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Abstract
Simulation and data-driven models are both tools that can play an important role in reducing the energy consumption of 
buildings and homes. However, sophisticated control schemes and models are only as good as the data collected by sensors 
and provided to them. Low-quality or faulty sensor that provide inaccurate data can lead to inefficient buildings. In this 
paper, we investigate the relationship between sensor quality and the prediction of energy consumption. We first construct 
a simulation of appliance energy consumption in a smart home and then assess the predictive ability of several data-driven 
models while varying the quality and function of the simulated sensors. The simulation was constructed using a smart home 
data set collected by other researchers. We find that the predictive ability is only decreased when noise is added to the appli-
ance energy random variable. We conclude that low-quality sensors that do not monitor the environment as accurately as the 
devices used in the original study could be used for humidity and temperature without significantly reducing the predictive 
ability of the data-driven models. The method and findings have implications for how to conduct cost-benefit analyses of 
IoT device requirements.
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Abbreviations
�	� Temperature parameter for Boltzman distribution 

of light energy consumption
�	� Temperature parameter for Boltzman distribution 

of appliance energy consumption
GBM	� Gradient boosted machines
HVAC	� Heating, ventilation, and air conditioning

IoT	� Internet-of-things
MAE	� Mean absolute error
MAPE	� Mean absolute percentage error
�	� Mean of Gaussian distribution
RH#	� Relative humidity sensor number #
RMSE	� Root mean squared error
�:	� Standard deviation of Gaussian distribution
SVM	� Support vector machine
T#	� Temperature sensor number #
Z	� Random variable for appliance energy 

consumption

1  Introduction

Buildings roughly make up 40% of the world’s total energy 
consumption (Costa et al. 2013; Shaikh et al. 2014). In the 
United States, publicly owned buildings have stringent goals 
for the energy consumption of existing and new buildings. 
Simulation can play an important role in reducing the energy 
consumption of buildings (see Hong et al. (2018) for an in-
depth review of the literature and ten challenges facing the 
field of building simulation). However, there is no single 
building simulation tool that can be used for all buildings 
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(Trčka et al. 2010), so building simulation tools are often 
combined in the analysis or constructed for a specific pur-
pose. Beyond energy consumption, simulations are widely 
used in the design and control of buildings to investigate 
evacuation strategies (Chen et al. 2017; Ding et al. 2015; 
Sano et al. 2018), model water usage (Xue et al. 2017), and 
model occupancy (Chen et al. 2018; Wang et al. 2011).

Heating, ventilation, and air conditioning (HVAC) sys-
tems are generally the largest consumer of energy within 
a building and thus offer the greatest pathway for reducing 
energy consumption (Ahmad et al. 2016). However, these 
largely automated HVAC systems must rely on data from 
sensors distributed throughout the building to efficiently 
function. Malfunctioning sensors, or low-quality sensors 
that do not accurately collect data, could be detrimental to 
building efficiency and could cause buildings to operate in 
a fashion that consumes more energy than a building with 
less sophisticated HVAC controls. Further, studies have 
shown that humans mismanaging a building can lead to 
higher energy consumption even when the smart-building 
control system is functioning properly (Belafi et al. 2017). 
Effectively modeling human behavior in a building is crucial 
to estimating the energy consumption (D’Oca et al. 2014).

Historically, advanced HVAC control systems have pri-
marily been utilized in large-scale buildings due to their high 
cost. However, as the price of these control systems comes 
down and internet-of-things (IoT) devices become more 
prevalent in daily life, automated HVAC control for smart-
homes will become the norm, and all of the challenges of 
reducing energy in large-scale buildings will now need to be 
addressed on the small scale of single family homes. Allard 
et al. (2018) have demonstrated that taking into account the 
uncertainty in the energy evaluation methods decreases the 
performance gap, the difference between estimated energy 
consumption during design and the actual energy consump-
tion during use. We hypothesize that utilizing machine learn-
ing methods and data-driven simulations will help alleviate 
many of the problems facing energy consumption in resi-
dential buildings.

