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Abstract - Credit card fraud is a problem that can cost
banks billions of dollars annually, leading to increased
incentives among financial institutions for the
development of fast, effective and dynamic fraud
detection systems. This research paper addresses credit
card fraud detection through a semi-supervised
approach, in which clusters of account profiles are
created and used for modeling classifiers. Accounts are
profiled based on their behavioral trends and clustered
into similar groups. Groups are further identified as
distinct customer segments based on purchase
characteristics such as amount, frequency or distance.
Random forest and XGBoost classifiers are trained on an
entire sample and compared against classifiers trained at
the transaction level across each cluster. This research
concludes that the overall weighted performance of
classifiers trained at the cluster level does not
significantly outperform classifiers trained on the full
sample. However, this research finds that clustering can
be used to find meaningful groups of account holders
that also have varying fraud rates across each cluster.
Additionally, some classifiers trained on specific clusters
yield significant improvements in performance over the
baseline, whereas classifiers for other clusters do not
perform as well as the baseline. This research also
concludes that the optimal classifier for a given cluster
varies by cluster, highlighting the potential for further
development of new classifiers which may perform well
on clusters that currently exhibit underperforming
models.

Index Terms — Fraud Detection, Machine Learning, Semi-
Supervised Algorithms, Clustering

INTRODUCTION

The loss due to credit card fraud amounted to $22.8 billion in
2017 and was expected to rise to an amount of $31.8 billion
by the end of 2018 [1]. M-commerce adoption has
experienced a steep increase over the past few years,
accompanied by the increase in credit card fraud in terms of
both transaction and dollar volumes [2]. To sustain the
growing adoption of M-commerce and other digital
channels, fraud detection techniques that are efficient both in
terms of cost and speed are needed. The need to maintain the
balance between consumer experience and safety is one of
the primary challenges for credit card fraud detection.

Failing to identify a fraudulent transaction will lead to
financial loss and loss of consumer trust, which in turn could
result in a decrease in future revenue. On the other hand,
incorrectly tagging a valid transaction as fraudulent can hurt
consumers’ experience. Credit card fraud is constantly
evolving with regards to speed and fraudster behavior , with
fraudsters adopting techniques like BotNet transactions and
synthetic identities [2]-[3]. The primary target of these
methods is to make faster fraud transactions by taking
advantage of digital banking platforms. The rapidly evolving
nature of credit card fraud techniques demands quicker
identification and deployment of fraud detection systems.

Supervised algorithms are proven to be efficient in fraud
detection [4]-[5]. However, supervised techniques require
labeled data, which requires organizations to continuously
and accurately label each transaction as fraudulent and non-
fraudulent. This process can be expensive and slow and the
success of supervised techniques depends on the accuracy of
labeled data. Another key concern with labeled data is the
class imbalance which is unavoidable in this domain. This is
because there are fewer fraudulent transactions than non-
fraudulent transactions. Unsupervised algorithms are
effective in identifying underlying patterns of unlabeled data.
Credit card fraud transactions often highlight behavioral
patterns of the cardholder [6]. Fraud detection techniques
that can identify anomalies in a specific consumer’s behavior
could therefore be more effective. Hybrid methods bring
together supervised and unsupervised techniques and are
observed to be effective in handling the challenges
previously outlined [7].

In this paper we discuss a hybrid approach of identifying
groups of customers based on engineered behavior profiles
and then building classifiers specific to those groups. Our
approach has three steps: 1) profiling accounts 2) clustering
the accounts and 3) building the classifiers. Multiple
aggregated account level features are engineered from
transactional level data in the original dataset.

Accounts are clustered into groups by the unsupervised
K-means clustering algorithm. Clustering ensures that the
accounts with feature values closer to each other are grouped
together while separated from those that are dissimilar.
Therefore, clusters should contain accounts that exhibit
similar behaviors.

