assume here the speed bound is known 
in real time, [v, v].

Assumption 2.

a ∈ [−a,a] and a > 0,a > 0

Similar to speed, the acceleration/deceleration rate is deter-
mined by many factors, both deterministic and non-deterministic, 
such as engine thrust, altitude and wind. We assume an over-
approximation of the acceleration and deceleration rate are known 
in real time, which are [0, a] and [−a, 0] respectively. The negative 
part of a means deceleration.

Assumption 3.

T >
v − v

a
+ v − v

a

Obviously, the length of each time interval T is important. For 
simplicity, we assume T is long enough for the aircraft to speed 
up from the lowest speed to highest speed and then slow down to 
the lowest speed. A more comprehensive investigation about the 
effect of T should be conducted.

4. Trajectory inclusion

In this section, Trajectory Inclusion, the fundamental concept 
of our approach, is proposed. Intuitively, a Trajectory Inclusion is 
an over approximation of all the possible 4D trajectories that an 
airplane can take from one 4DT waypoint to another.

As shown in Fig. 4, an airplane flies along the 3D trajectory—
the “x” axis. The current position at t = 0 is X(0) and the way-
point to reach at t = T is X(T ). Note that, on one hand, symbols 
like A and D are the geometry points, whose position measure-
ment along the 3D trajectory are denoted in the fashion of X A
and XD . On the other hand, symbols without subscripts like X(0), 
X(T ) and X(T ) denote both geometry points and their position 
measurement.

As shown in Fig. 4(a), first start from Point X(0) and draw two 
straight lines with slopes of v and v respectively. They intersect 
t = T at Point A and B. Then start from Point X(T ) and draw two 
straight lines with slopes of v and v respectively. The intersect 
t = 0 at Point C and D. Line X(0)A intersects line X(T)C at Point 
N and line X(0)B intersects line X(T)D at Point M. Because the air-
plane speed is bounded with [v, v], an airplane, starting from Point 
X(0), can only reach points within the Triangle X(0)AB. Similarly, 
to reach X(T ) at t = T , an airplane has to be within the Triangle 
X(T)CD. Hence, an airplane, starting from X(0) to reach X(T ), has 
to fly with the overlapping of Triangle X(0)AB and X(T)CD, thus the 
Trajectory Inclusion— diamond X(0)MX(T)N.
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Fig. 4. (a) The red marked diamond is an inclusion of all the possible trajectories 
that an airplane can take to reach waypoint X(T ) at t = T from position X(0) at 
t = 0; (b) The feasible waypoint X(T) is bounded within [X(T ), X(T )] when the 
initial speed v(0) is taken into consideration. (For interpretation of the colors in the 
figure(s), the reader is referred to the online version of this article.)

Furthermore, X(T ), the waypoint to reach, cannot be selected 
arbitrarily (Fig. 4(b)). First, it has to be apparently between Point 
A and B. Moreover, because it takes time for the airplane to tran-
sition from its initial speed v(0) to the fastest/lowest speed, it can 
never reach the full range between A and B. We denote the result-
ing bound for X(T ) with [X(T ), X(T )]. Starting from Point X(T )

and X(T ), draw two straight lines with slope of v respectively. 
They intersect with t = 0 at Point D and D .

The following are the quantitative representations of some of 
the points that are going to be extensively used in rest of the pa-
per.

The position of Point B is,

XB = X(0) + vT (1)

The position of Point D is,

XD = X(T ) − vT (2)

The calculation of X(T ) and X(T ) is straightforward. The idea is 
to accelerate/decelerate to the boundary speed v/v with the high-
est rate a/a, and then maintain the speed v/v to t = T .

X(T ) ∈ [X(T ), X(T )] (3)

where,

X(T ) = X(0) + vT − (v−v(0))2

2a

X(T ) = X(0) + vT + (v(0)−v)2

2a

Applying (3) to (2), we have XD :

XD ∈ [XD , XD ] (4)

where,

XD = X(0) − (v−v(0))2

2a

XD = X(0) + vT + (v(0)−v)2

2a − vT

5. Conflict-free trajectories for [0, T ]

In this section, two scenarios are first (Section 5.1) proposed, 
where conflict-free trajectories are guaranteed based on the con-
cept of Trajectory Inclusion, regardless of the potential speed pro-
files. Strategies (Section 5.2) to lead the airplanes into the conflict-
free scenarios are then developed accordingly. However, not all sit-
uations can be led into the conflict-free scenarios with the strate-
gies. Certain conditions (Section 5.3) have to be satisfied. They are 
called applicable conditions for the strategies.
Fig. 5. Scenario (a): Conflict-free trajectories can be guaranteed if Point X2(0) is 
behind Point D1; Scenario (b): Conflict-free trajectories can be guaranteed as long 
as Point X2(T) is behind Point B1, even though Point X2(0) is before Point D1.

