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Abstract

Simulation and data-driven models are both tools that can play an important role in reducing the energy consumption of
buildings and homes. However, sophisticated control schemes and models are only as good as the data collected by sensors
and provided to them. Low-quality or faulty sensor that provide inaccurate data can lead to inefficient buildings. In this
paper, we investigate the relationship between sensor quality and the prediction of energy consumption. We first construct
a simulation of appliance energy consumption in a smart home and then assess the predictive ability of several data-driven
models while varying the quality and function of the simulated sensors. The simulation was constructed using a smart home
data set collected by other researchers. We find that the predictive ability is only decreased when noise is added to the appli-
ance energy random variable. We conclude that low-quality sensors that do not monitor the environment as accurately as the
devices used in the original study could be used for humidity and temperature without significantly reducing the predictive
ability of the data-driven models. The method and findings have implications for how to conduct cost-benefit analyses of
IoT device requirements.
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Abbreviations IoT Internet-of-things
a Temperature parameter for Boltzman distribution =~ MAE  Mean absolute error
of light energy consumption MAPE Mean absolute percentage error
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(Trcka et al. 2010), so building simulation tools are often
combined in the analysis or constructed for a specific pur-
pose. Beyond energy consumption, simulations are widely
used in the design and control of buildings to investigate
evacuation strategies (Chen et al. 2017; Ding et al. 2015;
Sano et al. 2018), model water usage (Xue et al. 2017), and
model occupancy (Chen et al. 2018; Wang et al. 2011).

Heating, ventilation, and air conditioning (HVAC) sys-
tems are generally the largest consumer of energy within
a building and thus offer the greatest pathway for reducing
energy consumption (Ahmad et al. 2016). However, these
largely automated HVAC systems must rely on data from
sensors distributed throughout the building to efficiently
function. Malfunctioning sensors, or low-quality sensors
that do not accurately collect data, could be detrimental to
building efficiency and could cause buildings to operate in
a fashion that consumes more energy than a building with
less sophisticated HVAC controls. Further, studies have
shown that humans mismanaging a building can lead to
higher energy consumption even when the smart-building
control system is functioning properly (Belafi et al. 2017).
Effectively modeling human behavior in a building is crucial
to estimating the energy consumption (D’Oca et al. 2014).

Historically, advanced HVAC control systems have pri-
marily been utilized in large-scale buildings due to their high
cost. However, as the price of these control systems comes
down and internet-of-things (IoT) devices become more
prevalent in daily life, automated HVAC control for smart-
homes will become the norm, and all of the challenges of
reducing energy in large-scale buildings will now need to be
addressed on the small scale of single family homes. Allard
et al. (2018) have demonstrated that taking into account the
uncertainty in the energy evaluation methods decreases the
performance gap, the difference between estimated energy
consumption during design and the actual energy consump-
tion during use. We hypothesize that utilizing machine learn-
ing methods and data-driven simulations will help alleviate
many of the problems facing energy consumption in resi-
dential buildings.

However, the enhanced operational capability that comes
with IoT devices and smart controls can come at the cost of
system resilience. As Marchese and Linkov (2017) discuss,
finding the optimal balance of smartness and resilience for
a particular system can be challenging. Smart systems often
have a pyramid-like structure with a centralized decision
system while a resilient system has a flat architecture that
allows for redundancy and parallel processing. Smart HVAC
control systems for buildings and residential housing will
have to adequately balance this tradeoff to construct systems
that reduce the energy consumption.

While HVAC is generally the largest consumer of energy
in a building, appliance energy consumption can represent
20-30% of a household’s total energy consumption (Cetin
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et al. 2014; Kavousian et al. 2015). Models that can estimate
appliance energy consumption would have varying uses, for
example detecting abnormal usage patterns (Seem 2007) and
assisting in modeling and simulating energy consumption of
buildings, residential households, and apparments (Johnson
and Beausoleil-Morrison 2017; Mirakhorli and Dong 2017;
Muratori et al. 2013; Ruellan et al. 2016). Further, these
models could be used to assist in control decisions (Barbato
et al. 2011; Zhao et al. 2013).

