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is almost-everywhere given as the graph of a C%® function
(thus extending the results of [4] to almost-minimizers).
© 2019 Elsevier Inc. All rights reserved.

RESUME

On étudie la régularité des frontiére libres des presque-
minimiseurs de la fonctionnelle

J(u) = / [Vu(@)” + ¢} (2)Xgus0y (%) + ¢ (@)X {u<o} (2) da,
Q

ol g+ € L*(Q). Les presque-minimiseurs vérifient une
inégalité variationnelle, mais pas une EDP ni une formule
de monotonie comme le font les minimiseurs (voir [4], [5], [9],
[37]). Néanmoins, grace & un argument nouveau qui utilise des
outils de théorie du potentiel et de théorie géométrique de la
mesure, on arrive & démontrer que, sous une hypothése de non
dégénérescence sur ¢+, leur frontiére libre est uniformément
rectifiable. De plus, quand g— = 0 et g+ est Holdérienne, on
montre que la frontiére libre coincide dans un voisinage de
presque tout point avec un graphe de fonction C1¢, ce qui
étend les résultats de [4] aux presque-minimiseurs.

© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

In [16] the first and third authors studied almost-minimizers with free boundary. They
proved that almost-minimizers for the type of functionals considered by Alt and Caffarelli
[4] and Alt, Caffarelli and Friedman [5] are Lipschitz. The almost-minimizing property
can be used to describe minimizers of variants of the functionals above, which include
additional terms or perturbations that have a smaller contribution at small scales. We
think either of perturbations whose explicit form is not so important, or perturbations
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coming from noise. The flexibility of the set up allows one to deal with a broader spectrum
of questions, or incorporate small errors and randomness.

The methods used in [16] do not provide any information about either the size or
the structure of the free boundaries for almost-minimizers. We address this question in
this paper, and, in particular, we show that the free boundary is uniformly rectifiable.
This requires a novel argument which brings together tools from potential theory and
geometric measure theory. It provides a new approach to estimating the size and proving
the rectifiability of a free boundary. In the one phase case, that is when ¢_ = 0, ¢ is
Holder continuous and the almost-minimizer is non-negative, we also prove that, at most
points, the free boundary is given by the graph of a C! function. Almost-minimizers were
first considered in a geometric context, when Almgren [3] studied almost-area minimizing
surfaces. More recently, almost-minimizers for the functionals we consider here were
introduced in [16] and further studied by de Queiroz and Tavares [19] (who focused on
the regularity of almost-minimizers for semi-linear and variable coefficient analogues of
the Alt-Caffarelli and Alt-Caffarelli-Friedman functionals).

The theory of almost-minimal surfaces has found applications to the existence and
regularity of isoperimetric partitions [2]. The idea of looking at small perturbations of
minimizers is inherent in the study of stability questions in shape optimization and
quantitative inequalities (see [11], [31] and [12] for example for some of the most recent
developments in this area).

It was observed in [1] that the functionals studied in this paper can be used to prove
regularity for minimization problems involving the Dirichlet energy and a volume con-
straint. Therefore, in analogy with the almost-area minimizers, almost-minimizers to
the functional in (1.1) (and related functionals) have appeared in the study shape-
optimization for functions of the Dirichlet eigenvalues of the Laplacian (see, e.g. [33]),
eigenvalue partition problems (see, e.g. [36]) and the stability for the Faber-Krahn in-
equality (see, e.g. [7]).

Let us also point out that the Alt-Caffarelli-type functionals considered here are the
prototypical example of a free boundary problem in which the energy is non-convex. One
interesting aspect of studying almost-minimizers is that they allow us to disentangle the
behavior of minimizers from that of weak solutions (which can be thought of as critical
points defined by the Euler-Lagrange equation). For functionals with convex energies (e.g.
obstacle type problems), every critical point is a minimizer. By considering a non-convex
functional this distinction becomes more salient (and interesting).

We consider a bounded domain 2 C R™, n > 2, and study the functional

J(u) = / V(@) + ¢ (2)x(us0} (2) + ¢ ()X {u<o} (@) da, (1.1)
Q

where g+ € L*°(Q) are two bounded real valued functions. We are especially interested
in the properties of the two sets
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I (u) = Qno{z € Q; +u(z) > 0}, (1.2)

when v is an almost-minimizer for .J.

In [4], Alt and Caffarelli proved free boundary regularity results for minimizers in
the following context. Let @ C R™ be a bounded Lipschitz domain and gy € L>®(£2) be
given, set

K (Q) = {u € Li.(Q); u(z) > 0 almost everywhere on Q and Vu € L*(Q)}  (1.3)

and

T+ ) = / Vul? + @ (@)xqus0y do (1.4)
Q

for u € K4(Q), and let vy € K4 () be given, with J(ug) < oco. They proved the
existence of a function v € K () that minimizes J* among functions of K () such
that

u = ug on OfL. (1.5)

Alt and Caffarelli also showed that the minimizers are Lipschitz-continuous up to the
free boundary I't (u), and that if ¢4 is Holder-continuous and bounded away from zero,
then

I'*(u)=0.{u>0}UE, (1.6)

where H""1(E) = 0 and 9,{u > 0} is the reduced boundary of {z € Q; u(z) > 0} in Q.
They proved that d,{u > 0} locally coincides with a C'® submanifold of dimension
n— 1.

Later on, Alt, Caffarelli, and Friedman [5] showed that if  is a bounded Lipschitz
domain, g1 € L>*(Q),

K(Q)={ue€ L,.(Q); Vue L*(Q)} (1.7)

and up € K (), then there exists u € K(Q2) that minimizes J(u) under the constraint
(1.5). (See the proof of Theorem 1.1 in [5].) In fact, in [5] they consider a slightly differ-
ent functional, for which they show that the minimizers are Lipschitz. They also prove
optimal regularity results for the free boundary when n = 2, and make important strides
towards the higher dimensional cases. Later papers by [9], [21] and [37] present a more
complete picture of the structure of the free boundary in higher dimensions.

In this paper we study the regularity properties of the free boundary of almost-
minimizers for J* and J. We consider a domain Q C R™, with n > 2, and two functions
q+ € L>(2). In the case of J* we assume that g_ is identically equal to zero. Set
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Kioo() = {u € Li,.(Q); Vu € L*(B(z,r)) for every open ball B(z,r) C Q}, (1.8)
K+

loc

(Q) = {u € Kjoe(Q) ;u(z) > 0 almost everywhere on Q}, (1.9)

and let constants x € (0, +00) and a € (0,1] be given.
We say that u is an almost-minimizer for J* in Q (with constant x and exponent «)
if u e K;° (Q) and

J;T(u) < (1+/€T°‘)J;T(v) (1.10)

for every ball B(z,r) such that B(z,r) C Q and every v € L*(B(z,r)) such that Vv €
L?(B(z,r)) and v = u on dB(x,r), where

I (v) = / [Vol? + 63 X{u>0)- (1.11)
B(z,r)

Here, when we say that v = v on dB(x,r), we mean that they have the same trace on
OB(x,r). Notice that if we set v = max(v,0), then v = on dB(x,7) and J*(v*) <

J*(v), so we can restrict ourselves to competitors v € K,

10.(£2). In this case we only care

about
It (uw) =QNao{u>0}. (1.12)
Similarly, we say that u is an almost-minimizer for J in Q if u € Kjo.(2) and
Jor(u) < (14 K1) Ty (v) (1.13)

for every ball B(z,r) with B(z,r) C Q and every v € L'(B(x,r)) such that Vv €
L*(B(z,r)) and v = u on dB(x,r), where

Jon(v) = / IVol? + & Xposop + € X{u<oy. (1.14)
B(z,r)

In this case we are interested in both sets I'* (u) of (1.2).

In both cases we restrict our attention to U = {z € Q; u(z) > 0} and I'* (u) = OUNQ.
We assume that ¢+ and g_ are bounded and continuous on €2, that ¢+ > ¢y > 0 on €2,
and that either ¢ > ¢g > 0 or 0 < ¢g— < g4 on €2, and we prove that U is locally
NTA (Non-Tangentially Accessible) in € (see Definition 2.3 and Theorem 2.3), and
't (u) is locally Ahlfors-regular and uniformly rectifiable; see Theorems 4.3 and 4.2.
The most challenging part of the argument is the construction of an Ahlfors-regular
measure supported on I'" (). It should be mentioned that, a priori, it was not even clear
that I'" (u) should be (n — 1)-dimensional.
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For almost-minimizers of J¥, we can continue the study a little bit further, and
generalize regularity results from [4]. We identify an open set R C I'" (u) of regular points
(see Definition 6.1). R has full measure in 't (u), and it is locally a C**# sub-manifold
provided g1 > ¢ is Holder-continuous (see Theorem 7.1).

Remark 1.1. While this paper was being reviewed, D. De Silva and O. Savin reprove in
[23] many of the results in [16] and in this paper using different methods. More precisely,
the paper [23] is the continuation of a program, began in [20], in which a viscosity
approach is applied to almost-minimizers of several variational problems. The idea is
that while almost-minimizers may not satisfy any pointwise equation, they exhibit what
De Silva-Savin call “two scale behavior”. This allows them to prove a Harnack inequality
and apply viscosity methods to prove Lipschitz continuity of almost-minimizers (as in
[16]) and H"~'-almost everywhere C1:®-regularity of the free boundary (as in this paper).
This approach is very interesting and we hope to investigate it further in the future.

We briefly outline the structure of the paper. In Section 2 we prove that the positivity
set U of an almost-minimizer, u, is a locally NTA domain (see Theorem 2.3). This is
done via a compactness argument. Along the way we use the Alt-Caffarelli-Friedman
monotonicity formula to show that the set where a Lipschitz global minimizer is positive
is a connected set. We note that the recent preprints [10] and [33] prove that the positivity
set of a minimizer to the functional, (1.4), is an NTA domain (both papers cover the
vectorial case) (see also [30]). Let us remark that these results, published while this paper
was in preparation, are proven by different methods and neither imply nor are implied
by our Theorem 2.3.

In Section 3, we construct local subharmonic competitors, hg, .. They will be the
main tool in the subsequent arguments. Essentially, at every point xo € I'*(u) and every
scale r > 0, we construct a function, hy, ., which is subharmonic in B(z,r), satisfies
hgo.r = 0 when u = 0, is harmonic in B(xg,7) N {u > 0} and has the same trace as v on
O(B(xo,r) N{u > 0}). In particular, we use the NTA properties of {u > 0} to show that
hz,.» and u are comparable up to I'"(u) (Theorem 3.1) with an error which is a power
of . This allows us to use hy, , to study the free boundary I'" (u).

In Section 4 we use hy, , to show that the harmonic measure on I't(u) is Ahlfors-
regular (Theorem 4.1). A consequence of this is that I'"(u) is uniformly rectifiable (and
even, contains big pieces of Lipschitz graphs at every point and every scale), see Theo-
rem 4.3. In Section 5, we study a monotonicity formula due to Weiss [37] and show that
it is “almost-monotone” for almost-minimizers (Theorem 5.1).

In Section 6, we list several consequences of the monotonicity formula. Most signifi-
cantly, we are able to measure how “close” an almost-minimizer is to a half-plane solution
by the value of the monotone quantity at small scales (Proposition 6.1). We end the sec-
tion by showing that at most points in the free boundary, I't (u), there is a well defined
notion of normal derivative (and full gradient) for both the almost-minimizer, u, and the
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competitors, hy, .. Finally, at small enough scales, these derivatives are comparable to
one another, with an error that gets small with the scale (see Corollary 6.6).

In Section 7 we finish the argument, modulo some computations on harmonic functions
that we leave for Section 9. We show that if u is close to a half-plane solution (see
Definition 7.1 for what “close” means) in a ball, then an appropriately chosen hy, , is
also close (Lemma 7.2). A quantified version of the “improved flatness” argument of
Alt-Caffarelli [4], tells us that hy, . is even closer to a half-plane solution on a slightly
smaller ball (see Corollary 9.1 and the rest of Section 9 for this quantified “improved
flatness” argument). We are then able to transfer the improved closeness of hy, , to u
on this smaller ball and iterate to conclude regularity of the free boundary, Theorem 7.1

In Section 8, we use the results of Section 7 to prove bounds on the Hausdorff di-
mension of the singular set I't \ R of the free boundary, for almost-minimizers to the
one-phase problem. See Theorem 8.1.

Acknowledgments: All the authors would like to thank an anonymous referee whose
careful reading and comments greatly improved this manuscript. The first two authors
would like to express their gratitude to the Mathematics Department at the University
of Washington where part of this work was carried forward. This project was finished
while the authors were visiting MSRI in Spring 2017, the authors would like to thank
MSRI for its hospitality. The third author would also like to thank the Mathematics
Department at UC Berkeley.

2. Global minimizers and quantified connectedness

As in [9], one of the key steps for the regularity of the free boundary for almost-
minimizers is to get some control on global minimizers.

In this section we show that if u is a global minimizer, then {u > 0} is connected, and
use this to prove quantitative connectedness properties for almost-minimizers. While the
methods are different the results concerning the connectivity of {v > 0} are similar to
those obtained in [1] and [22].

We first define global minimizers. Let AL be constants such that 0 < A_ < Ay < oco.
We think about the functionals J and JT as defined by

J(w) = / o2 + A2 Xus0y + A2 Xpoco) (2.1)

and (for nonnegative functions v)

JHw) = / Vol + X2 Xgusoy, (2.2)

but since both integrals on R™ are probably infinite, we only define the local versions
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Jer@ = [ 10+ X xno 422 Xpac (2.3)
B(z,r)
and
Tl (v) = / Vol + 2% X{u>0}5 (2.4)
B(z,r)

where B(z,r) is a ball in R™ and v is any function of L'(B(z,r)) such that Vv €
L?(B(z,r)). For J*, we may also restrict our attention to nonnegative functions v, but
this will not matter.

Definition 2.1. We say that u € Kjoc(R™) is a global minimizer for J if
Jpr(U) < Jyr(v) (2.5)

for every ball B(x,r) and every v € L*(B(z,r)) such that Vv € L?(B(x,7)) and v = u
on OB(z,r).
Definition 2.2. We say that u € K;' (R™) is a global minimizer for J* if

loc
TE () < TE, () (2.6

for every ball B(x,r) and every nonnegative function v € L'(B(z,r)) such that Vv €
L*(B(z,r)) and v=u on 0B(z,r).

If we did not restrict to nonnegative v € L'(B(z,r)), we would get the same definition,
because the positive part v of v has the same trace as u and is at least as good as v.
The main result of this section is the following.

Theorem 2.1. Let v be a Lipschitz global minimizer for J or JT. Then the sets {x €
R™; v(x) > 0} and {x € R™; v(z) < 0}) are (empty or) connected.

In general, global minimizers are merely locally Lipschitz (see [4] and [5]) thus the
hypothesis that v is Lipschitz in all of R™ is not redundant. However, the uniform limit
of almost-minimizers, which are the objects to which we will apply this result, are global
minimizers which are Lipschitz in all of R™ (see Theorem 9.1 in [16]). General uniform
limits of almost-minimizers, as opposed to blowups, are not necessarily one-homogenous,
which complicates the proof. However, by the maximum principle, each non-empty com-
ponent of {#v > 0} is unbounded. This combined with control at infinity given to us by
the monotonicity formula of [5] will allow us to rule out multiple components.

Proof. Denote by M the Lipschitz constant for v. Suppose for instance that {z €
R™; v > 0} is not connected, and let U and V be different connected components of
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this set. We consider the functions f = 1yv and g = 1yv, which are both nonnegative
and M-Lipschitz (because v = 0 on 9U and 9V'). The product fg is identically 0, and
Af,Ag > 0 because Av = 0 on {v > 0}. This is enough to apply the monotonicity
theorem of [5] that says that F(R) = ¢7(R)¢4(R) is a nondecreasing function of R,
where

¢r(R) = R? / ||VJ;T(L )2| dz and ¢4(R) =R / v9|£2 da. (2.7)

B(0,R) B(0,R)

Since |V f(x)| < M, it is easy to see that ¢¢(R) < CM, and similarly ¢4(R) < CM; set

(= Jim F(R)= lm o5(R)6y(R). (28)
Thus ¢ < +00; let us check that ¢ > 0, or equivalently that F(R) > 0 for some R > 0.
Pick € U and y € V; then f(z) > 0, g(y) > 0, and f(y) = g(x) = 0. Thus Vf # 0
somewhere on [z,y], and similarly for Vg. If R is so large that [z,y] C B(0, R), then
F(R) > 0. Thus 0 < £ < +o0.
Next we will consider any blow-down limit of v, and at the same time f and g. For
any A > 0, define new functions vy, fx, and gy by

v(Az) f(Az) g(Ax)
A

s a(w) = \ ,gx(z) = P (2.9)

ua(z) =

and notice that all these functions are M-Lipschitz too. By Arzela-Ascoli, we can find
sequences {\;}; such that lim;_, - A; = 400, and the three sequences, {vy,}, {fx,;}, and
{gx,} converge, uniformly on compact sets, to limits that we denote by veo, foo, and goo.
We shall need to know that

Voo (#0) = foo(wo) when foo(z0) > 0. (2.10)

And indeed, foo(xo) is the limit of fy,(zo), so fx,(zo) > 0 for ¢ large, which means
fai(xo) = vy, (zo) by definition, and, therefore, vo(2g) = lim;— oo v, (Z0) = foo (o).
Next we want to check that for R > 0,

lim ¢;(\R) = R? / %dx:qsfw(}z) (2.11)

1—+o00
B(0,R)

(with the notation of (2.7) for fuo).
To prove (2.11) i 2 X |Vfs|? in L. This requires an
elementary argument using integration by parts and the uniform boundedness of the f,

in W1, However, this convergence actually happens strongly in Wlif . See Remark 2.1
for more details.
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The proof of (2.11) also shows that lim;_, 4o ¢g(AiR) = ¢4 (R). We take the product
and get that for R > 0,

67 (R)3g (R) = lim_6;(AR)S,(\R) = £, (2.12)

by (2.8). That is, the analogue of F for the functions fo, and g, is constant. Notice that
foo and g satisfy the assumptions of the monotonicity formula in [5], because they are
Lipschitz and foogoo = 0. A careful study of the equality case, done in [6], then shows
that f and g have the very special form below. Alternatively, this is also done with some
detail (but roughly the same ideas) in Lemma 19.3 of [18] (a paper that was started
after this one, but was finished faster). The special form is the following. There is a unit
vector e € R™, two positive constants o and 3, and a constant ¢ € R, such that

Fool@) = af(,€) — s and goo() = Bl(z,¢) — . (2.13)

The product «f is positive, because it is simply related to £ and ¢ > 0. Then (fy +
goo)(x) > 0 for all x € R™ such that (z,e) # c. We know from (2.10) that fo(x) =
Voo () When foo(z) > 0. Similarly, goo(z) = veo(x) When goo(x) > 0. We are left with
Voo () = (foo + goo) () almost everywhere, (2.13) determines vo,, and it is easy to see
that v is not a global minimizer. This contradicts Theorem 9.1 in [16] (because voo is
the limit of the minimizers vy,).