However, the enhanced operational capability that comes 
with IoT devices and smart controls can come at the cost of 
system resilience. As Marchese and Linkov (2017) discuss, 
finding the optimal balance of smartness and resilience for 
a particular system can be challenging. Smart systems often 
have a pyramid-like structure with a centralized decision 
system while a resilient system has a flat architecture that 
allows for redundancy and parallel processing. Smart HVAC 
control systems for buildings and residential housing will 
have to adequately balance this tradeoff to construct systems 
that reduce the energy consumption.

While HVAC is generally the largest consumer of energy 
in a building, appliance energy consumption can represent 
20–30% of a household’s total energy consumption (Cetin 

et al. 2014; Kavousian et al. 2015). Models that can estimate 
appliance energy consumption would have varying uses, for 
example detecting abnormal usage patterns (Seem 2007) and 
assisting in modeling and simulating energy consumption of 
buildings, residential households, and apparments (Johnson 
and Beausoleil-Morrison 2017; Mirakhorli and Dong 2017; 
Muratori et al. 2013; Ruellan et al. 2016). Further, these 
models could be used to assist in control decisions (Barbato 
et al. 2011; Zhao et al. 2013).

These considerations lead us to hypothesize that an 
important research area is to understand the impact of sen-
sor quality on the prediction of energy consumption in 
houses. The main contribution of this paper is to address 
that research question by constructing and validating a 
simulation-based method for generating artificial data sets 
and then assessing the impact of varying sensor quality or 
sensor failure. One type of sensor failure can be modeled as 
the addition of a noise term to the true measurement. This 
type of failure is similar to the type of data that would be 
collected from a low-quality sensor. There are other types 
of sensor failures that we do not consider in this study but 
the proposed method could be used to study their affects in 
a future study.

We acknowledge that the presented study is limited to a 
particular type of residential construction and that the results 
and conclusions, in terms of the predictive accuracy of the 
data-driven models and sensor correlations, may not general-
ize to other settings. However, the presented method could 
be easily repeated and applied to new data sets collected 
from other types of residential and commercial buildings. 
Further, future work utilizing the proposed method should 
address this issue and could utilize U.S. based data sets such 
as the Pecan Street data set.1

In this study, we first construct a simulation of appliance 
energy consumption in a smart home and then assess the 
predictive ability of several data-driven models while vary-
ing the quality and function of the simulated sensors. The 
simulation was constructed using a smart home data set col-
lected by other researchers (Candanedo et al. 2017) which is 
publicly available on the UCI machine learning repository 
(Lichman 2013). Candanedo et al. (2017) equipped a test 
house with sensors that collected environmental data (tem-
perature and relative humidity) and energy usage data from 
lights and appliances. Their ultimate goal was to develop 
data-driven models for predicting the appliance energy 
usage using the other sensors and external weather data. 
Candanedo et al. (2017) performed an analysis of variable 
importance, evaluated several types of data-driven models, 
and tuned these models to optimize predictive ability.

1  https​://www.pecan​stree​t.org/categ​ory/datap​ort/

https://www.pecanstreet.org/category/dataport/
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The presented method has two primary contributions to 
the literature. The first contribution is the use of data-driven 
models to establish relationships between IoT sensors in a 
smart home. This will be useful for accurately estimating 
sensor readings during the design phase and detecting outli-
ers and faulty sensors during operation. The second contri-
bution is the data-driven simulation. Specifically, we build 
data-driven models that estimate different variables within 
the home. The appliance energy consumption variable is 
simulated by first predicting a latent variable which repre-
sents the human behavior in the home. The amount of energy 
consumption is conditioned on this latent “occupancy” vari-
able. The simulation could be used in future work to aid 
in the design of efficient buildings and homes and to test 
the effectiveness of varying control policies. Specifically, 
the simulation could be used to estimate the energy savings 
when using different sensors to make control decisions and 
to estimate energy consumption when comparing control 
policies. HVAC control decisions can significantly affect the 
energy consumption of a home, and the proposed simulation 
could be used to evaluate these types of decisions (Yang 
et al. 2014). The simulation could also be used as the initial 
building block of a larger simulation investigating the energy 
consumption of multiple houses and growing the scale of the 
simulation to neighborhoods or cities.