These considerations lead us to hypothesize that an
important research area is to understand the impact of sen-
sor quality on the prediction of energy consumption in
houses. The main contribution of this paper is to address
that research question by constructing and validating a
simulation-based method for generating artificial data sets
and then assessing the impact of varying sensor quality or
sensor failure. One type of sensor failure can be modeled as
the addition of a noise term to the true measurement. This
type of failure is similar to the type of data that would be
collected from a low-quality sensor. There are other types
of sensor failures that we do not consider in this study but
the proposed method could be used to study their affects in
a future study.

We acknowledge that the presented study is limited to a
particular type of residential construction and that the results
and conclusions, in terms of the predictive accuracy of the
data-driven models and sensor correlations, may not general-
ize to other settings. However, the presented method could
be easily repeated and applied to new data sets collected
from other types of residential and commercial buildings.
Further, future work utilizing the proposed method should
address this issue and could utilize U.S. based data sets such
as the Pecan Street data set.!

In this study, we first construct a simulation of appliance
energy consumption in a smart home and then assess the
predictive ability of several data-driven models while vary-
ing the quality and function of the simulated sensors. The
simulation was constructed using a smart home data set col-
lected by other researchers (Candanedo et al. 2017) which is
publicly available on the UCI machine learning repository
(Lichman 2013). Candanedo et al. (2017) equipped a test
house with sensors that collected environmental data (tem-
perature and relative humidity) and energy usage data from
lights and appliances. Their ultimate goal was to develop
data-driven models for predicting the appliance energy
usage using the other sensors and external weather data.
Candanedo et al. (2017) performed an analysis of variable
importance, evaluated several types of data-driven models,
and tuned these models to optimize predictive ability.

! https://www.pecanstreet.org/category/dataport/
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The presented method has two primary contributions to
the literature. The first contribution is the use of data-driven
models to establish relationships between IoT sensors in a
smart home. This will be useful for accurately estimating
sensor readings during the design phase and detecting outli-
ers and faulty sensors during operation. The second contri-
bution is the data-driven simulation. Specifically, we build
data-driven models that estimate different variables within
the home. The appliance energy consumption variable is
simulated by first predicting a latent variable which repre-
sents the human behavior in the home. The amount of energy
consumption is conditioned on this latent “occupancy” vari-
able. The simulation could be used in future work to aid
in the design of efficient buildings and homes and to test
the effectiveness of varying control policies. Specifically,
the simulation could be used to estimate the energy savings
when using different sensors to make control decisions and
to estimate energy consumption when comparing control
policies. HVAC control decisions can significantly affect the
energy consumption of a home, and the proposed simulation
could be used to evaluate these types of decisions (Yang
et al. 2014). The simulation could also be used as the initial
building block of a larger simulation investigating the energy
consumption of multiple houses and growing the scale of the
simulation to neighborhoods or cities.

This paper is organized in the following fashion. In
Sect. 2, we describe the smart home and the data collected
in the smart home. In Sect. 3, we outline the data-driven
models used to predict the different variables in the data set.
The simulation is outlined in Sect. 4, and we provide our
conclusions in Sect. 5.

2 Background

In this section, we give background on the house used for
collecting the data and provide some visualizations of the
data. This data set was collected by Candanedo et al. (2017)
and is publicly available on the UCI machine-learning repos-
itory (Lichman 2013).

2.1 Description of the House

The house, a new construction, is located in Stamburges,
Belgium and is designed to have an annual heating load less
than 15kWh/m?. A single family occupies the house con-
sisting of two adults and two teenagers. One of the adults
regularly works from home. The house is equipped with
energy meters that monitor the ventilation system, the hot
water heat pump, the appliances, the lights, and the base-
board heaters. The house has two stories and contains four-
teen rooms with varying types of appliances. For the full list
of appliances, see Candanedo et al. (2017).