So {v(x) > 0} is connected; the fact that {v(z) < 0} is connected too (when we work
with J) is proved the same way. O

Remarks 2.1. We want to show that the convergence f\, = foo happens in the strong
WI})CQ sense. In the first version of this manuscript we had a long argument for this
fact, we would like to thank an anonymous referee for the considerably simplified version
presented below. Note, perhaps surprisingly, that we do not need A4 or A_ to be positive
here (and thus do not need such a condition anywhere in the proof of Theorem 2.1).
Recall that by Arzela-Ascoli we have that f), converges uniformly (up to a subse-

quence which we relabel) to f, on compact sets and by integration by parts that V fy,

o0

> to Vfsx. Again by weak star compactness we have that

converges weak-star in L
2 converges weak star in L™ to something.

Integrating by parts for a ¢ supported compactly in {vs > 0} we get that

(a further relabeled subsequence of) |V fy,

1 e 1
/</>|VfAi|2 = —/fxiWJ-foi = §/f§lAs0 = §/f§oA<p=/|Vfool2s0,

where we have used that Afy, = 0 on the support of ¢ for ¢ large enough.
This shows that the weak star limit of |V fy,|? is almost everywhere equal to |V fu |?

(as O{ve > 0} is a set of measure 0) which is enough for the convergence of the ACF

|2~™ is in L . we can write

monotonicity above. Then since |z loc



G. David et al. / Advances in Mathematics 350 (2019) 1109-1192 1119

n— ‘VfAz - Vfoo‘2
IV fxi = VisolZ2(0,r) <R" dex
B(0,R)
2 Vi -V
=R [ 95 (\R) + 67 (R) — — / %dw

Letting ¢ — oo and using the L> weak star convergence of V fy,, the local integrability
of Vfy._|z|>~™ and the fact that ¢s(\;R) — ¢y (R) we get that the Vfy, = V[ in
L120C'

We now use Theorem 2.1 to find paths inside {v > 0} that connect two given points
and don’t get too close to the free boundary. In order to simplify notation, we will use
£(v) to signify the length of a curve, 7 : [0,1] — R™. Eventually the existence of these
paths will allow us to establish NTA conditions, but we start with a simpler result.

Theorem 2.2. Let Q C R™ be bounded and g+ € L () NC(Q) be given, and assume that
g+ > co > 0. Then, given M > 0, and 0 € (0,1), if u is an almost-minimizer for J or
JTin Q with ||Vu|| o) < M, there exists Co = Co(M,0) > 0 and o = ro(M,0) >0
such that for r € (0,r9) and z, y € {u >0} NQ with

min{dist (z, Q°), dist (y, Q%) } > Cor
|z —y| <r (2.14)
min{d(z),d(y)} > Or

(where 6(-) = dist (-, T (u)) and T (u) is as in (1.2)), there exists a curve, v : [0,1] —
{u > 0} NQ, satisfying

7(0) =2 and v(1) =y
dist (v([0,1]),TF(u)) > Ci'r (2.15)
Uy) < Cor

Remarks 2.2.

(1) The reader is possibly surprised that we require a full Lipschitz control of u on 2
(and maybe to a lesser extent, that ¢4 is continuous on the whole 92), but this is
no more than a way to assert that we do not look for a control near 02. Indeed,
if ||[Vul|2(q) < oo, for instance, then wu is Lipschitz on every compact subset of (2
(see Theorems 5.1 and 8.1 in [16]); so we can apply Theorem 2.2 to any relatively
compact subdomain of 2.

(2) The statement is more difficult to prove (and hence we expect a larger Cp) when
6 € (0,1) is small. Also, if x, y are as in Theorem 2.2 and min{d(z),d(y)} > 2r,
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then since |z — y| < r the segment joining z to y satisfies (2.15). Thus in the proof
of Theorem 2.2 we will assume min{d(z), §(y)} < 2r.
(3) If v is as in Theorem 2.2, since £(y) < Cor then diam~y < Cor and we get that for

z €~([0,1]),

r _ diam~y _ |z — x|
6 > — > >
B=g =@ Z

(2.16)

(4) In our statement Cy and ro depend on our choice of €, ¢, and ¢_, but what really
matters is to have the lower bound, ¢y, on ¢+ and a (uniform) modulus of continuity
for gy, and g_ on ; the proof would be almost be the same as below, except that
we would also let €2, g4, and ¢q_, vary along our contradiction sequence. We will not
need this remark, and in fact we only need Theorem 2.3 below.

Proof. We proceed by contradiction, using a limiting argument as well as the information
we have about global minimizers. Let €, ¢, ¢—, M, and 6 € (0, 1) be given, and suppose
that for all £ € N there exist an almost-minimizer, uy, for J (resp. J) in Q such that
[Vug|lL~) < M, a sequence {ry} with limy_,o 7 = 0, and points xy, yr € {up >
0} N such that

min{dist (zy, Q°), dist (yx, Q°)} > 2%r,,
2k — Ykl <7k (2.17)
Ory < min{d(zx), 6(yr) }

and for any curve v : [0,1] = {ux > 0} with 74(0) = z, and v, (1) = yg, either

dist (v (), T (ug)) < ;—: for some ¢ € [0,1] (2.18)
or
() > 25y, (2.19)

We may assume that §(zx) < 6(yx). Pick Ty, € Tt (ug) such that |z — T = 6(zx). As
mentioned in the Remark 2.2, |z, — ZTi| < 21y, because otherwise the segment [z, Y]
would yield a curve 4 for which (2.18) and (2.19) fail. Thus B(Zy, 2 1ry) € Q for
k > 2, by (2.17). Let us restrict to k > 2 and set

u(rgx + Tg)

for x € B(0,2F71). (2.20)
Tk

vp(x) =

By assumption ||Vug||eo < M, so vy is M-Lipschitz on B(0,2*~1). Also, uy vanishes at
T € ' (ug), hence vi(0) = 0. Modulo passing to a subsequence (which we immediately
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relabel) we may assume that {vj} converges, uniformly on compact subsets of R™, to an
M-Lipschitz function vae.

Since € is bounded, we may also assume that limy_,o Tp = Too € §2. Set qi(a:) =
g+ (rxx+Tk); we have the same L bounds on the q:kt as on ¢4, and since ¢4 is continuous
on Q, {g%} converges to the constant ¢+ (T ), uniformly on compact subsets of R™. This
is where, if we wanted to prove that Cy does not depend on 2 or the ¢+, we would use
a uniform modulus of continuity and get that {qi} converges to a constant.

Each vy is an almost-minimizer for J; (resp. for J;7) in B(0,2*~1), corresponding to
the functions ¢% (and the constant 7{x). Theorem 9.1 and (the proof of) Theorem 9.2
in [16] ensure that v, is a global minimizer of J, (resp. J1) in R", associated to the
constants Ay = ¢+ (Two), as in Definition 2.1 or 2.2. It is also M-Lipschitz, so we may
apply Theorem 2.1 to it. We get that {v > 0} is connected.

We now compare {vs > 0} to the sets {uy, > 0}. This is the place in the argument
where we will use our assumption that ¢ > c¢o > 0, through the non-degeneracy of wuy
and v.,. We may assume, at the price of an additional almost-minimizers extraction,
that the sets

Ap = {or > 0} = %({uk > 0} — 77) (2.21)

converge, in the Hausdorff distance on every compact subset of R™, to some (closed) set
Ao. Let us check that

int Aoo = {vee > 0}. (2.22)

If p € int Ay, there is s € (0,1) such that B(p,s) C As. Thus for k large enough
B(p,s/2) C Ay = % ({ur > 0} — Tx). That is, By := B(rgp + Tg, s71/2) C {ur > 0}.
Recall that B(T, 25 1r,) C Q; thus for k large, By lies well inside €2, where we also
know that uy is M-Lipschitz; then Theorem 10.2 in [16] ensures that there is 7 > 0 such
that for k large, ug(rip +Tx) > nsri/2. Thus v (p) > ns/2 for all k large, which implies
that veo(p) > ns/2 and p € {ve > 0}.

Conversely, let p € {ve > 0} be given. Then for k large enough vi(p) > voo(p)/2. Set
B = B(p,vs(p)/(4M)); since vy, is M-Lipschitz, we also get that vi(q) > veo(p)/4 for
q € B. That is, ug(rgq + Tg) > Voo (p)rx /4. Hence r.q + T C {ug > 0} and g € Ay =
%({uk > 0} — 7x). Thus B C Ay, for k large, and it follows that p € int Aso; (2.22)
follows.

Next consider the points @} = 7, ' (2 — Zr) and y, = 7. '(yx — Tx). Notice that
|z}, — il < 1 by (2.17), and |2}| = r;'ox — x| < 2 (see below (2.19)). Thus we
can assume, modulo extracting a new subsequence, that {x%} converges to some point
2’ € B(0,2) and {y} } converges to y' € B(0,3). Moreover, by (2.17)

Ory, < 6(zx) = dist (zg, T (ug)) = dist (z, {ur, < 0}) = rpdist (2}, R™\ Ag)  (2.23)
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because dist (zy, R™ \ ) > 2%, is much larger than §(x), and by (2.21). Thus for
z € B(x',0/2), we get that for k large

dist (z, R™ \ Ag) > dist (2, R™ \ Ag) — |z — 2'| > dist (2}, R™ \ Ag) —

hence by (2.22) B(z/,0/2) C int Ass = {veo > 0}. By the same proof, B(y',0/2) C
{Voo > 0}.

By Theorem 2.1, {vs > 0} is connected, hence there is a path 7 : [3, 2] = {ve >
0}, with (0) = 2/, and F(1) = . We may even assume (since {v,, > 0} is open)
that 7 is smooth, and in particular it is L-Lipschitz for some L > 0. Also, set 7 =
dist (Y([3, 2]), {vae < 0}); then 7 > 0 because ([0, 1]) is compact and {vee < 0} is
closed.

For k large, we can complete ¥ by adding a small segment from z, to =’ at one end,
and another one from y’ to y;, at the other end; we get a new path 7y, : [0, 1] = {veo > 0},
whose length is £(7;) < L+1 (for k large), and such that dist (Y ([0, 1]), {ve < 0}) > 7/2.
Finally set v, (t) = Ty + m17x(¢) for ¢ € [0,1]; we want to show that, for k large, the
existence of ~; violates our initial definitions.

First of all, v,(0) = Tk, + riz), = xk, and (1) = Ty + rxy), = Yr. Next let us check
that for k large,

dist (v (t), " (ug)) > 7/4 for t €[0,1], (2.24)

and hence (2.18) fails. Notice that

dist (’yk(t), {uk Z 0}) = T'kdiSt (ﬁk(t), {’Uk 2 0}) = deist (ak(t),Rn \ Ak)
> rp[dist (Fx (1), R™ \ Awo) — 7/4] (2.25)

by (2.20) and (2.21), and because A is the limit of the Ax. Now R™ \ A C {voo < 0}
by (2.22), so dist (Fx(t), R™ \ Aso) > dist (Fx(t), {vee < 0}) > dist (F([0,1]), {vee <
0}) > 7/2 and so dist (yk(t),{ux > 0}) > 7/4. So it is enough to check that
dist (v (), T (ug)) = dist (y(t),{ur > 0}), or equivalently that dist (yx(t),R™ \
Q) > dist (v (t), {ur > 0}) (recall the definition (1.2) and that ug(yx(t)) > 0). But
|7k (t) — 25| < €(7k) < L+1 because x}, = (0), hence |y (t) — x| < (L4 1)ry (because
Ty = T), + ra}), while on the other hand dist (zg, R™ \ Q) > 2Fr; by (2.17); this proves
(2.24) and the failure of (2.18).

But (2.19) also fails for k large, because £(v) = rpl(Fx) < (L+1)rg; this contradiction
completes our proof of Theorem 2.2. O

We now use Theorem 2.2 to prove that, under suitable assumptions, the open set,
{u > 0}, is a locally-NTA open set in 2. We need some definitions, which are just local
versions of the standard definitions for the Non-Tangentially Accessible (NTA) domains
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of [25]. Here U will be a bounded open set, and since we are thinking of U = QN {u > 0}
for some almost-minimizer u, let us not require U to be connected.

Let us first define corkscrew points for U. Let z € QU and r > 0. We say that = is a
corkscrew point for B(z,r) (relative to U), with constant C; > 1, when © € UNB(z,7/2)
and dist (z, 0U) > Cy 'r. We say that y is a corkscrew point for B(z,7), relative to R™\U
and with constant C; > 1, when y € B(z,7/2) \ U and dist (y, 0U) > Cy 'r.

Finally, given x,y € U, a Harnack chain from x to y, of length N > 1 and constant
Co > 1, is a collection, By,..., By, of balls, such that z € By, y € By, Bj11NB; # 0
for1<j< N -1, and

Cy 'diam (B;) < dist (B;,0U) < Cydiam B; for 1 < j < N. (2.26)

Definition 2.3. Let Q C R™ and U C Q be open sets. We say that U is locally NTA in §)
when for each compact set K C Q, we can find r1 > 0, and C1,C5, and C3 > 1, such
that

(1) Forx € KNoU and 0 < r < rq, there is a corkscrew point for B(x,r), relative to
U and with constant Cy;

(2) Forx € KNOU and 0 < r <y, there is a corkscrew point for B(x,r), relative to
R™\ U and with constant C1;

(3) Forz,y € KNU, with |x—y| < r1, and ¢ € N such that min(dist (z, OU), dist (y, OU) >
2742z — y|, there is a Harnack chain from x to y, of length N < C3f + 1 and with
constant Cs.

Notice that nothing prevents U from having more than one connected component, but
if this happens, the components must be distance greater than r; from each other inside
any compact set, K. We are ready to state the local NTA property of U = {z > 0} for
almost-minimizers for J and J.

Theorem 2.3. Let g1 € L>®(Q)NC () with g+ > co > 0, and let u be an almost-minimizer
for J or JT in Q. If u is an almost-minimizer for J, assume in addition that 0 < q_ < q4
on Q, or that g— > ¢y >0 on Q. Then U = {z € Q; u(x) > 0} is locally NTA in Q.

The main ingredient will be Theorem 2.2, together with non-degeneracy estimates for
u and some geometry. We could ask for more precise estimates, in particular concerning
the way that r; and the NTA constants for K depend on ¢, dist (K,9%), a bound for
Jo IVul?, and a modulus of continuity for g+ near K. Nevertheless since Theorem 2.2
was obtained via a compactness argument these bounds will not be explicit.

The trickiest part of the proof is to make sure that we do not get too close to 92 in
our constructions. Without worrying about this (important) detail, the argument works
roughly as follows: interior /exterior corkscrew points are given by the non-degeneracy of
almost-minimizers. To construct a Harnack chain between points z,y € U, we first use



1124 G. David et al. / Advances in Mathematics 350 (2019) 11091192

the existence of corkscrew points to create a sequence of intermediate points between x
and y. Then we use Theorem 2.2 to connect these intermediate points by curves which
are not too long or too close to I'"(u). A collection of balls centered around points on
these curves will then satisfy the Harnack chain condition. With this outline in mind,
we now present the details.

Proof. Let Q, ¢+, u, be given as in the statement, and (for the verification of Defini-
tion 2.3), let a compact set K C Q be given. We need a little room for our construction.
Pick a relatively compact open set 5 in €2, such that K C ; CC Q.

By Theorems 5.1 and 8.1 in [16], u is locally Lipschitz, so we can find M > 0 such that
|Vu| < M on Q. Since ¢4 and ¢_ are continuous on 9€2;, we can apply Theorem 2.2 to
the restriction of u to 2y, with a constant 8 that will be chosen soon; this gives constants
Co(0) and ro(0) so that the conclusion of the theorem holds.

We start our verification with corkscrew points. Set ro = 10~ dist (K, 9Q;) and K; =
{z € Qy;dist (2, K) < 7“2}. We even want to find corkscrew points for balls centered on
KiNnou.

For U itself, we get them from Theorem 10.2 in [16] (i.e. the non-degeneracy of almost-
minimizers), and we do not need our extra assumption on g_. For R™ \ U, we get the
corkscrew points from Proposition 10.3 in [16], and our extra assumption that g_ < g4
or q_ > cg is used there, to get one of the sufficient conditions of (10.52) or (10.53) of
Lemma 10.5 there. This is actually the only place in the proof where we need these extra
assumptions, so without them we still have local interior NTA properties. More precisely,
we get a radius r3 > 0 and a constant Cy, that depend on u and K (through ¢g, M and
dist (K, 081)), such that for z € K1 N OU and 0 < r < rj3, there is a corkscrew point
Ay (z,r) for U, and a corkscrew points A_(z,7) for R™ \ U, both with the constant C.
Of course we can take r3 < $dist (K,981), so Ay (x,r) still lies well inside €.

We are left with the existence of Harnack chains in U. Let z,y € U be given, and
set d = |z — y|. Thus we assume that d < ry, and we will choose r; < dist (K, 9€;)/10,
so d < dist (K,094)/10. Set 6(z) = dist (x,0U) for z € U. If §(x) > 2d, the single
ball B(xz,3d/2) makes a perfect Harnack chain from x to y, so we may assume that
d(z) < 2d < dist (K,084)/5, and similarly 6(y) < 2d < dist (K, 9€1)/5.

Let us first find a nice chain of points from z to y. Let T € 99 be such that |z — | =
d(z). We will choose 1 < r2/10, so |z —T| = §(z) < 2d < 2ry < ry/5 and T € K; since
r € K. Set z), = A (z,27%d) for k > 0; those are well defined (if r; < r3/10). We stop
the construction as soon as 27%d < §()/2, say, because after this we get too close to
U for our purpose.

Similarly pick 7 € 99 such that |y — 7| = 6(y), and define y, = A, (7,27%d) for k > 0
such that 27%d > 6(y)/2. Notice that in both case, we keep at least one point (zq or o).