This paper is organized in the following fashion. In 
Sect. 2, we describe the smart home and the data collected 
in the smart home. In Sect. 3, we outline the data-driven 
models used to predict the different variables in the data set. 
The simulation is outlined in Sect. 4, and we provide our 
conclusions in Sect. 5.

2 � Background

In this section, we give background on the house used for 
collecting the data and provide some visualizations of the 
data. This data set was collected by Candanedo et al. (2017) 
and is publicly available on the UCI machine-learning repos-
itory (Lichman 2013).

2.1 � Description of the House

The house, a new construction, is located in Stamburges, 
Belgium and is designed to have an annual heating load less 
than 15 kWh∕m2 . A single family occupies the house con-
sisting of two adults and two teenagers. One of the adults 
regularly works from home. The house is equipped with 
energy meters that monitor the ventilation system, the hot 
water heat pump, the appliances, the lights, and the base-
board heaters. The house has two stories and contains four-
teen rooms with varying types of appliances. For the full list 
of appliances, see Candanedo et al. (2017).

The temperature and relative humidity were monitored in 
nine rooms using ZigBee2 wireless network sensors (Alli-
ance 2006). These sensors are located at the same location in 
each room. The sensors are run on batteries, but the ZigBee 
coordinator is located in the dining room and uses energy 
from the house. The sensor locations by room are listed in 
Table 1. Temperature is measured in degrees Celsius, and 
relative humidity is expressed as a percent.

2.2 � Description of the data

The data set contains over 19,000 observations. The data 
were collected every 10 minutes from January 11, 2016 to 
May 27, 2016. A more complete study would collect data 
for an entire year to include seasonal dynamics. However, 
the collected data does include the transition from winter to 
spring so the data does provide some information on sea-
sonal dynamics. Each observation includes a time stamp 
down to the second. The energy usage is split into energy 
consumed by the appliances and energy consumed by the 
light fixtures. Both of these variables are expressed in Watt 
hours.

The energy consumed by the appliances over the data 
collection time period is displayed in Fig. 1. The appli-
ance energy usage appears to vary based on the time of 
day and could be correlated with the occupancy of the 
house. This figure also indicates that there are periods at 
the end of January and the beginning of April where the 
house appears to be unoccupied or experiencing a power 
outage. Figure 2 displays the energy consumed by the 
light fixtures over the data collection period. The sus-
pected unoccupied periods at the end of January and the 
beginning of April are also evident in this data. Further, 
the energy consumed by the lights decreases at the end 
of the data collection period when the days are longer. 

Table 1   Sensor locations

Sensor identifier Room

T1 & RH1 Kitchen
T2 & RH2 Living room
T3 & RH3 Laundry room
T4 & RH4 Office
T5 & RH5 Bathroom
T6 & RH6 Outside
T7 & RH7 Ironing room
T8 & RH8 Teenager’s bedroom
T9 & RH9 Parent’s bedroom

2  ©2017 ZigBee Alliance. ZigBee is a registered trademark of the 
ZigBee Alliance
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Figures  3 and 4 display the temperature and relative 
humidity collected within the house. Note that the relative 
humidity and temperature sensors at location 6 are actu-
ally outside the house and can differ significantly from 
the data collected inside the house. All of the tempera-
ture data appears to be correlated. The relative humidity 
data from different sensors also appears to be correlated, 
however, there are large spikes in relative humidity in the 
bathroom.0

The data set also contains weather data from the 
Chievres Airport in Belgium, the closest airport to the 
house. The weather data was collected every hour and then 
interpolated. The weather data includes the temperature 
in degrees Celsius, the relative humidity in percent, the 

pressure in millimeters of mercury, wind speed in meters 
per second, dew point in degrees Celsius, and visibility 
in kilometers. Figure 5 displays plots of the weather data.