Table 1 Sensor locations

Sensor identifier Room

T1 & RH1 Kitchen

T2 & RH2 Living room

T3 & RH3 Laundry room

T4 & RH4 Office

T5 & RH5 Bathroom

T6 & RH6 Outside

T7 & RH7 Ironing room

T8 & RH8 Teenager’s bedroom
T9 & RH9 Parent’s bedroom

The temperature and relative humidity were monitored in
nine rooms using ZigBee® wireless network sensors (Alli-
ance 2006). These sensors are located at the same location in
each room. The sensors are run on batteries, but the ZigBee
coordinator is located in the dining room and uses energy
from the house. The sensor locations by room are listed in
Table 1. Temperature is measured in degrees Celsius, and
relative humidity is expressed as a percent.

2.2 Description of the data

The data set contains over 19,000 observations. The data
were collected every 10 minutes from January 11, 2016 to
May 27, 2016. A more complete study would collect data
for an entire year to include seasonal dynamics. However,
the collected data does include the transition from winter to
spring so the data does provide some information on sea-
sonal dynamics. Each observation includes a time stamp
down to the second. The energy usage is split into energy
consumed by the appliances and energy consumed by the
light fixtures. Both of these variables are expressed in Watt
hours.

The energy consumed by the appliances over the data
collection time period is displayed in Fig. 1. The appli-
ance energy usage appears to vary based on the time of
day and could be correlated with the occupancy of the
house. This figure also indicates that there are periods at
the end of January and the beginning of April where the
house appears to be unoccupied or experiencing a power
outage. Figure 2 displays the energy consumed by the
light fixtures over the data collection period. The sus-
pected unoccupied periods at the end of January and the
beginning of April are also evident in this data. Further,
the energy consumed by the lights decreases at the end
of the data collection period when the days are longer.

2 ©2017 ZigBee Alliance. ZigBee is a registered trademark of the
ZigBee Alliance
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Fig.2 Energy consumed by light fixtures

Figures 3 and 4 display the temperature and relative
humidity collected within the house. Note that the relative
humidity and temperature sensors at location 6 are actu-
ally outside the house and can differ significantly from
the data collected inside the house. All of the tempera-
ture data appears to be correlated. The relative humidity
data from different sensors also appears to be correlated,
however, there are large spikes in relative humidity in the
bathroom.0

The data set also contains weather data from the
Chievres Airport in Belgium, the closest airport to the
house. The weather data was collected every hour and then
interpolated. The weather data includes the temperature
in degrees Celsius, the relative humidity in percent, the
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Fig.3 Temperature data collected from the house. The legend iden-
tifies the temperature sensors described in Table 1. Note that T6 is
located outside the house
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Fig.4 Relative humidity data collected from the house. The legend
identifies the relative humidity sensors described in Table 1. Note that
RH6 is located outside the house and that RHS5 is located in the bath-
room

pressure in millimeters of mercury, wind speed in meters
per second, dew point in degrees Celsius, and visibility
in kilometers. Figure 5 displays plots of the weather data.
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Fig.5 Weather data from Chievres Airport

3 Data-driven models

In this section, we describe the numerical experiments per-
formed using the data set. MATLAB? was used to construct
models for predicting appliance energy consumption. Four
predictive models were evaluated: linear regression (Murphy
2012), radial support vector machines (SVM) (Dong et al.
2005; Murphy 2012), gradient boosted machines (GBM)
(Friedman 2001; Murphy 2012), and the random forest algo-
rithm (Breiman 2001; Murphy 2012). First, the data were
randomly divided into testing and training sets. Then, we
trained models using the training set and calculate perfor-
mance on the training and testing sets. The same four per-
formance metrics were used in these experiments as in the
original paper: root mean squared error (RMSE), R-squared
(R?), mean absolute error (MAE), and mean absolute per-
centage error (MAPE). In these experiments, we tested the
random forest algorithm using the TreeBagger function, the
radial SVM using the fitrsvm function, and the GBM using
the fitensemble function.