5.1. Conflict-free scenarios based on trajectory inclusion

For the leader–follower problem, if there is no overlapping be-
tween the Trajectory Inclusions of the two airplanes during [0, T ], 
the conflict-free trajectories can be guaranteed during the time 
interval, regardless of the potential speed profiles. Note that, for 
the purpose of illustration, we assume the two airplanes have the 
same speed and acceleration/deceleration constraints in this paper. 
These results can be easily applied to situations where airplanes 
have different speed and acceleration/deceleration constraints.

As shown in Fig. 5, AC1, currently at Point X1(0), leads AC2 
at Point X2(0) at t = 0. Points A1/A2, B1/B2, C1/C2 and D1/D2 
corresponds to the points A, B, C and D in Fig. 4 for AC1/AC2 re-
spectively.

Scenario (a)

When Point X2(0) is behind Point D1 (Fig. 5(a)), AC2’s Trajectory 
Inclusion, Triangle X2(0)A2B2, has no overlap with AC1’s Trajectory 
Inclusion, Diamond X1(0)M1X1(T)N1. Hence, the waypoints of both 
aircraft, X1(T) and X2(T), can be selected freely as long as they 
can be reached at t = T , i.e. X1(T ) ∈ [X1(T ), X1(T )] and X2(T ) ∈
[X2(T ), X2(T )].

It can be summarized as:

When X2(0) < XD1:
X1(T ) ∈ [X1(T ), X1(T )], X2(T ) ∈ [X2(T ), X2(T )].
Scenario (b)

When Point X2(0) is before Point D1 (Fig. 5(a)), as long as 
X2(T) is behind Point B1, AC1’s Trajectory Inclusion (Diamond 
X1(0)M1X1(T)N1) has no overlapping with AC2’s Trajectory Inclu-
sion (Diamond X2(0)M2X2(T)N2). Hence, X1(T ) ∈ [X1(T ), X1(T )]
and X2(T ) ∈ [X2(T ), XB1].

It can be summarized as:

When X2(0) > XD1:
X1(T ) ∈ [X1(T ), X1(T )] and X2(T ) ∈ [X2(T ), XB1].
5.2. Strategies to achieve conflict-free scenarios

In general, “strategy” in this paper means: given the ini-
tial condition (X1(0), X2(0), v1(0), v2(0)), if the 4DT waypoints 
{X1(T ), X2(T )} are selected following the strategies, then the 
conflict-free scenarios of Section 5.1 can be achieved.
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Strategy (a):

To achieve Scenario (a), Strategy (a) is to select X1(T ) so that 
XD1 > X2(0). After that X2(T ) can be selected freely. See the pre-
vious section for details.

Mathematically, Strategy (a) can be represented as follows. Note 
that XD1, X1(T ), X1(T ), X2(T ) and X2(T ) have been expanded 
based on equations (2) and (4).

⎧⎪⎪⎨
⎪⎪⎩

X1(T ) ∈ [max(X2(0) + vT , X1(0) + vT + (v1(0)−v)2

2a ),

X1(0) + vT − (v−v1(0))2

2a ]
X2(T ) ∈ [X2(0) + vT + (v2(0)−v)2

2a , X2(0) + vT − (v−v2(0))2

2a ]
Intuitively, it means given the initial condition (X1(0), X2(0),

v1(0), v2(0)), as long as X1(T ) and X2(T ) are selected accord-
ingly from the sets above, Scenario (a) can be achieved and hence 
conflict-free trajectories are guaranteed.

Strategy (b):

To achieve Scenario (b), Strategy (b) is to select X1(T ) and 
X2(T ), so that XD1 < X2(0) and X2(T ) < XB1.

Mathematically, Strategy (b) can be represented as follows. 
Note that XB1, XD1, X1(T ), X1(T ), X2(T ) and X2(T ) have been ex-
panded based on equations (1), (2) and (3),⎧⎪⎪⎨
⎪⎪⎩

X1(T ) ∈ [X1(0) + vT + (v1(0)−v)2

2a ,min(X2(0) + vT ,

X1(0) + vT − (v−v1(0))2

2a )]
X2(T ) ∈ [X2(0) + vT + (v2(0)−v)2

2a , X1(0) + vT ]
Intuitively, it means given the initial condition (X1(0), X2(0),

v1(0), v2(0)), as long as X1(T ) and X2(T ) are selected accord-
ingly from the sets above, Scenario (b) can be achieved and hence 
conflict-free trajectories are guaranteed.

Expanding the max and min above, Strategy (a) and (b) are 
further refined into the four sets. Given the initial condition 
(X1(0), X2(0), v1(0), v2(0)), as long as X1(T ) and X2(T ) are se-
lected accordingly from the following sets, conflict-free trajectories 
can be guaranteed.