Our string of points is the collection of points zp and yi. We now say how to define
a curve that connects all these points, and later use that curve to find a Harnack chain.
First consider two consecutive points zj and x4 in our chain that goes to x. We want
to use Theorem 2.2 to find a curve v, in U, that goes from xj to x4q. Set r» = 27%+1q
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and observe that |z, — 2141| < 27%+1d because z, € B(%,27%d) and similarly for zj1;
thus the middle constraint in (2.14) is satisfied. Also, r < 2d < 2ry < r¢(0) if 1 is small
enough. We add that dist (z, Q) > ro because z € K1, and similarly for z;41, so the
fact that r < 27, takes care of the first condition in (2.14) if 2Cy(0)r1 < 9. So we just
need to make sure to choose r; after 6.

For our final constraint of (2.14), notice that by definition of a corkscrew point, §(zy) >
Cr'27%d = C7'r/2 and §(2pyq) > C7'27F71d = O7 /4. So taking 6 < O 'r/4 is
enough to get (2.14) here. We apply Theorem 2.2 and find a path 4 in U, from xj to
Tiy1, with length at most Co(8)r = Co(0)27%+1d and that stays at distance at least
Co(0)~tr from I't(u) (or equivalently from OU, because 92 is much further from ~;
than T'F(u) is).

We also find a path 7, from yy to Y41, when 27%~1d > §(y)/2, with similar properties.
And three additional paths, a path vgo from xg to yo, a path ¢ from x to the last zy,
and a path 7y from y to the last y,. The constraints are similar, but the reader will be
happy that we don’t check the details, and if we pick § small enough compared to Cy !
(which depends on uw and K7, but not on r;), and then r; small, we can construct all
these curves. Let us put all these curves together, to get a long curve I' from x to y.

It is easy to see that each of the curves above can be covered by a Harnack chain of
length at most C' that connects its endpoints, and with a same constant Cy = 100C7,
say. If £ € N is, as in Definition 2.3, such that min(§(x),d(y)) > 27|z — y| = 27*d, we
see that we needed at most 2¢ 4+ 10 curves in our construction. Thus we get a Harnack
chain from z to y, with length less than C¥ + 1, as needed.

This completes our verification of the Harnack chain condition: Theorem 2.3 fol-
lows. O

For the convenience of the reader, we mention an obvious corollary of Theorem 2.3 in
the two-phase case. Note, by convention, if one coefficient dominates the other we always
relabel them so that ¢, > ¢_; thus in Corollary 2.1 below, we merely assume that both
g+ are non-degenerate.

Corollary 2.1. Let g+ € L>®(Q) N C(Q) be such that min(q_(z),q+(x)) > co > 0 on ,
and let u be an almost-minimizer for J in Q. Then Uy = {z € Q; tu(z) > 0} is locally
NTA in Q.

3. Harmonic functions and almost-minimizers

In this section we prove that, under the same non-degeneracy assumption as in The-
orem 2.3, if u is an almost-minimizer for J or JT in €2, then non-negative harmonic
functions on Q N {u > 0} which vanish continuously on I'* () inherit the behavior of u
at the free boundary. Thus, in particular, they vanish linearly at the free boundary. This
will be helpful later, as harmonic functions are very useful as competitors.
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The assumptions on 2, the ¢4+, and u will be the same for all this section, so we state
them now. These are also the assumptions of Theorem 2.3, which will be quite helpful.

Let Q C R™ be an open, connected, and bounded open set, and let ¢_ and ¢4 be
bounded continuous functions on 2. We assume that for some ¢y > 0,

q+(z) > ¢o forz € Q (3.1)
and (for the later results)
0<qg_<gyonf or g_>cy>0ond (3.2)

Of course, if these assumptions are not satisfied on the whole €2, we can always try to lo-
calize, since the restriction to 27 C Q of an almost-minimizer in €2 is an almost-minimizer
in Q4. Finally we give ourselves a function u on €2, and assume that

u is an almost-minimizer for J or J* in Q. (3.3)

Set U = {z € Q; u(z) > 0}; thus Theorem 2.3 says that U is locally NTA. Also set
't =T"(u) =QNaU, as in (1.2); for xg and 0 < r < dist (zg, IN), we define a function
hg, r by the facts that hy, , € VVI{)CQ(Q),

hyyr =u on Q\ [B(zg,r)NU], (3.4)

and [ Blao.r) |Vhy,.r|? is minimal under these constraints. Here (3.4) is our fairly clean
way to state the Dirichlet condition hg,, =w on [U NIB(xg,r)] U [0U N B(zg,T)]. The
existence is fairly easy, by convexity and because u itself is a candidate, and it follows
from the definitions that h, , lies in the class K () of acceptable competitors. Finally,
since hy, , minimizes fB(mO,T) |Vhy,.r|? locally in B(zg,r) N U,

Ahgyr =01in B(zg,r)NU. (3.5)

We are interested in the properties of hy, ,» near OU, which we shall obtain by comparing
with u and using the local NTA property of U. We keep the notation

§(z) = dist (2, T'7) = dist (2, QN OU) for 2 € U. (3.6)

Recall that we want to get information on OU; for this a good control on harmonic
functions like the hg,, will be useful, but for the moment we control u better, because
of its almost-minimizing property; thus we want to compare the two. We start with an
estimate where we show that u — hg, , is small in the part of U N B(xg,r) which does
not lie to close to OU. For this we will just need to know that u almost-minimizes the
functional, and hy, , minimizes a similar energy; in particular, we will not use (3.2) or
the NTA property yet.
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Lemma 3.1. Let Q, g1, and u be as above. For each ro > 0 we can find py € (0,79) such
that if Q, q+, u, and U are as above, and if xg € T (u) is such that B(zg,2r9) C €,
then for r € (0, po] the harmonic competitor, hy, », defined above, satisfies

(1 — r2EYu(z) < hyyr(z) < (1 + 75 )u(z), (3.7)
for all x € U N B(xg,r) with §(z) > r'te/sn,

Remark 3.1.

(1) The reader should not be surprised by the various powers of r that show up in this
section. Using powers of r is just our way of grading the size of errors in a simple
way; in particular we don’t claim that the powers are optimal.

(2) We could easily improve our control on pg. The way we stated things, it would seem
that po depends also on Q, g+, and even u. In fact py depends only on n, ¢y (from
(3.1)), llgx |z, &, @, 7o, and a bound on [, |Vul?.

Proof. Let zp and r be as in the statement, and set B, = B(zg,7) and h, = hy, , for
convenience. We first use the minimizing property of v and the definition of h, to prove
that

/|Vu — Vh,|? < Cr™te, (3.8)

B

with a constant C' that depends on n, ||q+|/ze=, &, a, ro, and a bound on [, [Vul? (we
don’t need ¢y but this does not matter).
Notice that for ¢ € R, the function w; = h, + t(u — h,.) also lies in VVllof(Q) and sat-

isfies the constraint (3.4), so the minimizing property of h, implies that [ . |[Vh.|> <
I v |Vwe|? for all t and hence

/ (V(u— hy), Vhy) =0, (3.9)

B,.NU
Then
/|Vu—vm\2= / |Vul? + / |Vh,|* -2 / (Vu, Vh,.)
B, B,.NU B,.NU B,.NU
- / Vul? + / Vi, |2 — 2 / Vh, |?
B,.NU B,.NU B,.NU

_ / Vul? - / Vh, |2 (3.10)

B,.NU B,.NU
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:/|vu|2—/|vm|2.

B, B,

But v is an almost-minimizer for J or JT, so by (1.10) or (1.13),

/|Vu|2+/in{u>0}+q%X{u<0} < (1+/<Vra){/|Vhr‘2+/QiX{hT>0}+Q3X{hr<0}}-
B, B, B, B,

A maximum principle argument with h, in U N B,. shows that h, > 0 in U N B,., hence

/QiX{hr>O} + @ X{n. <0y < /QiX{u>O} + ¢ X {u<0}
B, BT

and we are left with

/ Vuf? — / T, [2 < / Vhy[? 4+ r® / P x(us0r + € X{uco)
B, B, B,

T

< Kkr® / |Vu|? 4+ Crrte, (3.11)

B,

where the constant C' depends on the ||g+||oc. We now use a bound on [, |[Vul? (and
actually a bound on fB(wo,2ro) |Vu|? would have been enough) to get a Lipschitz bound
on the restriction of u to B(zg,ro), from which we deduce that fBr |Vul? < Cr™, with
a constant C that depends on the various quantities mentioned in the statement of
Lemma 3.1, (including rg, but not ¢p). Now (3.8) follows from (3.10) and (3.11).

It follows from (3.8) and Poincaré’s inequality that

][|u — h,|? < Cr? ][ |Vu — Vh,|* < Cr?te. (3.12)
B, B,

Next we want to use (3.12) to control u — h, and prove (3.7). But let us first check
that

0(x) = dist (z,0U) <r forx € UN B,. (3.13)

(That is to say, that 9 is further from = than I'" (u).) Recall that 6(z) = dist (z, QNOU).
If z € B,, then §(x) < r because x € B, = B(xg,r) and zg € ' (u). But dist (z,0Q) >
ro because B, = B(xg,7) C B(xg,70) and B(zg, 2rg) C §2; hence 6(z) = dist (z, 0U), as
needed for (3.13).

We shall use the fact that

C'5(z) <u(x) < Co(x) forx € UNB,, (3.14)
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with a constant C' that depends on the various quantities mentioned in Remark 3.1.1.
The upper bound comes from our Lipschitz bounds on « (Theorems 5.1 and 8.1 in [16]),
and the lower bound, which also uses the fact that g > ¢g > 0 on €, comes from
Theorem 10.2 in [16]. Set

Z = {erﬂBr; 0(z) >r1+o‘/8"}; (3.15)

this is the set where we want to show that (3.7) holds. Also set
A, = {x € Q; Ju(z) — ho(z)] > 7~1+a/4} . (3.16)

Notice that A, C UN B, by (3.4). If x € Z \ A, then by (3.14)
lu(z) — by ()| < riHe/t < Crttelds(z) tu(z) < Croftr=o/3my(z) < ro/3mu(z) (3.17)

(if r is small enough and because n > 1), and so (3.7) is satisfied. So we just need to
show (3.7) for z € Z N A,.

Let x € ZN A, be given. By (3.13), B(z,0(z)) C U and, since h, is nonnegative and
harmonic in B, N U,

sup |Vh,| < Co(x) " h.(2). (3.18)
Bz, 2

Besides, Chebyshev’s inequality, combined with (3.12), yields

H™(A,) < Cro/?H1™(B,), (3.19)

14+a/2n

so A, does not contain any ball of radius larger than Cr , and we can find y €

R™\ A, such that

14+a/8n §
|z —y| < Crite/?n < I~ < 3z) (3.20)
3 2
if 7 is small enough and because z € Z. Thus y € B(z,0(z)/2), we may apply (3.18),

and we get that

|ho(z) = he(y)| < |z —y| sup  [Vh,| < Cpita/an (@)
B(z,2%) o(x)

he(x)
T1+a/8n

(3.21)

< CT1+Q/2n

< Cro/mp,(x)

because x € Z. We also know that u is Lipschitz near B,, so |u(z) —u(y)| < Clz —y| <
Crite/2n Finally, y € R\ A, so0 |h,(y) —u(y)| < r'Te/* (evenif y ¢ UNB,). Altogether,
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[ () — u(@)| < [he(2) = e (Y)| + [2r(y) — w(y)] + |uly) — u(2)]
< C?“a/4nhr(l‘) + r1+a/4 + Crl+a/2n < Cra/4nhT<x) + Cr1+a/2n.
(3.22)

Recall from (3.14) and (3.15) that u(z) > C~'6(x) > C~1r1T/87 50 (3.22) implies that
he(z) > u(z) — Or®/*h,(z) — Ortte/2n > g-1plta/8n _ opaling () (3.23)

hence also h,(z) > C~'r1+®/87 Therefore, the second term on the right hand side in
(3.22) satisfies

Critel?n < ¢ @ he(z) < Cro/*mh, (z)
— r1+a/87l T — T
and (3.22) implies that
|he () — u(zx)| < Cr/*mh,(z) (3.24)

or equivalently 22 ¢ (1 — Cro/*n 14 Cre/*). Of course (3.7) follows, and this com-

u(x)
pletes our proof of Lemma 3.1. O

Our next task is to control the ratio u/hy, , on a larger set that gets closer to zo,
and for this we shall use non-tangential cones and the local NTA property of U. For
xo € I't(u) and A > 1, define a non-tangential cone, I 4(z), by

Pa(wo) ={x€U: |v—mzo| < Ad(x)}, (3.25)

where we still denote U = {z > 0} and é(x) = dist (2,2 N OU). We claim that we can
find A > 1, and a radius p; € (0, po) such that if B(zg,2r) C €2, there is a curve v,
such that

Yzo C T a(xo) starts from xg and ends on T'4(z) N OB(xg, p1). (3.26)

This is a fairly standard fact that follows from the fact that U is locally NTA in €2, but let
us say a few words about the proof. First observe that we can restrict our attention to the
compact set K = {x € Q; dist (z, 00) > 7“0/2}, because we assume that B(xg,2rg) C Q.
Then we can apply Theorem 2.2 and the proof of Theorem 2.3 to find corkscrew points for
U and curves that connect them. We proceed roughly as in the final step of Theorem 2.3.
For k € Z such that 2* < Cyp,, we select a corkscrew point z;, for U in B(xy, 2’“). Such
points exist by Theorem 2.3 if, say, p1 < Cy !po. In addition, we can connect each zj, to
zi—1 with a nice curve v, C U, as in Theorem 2.2. We take for v(zg) the concatenation
of all the ~, all the way up to the first point when we reach dB(xg, pg) for the first
time. The verification that v C I'4(x) for A large is easy: the points of v, all lie within
C2* from 2, (hence, also from ), and at the same time at distance larger than C 12"
from OU.
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Remark 3.2. Let us again comment on the constants. Here we found p; and A that
depend on 2, g+, u, and of course rg. But in fact, we claim that we can choose A and
p1 depending only on n, cq, ||¢+|/L=, &, @, 79, a bound on fQ |Vu|?, and also a modulus
of continuity for ¢+ and g_ on B(zg,979/10). Compared to our similar statement in
Remark 3.1.2, we also added the module of continuity of the ¢+, because it may play
a role in the local NTA constant for QU at the scale rg, as mentioned in Remark 2.2.4.
This observation will apply to most of the results below, and we shall refer to the list of
quantities above as “the usual constants of Remark 3.2”.

We shall naturally restrict to constants, A, for which the curves 7,, of (3.26) exist, and
as usual taking A even larger will only make other constants larger. We shall estimate
|hgo,r — | near xo by comparing hy, , to hy, s, for judiciously chosen numbers s € (0,7),
and for this we intend to use the local NTA property of U. We claim that there exist
constants n € (0,1) and C5 > 1, that depends only on the usual constants of Lemma 3.1
(through the local NTA constants for U), such that if 0 < s < r < pp, then

hxo,r(iﬂ) - hzo,r(y) hmo’r(x) |£E _ y‘ n
harg s () hmo,s(y)‘ =G ) ( - ) (3.27)

for x,y € UNB(zo, s/2). The point is that both Ay, , and hg, s are nonnegative harmonic
functions on U N B(xg,s) (by (3.5)) that vanish on 0U N B(xg, s); then (3.27) follows
from the results in [25] (with a simple adaptation to locally N TA domains), which use a

boundary Harnack inequality to prove the Holder regularity of 5 Dag.r up to the boundary.
Q>
We shall now improve on the previous lemma, and approxmlate u by hg,, in the

non-tangential cone, T 4 (o).

Lemma 3.2. Let Q@ C R", g1 € L>®(Q) N C(Q), and u (an almost-minimizer for J or
JT) satisfy the assumptions (3.1)-(3.3) of the beginning of this section. For each choice
of o > 0 and A > 1, there exist constants ps € (0,r9) and § € (0,a/16n), with the
following properties. Let xg € TV (u) be such that B(zo,2rg) C Q; then for 0 <r < pa,
the function hy, ., defined near (3.4), satisfies

(1 —7PYu(z) < hgy () < (1 +72)u(z) (3.28)
for & € B(xg, 10r'T/17) AT 4 (o).

In fact, the proof below and Remark 3.2 will show that po and 8 depend only on A
and the usual constants of Remark 3.2.

Proof. Let A > 1 be given. We can safely assume that A is large enough for (3.26).
Then, let g € ' (u) and ry > 0 be such that B(zg,2r) C Q.

For 0 < s < py, we can use the path 7,, of (3.26) to find a point z(s) € v, NOB(x, 3);
thus
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|z(s) — xo| = s and 0(z(s)) > s/A (3.29)

because z(s) € T 4(xp). We may now apply Lemma 3.1; if 0 < r < pg, we get that (3.7)
holds for z € U N B, such that §(x) > r'+2/87 In particular, taking z = 2(s), we see
that

haor(2(5))

7,’,,04/871 ,,,a/Sn )
u(2(5)) el , 14 ] (3.30)

for

Artte/sn < g <, (3.31)

Let v > 1 be such that v2 < 1+4a/8n. For instance, v just a bit larger than 1+a/18n will
do. Set s(r) = 7, and then define si(r) by induction, by so(r) = r and sk11(r) = s(sk(r))
for k > 0. Notice that s(r) < r (if r < 1), and sa(r) = P > Aplta/8n for 0 < r < p, by
definition of v and if py is chosen is small enough. Thus (3.30) holds for so(r) < s < s(r).

Fix r < py (with ps small enough), and now set rp = sx(r), 2x = 2(sk(r)) and
hi = hyy s,.(r)- We just observed that

€1 —ro/3 14 72/87] for £ =1,2 (3.32)

but we may also apply this to the radius ry = si(r) and the corresponding function hy,
and we get that

hi(Tr+e)

a/8n a/8n
ell—r 1+ for=1,2. 3.33
U($k+e) [ k k } ( )

We apply this with k and ¢ = 2, then £+ 1 and £ = 1, then divide and get that

hi(wri2)  Pe(zeee)  u(Trio)
her1(Trv2)  w(Tps2) b1 (Triz)

€ [1—3r/8m 14 3r0/57, (3.34)

Next we use the fact that for j > k + 2, |z; — zkyo| < |x; — ®o| + |20 — Tpta| <
5;(r) + Spg2(r) =15 + rpgpo < 2142 (because s(p) < p); then by (3.27)

h hi (x5 h 2 K -
p(zrt2)  w(z;) <y k(Tht2) ( Tk+2> < 4037«25:1 b (3.35)
hry1(Try2)  Prya(z)) hicer (Zr42) \ e
because ry12 = $(rg41) = TZ+1' Thus for j > k + 2,
h i a/8n - ajon -
—k(%) el- 3Tk/8 - 4037'2371 1), 1+3r, /oy 4037023?1 1)]- (3.36)

Pis1(y)
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We take logarithms, notice that C3 > 1 and v — 1 < «/8n, restrict to r small, and get
that

| (A () — W(hip(z;))] < 8Car Y. (3.37)
Then we fix j, sum over k < j — 2, and get that

| In(ho(z;)) — In(hj—1(z;))| < 8Cs Zrn(v 2 C(n)r=b, (3.38)

We add a last term that comes from (3.33) (with £ = j — 1 and £ = 1), and get that
‘ In(ho(z;)) — ln(u(mj))‘ < C’(n)r”("_l). (3.39)

This looks a lot like (3.28), but along the specific points {z;}, whereas we need an
inequality at generic points in T'4(zg). Yet we are ready to prove (3.28), with 8 =
na/18n > 0.