3 ©2017 The MathWorks, Inc. MATLAB and Simulink are reg-
istered trademarks of The MathWorks, Inc. See mathworks.com/
trademarks for a list of additional trademarks. Other product or brand

names may be trademarks or registered trademarks of their respective
holders.

Before performing the training and testing experiments,
we conducted a new feature selection experiment. The step-
wisefit function was used to find variables that should be
included in a linear regression model using stepwise feature
selection (Draper and Smith 2014). After performing the
fit, 20 features were found to be significant to the prediction
of appliance energy usage. These variables were lights, T1,
RH1, T2, RH2, T3, RH3, T6, RH6, T7, RH7, T8, RHS, T9,
outside temperature, windspeed, visibility, number of sec-
onds from midnight, the day of the week, and the weekend
status. This feature selection experiment was only performed
on the training set. The training RMSE for the linear model
using only the selected variables was 94.32, and the R? value
was 0.17. These metrics closely match the training RMSE
and R? in the original paper. However, the selected features
do not closely match those of the Boruta algorithm used
in the original paper. Notably, the pressure and TS were
excluded from the stepwise analysis, but they were found to
be relevant by the Boruta algorithm. From this experiment,
we concluded that linear regression does not perform well as
a predictive model. However, the linear model appeared to
be fairly robust to feature selection because the performance
metrics for the feature sets selected by stepwise regression
and the Boruta algorithm are similar.

For the random forest algorithm, we grew a forest of
500 trees and sampled 18 predictors for each tree. For the
ensemble of regression trees, we used 10,900 trees and had

@ Springer
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Table 2 Results for predictive experiments performed in MATLAB

Model DataSet RMSE  R? MAE  MAPE
Ensemble Training 68.65 0.56 4159  0.50
Testing 80.37 0.35  49.21 0.60
Random forest ~ Training  46.68 0.80 21.28  0.20
Testing 67.04 0.55 3272 034
Radial SVM Training  95.35 0.15 40.63 032
Testing 93.91 0.11 42.16  0.36
Out-of-Bag Error
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Fig.6 Out-of-bag error versus number of trees using the random
forest algorithm in MATLAB. This out-of-bag error was calculated
using the entire data set

a maximum split depth of 5. For the radial SVM, we used
the MATLAB option to find the optimal parameters. Three
parameters were optimized: box constraint - 973, kernel
scale—192, and epsilon—15. Table 2 contains the results
for the testing and training sets.

Only the random forest algorithm gives similar results
as the original paper. However, it is interesting that the
training evaluation under-performs while the testing eval-
uation over-performs the original results for this model.
Both the radial SVM and the ensemble method performed
much worse than in the original study. This could be due
to several reasons. First, the implementation of the models
might be slightly different in the two software packages.
Second, the optimal parameters for the ensemble method
might not translate. Third, when finding the optimal
hyperparameters for the radial SVM, the objective func-
tion is slightly different between the two software pack-
ages. The original analysis by Candanedo et al. (2017)
was performed in the R software package (R Core Team
2013). The CARET package in R minimizes RMSE while
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Fig. 7 Variable importance using the random forest algorithm and the
entire data set

MATLAB minimizes cross-validation error. The search
over the parameter space could also be different.

The random forest algorithm produced the same perfor-
mance metrics for both MATLAB and R so we performed a
little more investigation into the performance of the model.
Generally, when using the random forest algorithm, split-
ting the data into testing and training sets is not required for
evaluating generalization error. In this algorithm, the data
is bagged and the out-of-bag (OOB) error can be used to
evaluate the model. Figure 6 displays the RMSE calculated
from the OOB error as the forest increases in size when
using the entire data set. Once the forest grew beyond 300
trees, the RMSE converged to the testing RMSE in Table 2.
Figure 7 displays the variable importance calculated by the
random forest algorithm in MATLAB. The variable impor-
tance analysis generally reflects the feature selection analysis
in the original paper.