Fig. 1   Energy consumed by appliances

Fig. 2   Energy consumed by light fixtures

Fig. 3   Temperature data collected from the house. The legend iden-
tifies the temperature sensors described in Table  1. Note that T6 is 
located outside the house

Fig. 4   Relative humidity data collected from the house. The legend 
identifies the relative humidity sensors described in Table 1. Note that 
RH6 is located outside the house and that RH5 is located in the bath-
room
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3 � Data‑driven models

In this section, we describe the numerical experiments per-
formed using the data set. MATLAB3 was used to construct 
models for predicting appliance energy consumption. Four 
predictive models were evaluated: linear regression (Murphy 
2012), radial support vector machines (SVM) (Dong et al. 
2005; Murphy 2012), gradient boosted machines (GBM) 
(Friedman 2001; Murphy 2012), and the random forest algo-
rithm (Breiman 2001; Murphy 2012). First, the data were 
randomly divided into testing and training sets. Then, we 
trained models using the training set and calculate perfor-
mance on the training and testing sets. The same four per-
formance metrics were used in these experiments as in the 
original paper: root mean squared error (RMSE), R-squared 
( R2 ), mean absolute error (MAE), and mean absolute per-
centage error (MAPE). In these experiments, we tested the 
random forest algorithm using the TreeBagger function, the 
radial SVM using the fitrsvm function, and the GBM using 
the fitensemble function.

Before performing the training and testing experiments, 
we conducted a new feature selection experiment. The step-
wisefit function was used to find variables that should be 
included in a linear regression model using stepwise feature 
selection (Draper and Smith 2014). After performing the 
fit, 20 features were found to be significant to the prediction 
of appliance energy usage. These variables were lights, T1, 
RH1, T2, RH2, T3, RH3, T6, RH6, T7, RH7, T8, RH8, T9, 
outside temperature, windspeed, visibility, number of sec-
onds from midnight, the day of the week, and the weekend 
status. This feature selection experiment was only performed 
on the training set. The training RMSE for the linear model 
using only the selected variables was 94.32, and the R2 value 
was 0.17. These metrics closely match the training RMSE 
and R2 in the original paper. However, the selected features 
do not closely match those of the Boruta algorithm used 
in the original paper. Notably, the pressure and T5 were 
excluded from the stepwise analysis, but they were found to 
be relevant by the Boruta algorithm. From this experiment, 
we concluded that linear regression does not perform well as 
a predictive model. However, the linear model appeared to 
be fairly robust to feature selection because the performance 
metrics for the feature sets selected by stepwise regression 
and the Boruta algorithm are similar.

For the random forest algorithm, we grew a forest of 
500 trees and sampled 18 predictors for each tree. For the 
ensemble of regression trees, we used 10,900 trees and had 

Fig. 5   Weather data from Chievres Airport

3  ©2017 The MathWorks, Inc. MATLAB and Simulink are reg-
istered trademarks of The MathWorks, Inc. See mathworks.com/
trademarks for a list of additional trademarks. Other product or brand 
names may be trademarks or registered trademarks of their respective 
holders.
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a maximum split depth of 5. For the radial SVM, we used 
the MATLAB option to find the optimal parameters. Three 
parameters were optimized: box constraint - 973, kernel 
scale—192, and epsilon—15. Table 2 contains the results 
for the testing and training sets.

Only the random forest algorithm gives similar results 
as the original paper. However, it is interesting that the 
training evaluation under-performs while the testing eval-
uation over-performs the original results for this model. 
Both the radial SVM and the ensemble method performed 
much worse than in the original study. This could be due 
to several reasons. First, the implementation of the models 
might be slightly different in the two software packages. 
Second, the optimal parameters for the ensemble method 
might not translate. Third, when finding the optimal 
hyperparameters for the radial SVM, the objective func-
tion is slightly different between the two software pack-
ages. The original analysis by Candanedo et al. (2017) 
was performed in the R software package (R Core Team 
2013). The CARET package in R minimizes RMSE while 

MATLAB minimizes cross-validation error. The search 
over the parameter space could also be different.