Supervised classifiers such as Random Forest and
XGBoost are built on each cluster. Our hypothesis is that
clustering improves the overall prediction capability of these
classifiers. We test this hypothesis by comparing the Area
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Under the Curve (AUC) metric of classifiers trained on the
entire dataset against the AUC for classifiers built on
individual clusters.

This research will first provide a brief description of the
data and the generation of account level features, followed
by our approach which compares the results of classification
before and after clustering.

RELATED WORK

There has been significant development in the area of credit
card fraud in the past through supervised learning,
unsupervised learning, and deep learning among others.

Supervised learning algorithms attempt to find a
function that can effectively map the input to the
corresponding output in labeled training data. Gabriel
Rushin et al discuss an approach that compares the abilities
of various supervised classification models such as Logistic
Regression, Gradient Boosted Trees (GBT), and Neural
Networks in detecting fraud [4]. They also explore feature
generation using both domain expertise and an autoencoder
— an unsupervised method for feature engineering. Using
these two methods along with the original dataset, they
create six feature sets on which to test the classifiers. The
results of their study show that the feature set that was
created using domain expertise managed to raise the AUC
value by 1-4% while the autoencoder features added no
improvement. Amongst the supervised classifiers, Neural
Networks performed the best on a majority of the datasets,
followed by GBT. Although GBT showed adequate
predicting powers, Extreme Gradient Boosting Trees
(XGBoost) has shown to be more effective in the credit card
fraud domain as seen in the work by Sahil Dhankhad et al
[8].

The comparative study by Sahil Dhankhad et al.
further analyzes supervised methods that classify credit
card fraud and their performance against a custom super
ensemble method. They deduce that the best performing
(according to precision and recall) classifiers are
Random Forest, XGBoost, and the custom ensemble
method. The worst performing classifiers in their study
are Decision Tree, K-Nearest Neighbors (K-NN), and
Naive Bayes. Since credit card fraud data is generally
highly imbalanced, the study employs an under-sampling
technique to counter the biasing effects imbalanced data has
on classification.

Another supervised research methodology can be seen
in the paper by Abhimanyu Roy et el [5]. The study makes
use of domain expertise engineered features and compares
the performance of different kinds of neural networks like,
Artificial Neural Networks and Recurrent Neural Networks
among others. Ultimately, the Gated Recurrent Unit out-
performed the other methods. This study demonstrated the
predictive power of deep learning methods that utilize time-
series information.

Unsupervised machine learning is a class of algorithms
that attempt to find patterns in the data with no previously
labeled training data. One of the most commonly used
unsupervised methods is clustering. Generally, K-means

clustering is used on credit card data, as seen in the work by
D. Viji et al [9] and Vaishali [10]. In the research conducted
by Vaishali, K-means clustering is applied to randomly
generated data to split it into groups based on how likely a
fraudulent transaction is to occur. To account for the non-
numeric attributes, One-Hot-Encoding (among other
methods) must be applied. While K-means and K-modes
clustering only work with numeric and categorical attributes
respectively, K-prototypes, an alternative, is a hybrid method
that applies characteristics of both to the data. This aspect
makes K-prototypes useful since credit card data tends to
have a mix of numeric and categorical attributes. The
algorithm, as described by Zhexue Huang [11], works by
assigning each data point to a cluster with the prototype
closest to it as shown by the similarity measure. The method
dynamically updates the K-prototypes, in each iteration, to
maximize the similarity of the data points within a cluster
and the dissimilarity of the data points in different clusters.

A completely different approach to solving this problem
can be seen in the study conducted by Adrian Mead et al
[12] in adversarial learning using a reinforcement method
called the Markov Decision Process. A reinforcement
approach uses signals and rewards to train a system, an
agent interacting with its environment, rather than labels or
clusters. Whenever the agent makes a decision or changes its
state, the environment processes the change and returns
some feedback. The main purpose of the agent in this
scenario is to maximize the positive feedback or
cumulative reward. In the study, the agent was a fraudster
and the environment was the bank’s fraud classifier, for
which a logistic regression classifier was used. This
adversarial framework addresses the changing behavior of
fraudsters in an attempt for banks to develop dynamic fraud
detection systems and classifiers.