Strategy (a-1):

X1(T ) ∈ [X2(0) + vT , X1(0) + vT − (v−v1(0))2

2a ]
X2(T ) ∈ [X2(0) + vT + (v2(0)−v)2

2a , X2(0) + vT − (v−v2(0))2

2a ]

Strategy (a-2):

X1(T ) ∈ [X1(0) + vT + (v1(0)−v)2

2a , X1(0) + vT − (v−v1(0))2

2a ]
X2(T ) ∈ [X2(0) + vT + (v2(0)−v)2

2a , X2(0) + vT − (v−v2(0))2

2a ]

Strategy (b-1):

X1(T ) ∈ [X1(0) + vT + (v1(0)−v)2

2a , X2(0) + vT ]
X2(T ) ∈ [X2(0) + vT + (v2(0)−v)2

2a , X1(0) + vT ]

Strategy (b-2):

X1(T ) ∈ [X1(0) + vT + (v1(0)−v)2

2a , X1(0) + vT − (v−v1(0))2

2a ]
X2(T ) ∈ [X2(0) + vT + (v2(0)−v)2

, X1(0) + vT ]
2a
5.3. Applicable conditions for the strategies

Strategies above are mappings from the set {X1(0), X2(0),

v1(0), v2(0)} to the set {X1(T ), X2(T )}. However, not all ele-
ments in the former can be mapped to the latter. The upper 
bounds of X1(T ) and X2(T ) has to be greater than their lower 
bounds, so that {X1(T ), X2(T )} is not empty. The relationship 
among X1(0), X2(0), v1(0) and v2(0) that make {X1(T ), X2(T )} 
non-empty is called the “applicable condition” for the strategy.

Appendix B has the detailed mathematical proof and derivation 
of the applicable conditions. The results are summarized as fol-
lows:

Condition (a-1):

(v−v1(0))2

2a < X1(0) − X2(0) < vT − vT + (v1(0)−v)2

2a

Condition (a-2):

X1(0) − X2(0) > vT − vT + (v1(0)−v)2

2a

Condition (b-1):

max( (v−v1(0))2

2a ,
(v2(0)−v)2

2a ) < X1(0) − X2(0)

< vT − vT − (v1(0)−v)2

2a

Condition (b-2):

(v2(0)−v)2

2a < X1(0) − X2(0) <
(v−v1(0))2

2a

5.4. Observations

Observation 1. The relationship between scenario, strategy and 
condition can be summarized as: conflict-free Scenarios can be 
achieved by applying Strategies, which are only applicable when 
certain Conditions are satisfied. As shown in Fig. 6, the initial con-
dition at the bottom determines whether there are strategies (and 
which strategy) to apply, so that 4DT waypoints exist to form the 
desired scenarios, and in turn secure the conflict-free trajectories 
during [0, T ].

Observation 2. Condition (a-1) and (a-2) can be merged into (5), 
which becomes the applicable condition for Strategy (a).

X1(0) − X2(0) >
(v − v1(0))2

2a
(5)

Similarly, Condition (b-1) and (b-2) can be merged. (6) is the 
resulting applicable condition for Strategy (b).

(v2(0) − v)2

2a
< X1(0) − X2(0) < vT − vT − (v1(0) − v)2

2a
(6)

6. Conflict-free trajectories for [0, 2T ]
The previous section concludes that (X1(0), X2(0), v1(0), v2(0))

determines whether conflict-free trajectories during [0, T ] exist re-
gardless of the potential speed profiles. Similarly, (X1(T ), X2(T ),

v1(T ), v2(T )) determines the existence of conflict-free trajectories 
for [T , 2T ]. However, because v1(T ) and v2(T ) are not supposed 
to be specified in the context of time-based control, there is no 
control of (X1(T ), X2(T ), v1(T ), v2(T )). Therefore, there is no 
guarantee that conflict-free trajectories can exist during [T , 2T ]
if (X1(T ), X2(T )) are selected only for conflict-free trajectories in 
[0, T ]. This limits the scalability of our approach and this section 
tackles it.
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Fig. 6. Initial condition determines whether conflict-free trajectories exist.

6.1. The existence of conflict-free trajectories during [T , 2T ]

This subsection explains, at t = 0, how to select waypoints 
(X1(T ), X2(T )) so that conflict-free trajectories exist during [T , 2T ]
regardless of the potential speed profiles during [0, T ].

First, it is easy to prove the following inequality by applying 
Property 1 (see Appendix A).

vT − vT − (v1(0) − v)2

2a
>

(v − v1(0))2

2a

(5) and (6) are the conditions for the conflict-free trajectories 
to exist. They can be merged using inequality above and rewritten 
as (7) for [T , 2T ].

X1(T ) − X2(T ) > min(
(v − v1(T ))2

2a
,
(v2(T ) − v)2

2a
) (7)

(8) is a sufficient condition for (7). In other words, as long as 
(8) is true, (7) is true, and hence conflict-free trajectories during 
[T , 2T ] exist.