The random forest algorithm produced the same perfor-
mance metrics for both MATLAB and R so we performed a 
little more investigation into the performance of the model. 
Generally, when using the random forest algorithm, split-
ting the data into testing and training sets is not required for 
evaluating generalization error. In this algorithm, the data 
is bagged and the out-of-bag (OOB) error can be used to 
evaluate the model. Figure 6 displays the RMSE calculated 
from the OOB error as the forest increases in size when 
using the entire data set. Once the forest grew beyond 300 
trees, the RMSE converged to the testing RMSE in Table 2. 
Figure 7 displays the variable importance calculated by the 
random forest algorithm in MATLAB. The variable impor-
tance analysis generally reflects the feature selection analysis 
in the original paper.

These results may not generalize to other types of resi-
dential construction and climate. For example, older houses 
that do not have modern insulation may be affected more by 
the outside temperature and relative humidity. However, the 
method used for estimating the data-driven models could be 
repeated for data collected in this type of residence.

3.1 � Estimating the other variables

In the original paper, the authors focused solely on predict-
ing the appliance energy consumption. We tested if the other 
collected variables in the data set can be estimated using 
similar machine-learning techniques. Given the results in the 
previous section, we decided to use the random forest algo-
rithm and evaluate the generalization error using the OOB 

Table 2   Results for predictive experiments performed in MATLAB

Model Data Set RMSE R
2 MAE MAPE

Ensemble Training 68.65 0.56 41.59 0.50
Testing 80.37 0.35 49.21 0.60

Random forest Training 46.68 0.80 21.28 0.20
Testing 67.04 0.55 32.72 0.34

Radial SVM Training 95.35 0.15 40.63 0.32
Testing 93.91 0.11 42.16 0.36

Fig. 6   Out-of-bag error versus number of trees using the random 
forest algorithm in MATLAB. This out-of-bag error was calculated 
using the entire data set

Fig. 7   Variable importance using the random forest algorithm and the 
entire data set
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error. Specifically, we selected one of the 26 variables in the 
data set to be the response variable and used the remaining 
variables in the data set as explanatory variables. A random 
forest with 300 trees is trained on the entire data set, and 
RMSE is calculated using the OOB error. Each response 
variable is treated as a continuous variable.

The RMSE for each response variable is displayed in 
Table 3. The RMSE for the appliance energy consumption 
matched that of the previous experiments. The RMSE for 
the lights is less than 5 Wh. The temperature collected by 
the installed sensors is on average estimated to within a half 
a degree Celsius. Generally, the random forest was able to 
predict the collected relative humidity to within half a per-
centage point. However, RH5 and RH6 both had a RMSE 
greater than 1. RH5 was located in the bathroom and ran-
domly experienced spikes, possibly due to showers. RH6 
was located outside the house and was, therefore, slightly 
harder to estimate. The relative humidity from the weather 
data at the airport also had a RMSE greater than 1. The rest 
of the weather data were also able to be estimated using the 
random forest algorithm.

There are only eight unique values for the energy con-
sumption of the light fixtures. Therefore, this problem can 

be treated as a classification problem with eight classes. A 
classification random forest was trained, and the OOB clas-
sification error was calculated. The classification error for 
this problem formulation was 0.16.

4 � Simulation

In this section, we outline how to construct a simulation 
for generating a similar data set to the collected data in the 
original paper. The objective is to use the time informa-
tion and the weather data from the airport as inputs into 
the simulation and then to simulate the environmental data 
and the energy consumption data with varying degrees of 
randomness. This simulation-based method could be used 
to create new large-scale simulations of neighborhoods and 
communities consisting of several houses. Further, the pro-
posed method could be replicated for other types of residen-
tial constructions and for different climates. The simulation 
in this study may not transfer directly to new environments, 
but new simulations using the proposed method could be 
constructed if the necessary data is provided.