These results may not generalize to other types of resi-
dential construction and climate. For example, older houses
that do not have modern insulation may be affected more by
the outside temperature and relative humidity. However, the
method used for estimating the data-driven models could be
repeated for data collected in this type of residence.

3.1 Estimating the other variables

In the original paper, the authors focused solely on predict-
ing the appliance energy consumption. We tested if the other
collected variables in the data set can be estimated using
similar machine-learning techniques. Given the results in the
previous section, we decided to use the random forest algo-
rithm and evaluate the generalization error using the OOB
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Table 3 RMSE for each

; Variable RMSE
response variable
Appliances 67.30
Lights 4.36
Tl 0.06
RHI 0.58
T2 0.12
RH2 0.30
T3 0.10
RH3 0.26
T4 0.12
RH4 0.24
T5 0.11
RHS5 2.29
T6 0.31
RH6 1.72
T7 0.06
RH7 0.26
T8 0.08
RHS 0.30
T9 0.06
RH9 0.27
Tout 0.19
Press 0.54
RHout 1.02
Windspeed 0.29
Visibility 2.96
Tdewpoint 0.15

error. Specifically, we selected one of the 26 variables in the
data set to be the response variable and used the remaining
variables in the data set as explanatory variables. A random
forest with 300 trees is trained on the entire data set, and
RMSE is calculated using the OOB error. Each response
variable is treated as a continuous variable.

The RMSE for each response variable is displayed in
Table 3. The RMSE for the appliance energy consumption
matched that of the previous experiments. The RMSE for
the lights is less than 5 Wh. The temperature collected by
the installed sensors is on average estimated to within a half
a degree Celsius. Generally, the random forest was able to
predict the collected relative humidity to within half a per-
centage point. However, RH5 and RH6 both had a RMSE
greater than 1. RH5 was located in the bathroom and ran-
domly experienced spikes, possibly due to showers. RH6
was located outside the house and was, therefore, slightly
harder to estimate. The relative humidity from the weather
data at the airport also had a RMSE greater than 1. The rest
of the weather data were also able to be estimated using the
random forest algorithm.

There are only eight unique values for the energy con-
sumption of the light fixtures. Therefore, this problem can

be treated as a classification problem with eight classes. A
classification random forest was trained, and the OOB clas-
sification error was calculated. The classification error for
this problem formulation was 0.16.

4 Simulation

In this section, we outline how to construct a simulation
for generating a similar data set to the collected data in the
original paper. The objective is to use the time informa-
tion and the weather data from the airport as inputs into
the simulation and then to simulate the environmental data
and the energy consumption data with varying degrees of
randomness. This simulation-based method could be used
to create new large-scale simulations of neighborhoods and
communities consisting of several houses. Further, the pro-
posed method could be replicated for other types of residen-
tial constructions and for different climates. The simulation
in this study may not transfer directly to new environments,
but new simulations using the proposed method could be
constructed if the necessary data is provided.

The simulation utilizes the data-driven models con-
structed in the previous experiments and contains several
steps. First, the time information and the weather informa-
tion is used to simulate the environmental data within the
house. Then, the simulated environmental data is used in
conjunction with the time information and the weather infor-
mation to simulate the light energy consumption. Finally, the
previously simulated data (lights and environmental) and
the external input information (weather and time) is used to
simulate the appliance energy consumption. At each step,
randomness or noise can be added to the simulated data. The
simulation is constructed in MATLAB.

The simulation can be broken into two stages: training
and simulation. The training stage learns the models for
simulating the data, and Fig. 8 gives a visual representation
of the data used to train each model. The simulation stage
generates the data using the trained models, and Fig. 9 shows
the flow of data through the simulation.