Let € T 4(xo) N B(xg,71) be given. Let k be such that ri1o < | — zo| < 7541, and
notice that k£ > 0. Also observe that |z — zi11] < |z — zo| + |To — Tht1] < 27k41.

Let us copy the proof of (3.32). Since r42 < |z — o] and « € T'4(x¢), the definition
yields 6(z) > A7 — xo| > A7 rpyo = A_lrz2 > r,iJra/s because 72 < 1+ a/8n and
ri < po is small. Then (3.7) holds for hy = hyg 1\, i€,

€ [1—r2/5 1 4 p0/80, (3.40)

Then we apply (3.27) to ho and hy = hy, ., and the points ;41 and z. We get that

haor(Trt1) hmo,r(x)

< (s
hl’oﬂ“k (karl) hwoﬂ“k (x)

hi(zry1)  he(z)

’ho(zk-&-l) ho()

P r(Th11) <$k+1 - f'3|>77
h:bo,’l“k (xk‘+1) Tk
(3.41)

But we said that |21 — 2| < 2rppq = 2r), and hgy (k1) < 2hagr (Tr41) by (3.38),
SO

r

_ n
<20, <M> < 4C 7Y, (3.42)
k

So we know that hg(z)/u(x) is close to 1 by (3.40), that ho(z)/hx(x) is close to
ho(zk)/hi(xg) by (3.42) and that ho(xg)/hi(zr) is close to 1 by (3.38); this proves
that ho(z)/u(z) is close to 1, and more precisely that

ho (.’L’)

u(x

- 1’ < 2" 4 20 ()10 4 80T < O ()0, (3.43)
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We picked « just a bit larger than 1+ «/18n, as announced, and this way y—1 > «/18n,
and (3.28), with 8 = na/18n > 0, follows from (3.43). Finally, our proof holds for all
x € B(xg,r1) NTa(z0) = B(zo,7) NTa(xg) C B(xg, 10rT/17™) N T 4(z0), as long as
we make sure to take v < 1 + a/17n (because then 107t/ < 7). This completes
our proof of Lemma 3.2. O

Finally we show that under the assumptions of the two previous lemmas, hg, ()
approximates u(x) well near xg, even for x outside of the cone T'4(z¢) (this will not be
too difficult as x will lie in some other non-tangential cone, depending on z). We can
also replace functions h,, ,(x) with h, ., for z € 't (u) near zo.

Theorem 3.1. Let Q C R", g+ € L®(Q) N C(Q), and u (an almost-minimizer for J or
JT) satisfy the assumptions (3.1)-(3.3) of the beginning of this section. For each choice
of ro > 0, there exist constants ps € (0,r9), and B € (0,a/16n), with the following
properties; given o € I'T(u), such that B(zg,4r) C Q,

(1 =5 u(z) < hop(z) < (1 + 577 )u(x) (3.44)

for all0 < r < p3, 2 € T (u), and x € U such that |z — xo| + |z — zo| < 5r1+/1™ . Here
the function h, , is defined just as hy, » near (3.4), but with xo replaced by z.

As in the previous remarks, the proof will show that p3 and 8 depend only on the
usual constants of Remark 3.2.

Proof. As we shall see, most of the information comes from Lemma 3.1. Let xg and r be
as in the statement, and set p = r!+®/17% o simplify the notation. We start with any
z € ' (u) N B(xg, 10p). Thus B(z,2ry) C €, and we can apply Lemma 3.1 (with a large
constant A that will be chosen soon), both to z¢ and to z. So, if we make sure to take
p3 < pa2, (3.28) says that

() < P < () (3.45)
for x € T 4(x¢) N Bz, 10p) but also
(1-77) < hué:”) <(1+79) (3.46)

for x € T4(2) N B(zg, 10p). We compare the two (i.e., multiply and divide by u(z)) and
get that for z € T4(zo) NTa(z) N B(xg, 10p) N B(z,10p),

her(x)
hg (x)

(1-rP)? < < (14772 (3.47)
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Notice that this last set is not empty: if p3 is small enough, the local NTA property of
U gives us a corkscrew point, &, for U in B(xg, p), as in Part 1 of Definition 2.3. That is,
§(¢) > Cytp. This point & lies in the intersection above if A > 10C}, and hence satisfies
(3.46).

Now hg, » and h,, are two non-negative harmonic function on U N B(zg,r/2) that
vanish on U, hence by the NTA property and as in (3.27)

hz,r(f) hz,r(y) hz,r(f) |x_y| n o)1
hzo,r@hm,r@)‘éq”hxo,xa( : ) = 206 (3.48)

for y € U N B(xp,10p) and & = A1 (x0, p) as above. Recall that we took 8 = na/18n <
na/17n; then if we take p3 small enough, we get that 20C377°/1" < 18 /2. We compare
(3.48) with (3.47) for ¢ and get that

hr(y)

Tﬂ. .
P () < (1+3r7) (3.49)

(1-3r) <
This holds for y € U N B(xg, 10p), but if in addition y € T'4(z) N B(z, 10p), we can apply
(3.46) to y and we get that

Py r ()
u(y)

Let us check that in fact (3.50) holds for every y € UNB(xg, 5p). Let 2 € I'" (u) minimize
the distance to y; then |z — y| < |xg — y| < 5p and obviously y € U N B(xg,10p) NU N
B(z,10p); in addition, 6(y) = |z — y| so y € T'a(z). Then (3.50) holds, as announced.

In fact our proof of (3.50) works just the same if we assume that B(xg,3ry) C
(instead of B(zo,4r9) C ), so if z € 't N B(xg, 10p), we also get that

(1-5r) < < (1+577). (3.50)

hzn’(y)

) < (14 5r%) fory € UN B(z,5p) (3.51)

(1—-5rP) <

with exactly the same proof. In particular, this holds when |z — zo| + |y — 20| < 5p, as
announced in the statement. This completes the proof of Theorem 3.1. O

Let us record some simple consequences of Theorem 3.1. First observe that when u,
70, T, 0 < r < p3 are as in the statement, then

(1-11r°) < L@;) < (1+1177) (3.52)

for z,w € I't(u) and & € U such that |z — zo| + max(|z — x|, |y — xo|) < 5rite/1T,
Indeed, (3.44) also holds with z replaced by w, and then we compare.
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We can also compare hg, , with hy, 5. Let u, 79, and xo be as in the statement; then

zQ,s

for 0 < s < r < ps, the ratio Z of positive harmonic functions on U N B(xg, s/2) is
xq,T

continuous up to the boundary, so we can define

(@)
) _ ZZo,8\7/ '
ééap(xo) gc—mg)l?er hzovﬂ(x) (3 53)

Then, for z € U N B(zg,5s'T*/1™), we have (3.44) for hy, (), but also h,, s(z); we
take the ratio, then take the limit when x tends to zg, and get that

1—11p7 <t (o) < 14 11p°. (3.54)
Here is a simple consequence of Theorem 3.1, that will be enough in some cases.

Corollary 3.1. Let Q C R™ be an open connected domain, and qr € L () N C () with
qr > co > 0 and (3.2). Let u be an almost-minimizer for J or J* in Q. Given € > 0 and
ro > 0, there exist ps > 0 and ps € (0, p4) such that if xg € T (u) and B(zo,4r¢) C £,
then the harmonic competitor, hy, ,, (defined near (3.4), with r replaced by ps), satisfies

(1 = QJu(x) < ha p,(x) < (1 + )u(z) (3.55)
for x € UN B(xo, ps) = {u > 0} N Bz, p5)-

Proof. Thisis a straightforward consequence of Theorem 3.1. Given € > 0, choose py < p3
(where pj is as in Theorem 3.1), so that in addition 5pf < €. Then choose p5 = 5,0411+a/17n7
and notice that (3.55) follows from (3.44) with z = xg. As in the previous remarks, ps

and [ depend only on the usual constants of Remark 3.2. 0O

We end this section with a consequence of Theorem 3.1 and nondegeneracy estimates
from [16].

Corollary 3.2. Let Q, g+, a minimizer u for J or J¥, rg, ps € (0,79), and xo € T (u)
such that B(xzg,4ro) C §, be as in the statement of Theorem 3.1. Then

1
Cmin S g ][ hIO»T dHn_l S Cmax (356)
OB(z,s)NU

for 0 < s < r < p3 and z € TT(u) such that B(z,s) C B(xg,5r't/1"). Here the
constants 0 < cmin < Cmax depend only on n, cq, ||q+||r>, &, a, 1o, and a bound on

Jo [Vul?.
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Proof. We have similar estimates for u, namely

c . <

min —

1
g uTdHT <O (3.57)

9B(z,s)

The upper bound holds because v is locally Lipschitz (as in Theorems 5.1 and 8.1 in
[16]), and the lower bound is Lemma 10.3 in [16]. Now we use Theorem 3.1 to show that
(if ps is small enough) u/2 < hy, » < 2u on 0B(z,s) N U; the corollary follows. O

4. Local uniform rectifiability of the free boundary

In this section we show that under the assumptions that g+ € L>(Q)NC(Q) and g4 >
cp > 0, the free boundary of almost-minimizers for J or J* in € is locally Ahlfors-regular
and uniformly rectifiable in Q.

In fact, given the local NTA property of U = {x € Q; u(x) > 0} that was proved
in Section 2 (see Theorem 2.3 or Corollary 2.1), the hard part will be to prove the
local Ahlfors regularity of 2N OU. In the context of minimizers, as studied in [4], [5], and
others, the distribution, Awu, which is a positive measure, plus maybe a controllable error
term, is a good candidate for an Ahlfors regular measure supported on 2 N JU. Here
we cannot argue this way, because the almost-minimality of w is not enough to control
Aw, even inside U. Instead we will show that the harmonic measure on U is locally
Ahlfors-regular, and for this we will use the harmonic functions hg, , introduced in the

hag,r
u

previous section, plus the control on the ratio that we proved in that section.

In the context of almost-minimizers, this result is new, and it opens the door to study
higher regularity of the free boundary under additional assumptions on ¢4.

Our assumptions for this section are the same as in Section 3. We are given a bounded
(connected) domain 2 C R™, and two bounded functions g+ that are continuous on €.
We assume, as in (3.1), that gy > ¢g > 0 on Q, and, as in (3.2), that 0 < ¢_ < g4 on Q
or g_ > cg > 0on Q.

Under these assumptions, Theorem 2.3 says that U is locally NTA in 2. This implies
that for every choice of g > 0 we can find constants C1, Cy, C3, and also a radius
r1 € (0,79), such if zg € T (u) is such that B(zg,79) C €, then for 0 < r < r; we can
find corkscrew points and Harnack chains as in Definition 2.3. In addition, we claim that
C4, Cy, C3, and r; depend only on the usual constants of Remark 3.2.

In particular we shall use the notation A(z,r) for a corkscrew point for U, in B(zg, r);
this means that A(zo,r) € B(xg,7/2) and

dist (A(xg,r),0U) > C; . (4.1)

A(I(],

By definition, such a point exists for 0 < r < r;. We then denote by w ") the harmonic

measure on OU, coming from the open set U and the pole A(xg, 7).
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Theorem 4.1. Let Q@ C R"™, qi. € L>®°(Q), and the almost-minimizer u for J or JT satisfy
the assumptions above. For each ro > 0, there exists py € (0,79) and Cs > 0 such that
for any xo € T'"(u) with B(xg,8r) C Q,

05_17“"71 < wA(IO”“)(B(z,r)) < Cyrmt (4.2)
for all z € TF(u) N B(xg,r0) and 0 < r < py.

In fact we shall choose py < rq, so wA@0:r4) is well defined, and also so that p, and
Cs depend only on the usual constants of Remark 3.2, not on the specific choices of €2,
q+, and u.

Proof. Let ro be as in the statement, and choose ps and ps € (0, p4) as in Corollary 3.1,
applied with € = 1/2. The proof allows us to pick ps smaller if needed, at the expense of
taking ps even smaller. Thus we can assume that py < ry, for instance. Since B(z, 8rg) C
), we can even apply the corollary to any

z € I (u) N B(xg, 4r0). (4.3)
We get that for such z,

3u(x)
2

@ S hZ7P4($) S

for x € UN B(z, ps). (4.4)

Furthermore, under the hypothesis above, u is locally Lipschitz and non-degenerate (see
Theorems 5.1, 8.1 and 10.2 in [16]), so by (4.4) there exists a constant C' > 1 such that

C71(z) < hsp,(x) < C8(x) for z € UN Bz, ps), (4.5)

where §(z) = dist (z, " (u)) = dist (z, 0U) (because the rest of QU is much further). Here
and below, C' is a constant that depends only on the usual constants of Remark 3.2. This
allows C' to depend also on rg, p4, ps, and the NTA constants for U in B(xg, Trg).

Set Ay = A(xo, ps) to simplify the notation, and denote by G(Ay,-) the Green func-
tion of U N B(xg,4p4) with pole Ag. Also denote by A(z,ps) a corkscrew point for
U in B(z,ps). Standard estimates for non-negative harmonic functions vanishing at
the boundary of NTA domains (see [25], Lemma 4.10) ensure that there exists a con-
stant C > 1, depending only on n and the local NTA constants for U, such that for
x € B(z,p5) NU

G (Ao, A(z, ps5)) G(Ap, ) < CG(A07A(27,05))
hzqP4(A(Zap5)) hZ7P4(x) - h27P4(A(Z’p5>) .

Notice that §(A(z,ps5)) > C~1ps, and §(Ag) > C71py, so C71 < G(Ag, A(z, ps)) < C.
In addition, (4.5) applies to z = A(z,ps), and yields C~* < h, ,, (A(z, ps)) < C. Thus
by (4.6) and (4.5)

c! < (4.6)



G. David et al. / Advances in Mathematics 350 (2019) 1109-1192 1139

Cil < G(Ao, ZL’)

— . .
S 5@ < C forx € UN B(z,ps) (4.7)

A Caffarelli-Fabes-Mortola-Salsa estimate on NTA domains (see, e.g., [25], Lemma 4.8)
ensures that for z € I'"(u) N B(zo, pa) (as in (4.3)) and 0 < r < ps,

G(Ap, A(z, 1)) < wA(B(z,1)) <C G(Ao,A(Z,?“)).

r - pn—l - r

C—l

(4.8)

We can apply (4.7) with z = A(z,r), because x € B(z,ps). Since C~1r < §(z) < r by
definition of a corkscrew point, (4.7) and (4.8) yield

AO B
cl< L(f’r)) <C. (4.9)
rn-

This is the same estimate as (4.2), but we only proved it for 0 < r < ps. But for

p5 <1 < Py,
w(B(z, p5)) < w(B(z,7)) < w(B(2,p4)) < Cw™(B(z,ps)), (4.10)

where C' depends on ps, p4, and the local doubling constant for w4, which itself depends
on the local NTA constants for U (and finally the usual constants). Since the factor
r"~1 does not vary too much either, the general case of (4.2) follows, and this yields
Theorem 4.1. 0O

We are now ready to prove the local Ahlfors-regularity and the local uniform rectifi-
ability of the free boundary, with big pieces of Lipschitz graphs. Let us first recall the
notion of uniform rectifiability.

Definition 4.1. Let E C R"™ be a d-Ahlfors reqular set. We say that E is d-uniformly
rectifiable if there exists an L > 0 and a 6 € (0,1) such that for allx € E and r > 0
there is an L-Lipschitz function f,,: B(0,r) C R — R"™ such that

HY( for(B(0,7)) NEN B(x,7)) > 0r. (4.11)

The condition of (4.11) is often referred to as “big pieces of Lipschitz images.” In
Theorem 4.3 we would like to prove something stronger, namely, the existence of “big
pieces of Lipschitz graphs”. We shall use the fact that for global unbounded Ahlfors
regular sets, the additional property known as “Condition B” implies the existence of
big pieces of Lipschitz graphs (also known as BPLG). Let us state this formally.

Let E C R™ be (unbounded) Ahlfors regular. This means that E is closed (nonempty),
and there is a constant Cy > 1 such that

Cott" ' <H" Y ENB(y,t)) < Cot"™* foryc Eand t > 0. (4.12)
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We say that E satisfies Condition B if there is a constant C; > 1 such that, for y € E
and t > 0, we can find two points y1 = y1(y,t) and yo2 = ya2(y,t), that lie in different
connected components of R” \ E, and such that

yi € B(y,t) and dist (y;, E) > C; 't for i =1,2. (4.13)

Theorem 4.2. If E is an unbounded Ahlfors reqular set that satisfies Condition B, then
there exist constants C7 and Cy, that depend only on n, Cy, and Cy above, such that for
y € E and t > 0, we can find a Cr-Lipschitz graph G = G(y,t) such that

H 1 (B(y,t)NENG) > Cg 't" L. (4.14)

By C7-Lipschitz graph, we mean a set of the form G = {x+A(m) ;T € P}, where P is
a hyperplane in R™ and A : P — P~ is a Cy-Lipschitz function from P to its orthogonal
complement PL.

Theorem 4.2 is proved in [13], but a simpler proof can be found in [15]. Recall also
that Condition B was introduced by S. Semmes in [34], who proved the uniform rectifia-
bility of E under mild additional assumptions (but with estimates that do not use these
assumptions).

Theorem 4.3 and its proof can be understood as a local version of [15]. For the readers’

convenience we present a self contained proof which only relies on Theorem 4.2 (see also
[34] and [15]).