DATA

The dataset is provided by a bank and contains
approximately 80 million transactions across 1.1 million
account holders. These transactions were recorded over an
eight-month period and have 69 features. The dataset
captures various characteristics of the customer spending
patterns such as time, amount, location, type of point of sale,
currency etc. The dataset also captures the contextual and
operational information of a transaction like the safety
capabilities of point of sale, type of authorization request,
presence of account holder at point of sale etc. Account
specific features like number of credit cards and account
product code are also available.

The key challenge with this dataset is the significant
class imbalance. Only 0.136% of the total transactions
belong to the fraud class. Additionally, only 26,000 accounts
have fraud transactions associated with them. Hence to
capture the behavioral patterns associated with fraud at the
account level, it is necessary to study these minority class
accounts in detail. Multiple sample datasets are generated
from the full dataset for deeper examination.



1. Data Preprocessing

The data contains numerical and categorical features, both of
which contain missing values. All features containing
missing values for more than 80% of the transactions were
removed to avoid synthetic data influencing the results, if
imputed. All remaining missing data is imputed with means
for numerical features and mode for categorical features. No
transactions were removed in this process.

1. Sampling

Five samples were generated from the original dataset for
this study. Each sample contains close to 110,000 accounts
and 5 million transactions. All fraud accounts are included in
each sample yielding close to 2% fraud rate. The rest of the
84,000 accounts are randomly picked from accounts
containing no fraud transactions. Non-fraud accounts were
sampled without replacement. No oversampling of the
minority class is implemented.

APPROACH

Conventional supervised approaches to credit card fraud
build classifiers on transaction data across all accounts within
a bank’s customer dataset. Features are engineered at the
transaction level irrespective of the origin account, and used
to predict fraud. This research study utilizes a more complex
approach, in which features are first engineered using
account level data rather than transaction level data. These
accounts are then clustered into distinct groups based on
behavioral patterns, which serves helpful in identifying
unique customer groups that were previously unknown or not
captured. Classifiers are then built on each cluster of accounts
using their respective sets of transactions to train the
classifier.

1. Account Profiling

Feature engineering that can capture the rate of change over
time and variance of various transactional features has
proven to be effective in credit card fraud detection domain

[4]-[5]. Previous work focused on profiling transactions to

identify transaction level trends. We developed an analytical

framework to profile accounts and identify behavioral trends
at the account level on four dimensions — Spend, Spread,

Safety and Sketch. Multiple aggregated features are built for

each dimension. A detailed description of these dimensions

is provided below:

e Spend: Spending patterns are measured under this
dimension. To achieve this the mean and variance of the
data associated with an account’s transactions are
calculated. This data includes the daily spending rate
and the time between transactions.

e Spread: Diversity of spending is measured under this
dimension. To achieve this the geographical spread and
types of merchants handling the transactions are
observed. This data includes the daily merchant count,
distance of point-of-sale from home and merchant
categories.

o Safety: The safety preferences of an account are
measured under this dimension. To achieve this the
preferred channel of transaction and safety capabilities
of point-of-sale are observed.

o Sketch: The characteristics of an account irrespective
of transactions are measured under this dimension. This
data includes most preferred account type on which
transactions are recorded and mean and variance of
money in account before each transaction are computed.

1I. Clustering

Accounts are clustered using the engineered account
profiles. Account level profiles include both numeric and
categorical features. Categorical features are one hot
encoded to binary numeric form and numerical features are
scaled using the min max scaler in order to give equal
importance to all features. The min max scaling approach
shrinks the range of numeric features such that they are
between zero and one. The min max scaler works well in the
case where the data inputs are a combination of continuous
and binary features, however unit normal scaling or
alternative scaling methods are also appropriate.