The environmental simulation uses a regression random
forest to generate the data. A separate random forest is
trained for each temperature and relative humidity sensor.
The weather and time information are used as the explana-
tory variables and each sensor is the response. This results
in 18 separate random forest models for this stage of the
simulation. Noise can be added to the simulated data using
a Gaussian distribution with zero mean and a standard devia-
tion o. The value of ¢ controls the amount of noise injected
into the simulated data. In the presented example simulation,
50 trees are grown in each forest and no noise is added to
the data. The real and simulated data is displayed in Figs. 10
and 11.

@ Springer
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Fig.8 Visual display of data
that is used to train each model.
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For the light energy simulation, a classification random
forest is used. The model is trained on the time and weather
information and the real environmental data. In the presented
simulation, 200 trees are grown in the forest. The random
forest algorithm is used to generate a posterior distribution
over the light energy values. This posterior is then sampled
to produce the simulated light energy value. Randomness
can be added using a Boltzmann distribution

gxi/a
Pi= o (1)

9
Zio €"

where p; is the probability of the i value of the new distri-
bution to be sampled, x; is the probability of the i value of
the distribution generated by the random forest classifier,
and « is the temperature parameter that controls the amount
of randomness. For the presented data, @ = 0.1. Figure 12
displays the real and simulated data.
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Simulation Energy Data

The appliance energy data is simulated in two stages. The
first stage uses a classification random forest to generate a
probability distribution over a binary random variable. As
in the light simulation, a Boltzmann distribution with tem-
perature parameter f is used to control the randomness of
this distribution. That distribution is randomly sampled for
a binary variable Z that defines the appliance energy con-
sumption distribution. In the second stage, an energy value
is drawn from one of the Gaussian distributions depending
on Z. To ensure that the simulated appliance energy value is
positive, the Gaussian distributions are estimated in the log
domain. The sampled value is then converted back into the
appliance energy domain.

Figure 13 displays a histogram of the appliance energy
data in the log domain. A mixture of two Gaussian distribu-
tions can be seen in the histogram. Values less than 5 are
labeled Z = 1, and values greater than 5 are labeled Z = 2.
This labeling is used to train the classification random forest
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Fig. 13 Histogram of the log of appliance energy consumption data

in the first stage of the appliance simulation. These labels
are also used to estimate the parameters of the two Gaussian
distributions used to generate the appliance energy value in
the log domain.

In the presented simulated data, the temperature param-
eter in the Boltzmann distribution is 0.1, and the random
forest contains 200 trees. The conditional Gaussian distri-
bution for Z = 1 has mean y; = 4.1 and o, = 0.39, and the
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conditional Gaussian distribution for Z = 2 has u, = 5.69
and o, = 0.42. The real and simulated appliance energy data
is displayed in Fig. 14. To help validate the simulation, we
trained a random forest on both the real data and the simu-
lated data. The RMSE and variable importance was esti-
mated for each random forest and compared (Fig. 15). The
RMSE is lower for the simulated data which is not surprising
given the relatively low amount of noise added to the simu-
lated data. The variable importance measures are similar.
The time of day and the energy consumed by the lights are
the two most important features in both the real setting and
the simulated data.

In our final experiment with the simulation, we sequen-
tially increase the amount of noise in the simulation and
evaluate the predictive ability of data-driven models. This
experiment represents one of the many uses of the simula-
tion. Increased error in collected data can stem from many
sources. As sensors degrade, the error in the collected meas-
urements may increase. As another example, low-quality
sensors may have less fidelity. This experiment evaluates
the ability for the data-driven models to cope with increas-
ingly noisy measurements.

Each parameter that controls randomness or noise in the
simulation is increased sequentially from 0.1 to 1 in incre-
ments of 0.1. A cross-validation experiment is conducted at
each level using a GBM model. The simulated data is gener-
ated in MATLAB, but the cross-validation experiments are
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conducted in R. Figures 16, 17, 18, 19 contain the results
of these experiments. In these figures, “beta” represents
the temperature parameter for the appliances, “alpha”