The simulation utilizes the data-driven models con-
structed in the previous experiments and contains several 
steps. First, the time information and the weather informa-
tion is used to simulate the environmental data within the 
house. Then, the simulated environmental data is used in 
conjunction with the time information and the weather infor-
mation to simulate the light energy consumption. Finally, the 
previously simulated data (lights and environmental) and 
the external input information (weather and time) is used to 
simulate the appliance energy consumption. At each step, 
randomness or noise can be added to the simulated data. The 
simulation is constructed in MATLAB.

The simulation can be broken into two stages: training 
and simulation. The training stage learns the models for 
simulating the data, and Fig. 8 gives a visual representation 
of the data used to train each model. The simulation stage 
generates the data using the trained models, and Fig. 9 shows 
the flow of data through the simulation.

The environmental simulation uses a regression random 
forest to generate the data. A separate random forest is 
trained for each temperature and relative humidity sensor. 
The weather and time information are used as the explana-
tory variables and each sensor is the response. This results 
in 18 separate random forest models for this stage of the 
simulation. Noise can be added to the simulated data using 
a Gaussian distribution with zero mean and a standard devia-
tion � . The value of � controls the amount of noise injected 
into the simulated data. In the presented example simulation, 
50 trees are grown in each forest and no noise is added to 
the data. The real and simulated data is displayed in Figs. 10 
and 11.

Table 3   RMSE for each 
response variable

Variable RMSE

Appliances 67.30
Lights 4.36
T1 0.06
RH1 0.58
T2 0.12
RH2 0.30
T3 0.10
RH3 0.26
T4 0.12
RH4 0.24
T5 0.11
RH5 2.29
T6 0.31
RH6 1.72
T7 0.06
RH7 0.26
T8 0.08
RH8 0.30
T9 0.06
RH9 0.27
Tout 0.19
Press 0.54
RHout 1.02
Windspeed 0.29
Visibility 2.96
Tdewpoint 0.15
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For the light energy simulation, a classification random 
forest is used. The model is trained on the time and weather 
information and the real environmental data. In the presented 
simulation, 200 trees are grown in the forest. The random 
forest algorithm is used to generate a posterior distribution 
over the light energy values. This posterior is then sampled 
to produce the simulated light energy value. Randomness 
can be added using a Boltzmann distribution

where pi is the probability of the ith value of the new distri-
bution to be sampled, xi is the probability of the ith value of 
the distribution generated by the random forest classifier, 
and � is the temperature parameter that controls the amount 
of randomness. For the presented data, � = 0.1 . Figure 12 
displays the real and simulated data.

(1)pi =
exi∕�

∑I

i=1
exi∕�

,

The appliance energy data is simulated in two stages. The 
first stage uses a classification random forest to generate a 
probability distribution over a binary random variable. As 
in the light simulation, a Boltzmann distribution with tem-
perature parameter � is used to control the randomness of 
this distribution. That distribution is randomly sampled for 
a binary variable Z that defines the appliance energy con-
sumption distribution. In the second stage, an energy value 
is drawn from one of the Gaussian distributions depending 
on Z. To ensure that the simulated appliance energy value is 
positive, the Gaussian distributions are estimated in the log 
domain. The sampled value is then converted back into the 
appliance energy domain.

Figure 13 displays a histogram of the appliance energy 
data in the log domain. A mixture of two Gaussian distribu-
tions can be seen in the histogram. Values less than 5 are 
labeled Z = 1 , and values greater than 5 are labeled Z = 2 . 
This labeling is used to train the classification random forest 

Fig. 8   Visual display of data 
that is used to train each model. 
The solid lines represent that 
the data is used as the explana-
tory variables. The dashed lines 
represent the data used as the 
response variable

Fig. 9   Visual display of data 
flowing through the simulation
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Fig. 10   Real and simulated temperature data

Fig. 11   Real and simulated relative humidity data
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in the first stage of the appliance simulation. These labels 
are also used to estimate the parameters of the two Gaussian 
distributions used to generate the appliance energy value in 
the log domain.