X1(T ) − X2(T ) >
(v2(T ) − v)2

2a
(8)

Second, as observed by Property 2 (see Appendix A), there is a 
quantitative relationship between X(T ) and v(T ): for each X(T ), a 
subset of [v, v] exist for v(T ) to reach X(T ) on time. An extreme 
example is, if the most advanced waypoint is selected, i.e. X(T ) =
X(T ), then the airplane has to accelerate immediately with a to 
reach the speed upper bound v and maintain v till t = T . In other 
words, only one value of v(T ) is possible for X(T ) = X(T ), which 
is v(T ) = v . Intuitively, this means even though the speed profiles 
are not explicitly specified, the selection of (X1(T ), X2(T )) has an 
implication to the possible value of (v1(T ), v2(T )).

Therefore, the problem becomes, at t = 0, how to select 
(X1(T ), X2(T )) and use its implication to (v1(T ), v2(T )), in or-
der to ensure (8) is true. Appendix C is a full detailed address 
of this problem and the results are shown in Fig. 7. As long as 
(X1(T ), X2(T )) is selected from the red marked area, (8) is al-
ways true, and hence the conflict-free trajectories always exist for 
[T , 2T ] without specifying (v1(T ), v2(T )). Note that, L, M, N and 
K are all straight lines. For the sake of space, X1(T ), X1(T ), X2(T )

and X2(T ) are not fully expanded. The full expressions can be 
found in (3).
6.2. Conflict-free trajectories for [0, 2T ]

“Conflict-free trajectories for [0, 2T ]” means selecting (X1(T ),

X2(T )) at t = 0 so that, 1) conflict-free trajectories can be guaran-
teed for [0, T ] and 2) conflict-free trajectories exist for [T , 2T ].

For 1), (X1(T ), X2(T )) has to be selected by following the 
strategies (a-1), (a-2), (b-1) or (b-2). In fact, each strategy repre-
sents a rectangle in a X1(T)X2(T)-plane, as of in Fig. 7. For 2), 
(X1(T ), X2(T )) has to be selected from the red marked area as 
shown in Fig. 7.

Take Strategy (a-1) as an example. It is represented by all the 
points within the blue marked rectangle as shown in Fig. 8. It 
overlaps the red marked area at the blue-red marked area, within 
which all the points satisfy both 1) and 2). This area is called the 
“conflict-free waypoints area (a-1)” for Strategy (a-1). It is where 
the waypoints can be selected for conflict-free trajectories during 
[0, 2T ], if Strategy (a-1) is applicable. A precise expression of this 
“conflict-free waypoints area” can always be derived, but it is the-
oretically trivial, and thus no further discussion here. Similarly, the 
“conflict-free waypoints area” for (a-2), (b-1) or (b-2) can be de-
rived by following the exactly same approach.

However, the “conflict-free waypoints area” can be empty. If 
that is the case, the corresponding strategy cannot lead to conflict-
free trajectories for [0, 2T ]. Taking Strategy (a-1) for example again 
(Fig. 8): X1(T ) = X1(0) + vT − (v−v1(0))2

2a has to be at the right of 
X1(T ) = X2(T ), so that “conflict-free waypoints area (a-1)” is not 
empty, and hence Strategy (a-1) can be used to select waypoints 
for conflict-free trajectories during [0, 2T ].

The rest of the section proves all the “conflict-free waypoints 
areas” are not empty. Note that X2(T ) and X2(T ) in Fig. 9 are 
expanded, in order to be consistent with the expressions used in 
the strategies.

Observe that, X2(T )’s lower bounds in all the strategies are the 
same, X2(T ) = X2(0) + vT + (v2(0)−v)2

2a . It corresponds to line K in 
Fig. 9. Therefore, as long as the upper bound of X1(T ) is at the 
right of X1(T ) = X2(0) + vT + (v2(0)−v)2

2a , the “conflict-free way-
points area” will not be empty.

The upper bound of X1(T ) in all the strategies are X1(T ) =
X1(0) + vT − (v−v1(0))2

2a or X1(T ) = X2(0) + vT . It can be proved 
that both of them are greater than X1(T ) = X2(0) + vT +
(v2(0)−v)2

2a . Hence, the “conflict-free waypoints areas” are never 
empty. See Appendix D for the detailed proof.

Therefore, to conclude this section: as long as there are way-
points (X1(T ), X2(T )) to guarantee conflict-free trajectories for 
[0, T ], conflict-free trajectories for [T , 2T ] always exist.

7. Conflict-free trajectories for all time using 4D waypoints

Section 5 concludes that, as long as the applicable condi-
tions (see Section 5.3) at t = 0 are satisfied, there are waypoints 
(X1(T ), X2(T )) to guarantee conflict-free trajectories for [0, T ], re-
gardless of the speed profiles.