Number of Grown Trees

Feature Number

represents the temperature parameter for the lights, “sig-
maT” represents the standard deviation for the temperature,
and “sigmaRH” represents the standard deviation for the
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Fig. 16 RMSE metric as ran- RMSE
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relative humidity. The plots show that performance is only
decreased by increasing the amount of noise in the appliance
random variable. However, we only test on a limited range,
and increasing the noise outside of the example could have
a greater impact on the simulation results.
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5 Conclusion

In conclusion, we have developed and validated a sim-
ulation-based method for evaluating sensor quality in
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a smart-home setting. The proposed method uses data-
driven models as the underlying models in a simulation
that can generate artificial data sets with varying amounts
of noise. In addition, we perform new data-driven mode-
ling in MATLAB with slightly different predictive models
and perform a new feature selection analysis. Further, we
demonstrated that the other collected variables in the data
set could be modeled using similar data-driven techniques,
specifically the random forest algorithm.

Simulation data with increasing amounts of noise is used
to test the predictive ability of the data-driven models as
randomness is added to the data. The predictive ability is
only decreased when noise is added to the appliance energy
random variable. This type of information could be useful
when selecting IoT devices for monitoring a smart home.
Low-quality sensors that do not monitor the environment
as accurately as the devices used in the original study could
be used for humidity and temperature without significantly
reducing the predictive ability of the data-driven models.

In future work, the presented method should be tested
and validated on data sets from other climates and residen-
tial constructions. One possible data set is the previously
mentioned Pecan Street data set. Other areas of future work
could use this simulation to produce test data for several
homes. Larger simulations using this simulation process
could model neighborhoods, cities, states, or nations. How-
ever, the data used as the basis for the presented study was
from a single home with a fixed number of occupants. Future
work involving scaling the simulation would need to account
for other types of dwellings and varying sizes of residences.
Further, any future work on scaling the simulation would
need to account for a varying types of occupancy, including
the number of occupants and diverse schedules.

Acknowledgements This material is based upon work supported by
the National Science Foundation under Grant No. CNS: 1650512. This
work was conducted in the NSF UICRC Center of Visual and Decision

0.50 0.75 1.00
Randomness

Dynamics, through the sponsorship and guidance of CA Technolo-
gies. We thank people on the team who choose not be authors for their
thoughts on this paper and the overall project.

References

Ahmad MW, Mourshed M, Yuce B, Rezgui Y (2016) Computational
intelligence techniques for HVAC systems: a review. Build Simul
9(4):359-398

Allard I, Olofsson T, Nair G (2018) Energy evaluation of residential
buildings: performance gap analysis incorporating uncertainties
in the evaluation methods. Build Simul 11(4):725-737

Alliance Z (2006) Zigbee specification

Barbato A, Capone A, Rodolfi M, Tagliaferri D (2011) Forecasting
the usage of household appliances through power meter sen-
sors for demand management in the smart grid. In: 2011 IEEE
International Conference on Smart Grid Communications
(SmartGridComm)

Belafi Z, Hong T, Reith A (2017) Smart building management vs intui-
tive human controllessons learnt from an office building in Hun-
gary. Build Simul 10(6):811-828

Breiman L (2001) Random forests. Machin Learn 45(1):5-32

Candanedo LM, Feldheim V, Deramaix D (2017) Data driven predic-
tion models of energy use of appliances in a low-energy house.
Energy Build 140:81-97

Cetin K, Tabares-Velasco P, Novoselac A (2014) Appliance daily
energy use in new residential buildings: use profiles and varia-
tion in time-of-use. Energy Build 84:716-726

ChenJ, MalJ, Lo S (2017) Event-driven modeling of elevator assisted
evacuation in ultra high-rise buildings. Simul Model Pract Theory
74:99-116

Chen Y, Hong T, Luo X (2018) An agent-based stochastic occupancy
simulator. Build Simul 11(1):37-49

Costa A, Keane MM, Torrens JI, Corry E (2013) Building operation
and energy performance: monitoring, analysis and optimisation
toolkit. Appl Energy 101:310-316