Theorem 4.3. Let Q C R", g+ € L™(Q), and u satisfy the assumptions of Theorem 4.1.
That is, Q is open, bounded, and connected, q; and q_ are bounded, continuous, and
satisfy the nondegeneracy condition (3.1) and (3.2), and u is an almost-minimizer for
J or JT in Q. For each ro > 0, we can find constants Cgs, C7, and Cs such that for
x € I (u) and r such that

B(z,11rg) € Q and 0<r <1, (4.15)
we have
Citrm™t <H" N (TF (u) N B(z,r)) < Cer™! (4.16)
and there exists a Cy-Lipschitz graph G = G(z,r) such that
H" N (B(z,r)NTH(u)NG) > Cgtrm™ L. (4.17)
In addition, Cg, C7, and Cs depend only on the usual constants of Remark 3.2.

We shall even prove that, when z € I't (u) and 7 > 0 are as in the statement, there is a
uniformly rectifiable set F(x, ), with big pieces of Lipschitz graphs (and with constants
that depend only on the usual constants) such that
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't (uw) N B(z,r) C E(z,7). (4.18)

This essentially amounts to the same thing, but seems a little more precise, and in
particular it allows us to use the classical results on uniformly rectifiable sets directly,
without having to localize the proofs. In particular, we get that 'V (u) is rectifiable (but
lose a lot of information when we say this). See Remark 4.1 below.

Proof. We start with the local Ahlfors regularity property (4.16). We decided to restate it
in terms of the Hausdorff measure because it is more usual, but it is a simple consequence
of the local existence of some Ahlfors regular measure on I'* (u), namely the harmonic
measure of Theorem 4.1. That is, if u and rg are as in the statement, we found for each
xo € I't(u) such that B(zg,8rp) a measure w such that (4.2) holds for z € T (u) N
B(zg,19) and 0 < r < p4. By a simple covering argument, we can prove that w is
equivalent to H" =1 on I'"(u) N B(xg,70/2), and more precisely that

C™'w(E) <H"YE) < Cw(E) (4.19)

for every Borel set E C I'" (u) N B(xg,70/2), where C' depends only on n and C5. See for
instance Lemma 18.11 and its proof in Exercise 18.25 (on page 112) of [14], but there
was no claim for novelty there.

From (4.19) and (4.2) we now deduce that (4.16) holds for z € T't(u) such that
B(x,8rp) and 0 < r < p4. For the remaining radii, r € (p4,79), and at the price of making
Cs outrageously larger, we just say that H"~ (T (u)NB(z, 7)) > H" YT (uw)NB(z, ps))
to get a (rather bad) lower bound, and (if now B(x,9r¢) C Q) we cover I'* (u) N B(z, 1)
by less than C balls B(z, ps), 2 € Tt (u) N B(x,79), to get an upper bound. So (4.16)
holds.

To prove (4.17) we apply Theorem 4.2 using a short localization argument, which is
rather straightforward in co-dimension 1 (our setting here). We want to apply Theo-
rem 4.2 to some auxiliary Ahlfors-regular set, E. Let u and 7y be as in the statement of
Theorem 4.3, and let € I'* (u) and r > 0 be such that (4.15) holds. Set B = B(x, 2r),
choose a hyperplane, P, such that dist (x, P) = 10r, and take

E=[BNT*(uw)]UdOBUP. (4.20)

We added P to get an unbounded set F, but we easily see that it could not disturb
in the proofs or conclusions. We want to show that E is Ahlfors-regular and satisfies

Condition B.
Set I' = I'" (u) to simplify the notation. Notice that

H YT NB) < Cr?, (4.21)

even if 2r > rg, because in this case we can cover I' N B by less than C balls B(z, 1),
with z € B, and (4.16) also holds for z € B, because B(z,9r¢) C Q since B(z,11ry) C Q.
Next we claim that
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H YT NBNB(y,t) <Ct"! (4.22)

for y € R™ and ¢ > 0. When ¢ > r/2, this follows from (4.21). Otherwise, even if y does
not lie in T, we get (4.22) because if TN BN B(y,t) # 0, we can find z € TN BN B(y, t),
then B(y,t) C B(z,2t), we can apply (4.16) to z, and we get (4.22).

Now the upper bound in (4.12) follows, because H" (0B N B(y,t)) + H" (P N
B(y,t)) < Ct"1 trivially.

For the lower Ahlfors regularity bound, we distinguish between cases. When y € P or
dist (y, P) < t/2, we just need to observe that H"~1(ENB(y,t)) > H" (PN B(y,t)) >
C~1"~!. Thus we may assume that y € [BNT]UIB and t < 20r.

When y € 9B, or even dist (y,0B) < t/2, we just observe that H"~1(E N B(y,t)) >
H"~1(OBNB(y,t)) > C~1"~1. So we are left with y € I'NB such that dist (y, 0B) > t/2.
But then H*Y(E N B(y,t)) > H* Y(T'N B(y,t/20)) > C~ "1, directly by (4.16). So
E is Ahlfors regular.

Now we check Condition B. Let y € F and ¢t > 0 be given; we want to find points
y1 and yo as in (4.13). We start with the most interesting case when y € T'N B and
dist (y,dB) > t. In this scenario, we need not consider 9B and P, we simply use the
local NTA property of I', which is given by Theorem 2.3; we proceed as in the beginning
of this section, apply the theorem with K = {x € Q; dist (z,00) > ro}, and get a radius
r1 > 0 such that for y € I'N K and 0 < r < ry, we can find corkscrew points for U and
for {x € Q; u(z) < 0}, inside B(y,r) (see Definition 2.3). If ¢ < ry, we simply take for
y1 and ys these two corkscrew points. Notice that T" separates y; from ys in  (by the
intermediate value theorem), hence also in B. Thus y; and y» lie in different components
of R™\ [(I' N B) U 9B, as needed.

The next interesting case is when y € 9B and 0 <t < r. We easily find yo € B(y,t)
such that dist (y2, P U B) > 1071¢, so it is enough to find y; € B(y,t) N B, such that
dist (y1,0B) > 107t but also dist (y;,I') > C~t, because E D 9B will automatically
separate y; from y». Let 7 > 0 be small, to be chosen soon; we can easily find C~17~"
points w; € {w € BNB(y,t/2); dist (y1,0B) > 107't}, that lie at distances larger than
47t from each other. Suppose all the B(w;, 7t) meet T'; then H"~1(I' N B(w;, 27t)) >
Ci ' ()"~ by the lower bound in (4.16), and since all these balls are disjoint and
contained in B(y,t), we get that H"~Y(T' N B(y,t)) > C~1r="(rt)"~1. On the other
hand, the upper bound (4.16) yields H"~}(T'N B(y,t)) < Ct"~1, and if 7 is chosen small
enough we get a contradiction. Thus we can find w; such that dist (w;,I") > 7¢, and use
this w; as y1. This settles our second case when y € 9B and 0 <t < r.

When y € 0B and r < t < 20r, we can still use the points y; that work for ¢t = r, and
we get (4.13) with a constant 20 times larger. When y € P but ¢ < 20r, we simply select
two points y; € B(y,t/10), that lie on different sides of P and at distance at least ¢/100
from P. They also lie far from the rest of F, because dist (y, E'\ P) > 8r. Similarly, when
y € E but ¢ > 20r, we pick a point z € P N B(y,t/2) such that dist (z, B) > t/4 > br,
and then select two points y; € B(z,t/10) that lie on different sides of P, but at distance
t/100 from P. Again they are also far from E \ P.
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We are only left with the case when y € I' N B and ¢t < 20r. We already treated the
case when t < dist (y,0B). When dist (y, 0B) < t < 10dist (y, 0B), we may just use the
two points y; that work for ¢t = dist (y,0B) (and get a larger constant). Finally, when
10dist (y,0B) < t < 20r, we select a point z € dB such that |z — y| = dist (y, dB),
and use the points y; and yo that correspond to the pair (z,¢/2). This completes our
verification of Condition B for E.

We apply Theorem 4.2 and get that F contains big pieces of Lipschitz graphs, as in
(4.14). The constants C7 and Cg depend on n, and Cy and C; for E, which themselves
depend only on the usual constants of Remark 3.2.

This already proves our claim relative to (4.18), but if we apply the conclusion of
Theorem 4.2 to E and the ball B(z,r), we get a Lipschitz graph G that satisfies (4.17),
just because E N B(z,r) =T'N B(x,r). This completes our proof of Theorem 4.3. O

Remark 4.1. As we said near (4.18), it may be easier to use the existence of E = E(x,r),
to derive information on I'*'(u) from similar information on the uniformly rectifiable
set E. Also, we said that I'"(u) is rectifiable, and this is true, for instance, because
all our sets E are rectifiable. Indeed, call E, and FE, the rectifiable and unrectifiable
parts of E (known modulo a set of vanishing H" !-measure). If H"~1(E,) > 0, then
by a standard density argument (see for instance [32]) we can find y € E, such that
limy o t!""H" 1(E, N B(y,t)) = 0. This is impossible, because almost every point of
G(y,t) N B(y,t) N E lies in E,.

5. A Weiss monotonicity formula

The first result of this section is an extension of a monotonicity formula due to Weiss
[37], who showed that the functional below is monotone when u is a local minimizer of J
or J* in the sense of [4] or [5]. Recalling that almost-minimizers are locally Lipschitz, the
proof in [37] works essentially unchanged for almost-minimizers. We quickly summarize
the necessary changes below.

Theorem 5.1 (c¢f. Theorem 1.2 in [37]). Let u be an almost-minimizer for J in the open
set @ C R"™, with constant k and exponent . Also let xg € Q0 and R > 0 be such that
u(xg) = 0 and B(xg, R) C Q. Further assume that ¢, and q_ are Hélder continuous on
B(zg, R), with exponent «. Define, for p < R,

—~ 1
W (a0, ) = o / VUl + & (20)1 oy + ¢ (20) Liuco)

B(xo,p)

_%/p 1 / (V- v)2dH"Ldr. (5.1)
0

rnfl
9B (xo,r)
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Then, there exists C > 0, which depends only on o, n, K, the norms ||g2 || Lo (B(xo,r)) and
4% ||co-(B(xo,r))» and the Lipschitz norm of u in B(xo, R), such that for 0 < s < p < R

2

o< [ ¢33 (Vu(zg +r€) - §)2dr— Vu(zg + rg) - &dr d’}—[”*l(g)dt
for [ /

E 8B(0,1) | ©

< W(u, zo, p) — W (u, z0, 5) + Cp™. (5.2)

For simplicity, we assumed here that the g+ are Holder continuous, and even with the
same exponent « as in the definition of almost-minimizers; otherwise we could take the
smallest exponent or modify slightly the estimates. Also, if instead we only assumed that
the g+ are continuous on €2, we would get a similar result, except that we should add an
extra term like C'sup,c p(z,,p) (104 (¥) — a4 (20)] + lg—(y) — ¢—(20)|), where C depends
also on the Lipschitz norm of w.

Recall that the first inequality comes directly from Cauchy-Schwarz; the main infor-
mation is the second one.

Finally, we decided to use the Hausdorff measure dH™ ! in the statement, but we
shall also write this measure do, at least when we work on a sphere. This will be our
definition of surface measure.

Proof. Without loss of generality we can let 2y = 0. In the proof of Theorem 1.2 in [37],
Weiss defines uy, for t € (0, R], by

uy(z) = 12, (t%) for = € B, = B(0,1))

and uy(z) = u(z) outside of B,. Taking the derivative we can see that the Lipschitz
continuity of w implies the Lipschitz continuity of u;. Hence u; is a competitor for u.
Since u is an almost-minimizer, and with an implicit summation in + to shorten the
expressions,

0 < (1+ kt*) / |V | + Titu,>0} ¢ (x) do — / |Vul? + Ttusoy a2 (x)
B By

< / Ve + L, 0) 42.(0) da — / Vul? 1 1psusoy 2 (0) dz + A2 (5.3)
By By

with A = st~ [ |Vu|? + Ckllgi| Lo (Br) + Csupp, lg+(x) — ¢+ (0)]. It is easy to see
that A < C“H“Hiip(BR) + Ckllq% || L (By) + Cllad |co.a(B,)- We compute the integrals of
Vug and 1(4,,50y as in [37], and deduce from (5.3) that for almost every ¢ € (0, 1),

t
0< / IVul® + 1{2us0) 41 (0) do — / Vul® + 1{zus0) ¢2(0) dz
9B, B
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1
+ At + - / u? do — % /(Vu -v)? do, (5.4)
0By 9By

where v denotes the unit normal to dB;. The proof then proceeds exactly as in [37] to
produce the desired result. O

Here we gave the result for an almost-minimizer for J, but the same result holds, with
the same proof, when u is an almost-minimizer of J* (and we set ¢_ = 0). We call this
the associated monotonicity formula for WH.

As it is difficult to control the integral of the normal derivative of u on 9By, W is not
well suited to our purposes. However, W is related to a similar, and easier to work with,
monotonicity formula. Set

1 1
W (u, zo,7) = o / [Vul® + g% (£0) 1 uso0} + ¢ (£0) 1 {uco} — TS / u’do,
B(wo,r) 8B (z0,r)
(5.5)
where we just take ¢g_ = 0 or remove q%(xo)l{u@} when we work with JT. This formula

appears in [37], where it is shown to be monotone increasing for local minimizers of J
in the sense of [5]. The proof there uses that the minimizers of J satisfy an equation,
something which is not true for almost-minimizers. Instead, our proof will relate W and
W, and then use the almost-monotonicity of W to prove the almost-monotonicity of W.

Proposition 5.2. Let u be an almost-minimizer for J or JT in Q, with constant x and
exponent a.. Suppose that the ¢ are bounded and Hélder continuous on B(xg, R), with
ezponent .. Furthermore let zg € Q and R > 0 be such that u(x¢) = 0 and B(zg, R) C .
Then for 0 < s < p < R,

W (u, xg, p) — W(u, zg,s) > —Cp™ + / t”% / (u(z) — (Vu(z) - x))* dodt, (5.6)

s 0B(wo,t)

where C > 0 depends only on n, Kk, a, the norms ||q:2t||Loo(B(w0’R)) and Hqi”co,a(B(mo’R)),
and the Lipschitz norm of u in B(xzo, R).

Proof. Again we may assume that o = 0. We write the right-hand side of (5.2) as A— B
and compute

t

/p t3 / t / (Vu(re) - €)2drdo(€)dt

s 0B(0,1) 0

A

t=2 / / (Vu(re) - €)2do(€)drdt (5.7)
0 0B(0,1)

"t~
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Since u(xg) = 0,

P t

B= S/tSaB([U O/Vu(rf) “&dr | do(&)dt
Z?ing u(r€) — u(0))2do (€)dt = /?wwam[w dt.  (5.8)

Set F(t) = W (u, o, t) — W (u, o, t) for a moment. Thus by (5.5) and (5.1)

t
1 1
F(t) ==y / u?do + ?/
0

8B(0,t)

/ (Vu - v)3dodr (5.9)

83(0 )

and now Theorem 5.1 yields

o~ | =

p
W (u, zg, p) — W (u, 20, 8) + Cp® > A—Bz/ F(t)dt (5.10)

by (5.7), (5.8), and (5.9). Hence

W (u, zo, p) — W(u,x9,8) = F(p) — F(s) + /W(u,xo,p) — W(u, zo, )

zmm_F@+/%Fwﬁ—cw. (5.11)

S

We shall see soon that F has a derivative almost everywhere, and is the integral of F”.

That is, F(p) — = [V F'(t)dt, and hence
p
W (u, o, p) — W(u,zg,s) > —Cp* + / (F’(t) + @) dt (5.12)
Next we compute F’(t); notice first that by (5.9)
FO=-5 [ wPio©+; [ [ (Tuie) oo (5.13)
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Write F(t) = —t72G(t) + t ' H(t), with

G(t) = / u(té)?do(€) and H(t / / (Vu(r€) - €)2do(&)dr. (5.14)

8B(0,1) 9B(0,1)
Then
/(1) =2 / u(t) (Vu(té) - €)do (€) (5.15)
8B(0,1)
and
(1) = / (Vu(te) - €)2do (©), (5.16)
8B(0,1)

YR + F/(t) =t F(t) + 2t 2G(t) —t2G/(t) — t 2H(t) +t " H'(t)
=t 3G(t) t 2G’( t)+t 7 H'(b)

2

aB( 1)

2
-1 (@(Wtf)f)) 4o (€) 2 0.

dB(0,1)
(5.17)

We promised to return to the absolute continuity of F'. Notice that both G and H are
the indefinite integrals of their derivative, essentially by Fubini. Then multiplying them
by t=2 or t~! does not change this (away from ¢ = 0). This is rather standard and easys;
for instance write G as the integral of G/, multiply by ¢t =2, and perform a soft integration
by part using Fubini. Thus (5.12) holds, and by (5.17) we get that

W (u,x0, p) — W(u,zg,s) > —Cp* + /p% / (@ — (Vu(te) - §)>2 do(&)dt

s aB(0,1)

——cr+ [ [ )~ (Vule) o) ot
s 9B (xo,t)
(5.18)

as announced in (5.6). The proposition follows. O
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Before we examine the consequences of the monotonicity formula, let us make a quick
observation concerning the case when W (u, zg, -) is constant.

Lemma 5.1. Suppose g and q_ are constant on €, and let u be a minimizer for J
or Jt on Q. Suppose that 0 € Q, u(0) = 0, and 0 < s < p < dist (xg,0N). Then
W (u,0,p)—W(u,0,s) =0 if and only if u is homogeneous of degree 1 in B(0, p)\ B(0, s).

Furthermore, if g, and q_ are constant on R™, u is a minimizer for J or J* in R™,
and u is homogeneous of degree 1, then for r >0

W (u,0,7) = W(u,0,1) = ¢3|B(0,1) N {u > 0} + ¢ |B(0,1) N {u < 0}]. (5.19)

Proof. If u is a minimizer and the g+ are constant, then by (5.6)

W (u,0,p) — W(u,0,s) > /t"% / (u(z) — (Vu(z) - z))* dodt.

s 9B:(0)

If in addition W (w,0,p) — W(u,0,s) = 0, then u(z) = Vu(z) - x for almost every
x € B(0,p) \ B(0,s). The first part follows by integrating along rays. It is well known
(see for instance, Theorem 4.5.2 in [4] or Theorem 2.2 in [5]) that if w is a minimizer,
then uAu = 0 as a distribution. Therefore, an integration by parts implies that

/ |Vu|? do = / u? do
B(0,1) aB(0,1)

and (5.19) follows. O
6. Consequences of the Weiss monotonicity formula

Throughout this section we assume that for some choice of ¢y, a > 0,
g+ € L*(Q)NC*Q) and g+ > co > 0, (6.1)

but rather rapidly we shall concentrate on almost-minimizers for J*, and thus work
with ¢4 alone, and use the monotonicity formula of the previous section to detect points
where the free boundary is infinitesimally flat. We shall call these points “regular” and
denote the corresponding set by R (see Definition 6.1 below). A key component of this
analysis will be the identification of the blowup limits of almost-minimizers.