Section 6 concludes that, as long as there are waypoints 
(X1(T ), X2(T )) to guarantee conflict-free trajectories for [0, T ], 
conflict-free trajectories for [T , 2T ] always exist, regardless of in-
stantaneous speed (v1(T ), v2(T )) at t = T .

Combining those two conclusions, a new conclusion can be 
drawn: as long as the applicable conditions at t = 0 are satisfied, 
waypoints (X1(T ), X2(T )) always exist to a) guarantee conflict-
free trajectories for [0, T ] and b) ensure waypoints (X1(2T ),

X2(2T )) always exist to guarantee conflict-free trajectories for 
[T , 2T ].

Fig. 10 is a scheme to achieve conflict-free trajectories for all 
time using only 4D waypoints, regardless of the speed profiles.
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Fig. 7. Conflict-free trajectories always exist during [T ,2T ] if X1(T ) and X2(T ) are selected from the red marked area.

Fig. 8. When Strategy (a-1) is applicable, (X1(T ), X2(T )) selected from the “conflict-free waypoints area (a-1)” (red-blue marked) can guarantee conflict-free trajectories 
during [0, T ] and the existence of conflict-free trajectories during [T , 2T ].

Fig. 9. When the upper bound of X1(T ) is at the right of X1(T ) = X2(0) + vT + (v2(0)−v)2

2a , the “conflict-free waypoints area” is not empty.
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Fig. 10. The scheme for conflict-free trajectories using 4D waypoints, where x is a variable, whose value can be any of {a − 1,a − 2,b − 1,b − 2}.
(1) t = 0
First, assume initial condition (X1(0), X2(0), v1(0), v2(0)) sat-

isfies the applicable conditions in Section 5.3, say Condition (a-1). 
Second, based on the conclusion of Section 6, the “conflict-free 
waypoints area (a-1)” always exist and can be calculated accord-
ingly. Third, the waypoints (X1(T ), X2(T )) is then picked from the 
area. (X1(T ), X2(T )) can guarantee conflict-free trajectories dur-
ing [0, T ] regardless of the speed profiles, and can also ensure 
(X1(2T ), X2(2T )) exist for conflict-free trajectories during [T , 2T ].

(2) t = T
First, waypoints (X1(T ), X2(T )) picked at t = 0 already ensured 

that (X1(T ), X2(T ), v1(T ), v2(T )) satisfies the applicable condi-
tions and (X1(2T ), X2(2T )) always exists for conflict-free trajec-
tories during [T , 2T ]. It only has to decide which condition x
is satisfied, in order to select the strategy accordingly. Similarly, 
based on the conclusion of Section 6, the corresponding “conflict-
free waypoints area (x)” always exist and can be calculated. Then 
(X1(2T ), X2(2T )) is picked from the “conflict-free waypoints area 
(x)” for t = 2T . Again, (X1(2T ), X2(2T )) can guarantee conflict-
free trajectories during [T , 2T ] regardless of the speed profiles, and
can also ensure (X1(3T ), X2(3T )) exist for conflict-free trajectories 
during [2T , 3T ].

(3) t ≥ 2T
Follow the same process to select waypoints (X1(3T ), X2(3T ))

and conflict-free trajectories can be guaranteed for [2T , 3T ] and 
waypoints (X1(4T ), X2(4T )) exist for conflict-free trajectories dur-
ing [3T , 4T ]. Repeat the same process for all the succeeding time 
stamps, and conflict-free trajectories can be guaranteed for all the 
time intervals.

In summary, as long as (X1(T ), X2(T )) exists for conflict-free 
trajectories during [0, T ], 4DT waypoints can always be found to 
guarantee conflict-free trajectories for all the succeeding time in-
tervals by following the scheme above. In other words, if the initial 
condition satisfies the applicable conditions defined in Section 5.3, 
conflict-free trajectories can be guaranteed for all time by using 
4DT waypoints only.

8. Conclusion

Trajectory Based Operation in NextGen is a time-based air traf-
fic management concept. Both time-based and speed-based in-
struction play important roles in TBO. However, the decision of 
when to use speed or time control remains an open problem. 
In this paper, we studied a leader–follower problem where two 
airplanes fly the same 3D trajectory and are regulated by their re-
spective 4DT waypoints. It is a fundamental building block that 
supports a variety of important NextGen applications [26–28]. The 
core question we are asking is whether it is possible to achieve 
conflict-free trajectories by only prescribing the 4DT waypoints re-
gardless of the speed profiles airplanes actually fly?

Toward this end, a concept called Trajectory Inclusion is first 
introduced based on geometry and physics-driven proofs and anal-
ysis. Conditions and strategies to achieve conflict-free trajectories 
are then developed and further explained with the leader–follower 
example. It is found that, regardless of the speed profiles, as long 
as certain initial condition is satisfied, the conflict-free trajectories 
can always be guaranteed for all time by 4DT waypoints alone.