K-means is an unsupervised method used to separate
unlabeled data into K distinct subgroups based on a series of
input features. The within cluster variation is the amount that
observations within the same cluster differ from one another
according to a specified comparison metric. A good
clustering assignment will be one that minimizes the sum of
the within-cluster variation across all clusters [12].
Euclidean distance is used as the metric for clustering the
accounts. One challenge with K means clustering is
determining the optimal number of clusters to use, especially
in the case where the user lacks a deep understanding of the
problem’s domain or the goal is to identify new subgroups
within the data. The sum of the within cluster variations at
each level of clusters is plotted. In the ideal case, the sum of
within cluster variations (in this case, sum of squared
distances) is drastically reduced up to some number of
clusters “K”, whereon it falls insignificantly afterwards. In
that case, the number of clusters that is appropriate for the
dataset is set to “K”.

111 Classification Methods

Random Forest and XGBoost classifiers are built on both
sample level data and clusters. Categorical features are
encoded into their numerical equivalents by target encoding
to speed up building of classifiers. Since the current fraud
rate is close to 2%, appropriate class weights are provided to
both algorithms to adjust the impact of imbalance. For both
models, 70 trees were fit, each allowing for a max depth of 6
splits and each split could consider 50% of the full feature
set.

e Random Forest is an ensemble method that builds a
‘forest” of decision trees with some measure of
randomness introduced because each tree only selects
the best feature for each split from a sample of all the



potential features. The classifier’s final result is
an aggregation (mode) of all the outputs of the
individual trees [13]. Random forest automatically
mitigates the problem of overfitting shown by decision
trees since the output is not dependent on only
one tree. It also provides an easy way to measure the
relative importance of the features in the dataset. This is
due to the nature of each decision tree, which splits the
data on the attributes in the order of greatest
contribution for classification.

e Extreme Gradient Boosting, known as XGBoost,
is another tree-based learning algorithm. Boosting
involves  growing  trees  sequentially, = where
decision trees are fit to the residuals of the current
model and then added into the model to update the
residual values [11]. In this method, trees that are
built will be dependent on previously grown trees.
Boosting is also a slower learning algorithm which
may fit many small trees, both of which can help
prevent against potential overfitting [11]. A parameter
grid was used to iterate over a range of potential
parameter values to determine the optimal inputs
for training the model. L1 regularization is also
implemented.

RESULTS

After calculating the sum of the within cluster variations at
each number of clusters from five through thirty, the
appropriate number of clusters to use was determined to be
10. The sum of squared distances for clustering fell at a
much steeper rate until reaching 10 clusters. Beyond 10
clusters the sum of squared distances fell much slower and a
noticeable increase in training time occurred, making
the tradeoff impractical for beyond 10 clusters.
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FIGURE I
SUM OF SQUARED ERRORS BY NUMBER OF CLUSTERS

After investigating the accounts in each cluster,
specific customer groups were identified. These
customer groups should be investigated further to
understand where the cluster assignments or feature set
may be improved by the bank. This will allow model
performance to hopefully improve for underperforming

clusters. Table 1 shows the proportion of accounts in
each customer group across samples.

TABLE I
DISTRIBUTION OF ACCOUNTS BY CUSTOMER GROUPS

Customer Group Proportion
Global Spenders 9.28%
Diverse Spenders 14.7%
Low Spenders 9.63%
Frequent Spenders 11.57%
Big Spenders 6.16%
Loyal Spenders 10.68%
General 14.22%
Local Spenders 13.02%
Big and Infrequent Spenders 3.65%
Glocal Spenders 7.08%

e Global Spenders: Customers who spend farther away
from home

e Diverse Spenders: Customers who spend across a larger
number of industries

e Low Spenders: Customers whose transactions are a
lower dollar amount

e Frequent Spenders: Customers who have a higher
frequency of transactions within a given time period.

e Big Spenders: Customers whose transactions are
higher dollar amounts.

e Loyal Spenders: Customers with transactions
concentrated over a smaller number of industries.

e General: No specifically discernible behaviors.

e Local Spenders: Customers who spend closer to home.

e Big and Infrequent Spenders: Customers whose
transactions are higher dollar amounts and have a
low frequency of transactions within a given time period.

e Glocal Spenders: Customers who regularly spend
both close to and far away from home.