Ding Y, Yang L, Weng F, Fu Z, Rao P (2015) Investigation of com-
bined stairs elevators evacuation strategies for high rise buildings
based on simulation. Simul Model Pract Theory 53:60-73

D’Oca S, Fabi V, Corgnati SP, Andersen RK (2014) Effect of thermo-
stat and window opening occupant behavior models on energy use
in homes. Build Simul 7(6):683-694

@ Springer



294

Environment Systems and Decisions (2019) 39:281-294

Dong B, Cao C, Lee SE (2005) Applying support vector machines to
predict building energy consumption in tropical region. Energy
Build 37(5):545-553

Draper NR, Smith H (2014) Applied regression analysis. Wiley,
Hoboken

Friedman JH (2001) Greedy function approximation: a gradient boost-
ing machine. Ann Stat 29:1189-1232

Hong T, Langevin J, Sun K (2018) Building simulation: ten challenges.
Build Simul 11:1-18

Johnson G, Beausoleil-Morrison I (2017) Electrical-end-use data from
23 houses sampled each minute for simulating micro-generation
systems. Appl Therm Eng 114:1449-1456

Kavousian A, Rajagopal R, Fischer M (2015) Ranking appliance
energy efficiency in households: Utilizing smart meter data and
energy efficiency frontiers to estimate and identify the deter-
minants of appliance energy efficiency in residential buildings.
Energy Build 99:220-230

Lichman M (2013) UCI machine learning repository. UNiversity of
California, Irvine

Marchese D, Linkov I (2017) Can you be smart and resilient at the
same time? Environ Sci Technol 51(11):5867-5868

Mirakhorli A, Dong B (2017) Occupant-behavior driven appliance
scheduling for residential buildings. BUild Simul 10(6):917-931

Muratori M, Roberts MC, Sioshansi R, Marano V, Rizzoni G (2013) A
highly resolved modeling technique to simulate residential power
demand. Appl Energy 107:465-473

Murphy KP (2012) Machine learning: a probabilistic perspective. MIT
press, Cambridge

R Core Team (2013) R: a language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna

@ Springer

Ruellan M, Park H, Bennacer R (2016) Residential building energy
demand and thermal comfort: thermal dynamics of electrical
appliances and their impact. Energy Build 130:46-54

Sano T, Ronchi E, Minegishi Y, Nilsson D (2018) Modelling pedestrian
merging in stair evacuation in multi-purpose buildings. Simul
Model Pract Theory 85:80-94

Seem JE (2007) Using intelligent data analysis to detect abnormal
energy consumption in buildings. Energy Build 39(1):52-58

Shaikh PH, Nor NBM, Nallagownden P, Elamvazuthi I, Ibrahim T
(2014) A review on optimized control systems for building energy
and comfort management of smart sustainable buildings. Renew
Sustain Energy Rev 34:409-429

Trcka M, Hensen JL, Wetter M (2010) Co-simulation for performance
prediction of integrated building and HVAC systems-an analysis
of solution characteristics using a two-body system. Simul Model
Pract Theory 18(7):957-970

Wang C, Yan D, Jiang Y (2011) A novel approach for building occu-
pancy simulation. Build Simul 4(2):149-167

Xue P, Hong T, Dong B, Mak C (2017) A preliminary investigation
of water usage behavior in single-family homes. Build Simul
10(6):949-962

Yang Z, Li N, Becerik-Gerber B, Orosz M (2014) A systematic
approach to occupancy modeling in ambient sensor-rich build-
ings. Simulation 90(8):960-977

Zhao P, Suryanarayanan S, Simdes MG (2013) An energy management
system for building structures using a multi-agent decision-mak-
ing control methodology. IEEE Trans Ind Appl 49(1):322-330



	Data-driven simulation for energy consumption estimation in a smart home
	Abstract
	1 Introduction
	2 Background
	2.1 Description of the House
	2.2 Description of the data

	3 Data-driven models
	3.1 Estimating the other variables

	4 Simulation
	5 Conclusion
	Acknowledgements 
	References