In the presented simulated data, the temperature param-
eter in the Boltzmann distribution is 0.1, and the random 
forest contains 200 trees. The conditional Gaussian distri-
bution for Z = 1 has mean �1 = 4.1 and �1 = 0.39 , and the 

conditional Gaussian distribution for Z = 2 has �2 = 5.69 
and �2 = 0.42 . The real and simulated appliance energy data 
is displayed in Fig. 14. To help validate the simulation, we 
trained a random forest on both the real data and the simu-
lated data. The RMSE and variable importance was esti-
mated for each random forest and compared (Fig. 15). The 
RMSE is lower for the simulated data which is not surprising 
given the relatively low amount of noise added to the simu-
lated data. The variable importance measures are similar. 
The time of day and the energy consumed by the lights are 
the two most important features in both the real setting and 
the simulated data.

In our final experiment with the simulation, we sequen-
tially increase the amount of noise in the simulation and 
evaluate the predictive ability of data-driven models. This 
experiment represents one of the many uses of the simula-
tion. Increased error in collected data can stem from many 
sources. As sensors degrade, the error in the collected meas-
urements may increase. As another example, low-quality 
sensors may have less fidelity. This experiment evaluates 
the ability for the data-driven models to cope with increas-
ingly noisy measurements.

Each parameter that controls randomness or noise in the 
simulation is increased sequentially from 0.1 to 1 in incre-
ments of 0.1. A cross-validation experiment is conducted at 
each level using a GBM model. The simulated data is gener-
ated in MATLAB, but the cross-validation experiments are 

Fig. 12   Real and simulated light data

Fig. 13   Histogram of the log of appliance energy consumption data
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conducted in R. Figures 16, 17, 18, 19 contain the results 
of these experiments. In these figures, “beta” represents 
the temperature parameter for the appliances, “alpha” 

represents the temperature parameter for the lights, “sig-
maT” represents the standard deviation for the temperature, 
and “sigmaRH” represents the standard deviation for the 

Fig. 14   Real and simulated appliance data

Fig. 15   RMSE and variable 
importance for real and simu-
lated data
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relative humidity. The plots show that performance is only 
decreased by increasing the amount of noise in the appliance 
random variable. However, we only test on a limited range, 
and increasing the noise outside of the example could have 
a greater impact on the simulation results.

5 � Conclusion

In conclusion, we have developed and validated a sim-
ulation-based method for evaluating sensor quality in 

Fig. 16   RMSE metric as ran-
domness is increased for each 
parameter in the simulation

Fig. 17   R2 metric as random-
ness is increased for each 
parameter in the simulation

Fig. 18   MAE metric as ran-
domness is increased for each 
parameter in the simulation



293Environment Systems and Decisions (2019) 39:281–294	

1 3

a smart-home setting. The proposed method uses data-
driven models as the underlying models in a simulation 
that can generate artificial data sets with varying amounts 
of noise. In addition, we perform new data-driven mode-
ling in MATLAB with slightly different predictive models 
and perform a new feature selection analysis. Further, we 
demonstrated that the other collected variables in the data 
set could be modeled using similar data-driven techniques, 
specifically the random forest algorithm.

Simulation data with increasing amounts of noise is used 
to test the predictive ability of the data-driven models as 
randomness is added to the data. The predictive ability is 
only decreased when noise is added to the appliance energy 
random variable. This type of information could be useful 
when selecting IoT devices for monitoring a smart home. 
Low-quality sensors that do not monitor the environment 
as accurately as the devices used in the original study could 
be used for humidity and temperature without significantly 
reducing the predictive ability of the data-driven models.

In future work, the presented method should be tested 
and validated on data sets from other climates and residen-
tial constructions. One possible data set is the previously 
mentioned Pecan Street data set. Other areas of future work 
could use this simulation to produce test data for several 
homes. Larger simulations using this simulation process 
could model neighborhoods, cities, states, or nations. How-
ever, the data used as the basis for the presented study was 
from a single home with a fixed number of occupants. Future 
work involving scaling the simulation would need to account 
for other types of dwellings and varying sizes of residences. 
Further, any future work on scaling the simulation would 
need to account for a varying types of occupancy, including 
the number of occupants and diverse schedules.
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