The results of this paper can enhance the understanding of 
time-based management capabilities, and help formulate better 
time-based instructions to reduce unnecessary tactical maneuvers 
and improve the overall performance of the airspace, one of the 
main promises of TBO. Specifically, the algorithmic scheme created 
for the leader–follower example can be applied directly to Flight-
deck Interval Management, a future concept of TBO.
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Appendix A. Properties

In this section, we provide two important properties that will 
be extensively used in the mathematical proof of this paper.

Property 1. Given Assumption 3, the following inequality is always 
true:

vT − vT − (v − v)2

a
− (v − v)2

a
> 0

Property 1 is a direct derivation from T >
v−v

a + v−v
a (Assump-

tion 3), by multiplying (v − v) at both sides.
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Property 2. Given initial condition X(0) and v(0) at t = 0 and the 
desired waypoint X(T ), all the possible v(T ) at t = T can be sum-
marized as follows:

1) When X(T ) ∈ [X(v(T ))
min

, X(v(T ))
max

]

v(T ) ∈ [v, v +
√

2a(X(T ) − X(0) − vT − (v(0)−v)2

2a )]

2) When X(T ) ∈ [X(v(T ))
max

, X(v(T ))min]

v(T ) ∈ [v, v]
3) When X(T ) ∈ [X(v(T ))min, X(v(T ))max]

v(T ) ∈ [v −
√

2a(X(0) + vT − (v−v(0))2

2a − X(T )), v]
where

X(v(T ))
max

= X(0) + vT + (v(0)−v)2

2a + (v−v)2

2a ,

X(v(T ))
min

= X(0) + vT + (v(0)−v)2

2a ,

X(v(T ))max = X(0) + vT − (v−v(0))2

2a ,

X(v(T ))min = X(0) + vT − (v−v(0))2

2a − (v−v)2

2a .

The intuition is that, not all v(T ) ∈ [v, v] is feasible for cer-
tain waypoint X(T ). An extreme example is, if the most advanced 
waypoint at t = T is selected, meaning X(T ) = X(T ), then the air-
plane has to accelerate immediately with a to reach the speed of v
and maintain v till t = T . In other words, only one value of v(T ), 
instead of the entire range of [v, v], is possible for X(T ) = X(T ), 
which is v(T ) = v in this case. Hence, there is a quantitative rela-
tionship between X(T ) and v(T ): for each X(T ), a subset of [v, v]
exist for v(T ) to reach X(T ) on time. Intuitively, this means even 
though the speed profiles are not explicitly specified, the selection 
of X(T ) has an implication to the possible value of v(T ).

Proof. For a specific v(T ), the airplane has to fly with v as long 
as possible to reach the furthest position. Similarly, to reach the 
closest position, it has to fly with v as long as possible. As shown 
in Fig. 11, the furthest position, denoted by X(v(T )), is the area 
under the red lines plus X(0) and the closest position, X(v(T )), is 
the area under the blue lines plus X(0).

X(v(T )) = X(0) + vT + (v(0)−v)2

2a + (v(T )−v)2

2a

X(v(T )) = X(0) + vT − (v−v(0))2

2a − (v−v(T ))2

2a

X(v(T )) and X(v(T )) can be simplified by (2).

X(v(T )) = X(T ) + (v(T )−v)2

2a

X(v(T )) = X(T ) − (v−v(T ))2

2a

Note that X(v(T )) is convex and monotonically increases and 
X(v(T )) is concave and monotonically increases. Hence, we have,

X(v(T ))
max

= X(T ) + (v−v)2

2a

X(v(T ))
min

= X(T )

X(v(T ))max = X(T )

X(v(T ))min = X(T ) − (v−v)2

2a

Furthermore,
Fig. 11. Furthest and closest position.

Fig. 12. v(T)-X(T) relationship.

X(v(T ))min − X(v(T ))
max

= X(T ) − X(T ) − (v−v)2

2a − (v−v)2

2a

= vT − vT − (v(0)−v)2

2a − (v−v(0))2

2a − (v−v)2

2a − (v−v)2

2a

> vT − vT − (v−v)2

2a − (v−v)2

2a − (v−v)2

2a − (v−v)2

2a

= vT − vT − (v−v)2

a − (v−v)2

a > 0 (see Property 1)

Hence,

X(v(T ))max > X(v(T ))min > X(v(T ))
max

> X(v(T ))
min

In addition, since X(v(T )) is convex and X(v(T )) is concave, 
X(v(T )) > X(v(T )) can be easily proved and the relationship be-
tween v(T ) and X(T ) can be plotted as Fig. 12.