We start with a few definitions. Set U = {z € Q; u(z) > 0} and I'*(u) = QN U as
usual. For xo € I'"(u) and r > 0, define

Up, 30 (T) = r_lu(m‘ + ) (6.2)
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J
more, when no confusion is possible, we may even drop the dependence of u; on xo. We

If {r;} is a sequence that tend to 0, we may also write u; », = r; w(rjz + o). Further-

shall use the quantity W (u,xg,r) defined in (5.5) and associated to the monotonicity
formula of Proposition 5.2, i.e.,

1 1
W(u, wo,r) = = / {|Vu\2 + 3 (20)L{u=0y + qz_(-TO)]-{u<O}} ) / u’do.
B(xzo,r) 0B (wo,r) ( )
6.3

With our assumption (6.1), an application of the almost monotonicity Proposition 5.2
to a decreasing sequence of radii yields the existence of the limit

W (u, zo,0) = 1i_r>r%) W (u, zo,r). (6.4)
Also, we immediately deduce from (6.3) and the change of variables formula that
W (u, o, tr) = Way (Ur.zo, ), (6.5)

where

1 1
W) = 5 [ {I90P + @ @olmny + ¢ @lcy } - e [ 0do (69)
B(0,t) 0B(0,t)

is the analogue of W at the origin, but with constant functions ¢+ = ¢3 (zo).

5 u(rjz + x0); the existence of
sufficiently many of blow-up limits is given by the following lemma.

We wish to take limits of the functions u;., = r

Lemma 6.1. Let u be an almost-minimizer for J or J*, and assume that (6.1) holds for
some ¢ > 0. For each xo € T (u) and every sequence {r;} of positive numbers such
that lim;_, o 7; = 0, we can find a subsequence {r;, }, such that the Uy, 2o COMVETGE O
a limit us, uniformly on compact subsets of R™.

This is easy, because the u,, ,, are uniformly Lipschitz in each ball; see the remark
above Theorem 9.2 in [16]. We shall call a blow-up limit of v at z¢ any limit us, of a
sequence {u,; z,} that converges (as above). The following lemma gives a little more
information on the convergence and the blow-up limits.

Lemma 6.2. Let xo € I'"(u) and {r;} be as in Lemma 0.1, and assume that the u,, 4,
converge (uniformly on compact subsets of R™) to a limit us,. Then us is a global
minimizer for J°° for J°T | as defined by (2.1) and (2.2) with the constants Ay = q4(0).
In addition,

Vs, is the limit in Li,.(R™) of the Vi, 4, (6.7)

loc
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Wi (oo, ) = W(u, 20, 0) := })i_r}r%) W (u,xo,p) forr >0, (6.8)

and us s (positively) homogeneous of degree 1, i.e., U (AX) = Moo (x) for z € R™ and
A>0.

Proof. The fact that us is a global minimizer and the convergence of Vu,, 5, in L |

(®")
are a part of Theorem 9.2 in [16], which itself is a direct application of Theorem 9.1 in
[16], applied to uy, 5, which is almost minimal with the functions ¢; +(2) = q+(zo+7;2).
Now in Theorem 9.1 in [16], (9.14) says that for each ball B(x,r) and each choice of

sign 4+,

[ @t a@a = ln [ gt 06 69)
B(xz,r) B(z,r)

Since by (6.1) the g; + converge uniformly in B(xz,r) to ¢+(zo), and also g+ > ¢o > 0,
we may drop the g-functions and get that

/ l{iux>0}(z)dz = hm l{iuj,w0>0}(2’)d2’ (610)
Jj—oo
B(z,r) B(z,r)

(and in fact the proof of (9.14) in [16] essentially goes through this). We may now use
this and (6.7) to take a limit in (6.6) and get that

W (Uoo, ) = Hm Wy (W z0,7) = lm W(u,zg,7,;r) = W(u,z0,0), (6.11)

j—o0 j—o0

by (6.5) and (6.4). Thus (6.8) holds, and W, (uso, ) is constant. Then by Lemma 5.1,
Uso 18 1-homogeneous, and Lemma 6.2 follows. O

For the rest of this section we keep the assumption (6.1) but restrict to the case when
u is an almost-minimizer for J*. Hence we drop g_ and the definition of W is a little
simpler.

Definition 6.1. Set T (u) = QN AU = QN d{u > 0} as above, and denote by w, the
volume of the unit ball in R™. The points of the set

R = {zo € I'"(u); W(u,z0,0) = qi(mo)% } (6.12)

will be called reqular points of T (u) (for the one-phase problem,).

The next proposition will give a characterization of these points zy in terms of the
blow-up limits of u at xy. Notice that by (6.8), W (u, zg,0) is the constant value of the
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Weiss functional W, (u) for every blow-up limit u., of u at zp. In addition, since uqo
is homogeneous, (5.19) says that

W (u, 29,0) = Wy, (oo, 1) = ¢3 (70)|B(0,1) N {use > 0} (6.13)

Wn,

As we shall see soon, ¢3 (29)%* is the smallest possible value of W (u,x0,0), and is
attained only when us, is a half-plane solution. We say that v is a half-plane solution

(associated to gy (zo)) when there is a unit vector v € S"~! such that
v(z) = gy (x0){z, V)1 1= g4 (xo) max(0, (z,v)) for z € R™. (6.14)

The name of solution and the choice of the “slope” ¢, (zg) are correct, because it is
proved in [4], Theorem 2.5, that v(z) = a(x,v)+ is a global minimizer of the functional
Jot associated to the constant coefficient At = ¢4 () if and only if a = g4 (zo).

Analyzing the eigenvalues of the spherical Laplacian gives us several equivalent defi-
nitions of regular points for the one phase problem.

Proposition 6.1. Assume (6.1), and let u be an almost-minimizer for J*. Then
W (u, xg,0) > qi(xo)% for every zo € T (u). (6.15)
In addition, for xo € T (u), the following are equivalent:

(1) zo € R;
(2) Every blow-up limit of u at xg is a half-plane solution;
(3) Some blow-up limit of u at xy is a half-plane solution.

Proof. Let u and xg € 't (u) be given, and let u, be a blow-up limit of u at zg, asso-
ciated as above to a sequence {r;}. Then uq, is homogeneous of degree 1 and harmonic
on Uy = {x € R™; upo(x) > 0}. Let g denote the restriction of us, to the unit sphere
S 1. then

Agn-1g(0) + (n—1)g(0) =0, for e {g>0}nS"!, (6.16)

where Agn-1 is the Laplace-Beltrami operator on the sphere. In other words, g is an
eigenfunction for —Agn-1 on {g > 0}, with the eigenvalue n — 1.

For every open subset ¥ C S"~! denote by A\(X) the smallest eigenvalue of —Agn-1 on
¥ and by V(%) its (n — 1)-volume. Sperner [35] showed that A(X) > A(Sy(x)), where Sy
denotes the spherical cap with the (n — 1)-volume V. Later, Beckner, Kenig and Pipher
[6] (see also [8], Remark 2.4.4 and Theorem 2.4.5) showed that this inequality is strict
unless ¥ is a spherical cap.

Finally, since A(Sy) can also be expressed in terms of the optimal constant for a
Poincaré inequality on Sy, it is clear that A(Sy) is a decreasing function of V| and a
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quick computation shows that for the half sphere, A(S,, ,/2) = (n — 1), where a1 is
the (n — 1)-volume of S™~1. It follows that, if V(¥) < a,—1/2, then

)‘(E) > /\(SV(E)) 2 )\(San—l/2) =n-—1, (6'17)

with equality if and only if ¥ is a hemisphere.

Return to u, and g. Since (n—1) is an eigenvalue of Agn-1 on X = {g > 0}, (6.17) says
that V(X) > ay,—1/2, and that ¥ is a half sphere if V(X) = ay,—1/2. Since W (u, zg,0) =
¢3(20)|B(0,1) N {use > 0}] by (6.13) and e is the homogeneous extension of g, we get
that W (u, zg,0) > qi(mo)%, and {us, > 0} is a half space if W (u, xo,0) = qi(xo)%‘”.

In particular, (6.15) holds, and we are ready to prove the equivalence of our three
conditions. First assume that o € R. Then for any blow-up limit, {us, > 0} is a half
space, ¢ is a solution of (6.16) for a half sphere, and it is known that in this case g is affine
and u., is a multiple of a half-plane solution. Since u is a global minimizer, it is actually
equal to a half-plane solution. Thus (1) implies (2), which obviously implies (3). Finally,
if some blow-up limit of u at x is a half-plane solution, then W (u, ¢, 0) = qf_ (20) 5~ by
(6.13), hence g € R. The proposition follows. O

Recall from Theorem 4.3 that under the current assumptions, I'* (u) is locally Ahlfors-
regular and uniformly rectifiable, and the proof also gives a local version of Condition B.
Thus H"~!-almost every o € I'"(u) (in fact, every point zq € 't (u) where I'* (u) has
a tangent plane) lies in the reduced boundary 9*{u > 0}. The next corollary shows that
these points lie in R.

Corollary 6.1. Assume (6.1) and let u be an almost-minimizer for J* in Q. Then the
reduced boundary QN O*{u > 0} is contained in R.

Proof. Let g € QN 9*{u > 0} be given, and let us be a blow-up limit of u at xg,
associated as above to the sequence {r;}. Set u; = Urj iz} thus the u; tend to us as in
Lemma 6.2.

By definition of 8*{u > 0}, the functions 1¢u;>0} converge in L} (R™) to the char-
acteristic function of a half plane. Then (6.10) (applied with = 0, » = 1, and the sign
+) yields fB(O,l) 1{u_>03(2)dz = % and hence, by (6.13), W (u, zo,0) = ¢3 ()% and
rg €ER. O

Corollary 6.2. Let u be an almost-minimizer for J* in Q C R™, and assume that (6.1)
holds and 2 < n < 4. Then R =T (u).

Proof. Results of [4] when n = 2 (Corollary 6.7), the Theorem in [9] when n = 3 and [20]
when n = 4 (Theorem 1.1) guarantee that every one-homogeneous global minimizer for
J°F is a one-plane solution. If us, is any blow-up limit of u at o € I'" (u), Lemma 6.2
says that u is such a homogeneous global minimizer, and hence is a one-plane solution.
The corollary now follows from Proposition 6.1. O
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We know from (6.15) that W (u, zo,0) is smallest at regular points. We are interested
in quantitative versions of this, that will often be obtained with limiting arguments.
First, there is a gap between qi (w9)%* and the next authorized value.

Lemma 6.3. There is a positive constant e(n) > 0 such that if v is a global minimizer for
JT, as in Definition 2.2 with the constant A\, > 0, which is also homogeneous of degree
1 and such that

A [BO, )N {v>0} < (1 +a(n))Ai%, (6.18)
then v is a half-plane solution.
Of course we replace ¢ (xg) by Ay in the definition of a half-plane solution for J7.

Proof. This result is not trivial at all, but it will be a rather simple consequence of
Theorem 8.1 in [4]. It is easy to see that v is a global minimizer for J* with the constant
A+ > 0 if and only if v/\; a global minimizer for J* with the constant 1. Thus we may
restrict to Ay = 1.

Assume, in order to obtain a contradiction, that for every k& > 0 there exists a one-
homogenous global minimizer vy for J* with Ay = 1, such that

|B(0,1) N {v > 0}] < (1 + 2—’f)% (6.19)

but which is not a half-plane solution. By Theorem 5.3 in [5], the functions v, are
uniformly Lipschitz on B(0,1) (or equivalently, since they are homogeneous, on any
ball B(0, R)), and v;(0) = 0 for all k, so we may extract a subsequence that converges
uniformly on compact subsets of R™ to some limit v. Then we can apply Theorem 9.1 in
[16], in the simpler situation where all the functions ¢4 are identically equal to 1. We get
that v is also a global minimizer for J*, and that (after extraction) the Vuy converge
to Vo in L2 (R™). We may also use (9.14) in [16], as we did for (6.9) and (6.10), to get
that

|B(0,1)N{v >0} = / 1is0y(2)dz = Jim |B(0,1) N {v, >0} < % (6.20)

B(0,1)

Then by the proof of (6.15), v is a half-plane solution. That is, there is a unit vector v
such that v(z) = (x,v), for z € R"™. Without loss of generality, we may assume that v
is the last coordinate vector and v(x) = (z) 4.

At this point we want to use the proximity to v to show that for k large, the free
boundary I'*'(vy) is smooth at the origin, and this is where we apply Theorem 8.1 in
[4]. Thus we need to check, with the notation of [4], that v, € F(o,1,00) in B(0,1), say.
Here the size of the ball does not matter, because vy, is a minimizer (and is homogeneous
anyway), and o is a small constant that comes from the theorem.
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Returning to Definition 7.1 in [4], we see that in order to prove that v, € F(o,0_,00)
(in B(0,1) and in the direction v), we need to prove that vy is a weak solution (with
Q =1 here), 0 € ' (vy),

vg(x) =0 for x € B(0,1) such that z,, < —0o (6.21)
(compared with [4], we look in the other direction and z,, is replaced with —z,,),
vp(z) > xp —o_ for x € B(0,1) such that z,, > o_, (6.22)

and also vy is Lipschitz and bounded in B(0,1). It would not be hard to prove (6.22)
with any o_ > 0, because {v;} converges to v uniformly in B(0,1), but here o_ = 1 and
we do not even need to do this. We know most of the other properties, and are only left
with (6.21) to check.

So we let z € B(0,1) be such that z, < —o, assume that v;(z) > 0, and prove that
this leads to a contradiction if k is large enough. Recall that vy is Lipschitz in B(0, 2),
with a Lipschitz bound that depends only on n, so Theorem 10.2 in [16] (about the
nondegeneracy of vy near the free boundary) says that there is a constant 7 > 0, that
depends only on n, such that

vr(2) > 7dist (2, T (vy,)) for z € B(0,3/2) N {vx > 0}. (6.23)

In particular, since vg(x) = |vg(x) — v(z)| < [Jvr — v||L~(B(0,2)) Which tends to 0, we
see that if k is large enough, we can find y € I'"(vy) such that |z — y| < o/2. Then
by the NTA property, we can find a corkscrew point z € B(y,o/2) N {vy > 0} such
that dist (2, " (vy)) > C~to. See Theorem 2.3 and the first item of Definition 2.3. Then
v(z) > C7lor by (6.23). But |2 — 2| < 0 and z,, < —0, s0 2, < 0 and v(z) = 0. Our
last estimate contradicts the fact that ||y — v|[(B(0,2)) tends to 0, and this completes
our proof of (6.21).

So we may apply Theorem 8.1 in [4]. We get that for k large, I'"(vy) is smooth at
the origin. Since vy, is homogeneous, 't (vy) is a hyperplane, and hence |B(O7 1) N{vg >
0}| = <. This forces vj to be a half-plane solution, as in the proof of (6.15). This
contradiction with the definition of vy completes our proof of Lemma 6.3. O

Because of Lemma 6.3, we can also say that
R = {0 € TF(u) ; W (u, 20,0) < (1 +£(n)) qi(xo)% 1. (6.24)

Indeed, one inclusion is obvious, and for the other one let zqg € I'*(u) be such that
W (u,20,0) < (1 +e(n))q3(z0)% and let us be any blow-up limit of u at z. By
Lemma 6.2, us is a homogeneous global minimizer with Ay = ¢2 (zo), and since

W,

|B(0,1) N {uoe > 0} = Wy (oo, 7) = W(u,20,0) < (14¢(n)) qi(m0)7 (6.25)
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by (6.13) and (6.8), Lemma 6.3 says that u, is a half-plane solution, and hence xy € R
by Proposition 6.1. Here is a simple consequence of (6.24).

Corollary 6.3. R is open in T (u).

Proof. Notice that since each W (u,z,r) is a continuous function of z, and by (5.6), for
each xyp € I'"(u) there exist constants C' > 0 and « > 0 such that for x € I'"(u) near
T, the sequence {W (u, x,27%) +C27%} is decreasing. Then the almost monotone limit
W (u,x,0) is upper semi-continuous. That is, {x et (u); W(u,z,0) < )\} is open.

If 2o € R, then W (u,xo,0) = ¢%(z0)%* and, by semicontinuity, W (u,z,0) < (1 +

e(n))g3 (z)4 for € I'(u) close enough to zg, as needed. O

The next proposition is another quantitative version of Proposition 6.1.

Proposition 6.2. Assume (6.1), let u be an almost-minimizer for J* in Q, and let K CC Q
be compact. For every o > 0 there exist €, > 0 and p, > 0 (which may depend on K,
4+, and u) such that if vo € K NTF(u) and p € (0, p,) are such that

Wn,
W (.20, 26) < (1+25) s (o) 2, (6.26)

then zo € R and we can find v, € S""' such that
u(z + x0) — q1-(x0) (z,v,) [ < op  forx € B(0,p) (6.27)
and
w(x +x9) =0 forx € B(0,p) such that (x,v,) < —op. (6.28)

As per usual, we shall not try to see that ¢, > 0 and p, > 0 depends only on n,
dist (K, 0U), q4, and the almost minimality constants for u, but this would not be very
hard. We added the conclusion that xg € R to comfort the reader, but what really
matters is the uniform approximation in (6.27) and, (6.28). In fact, if 29 and p € (0, ps)
are as in the statement, and if p. is chosen small enough, then by Proposition 5.2 (the
almost monotonicity of W (u,xg,-)) we also have that W (u, zo,t) < (14 2¢,) g+ (x0)
for 0 < ¢ < 2p. We shall take e, < €(n)/2, so xy € R by (6.24). But also, at the price of
making e, twice smaller, we see that the approximation conclusion holds for 0 < p’ < p,

2 Wn
2

although with possibly different directions v,.

Proof. Let o0 > 0 be given and assume, in order to obtain a contradiction, that there are
points z; € K NI (u) and scales {p;}5°,, with p; | 0, such that

. w
Wi(u,xj;,2p) < (1+2 ])qu(xj)Q —

o (6.29)
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but the conclusion fails. Since we proved above that z; € R, this means that we cannot
find v € S"~! such that (6.27) and (6.28) hold (with zo = z; and p = p;). Set u; = u,, 4.,
ie., u;j(z) = p; 'u(z; + piz). We may replace {u;} by a subsequence for which z; tends
to a limit kg € K NT7(u). Also, u is Lipschitz near K, and since the x; stay in K and
the p; tend to 0, it is easy to extract a new subsequence, which we shall still denote by
{u;}, which converges uniformly on compact subsets of R™ to a limit %q.