While the overall AUC does not improve, there is a
significant change in the fraud rates observed across clusters
within every sample, and some clusters with a higher fraud
rate also notice a drastic improvement in model AUC
performance compared to the base model. Table II shows the
distribution of fraud in each cluster for a given sample.

TABLE IT
FRAUD RATES ACROSS CUSTOMER GROUPS
Customer Groups Average Fraud Rate  Standard Deviation
Global Spenders 6.36% 0.79%
Diverse Spenders 1.21% 0.11%
Low Spenders 2.17% 0.80%
Frequent Spenders 1.64% 0.33%
Big Spenders 4.74% 0.08%
Loyal Spenders 2.20% 0.74%
General 1.54% 0.30%
Local Spenders 1.34% 0.05%
Big and Infrequent Spenders 2.95% 0.08%
Glocal Spenders 2.93% 1.10%




After training Random Forest and XGBoost classifiers for
each cluster, a weighted average AUC metric was calculated
for clustering to compare model performance against the
baseline model. The cluster weighted AUC was calculated
by multiplying each cluster’s AUC by the proportion of
transactions in that cluster, and then combining each
weighted AUC for a final system AUC for clustering. After
clustering and considering for the total number of
transactions in each cluster, there was no discernible change
in the AUC value compared to the baseline performance.

TABLE III
AUC VALUES FOR BASELINE AND CLUSTER AVERAGES

Label

Samplel ~ Sample2 Sample3 Sample4 Sample5  Average
Baseline RF 0.848 0.848 0.847 0.849 0.849 0848
Baseline XGBoost 0.857 0.858 0.857 0.857 0.858 0.857
Weighted Cluster AUC Average 0.856 0.858 0.854 0.856 0.856 0.856

For some clusters such as Big Spenders and Glocal the
baseline with an increase in performance of approximately
0.03. However, for other clusters such as loyal spenders, the
model’s performance shows a drop by approximately 0.01. To
address the change in performance across clusters, each cluster
was investigated to determine whether its average value for
any given feature(s) was drastically different from the
average for the rest of the clusters.

the account level, the hypothesis is that clustering will be able
to separate accounts into meaningful clusters that will
improve prediction capabilities. Two baseline models without
clustering were generated for comparison against cluster
specific models. XGBoost achieved a higher AUC average
across samples than random forest, while the weighted AUC
after clustering remained unchanged.

However, after clustering there is a discernible
difference in the fraud rates observed across clusters. For
some clusters with higher fraud rates, the cluster specific
classifiers are also outperforming the base model by as much
as 0.03 AUC.

However, some clusters with marginally lower
performance than the base model contain a large amount of
transactions, which brings down the overall weighted
performance. Further investigation is required to determine
the reason that some clusters perform worse than the
baseline model, and whether reallocating accounts in those
underperforming clusters would result in better overall
system performance.

Clustering was also able to determine distinct behavioral
patterns across account holders for each cluster. These
cluster behaviors also hold across samples. Knowing the
customer groups and behavioral tendencies of clusters that
perform well and those that perform poorly is valuable in
trying to improve fraud detection.