Fig. 12 shows the implication that X(T ) has on v(T ). An ex-
treme example is when X(T ) = X(T ), v(T ) can only be equal to v
instead of the full range of [v, v].

In summary, given X(0), v(0) and X(T ), all the possible v(T )

is shown as follows.

1) When X(T ) ∈ [X(v(T ))
min

, X(v(T ))
max

]

v(T ) ∈ [v, v +
√

2a(X(T ) − X(T ))]
2) When X(T ) ∈ [X(v(T ))

max
, X(v(T ))min]

v(T ) ∈ [v, v]
3) When X(T ) ∈ [X(v(T ))min, X(v(T ))max]

v(T ) ∈ [v −
√

2a(X(T ) − X(T )), v]
where,

X(T ) = X(0) + vT + (v(0)−v)2

2a

X(T ) = X(0) + vT − (v−v(0))2

2a �
Appendix B. Applicable conditions

The applicable conditions refer to the sets of X1(0), X2(0), 
v1(0) and v2(0) that make the strategies applicable. In this sec-
tion, we provide the detailed proof of those conditions.
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Strategy (a):

X1(T ) ∈ [max(X2(0) + vT , X1(0) + vT + (v1(0)−v)2

2a ),

X1(0) + vT − (v−v1(0))2

2a ]
X2(T ) ∈ [X2(0) + vT + (v2(0)−v)2

2a , X2(0) + vT − (v−v2(0))2

2a ]
For this strategy to be applicable, the following has to hold:

X1(0) + vT − (v−v1(0))2

2a

> max(X2(0) + vT , X1(0) + vT + (v1(0)−v)2

2a )

which is equivalent to:{
X2(0) + vT > X1(0) + vT + (v1(0)−v)2

2a

X1(0) + vT − (v−v1(0))2

2a > X2(0) + vT

or,⎧⎪⎪⎨
⎪⎪⎩

X2(0) + vT < X1(0) + vT + (v1(0)−v)2

2a

X1(0) + vT − (v−v1(0))2

2a > X1(0) + vT + (v1(0)−v)2

2a

(true by Property 1)

After further simplified, it can be written as:

(v−v1(0))2

2a < X1(0) − X2(0) < vT − vT + (v1(0)−v)2

2a

or

X1(0) − X2(0) > vT − vT + (v1(0)−v)2

2a

Therefore, as long as X1(0) − X2(0) > (v−v1(0))2

2a , Strategy (a) is 
applicable. The corresponding conflict-free conditions are summa-
rized in Section 5.3.

Strategy (b):

X1(T ) ∈ [X1(0) + vT + (v1(0)−v)2

2a ,

min(X2(0) + vT , X1(0) + vT − (v−v1(0))2

2a )]
X2(T ) ∈ [X2(0) + vT + (v2(0)−v)2

2a , X1(0) + vT ]
For this strategy to be applicable, the following has to hold:

min(X2(0) + vT , X1(0) + vT − (v−v1(0))2

2a )

> X1(0) + vT + (v1(0)−v)2

2a

and,

X1(0) + vT > X2(0) + vT + (v2(0)−v)2

2a

which is equivalent to:⎧⎪⎪⎨
⎪⎪⎩

X2(0) + vT < X1(0) + vT − (v−v1(0))2

2a

X2(0) + vT > X1(0) + vT + (v1(0)−v)2

2a

X1(0) + vT > X2(0) + vT + (v2(0)−v)2

2a

or,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X2(0) + vT > X1(0) + vT − (v−v1(0))2

2a

X1(0) + vT − (v−v1(0))2

2a > X1(0) + vT + (v1(0)−v)2

2a

(true by Property 1)

X1(0) + vT > X2(0) + vT + (v2(0)−v)2
2a
After further simplified, it can be written as:

max( (v−v1(0))2

2a ,
(v2(0)−v)2

2a ) < X1(0) − X2(0)

< vT − vT − (v1(0)−v)2

2a

or,

(v2(0)−v)2

2a < X1(0) − X2(0) <
(v−v1(0))2

2a

Therefore, as long as (v2(0)−v)2

2a < X1(0) − X2(0) < vT − vT −
(v1(0)−v)2

2a Strategy (b) is applicable. The corresponding conflict-free 
conditions are summarized in Section 5.3. �
Appendix C. X1(T ) and X2(T ) for the existence of conflict-free 
trajectories during [T , 2T ]

Formula (8) can be expanded into the following set A of v2(T ), 
meaning as long as v2(T ) is within set A, (8) is true.