We claim that we may now proceed as in Lemma 6.2 to control u.. There is a small
difference with the situation of Lemma 6.2, because here z; is not fixed and so we cannot
apply Theorem 9.2 in [16] directly. Instead we apply Theorem 9.1 in [16] to the sequence
{u;} (just as Theorem 9.2 was deduced from Theorem 9.1 in [16]). The corresponding
weights @ — ¢ (x; + p;jx) converge to ¢y (zo) uniformly on compact sets of R™, because
g+ is Holder-continuous and x; — xo, and the u; are locally Lipschitz with estimates
that do not depend on j. This is enough to apply Theorem 9.1 in [16]. We get that u«
is a global minimizer for J°¥, the functional of Section 2 associated to the constant
weight Ay = ¢4+ (7o), and also that Vue is the limit of Vu; in L (R™). In addition
(9.14) in [16] implies, as in (6.10), that for r > 0,

/ Tu>0y = Jlggo 1, >0 (6.30)
B(0,r) B(0,r)

We multiply by qi(mo) and add energy integrals that converge and get that

Wao (oo, ) = lim Wy (uj, 7). (6.31)

J—0o0

But

W (uj7 T) - W(u’ L, ,0]‘7”) = Wy, (uja ’I“) - vaj (uj7 ’I“)

6.32
R (o) - R @ BO Ny >0

by (6.5) and the definition (6.6). Since the right-hand side tends to 0 because g4 (z;+p;z)
converges to ¢ (xg) uniformly on B(0,r), we see that

Wao (oo, ) = lim W (u,zj, p;r). (6.33)

J—00

We use this with 7 = 2 and deduce from (6.29) that

w

WL‘O (uooa 2) < Q+(x0)2 777’ (634)

because gy (z;) tends to g4 (xp). Since us is a global minimizer, W, (us, ) is a nonde-
creasing function of r and W, (tes, ) < g4 (20)?4g for 0 < r < 2.

By Proposition 6.1, applied to us instead of u, Wa, (o, 0) > g4 (20)* %,

fact W (oo, 7) = q4(20)*%g for 0 < r < 2. By the proof of Proposition 6.1, us is

hence in
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homogeneous of degree 1 on B(0,2), and then (by the eigenvalue argument) coincides
with a half-plane solution on that ball.

Thus we proved that the u; converge uniformly on B(0,2) to a half-plane solution,
which we write v(z) = ¢4 (o) (x,7,), for some unit vector v (see (6.14)). We just need
to show that for this v, (6.27) and (6.28) hold for j large (with v, = v and =z replaced
by x;), and this will prove the proposition by contradiction.

Now (6.27) holds precisely because {u;} converges to v uniformly and ¢ (z;) tends to
g+ (o), so we may concentrate on (6.28). The proof will be quite similar to what we did
for (6.21), but we give the argument because the reader may worry that we used extra
properties of global minimizers.

It is enough to let © € B(0, p;) be such that (z,v) < —op;, suppose that u(z+z;) > 0,
and get a contradiction. Set y = p}lx; thus y € B(0,1), (y,v) < —o, and u;(y) > 0.
Recall that w is Lipschitz in a neighborhood of K, and hence the u; are Lipschitz in
B(0,2), with a Lipschitz bound M that does not depend on j. By the nondegeneracy of
(uj)+ (see Theorem 10.2 in [16]), there is a constant 7 > 0, that depends only on M, n,
[lg+ |00, and co, such that

u;(z) > 7dist (2,7 (u;)) for z € B(0,3/2) N {u; > 0}. (6.35)

In particular, since u;(y) = |u;j(y) — v(y)| < |[uj — v||z=(B(0,2)) Which tends to 0, we
see that if j is large enough, we can find w € I'*(u;) such that |y — w| < o/2. Then
by the NTA property, we can find a corkscrew point z € B(z,0/2) N {u; > 0} such
that dist (2,7 (u;)) > C~1o. See Theorem 2.3 and the first item of Definition 2.3. Then
u;(z) > C~ o7 by (6.35). But |z —y| < 0, so v(y) = 0 and the last estimate contradicts
the fact that ||u; — v|[z(B(0,2)) tends to 0. This contradiction completes our proof of
(6.28) and Proposition 6.2. O

A priori, the blow-up limit u., may vary with the sequence p; | 0 that we chose
to define it. However, if we are given extra geometric information about the point xg €
' (u), then we can prove that there is a unique blow-up limit. We start with the existence
of a tangent exterior ball.

Corollary 6.4. Assume (6.1) and let u be an almost-minimizer for J* in Q. Assume that
xo € T (u) is such that there exists an open ball B, with B C {u = 0} and zy € 9B.
Then zo € R and we can find v € S"~1 such that for every o > 0, there exists py .z, > 0
such that

‘u(m) — g4+ (x0) {x — x0, 1/>+‘ <or forr<reu and x € B(xg,T). (6.36)

Proof. Let us be any blow-up limit of u at x¢, and let {r;} be the associated sequence,
so that r; tends to 0 and the u;(z) = %jﬂo) converge to s, uniformly on compact
sets. Set D; = rj_l(B — 20); by assumption u; = 0 on D, and since the D; converge to

a half space H, we get that u,, =0 on H.
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qf_ (xo) %+, so Proposition 6.1 says that 2o € R and u is a half-plane solution.

By (6.13), W(u,20,0) = % (20)|B(0,1) N {uce > 0} < q}(w0)|B(0,1) \ H| <

Since uoo = 0 on H, there is no choice and us () = ¢4 (xo)(x, V)4, where v is the unit
vector that points directly away from the center of B seen from zy. Thus all the blow-up
limits of u at zy are the same uy,, associated to v. This implies (by the existence of
convergent subsequences) that the functions u, 5, of (6.2) actually converge to this e,
uniformly on compact sets, and (6.36) follows at once. O

Here is a variant of the previous corollary, but for points of the reduced boundary
0*{u > 0}.

Corollary 6.5. Assume (6.1) and let u be an almost-minimizer for J* in Q. Assume that
xo € QNO*{u > 0}, and let v = v(xg) denote the associated unit normal, pointing in the
direction of {u > 0}. Then xo € R and for every o > 0 there exists 744, > 0 such that

|u(z) = g4 (o) (x — 20, v) | <or  forr <rsg4, and x € B(xo,r). (6.37)

We already said in Corollary 6.1 that xy € R, but we will prove it again. When we
restrict (6.37) to & = xg + tv, t > 0, we get the existence of a normal derivative

otu .
W(xo) = tl_l)r& t u(xo +tv) = g4 (zo)v. (6.38)

When we stay in U = {z € Q; u(x) > 0}, (6.37) gives an expansion

u(z) = (Vtu(zo),z — z0)_, + 0|z — zol), (6.39)

+

(where by the Landau convention, o(|x — z¢|)/|x — zo| tends to 0 when z tends to o,
and we may also have dropped the positive part) with

v+ _0tu B
u(zo) = 5, @o)v = g4 (zo)v. (6.40)

Proof. Let us be a blow-up limit of u at x¢, associated as above to a sequence {r;}. Set

uj(z) = w as above. By definition of 0*{u > 0}, the functions 1y, ,_o) converge
in L}OC(R”) to 1y, where H is the half space pointing in the direction opposite to v. If

Uso(z) > 0 for some interior point = of H, then by the uniform convergence of u; to us
there is a small ball B centered at x such that for j large, u;(y) > 0 for y € B. This
contradicts the local L' convergence, so us(z) = 0 on H, and we may conclude as in
Corollary 6.4. O

We now use Corollary 6.5 to prove the existence of a normal derivative and gradient,
at points of the reduced boundary, of the function h,, , that was defined near (3.4).
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Corollary 6.6. Let 2 C R™ be a bounded, connected open set, and let gy € L () be
Hoélder-continuous and such that qy > c¢o > 0. For each o > 0, we can find a radius
pg > 0, that depends only on n, co, ||q+|L=, &, @ and ro, and a constant 5 € (0,a/16n),
that depends only on n and o, with the following properties.

Let u be an almost-minimizer for J* in Q (with the constants a and k). If 0 < r < py,
zo € TH(u) = QN d{u > 0}, B(x,6r9) C Q, and z € *{u > 0} N B(xg, 2ri+e/1T)
then the function hy, , defined near (3.4) satisfies

s Ot hyy 8
(1= 5r)0(2) < T0m7(2) < (14 51%)q,.(2) (6.41)
and
VT hgr(2) = %(z)u(z), (6.42)

+
where the existence of 9 g;“”(z) and NVt hy, »(2), as defined below Corollary 6.5, are

part of the statement.

The proof starts with Corollary 6.5, which gives similar results for u, and deduce the
result from estimates on hy, ,/u that we proved in earlier sections. But let us compare
with the slightly different function h, . first, for which we shall be able to use Theorem 3.1
more directly.

Our Hoélder assumption on ¢4 is used to prove the existence of %(z) and V*u(z),
but we do not need quantitative estimates for this. The other assumptions come from
Section 3 and are used to connect hy, , to u and prove (6.41).

Proof. Let 79 > 0 be given, and let 8 € (0,a/16n) and ps be as in Theorem 3.1 (the
assumptions are satisfied). Suppose that ps < ps (other similar constraints will be added
soon), and let ¢y and z be as in the statement. Then Theorem 3.1 says that

(1 =5 u(x) < hop(x) < (1 + 57 )u(x) (6.43)

forz € U = {z € Q; u(x) > 0} such that |z — x|+ |z —zo| < 5r1T/1™. Since |z — x| <
2r1+e/17n this works for |2 — xg| < 3r'T*/1™ and in particular for |z — 2| < riTe/1Tn,

Since z € 9*{u > 0} N, OU (or equivalently I'"(u)) has an approximate tangent
plane P at z, and since QU is locally Ahlfors-regular, P is actually a true tangent plane.
Let us assume, without loss of generality, that we have coordinates in R™ such that
z =0, P is given by the equation x,, = 0, and U lies above QU near z. Let v = e,, denote
the unit normal at z, pointing in the direction of e. We first want a control on A, on
nontangential sectors, so we define, for 7 € (0, 1), a sector

I.={0es"";0,>r} (6.44)
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(where 0,, = (6,v)) and two functions

a_(r,t) = inf (t0,)  h, (2 +t0) and ay(r,t) = sup (t0,) ‘h..(z +10). (6.45)
0€r, ’ 0er, ’

Also denote by a* (r,t) and a'{(r,t) the analogues for u of a_(r,t) and ay(r,t); we want
to compare the two and then use Corollary 6.5 to compute their limits. First observe
that by taking infimums and supremums in the two halves of (6.43),

(1 —5r%)a" (r,t) < a_(r,t) and ay(r,t) < (14 5%)a(r,t) (6.46)

for t < r1te/17 Next we use the expansion of u near the point z that is given by (6.39)
and (6.40). We get that for 6 € T';,

u(z +t0) = (VTu(2),t0) 1 + o(t) = thnqy(2) + o(t). (6.47)
This implies that

li Y(r,t) = 1 Y(rt) = . 6.48
Jm a2 (r¢) = lim al(r¢) = g1 (2) (6.48)
Now set a_(r) = liminf; o+ a_(r,t) and a4 (r) = limsup,_,o+ a4 (r,t). It is clear that
a_(r) < a4(r), but by (6.46)

a_(r) > (1=5")q (2) and ay(r) < (1+5"7)q (). (6.49)

This still leaves some uncertainty concerning the existence of limits for the a4 (r,t), which
we shall resolve by replacing r with smaller radii for which the error tends to 0. For what
we said so far, it was enough to assume that B(zq, 4rg) C €, but we made sure to assume
that B(zg,6r9) C €, so that our argument is also directly valid (without thinking about
the proof) with xy = 2. Thus the estimates above are also valid for the functions h, ,
s € (0,7). In particular, (6.49) says that

(1-55%)q4.(2) < a_(s) < as(s) < (1+55%)gs (2). (6.50)

We can relate h, s and h,, (say, on U N B(z,7/2)) because they are both positive
harmonic functions that vanish at the boundary. In particular, (3.53) (with p = r and
xo9 = z) says that for 0 < s < r, we can define the limit

lor(z)= lim el

6.51
zelU ;x—z hzﬂ’(l') ( )

(see (3.53)) and in addition 1/2 < ¢, ,(z) < 2. It is then clear that

lsr(2)a—(r) =a—(s) and s, (2)as(r) = ax(s) (6.52)
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and since (6.50) implies that a_(s) and a4 (s) both tend to g (z), we see that a_(r) =
a4 (r).

So we proved that a(r,t) and a, (r,t) have a common limit a(r). We intend to check
that we can take

Oth..,

5, (2)=alr) and Vthe,y =a(r)v (6.53)

in the definitions (6.38)-(6.40), but first observe that
(1=5r")q4(2) < a(r) < (14577)q1(2) (6.54)

by (6.49). Now we return to the definition (6.45) and find that for x = z + t6, with
0 € T, we have the expansion

her(z +t0) = t0pa(r) + oft). (6.55)

This implies that % (z) = a(r), asin (6.38), and the only difference with the definition
of V7 is that we restrict to the sector RT',. Notice first that a(r) does not depend on T,
because it gives the derivative in the normal direction; this will allow us let 7 tend to 0
and use the Lipschitz property for the remaining region. That is, let M be a bound
for the Lipschitz norm of u in B(zq,3r'*®/1). Then let ¢ > 0 be given, and choose
7= M~'e. Then for x = z+t0 € U such that § ¢ ', and if ¢ is small enough (depending
on the good approximation of OU by its tangent plane),

|har(x) — tOpa(r)| < |t0pa(r)| + Mdist (z,0U) < tra(r) + 2M7t < (a(r) + 2)et. (6.56)

Since (6.55) gives a good enough control when 6 € T, we get the full (6.53). This gives
the desired control on the function h, ,, but our statement involved the slightly different
function hg, . Notice that (if ps is chosen small enough, so that plte/1Tn o r/10), hy ,
and hg, , are both non-negative harmonic functions on U N B(z,r/2), that vanish on
OU N B(z,r/2). By the local NTA property of U and the comparison principle,

there exist constants C' > 1 and n € (0, 1) (that depend on rg and the usual constants
through the NTA constants) such that

hogr(@) hmo,r(y)’ < Zmo((;) <|x = y|>77 (6.57)

hz,r(x) hz7r(y)
for x,y € U N B(z,r/4). See the proof of (3.27) for some additional detail. Then, by the
proof of (3.53) (using the continuity of the ratio at the boundary), there exists

£(z) = lim fizy (@)

Jim e (6.58)
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At this point, for each 7 € (0,1) (6.55) gives us a nice expansion for h, , in the cone over
I'-, and (6.58) implies that we have the same expansion for hy, ,, with a(r) replaced by
£(z)a(r). We can control the points that lie outside of the cone as we did for (6.56), and
now the existence of dJrg%(z) and (6.42) follow from (the proof of) (6.53). Finally, for
the inequalities in (6.41), observe that (6.43) also holds for hg, ,, which gives a good
control on hy, ,/u, and %(z) = ¢+ (2), by (6.38). Proposition 6.3 follows. O

We end this section by showing that h,, , satisfies Definition 5.1 in [4].

Proposition 6.3. The function hy, , of Corollary 6.0 satisfies

- / (Vhagr, VC) = / ¢ Thaor gaynes (6.59)

ov
v o{u>0}
forall ¢ € Ccl‘(B(mel-O—a/l?n))'

Proof. Set B = B(xg,r'+t*/1™). By its definition near (3.4), hy,, is continuous on
B(zg,r) and harmonic on U N B(xg,); in addition, it satisfies the estimate (3.56) in
5B, and Theorem 4.3 in [4] guarantees that A = Ahy, , is an Ahlfors regular measure
on OU N 3B, say. Let k denote the Radon-Nikodym of A with respect to ™!, thus for
¢ € CY(B) we have

—/(Vhwo,mvg): / CkdH™ 1. (6.60)
o{u>0}

Since Vhg, ,» = 0 almost everywhere on B\ U (because hy, , = 0 there), the proposition
will follow as soon as we prove that

0T hay,

k(z) £

(z) for H" *-almost every z € U N B. (6.61)

Notice that k € LS (H" 'L OU) near B, because A is Ahlfors regular. The same ar-

guments as those used in the proofs of Lemmata 3.1, 3.2 and 3.4 in [29] show that the
non-tangential limit F of Vh,, , exists H" 1-a.e. on OU N B and,

F(z) = k(z)v(z) for H" L-almost every z € U N B. (6.62)

+
Thus we just need to check that %(z) = (F(z),v(%)) a.e. on OU N B. Recall that
almost every z € OUNB lies in 9*U, so Corollary 6.6 applies to it, and gives the existence

T
of the normal derivative 2 g;“ (). Here we use the definition (6.38), which mean that
we have the expansion
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hoo (2 +t0(2)) =t a+§5°’r (2) + o(t), (6.63)

valid for ¢ small, and where v(z) is the same normal derivative that points towards U
as in (6.62), say. As before, the convention is that ¢t~!o(t) tends to 0. The fact that
z+tv(z) € U for t small is easy here, since QU has a true tangent plane at z. We apply
this to 2¢ and subtract to get that

Ot hyy

hao (24 2tv(2)) — hyy (2 +tv(2)) =t EY

(2) + o(t) (6.64)
On the other hand, by the fundamental theorem of calculus (and for ¢ small),
haor (2 4 2t0(2)) = hey r (2 + tv(2)) = t(Vhay (2 + Ev(2)), v(2)) (6.65)

for some & € [t,2t]. Let ¢ tend to 0. If z is also such that the notangential limit at z of
Vhg, r is F(z), then Vhy, (2 4+ €v(z)) tends to F(z) and the comparison of (6.64) and
(6.65) yields a+g;°” (2) = (F(z),v(2)), as needed. Proposition 6.3 follows. O

7. Free boundary regularity for almost-minimizers

In this section we show that if u is an almost-minimizer for J* in Q C R™ with ¢,
Holder continuous and bounded below, then the set R C d{u > 0} (see Definition 6.1)
is locally a C# (n — 1)-submanifold (see Theorem 7.1). The definitions and arguments
used in this section are reminiscent of those that appear in [4]. We discuss some of the
technical arguments that concern harmonic functions (and specifically weak solutions)
in Section 9.