TABLE IV

AUC VALUES FOR CUSTOMER GROUPS

Label Random Forest XGBoost Average RF Average XGBoost
Samplel  Sample2 Sample3 Sample4 Sample5 Samplel Sample2 Sample3 Sample4 Sample 5

Global Spenders 0.853 0.865 0.86 0.863 0.865 0.875 0.885 0.882 0.879 0.882 0.821 0.881
Diverse Spenders 0.85 0.876 0.849 0.834 0.867 0.845 0.865 0.845 0.799 0.86 0.855 0.843
Low Spenders 0.867 0.841 0.848 0.843 0.875 0.847 0.825 0.846 0.849 0.886 0.855 0.851
Frequent Spenders  0.859 0.853 0.85 0.862 0.85 0.848 0.848 0.824 0.855 0.849 0.855 0.845
Big Spenders 0.875 0.876 0.876 0.876 0.876 0.887 0.888 0.886 0.888 0.889 0.876 0.888
Loyal Spenders 0.843 0.866 0.859 0.839 0.839 0.831 0.868 0.864 0.824 0.828 0.849 0.843
General 0.86 0.843 0.817 0.823 0.827 0.852 0.839 0.809 0.809 0.805 0.834 0.823
Local Spenders 0.847 0.835 0.864 0.874 0.847 0.839 0.80 0.86 0.863 0.84 0.853 0.840
Big and Infrequent  0.872 0.867 0.873 0.87 0.871 0.874 0.87 0.877 0.873 0.875 0.754 0.874
Spenders

Glocal Spenders 0.873 0.878 0.875 0.858 0.85 0.886 0.877 0.864 0.864 0.839 0.867 0.871

As seen in Table IV he Big Spenders customer group
is experiencing an AUC improvement of 0.02-0.03 which
will have a considerable reduction of losses due to fraud on
a dollar basis. Customer groups with higher geographical
spread of spending are also experiencing 0.01-0.02
improvement in AUC after clustering. Since the Global
Spenders customer group has the highest fraud rate, this
improvement helps in preventing higher instances of
fraud. The customer groups without any tangible
patterns based on the engineering profiles have a drop in
AUC which might indicate the need for further
clustering of these groups to find behavioral patterns
relevant for these accounts.

CONCLUSION

The primary question of this research investigates whether
clustering helps improve the predictive performance of credit
card fraud. By engineering useful and descriptive features at

If model performance is best for groups such as Big
Spenders, the model is likely to perform well on higher
value fraud transactions which is valuable to the bank.
Also, if one can determine which groups it is performing
poorly on, it can work to engineer new features in those
domains that may be more useful in detecting fraud and
improving performance.

The secondary question of this research investigates
whether different classifiers result in greater model
performance depending on which cluster is evaluated. While
the baseline XGBoost model performed better than random
forest across all samples, this is not the case when studied at
the cluster level. Specifically, random forest outperforms
XGBoost across some clusters while XGBoost outperforms
random forest for other clusters. This suggests promising
results that training other classifiers such as logistic
regression or neural networks may increase the overall
weighted clustering AUC to a threshold that is statistically
significantly greater than the baseline classifier achieves. In
the future this research could be further developed by



creating additional classifiers such as logistic regression and
neural networks to test on underperforming clusters for
various customer groups. Current results highlight the
potential for optimal classifiers to vary by cluster, suggesting
that these classifiers may boost overall fraud detection
performance when evaluated using clustering. Additionally,
account and transaction characteristics of each cluster
should be investigated further to help understand
what features are useful in dividing customers Specifically,
clusters that cannot be differentiated between must be
investigated further to better understand their customer
behaviors. If banks can understand groups of consumers
where models perform well or do not perform as well, they
can begin to investigate and engineer new features that may
be more useful to fraud models than the existing features.

Lastly, further research could investigate whether
reassigning accounts in underperforming clusters to new
clusters based on which cluster their feature values align
closest to helps improve performance. It is possible that
accounts on the fringe of two customer groups share
characteristics that may be useful in predicting fraud when
looked at jointly, but are missed by the current model. This
also presents the task of determining when accounts should
be assigned to new clusters as their behavioral patterns
change over time.
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