A = {
v2(T )|v < v2(T ) <

√
2a(X1(T ) − X2(T )) + v

}
According to Property 2, each X2(T ) implies a set B of all possi-

ble v2(T ) if it is to be successfully reached at t = T . Therefore, for 
any X2(T ), if B is subset of A, then (8) is always true. In this ap-
pendix, we will prove the relationship between X1(T ) and X2(T )

to make B a subset of A for any X2(T ).
Recall in Property 2:

1) When X2(T ) ∈ [X2(T ), X2(T ) + (v−v)2

2a ], we have

B = {
v2(T )|v2(T ) ∈ [v, v +

√
2a(X2(T ) − X2(T ))]}

To make sure B ⊂ A, we need,

v +
√

2a(X2(T ) − X2(T )) <
√

2a(X1(T ) − X2(T )) + v

Expand it and then we get,

X2(T ) <
aX2(T )+aX1(T )

a+a

To make sure X2(T ) at least exists, we need,

X2(T ) <
aX2(T )+aX1(T )

a+a

Expand it and then we get,

X1(T ) > X2(T )

Therefore,

X2(T ) ∈ [X2(T ),min
{ aX2(T )+aX1(T )

a+a , X2(T ) + (v−v)2

2a

}]
Specifically, to further expand it,

if X2(T ) < X1(T ) < X2(T ) + (v−v)2

2a + (v−v)2

2a

X2(T ) ∈ [X2(T ),
aX2(T ) + aX1(T )

a + a
]

if X1(T ) > X2(T ) + (v−v)2

2a + (v−v)2

2a

X2(T ) ∈ [X2(T ), X2(T ) + (v − v)2

2a
]

2) When X2(T ) ∈ [X(T ) + (v−v)2

2a , X2(T ) − (v−v)2

2a ], we have

B = {
v2(T )|v2(T ) ∈ [v, v]}

To make sure B ⊂ A, we need,
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v <
√

2a(X1(T ) − X2(T )) + v

Expand it and then we get,

X2(T ) < X1(T ) − (v−v)2

2a

To make sure X2(T ) at least exists, we need,

X1(T ) > X2(T ) + (v−v)2

2a + (v−v)2

2a

Therefore,

X2(T ) ∈ [X2(T ) + (v−v)2

2a ,

min
{

X2(T ) − (v−v)2

2a , X1(T ) − (v−v)2

2a

}]
Specifically, to further expand it,

if X2(T ) + (v−v)2

2a + (v−v)2

2a < X1(T ) < X2(T )

X2(T ) ∈ [X2(T ) + (v − v)2

2a
, X1(T ) − (v − v)2

2a
]

if X1(T ) > X2(T )

X2(T ) ∈ [X2(T ) + (v − v)2

2a
, X2(T ) − (v − v)2

2a
]

3) When X2(T ) ∈ [X2(T ) − (v−v)2

2a , X2(T )], we have

B = {
v2(T )|v2(T ) ∈ [v −

√
2a(X2(T ) − X2(T )), v]}

To make sure B ⊂ A, we need,

v <
√

2a(X1(T ) − X2(T )) + v v < v −
√

2a(X2(T ) − X2(T ))

Expand it and then we get,

X2(T ) − (v−v)2

2a < X2(T ) < X1(T ) − (v−v)2

2a

To make sure X2(T ) at least exists, we need,

X1(T ) > X2(T )

Therefore,

X2(T ) ∈ [X2(T ) − (v−v)2

2a ,min
{

X2(T ), X1(T ) − (v−v)2

2a

}]
Specifically, to further expand it,

if X2(T ) < X1(T ) < X2(T ) + (v−v)2

2a

X2(T ) ∈ [X2(T ) − (v−v)2

2a , X1(T ) − (v−v)2

2a ]
if X1(T ) > X2(T ) + (v−v)2

2a

X2(T ) ∈ [X2(T ) − (v−v)2

2a , X2(T )]

Appendix D

In this appendix, we prove X1(0) + vT − (v−v1(0))2

2a > X2(0) +
vT + (v2(0)−v)2

2a and X2(0) + vT > X2(0) + vT + (v2(0)−v)2

2a .
First:

[X1(0) + vT − (v−v1(0))2

2a ] − [X2(0) + vT + (v2(0)−v)2

2a ]
= X1(0) − X2(0) + vT − vT − (v−v1(0))2

2a − (v2(0)−v)2

2a

> X1(0) − X2(0) + vT + vT − (v−v)2

2a − (v−v)2

2a

> X1(0) − X2(0) + vT − vT − (v−v)2 − (v−v)2
a a
According to Property 1, vT − vT − (v−v)2

a − (v−v)2

a > 0, and 
obviously X1(0) − X2(0) > 0, hence:

X1(0) − X2(0) + vT − vT − (v−v)2

a − (v−v)2

a > 0

=⇒ X1(0) + vT − (v−v1(0))2

2a > X2(0) + vT + (v2(0)−v)2

2a �
Second:

[X2(0) + vT ] − [X2(0) + vT + (v2(0)−v)2

2a ]
= vT − vT − (v2(0)−v)2

2a > 0 (similar with the proof above) �
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