In this whole section, we assume that u is an almost-minimizer for J* in Q C R”,
and that

g+ € C*(Q) N L>®(Q), and there is a constant ¢g > 0 such that g3 > ¢o > 0 on .
(7.1)

We set U = {z € Q; u(z) > 0} and ' (u) = 2N AU as usual.
Definition 7.1. Let 0 > 0. For g € TV (u) and ro > 0 with B(zq,70) C Q we say that

u € F(o;x0,70) in the direction eg € S"* (7.2)
if for x € B(xo,19),

{ u(z) =0 if (x — o, e0) < —org

u(z) > q4(x0)[{x — xo,€0) — or0]  if (¥ — 20, €0) > OTp.
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Lemma 7.1. Let u be an almost-minimizer for J* in & C R™ and ¢ > 0. If u €
F(o;m0,70) in the direction eg € S*~% and Ly = xo + (eo)*, then

%D[a{u > 0} A B(xo, 7o), Lo N Blzo,70)] < Co, (7.4)
0

where D denotes the Hausdorff distance, and C' is a constant depending on n

Proof. Notice that if ¢ > 27", then we have (7.4) with C = 2™. Thus let ¢ < 27™.
Note that (7.3) implies that |[{(yo — xo,e0)| < org for yo € U N B(xg,ro). For y €
Lo N B(xg,m0V1 — 402) observe that u(y + 20rpeg) > 0 and u(y — 207rpeg) = 0, thus
since w is continuous there is y' = y + troeg € d{u > 0} N B(xg,r9V1 — 402) with
t € (=20,20), thus |y — ¢'| < 20rg. For z € Lo N B(xo,70)\B(z0,70V1 — 402) there is
y € Lo N B(zg,r0V1 — 40?) with |z — y| < or¢ and using y' as above we have |z — /| <
3org. O

With the notation of Definitions 6.1 and 7.1, Proposition 6.2 implies that regular
points are flat.

Corollary 7.1. Let u be an almost-minimizer for J*, assume (7.1), and let o > 0 be
giwen. Then for every xo € R there exists p, > 0 such that for 0 < p < p, there is
e, € St such that u € F(o; o, p) in the direction e,,.

Note that by Corollary 6.1, Corollary 7.1 applies to points in the reduced boundary
9*U N Q. Our first result uses Theorem 4.2 to study how the fact that u € F(o;zq,r0)
in the direction e translates into the behavior of the intermediate functions hy, ,.

Lemma 7.2. Set v = a/17n and ¥ = 2, assume (7.1), and u be an almost-minimizer for
JT in Q. Then for ro > 0 there exist a radius ps > 0, depending only on n, co, ||q+| L=,
lg+llce, K, a, o and ro, and a constant u € (0,1), depending on n and «, such that if
0 < p<ps, xg € H{u > 0}, B(zg,4r¢) C Q and u € F(o;z0,p'™7) in the direction eg
then the function hy, , defined near (3.4) is such that for x € B(xg, p**7),

hag,p(x) =0 if (x — x0,€0) < —20p' 7
hay.p(2) > g4 (x0)[(x — 20, €0) — 20p* 7] if (x — w0, €0) > 20p* 7 (7.5)
[Vhaoo(2)] < q4-(20) (1 + p*).

Moreover for z € 8*{u > 0} N B(zq, p**7)

Ot hyy p

5 (#) = @ (@o)(1 — o). (7.6)

Proof. In addition to the large ball B(zg,p), we shall often use the smaller B =
B(xg, p**7) and the even smaller ball B = B(zg, p!727). Recall that
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{Ahm,p:O in B(zg,p)NU (7.7)

haop =u  in Q\[B(zo,p) NU].

Let us decide to pick ps < p3, where p3 comes from Theorem 3.1. Then h,, , satisfies
(3.44), i.e

(1 =50 Yu(x) < hyy p(x) < (1+5p7)u(z) for = € 4B, (7.8)

where 8 € (0,1) is as in Theorem 3.1. Moreover, if we also take ps smaller than ps in
Corollary 6.6, and if z € 9*U N B, then by (6.41)

5 0 . 5
(1 =5p%)qs(2) < =5 5 (2) < (1+50%)q+(2), (7.9)
and
8+h$0,ﬂ B
—, @=(0- 507)a4(z0) + (1 = 507) (g4 (2) — g+ (20))

IV

4+ (z0)(1 = 5p" — cp®(1 4+ 7)) (7.10)
> g4 (20)(1 — 6p%),

provided that we choose p5 small enough, and because § was chosen smaller than a.. We
picked 4 = 27 and assume that u € F(o;x0, p!77) in the direction eq. Then (7.3) and
(7.8) yield for x € B

hag,p(x) = 0 if (z — 20, e0) < —op'*7. (7.11)

Moreover, provided that pf < land 0 < p < py, then for x € B such that (x — g, €0) >
145
op=t

hao,p(2) > PP )u(x)
149)

)

P7)¢+ (o) [(x — wo, e0) — ap
< 1+5+ﬂ
(

(1-
> (1 -
> g4 (wo)[{x — o, €0) —p T —p
> qp (z0)[(x — z0, e9) — 20p*17]. (7.12)
Since hg,,, is harmonic in B(zo, p) N U, so is Vhg, ,. By (7.8) and Theorems 5.1 and

10.2 in [16], there exists C' > 0, that depends on the usual constants, such that for
x € BNU = B(zo, p' ™) NU,

C715(z) < hyy p(z) < C8(2) (7.13)

where §(z) = dist(z, OU). Thus by standard PDE arguments (see (3.18)), (7.13) implies
that |Vhg, | it is bounded on BNU. Recall that U is locally NTA in € (see Theorem 2.3).
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Let w denote the harmonic measure of BN U. Theorem 4.1, together with the fact that
on a connected domain, harmonic measures with different poles are mutually absolutely
continuous, ensures that for z € B=B (20, p*1?7), w® and H" ! are mutually absolutely
continuous. This fact plus (7.9) yield, for z € BNU,

Vhaol@l =| [ Thego() o)

o(UNB)
< / (Vg pl2)] de(2) + /|v rop(2) de(z),  (7.14)
oOBNU oUNB

where in the second integral Vhg, ,(2) denotes the nontangential limit of Vh,, , at
20, whose existence follows Lemmata 3.1, 3.2, and 3.4 in [29], and was already used in
Proposition 6.3 under the name of F(z) (see (6.62)). It follows from (6.62), (6.61), and
(7.9) that

O hag p

[Vhaop(2)] = [F(2)] = k(z) = —5 ==(2) < (1 + 507)q+(2) (7.15)

for H"~'-almost every z € U N B.
For the first integral we use the fact that |Vhg, ,| < M for some M > 0 that does
not depend on p, and altogether (7.14) yields

|Vhzep(x)| < Mw®(OBNU) + (1 + 5,0’8) / q+(2) dw®(2). (7.16)
aUNB

By the assumption that ¢, € C' the second term in (7.16) is bounded by
(1+5p%)g4 (wo) + Cp* 7 < (141007 + C'p* 7)) gy (o), (7.17)

where we have used the fact that g. > ¢ > 0. Since w*(0B NU) is a harmonic function
on BN U which vanishes continuously on %B N U and that U is locally NTA we have
(see [25]) that for x € B = B(zq, p'27)

|z — o]

n
wt(OBNU)<C ( P ) < Cpm (7.18)

where C' and 1 depend on the local NTA constants. Combining (7.14), (7.17), (7.18) and
using the fact that ¢ > ¢o > 0 we obtain that for x € BNU

[V hag p(@)] < (14507 + C'p"0+9) 4 Cp™)q, (o). (7.19)

Letting ¢ = 3 min{j, o, 7y} then choosing ps such that (54 C + C")p} < 1, 6p7/2 < 1
and recalling that 4 = 2+, (7.19) and (7.10) become
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Ot hy
SUP [V ol < g1 (o) (1+9) and “22(2) 2 qufao)(1 - ). (720)
B

Note that (7.11), (7.12) and (7.20) yield (7.5) and (7.6). O

Lemma 7.3. Let u be an almost-minimizer for J* in Q C R™ and assume (7.1) holds.
In addition, let zo € T (u) = 90U NQ and ro > 0 be such that B(zo,4rg) C Q. Given
0 € (0,1) there exist op9 > 0 and n = Ny € (0,1) so that if 0 < 04,9, then we can
choose an r1 > 0 (which depends only on n, co, ||q+|| L=, ||¢+||c=, K, o, 0 and ro) such that
for all 0 < r < r1, if u € F(o;x0,7) in the direction ey, ., then u € F(bo;xo,nr) in
some direction ez, ,r where

|ezo,r — €xgr| < Co. (7.21)
(Here C > 0 depends only on n,co, ||q+||Le, ||¢+||ce, &, @ and r¢.)

Proof. Let 0 € (0,1) be given, and set 6’ = /3. Let 0,9 > 0 and ' = n,¢ € (0,1) be
as in Corollary 9.1. Let 8 as in Theorem 3.1, 4 and p as in Lemma 7.2. For o < %Jn’g/
let ps be as in Lemma 7.2. Let p; < min{ps, (0’0)%, (%O'nﬂ/UQ)%}, to be chosen later,
and set 71 = p}“’.

For 0 < r <7 and xg € QU such that B(zg,4r9) C €2, set
p:rﬁ, T:p“zrﬁ, and v = hgy p; (7.22)

thus p < p1 < ps. All this is arranged so that if w € F(o;z0,7) in the direction ey, ,,

Lemma 7.2 says that v € F(20,20;7) in B(zg,r) in the direction —ey, ., where the

notation for F' will be given in Definition 9.1. Also, 7072 < p’l‘J*Q < %O’mgl, and by

our choice of constants Corollary 9.1 guarantees that v € F(20'0,20'c;7) in B(xo,n'r)
in some direction —eg, , such that |ey, , — €xy | < Co (see (9.20)). Thus for z €

B(zo,n'r)

v(z) =0 if (x — o, €xg,mr) < —20"0nr
(7.23)
v(z) > g4 (x0) (& — 20, €qnr) — 200m'r] i (x — 20, €3.yr) > 20'00)'r.
By the definition of v, (7.23) ensures that
u(z) =0 for x € B(xzg,n'r) such that (x — xg, ey ,r) < —20"0nr. (7.24)

Next consider o € B(zo,n'r) such that (x — xq, €5y ,r) > 26'0n'r (so that u(z) > 0
by (7.23)). If we choose p; also smaller than ps from Theorem 3.1, then this theorem
applies to the pair (zg, p), and since = € U N B(xq,n'r) C B(zo, p**?) (because 1’ < 1),
(3.44) yields
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u(x) > (14 50°) " hey p(z) = (1 +50°) " o(2), (7.25)
and hence by (7.23)

u() > (1450°) " o(x) > (14 5p°) " gy (o) [(z — 20, €xg,r) — 20'07)'7]
> q4 (o) [(m — T, €ggyr) — 200 0n'r — 50° | — xo|]
> q4 (o) [(m — To, €gg ) — 39’07)’7‘} (7.26)

because (1+5p%)71 > 1 —5p° and |z — x| < n'r, and if p; is small enough (depending
on ¢, o, and 7).

By (7.24) and (7.26), u € F(30'c;x0,n'r) in the direction ey, ,». Choosing ¢’ = %,
19 =1’ and recalling (9.20) we conclude that u € F(fo;xg,nr) and (7.21) holds. O

Theorem 7.1. Let u be an almost-minimizer for J* in Q C R", and assume that (7.1)
holds. There exists & € (0,1) depending on cy, a and n such that R is (locally) a CH*
(n — 1)-submanifold.

Proof. Fix 6 € (0,1) and let 0,9 as in Lemma 7.3. Choose o/ < Z%&. Let r <
1

7 min{ry, p), } where r; is as in Lemma 7.3 and p, is as in Corollary 7.1. In particular u €
F(o'; g, 4r) in the direction ey, 4 which by Lemma 7.1 yields |{xo — yo, €z ,4r)| < 4o’
for yo € B(xg,r) NOU. Thus if x € B(yo,r) and (z — Yo, €x,,4r) < —80’r then u(z) = 0.

Moreover if (x — yo, €4,,4r) > 801 then (x — ¢, €5y 4r) > 40’ and

w(x) > qp(z0)[{(x — Z0, €x9.0r) — 40'7] = q1 (yo) (& — T0, €09 4r) — do'r] +E  (7.27)

where

€] = [(a+(z0) = a+ (o)) [{& = 20, €xy,ar) — 40"r]| < Clzo — yo|*[|l2 — wol + 40'7]
< Cr®2r +40'r] < o'rqs (x0) (7.28)

if 71 is chosen small enough (depending on the ¢/, the Holder constants for ¢, and ¢
in particular). Thus by (7.27)

u(z) > q4 (o) [(x — 20, €29,4r) — 507 (7.29)

Thus if u € F(o';x,4r) then for all yg € B(xg,r) N OU, (7.29) ensures that u €
F(100’;y0,7) in the same direction. Letting ¢ = 100’ < og, we conclude that for
29 € R there exists r € (0,71) such that for yg € B(xg,r) N O{u > 0}, u € F(o;yo,7)
in the direction ey, , = €y, 4-. An iterative application of Lemma 7.3 ensures that there
exists 7 so that for m € N, u € F(0™0;y0,n™r) in a direction ey, ,m, such that

|€yo,nmr — €yggm—17] < com™ o (7.30)
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Furthermore by Lemma 7.1
D[oU N B(yo,n™r), Le,, ,m, N B(yo,n™r)] < CO™on™r. (7.31)

Let & be such that § = n%; note that for s < r there is m € N such that n™*1r < s < n™r
and (7.31) yields

1 m

~D[ofu > 0} Blyo,s). Le., m, O Blyo, s)] < CGmans—r
S Caman—l — Can—la—l(nm—l)d
< s a — % )
<C (r) C"'s (7.32)

Hence for each xy € R there exists r > 0 such that the hypothesis of Proposition 9.1 in
[17] holds in B(zg,r)NOU, which ensures that B(zg,r)NAU is a C*% (n—1)-submanifold.
Since R is an open subset of QU by Corollary 6.3, we also get that R is (locally) a C1:¢
(n — 1)-submanifold of R™. O

Combining Theorem 7.1 and Corollaries 6.1 and 6.2 we get the following.

Corollary 7.2. Let u be an almost-minimizer for J* in Q C R"™, and assume that (7.1)
holds. Then

Mu>0}=RUS, (7.33)

where S is a closed set with H"1(S) = 0 and R is a C1'% (n —1)-submanifold for some
& that depends only on n, a, ||g+||cc, and co. Furthermore S = () when n = 2,3, 4.

8. Dimension of the singular set

In this section we establish bounds on the Hausdorff dimension of the singular set
'™ \ R of the free boundary for almost minimizers to the one-phase problem.

The arguments here follow very closely those of Sections 3 and 4 in Weiss [37], where
analogous results for minimizers of J* are proven. Let k* be the smallest natural num-
ber such there exists a stable one-homogeneous globally defined minimizer v : R¥" — R
which is not the half plane solution. The work of Caffarelli-Jerison-Kenig [9], Jerison-
Savin [26] and De Silva-Jerison [21], implies that 4 < k* < 7 but the exact value is still
an open question.

The assumptions for this section are the same as for Section 7: u is an almost minimizer
for J* in Q C R", and ¢, is Holder continuous, bounded, and bounded below. We still
denote by R the set of regular points of I'" (u) = QN &{u > 0}; see Definition 6.1. Here
is the main result of this section.
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Theorem 8.1. Let u be an almost-minimizer of J* in Q C R™, assume that g is Holder
continuous, bounded, and bounded below, and let s > n — k*. Then H*(I'" \ R) = 0.

We now have an analogue of Theorem 4.1 in [37], which says that if n < k* then the
singular set T (u) \ R consists of at most isolated points.

Lemma 8.1. Let u be an almost minimizer of J* in Q C R™ and assume n < k*. Then
I (u) \ R is composed of isolated points.

Proof. Assume that there is a sequence of points x € I't (u) \ R such that z, — z¢ €
T (u). Set px = |k — 20| and define a blow-up sequence by uy, +, () = p; ‘u(prz + o).
Passing to a subsequence we may assume that uy 5, converges to ug (see Lemma 6.1)
and by Lemma 6.2 ug is a homogeneous global minimizer, with Ay = g4 (xo) in (2.4).

Further passing to a subsequence we may assume that ””’“p_kf”o — yo € 0B(0,1). Suppose
that 0{up > 0} is non-singular away from the origin (and in particular at yg). By
Proposition 6.1, this also means that yo € R (with respect to ug), and the definition

(6.12) of R and (6.4) yield that for each ¢ > 0 we can find rg > 0 such that
W (uo,yo,7) — qi(xo) % <e/d forr < rg.

By the proof of Lemma 6.2 (slightly modified because now we take a function W centered
at a different point), we get that

w (uk, Tk xo,r) — qi(mo) “n <e/2,
Pk 2

where in the definition (6.3) of W (ug, *:7#2, 1) we use the constants ¢ (x)) instead of

¢+ (o), but this does not matter because gy is Holder continuous and zj, tends to xg.
Then by almost-monotonicity (Proposition 5.2),

W, w

W (u,zx,0) — ¢ (z) 7” < W (u, zp, mpx) + Crpr)® — ¢ (x1) 7”
T — T W
1) = ¢ (w0) 5+ Clrpr)® + Clag — |

= W(uk,

<e/2+C(rp)* + Claxg — zx|* < &,
(8.1)

for k large enough. But this implies, by Proposition 6.2, that x; € R, a contradiction.

Thus we can find Z € 9{ug > 0}, T # 0, such that {ug > 0} is not flat at Z. Consider
Ugo, any blowup limit of ug at Z. By Lemma 3.1 in [37], ugo is constant in the direction
of T and the whole line tZ consists of singular points. Lemma 3.2 in [37] tells us that @,
the pushforward of u under the projection map R™ — T, is a global minimizer with a
singularity at 0. However, dim 2+ < k*, which contradicts the definition of k*. Ergo, our
sequence {zx} in '™ \ R could not have an accumulation point in T't. O
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The following is a version of Lemma 4.2 in [37].

Lemma 8.2. Let u be an almost minimizer of J*, xo € T (u), and let

up = lim ulzo + pis) =: lim wug(z)
k—oo  prq+(To) k00

be any (normalized) blow-up limit of u at xo. Call Xy, the singular part of TV (uy) and Lo
the singular part of T (ug). Then for every compact set K C R™ and open set U C R"
such that K NXg C U, there is a kg < oo such that Xy, N K C U for k > k.

Proof. Recall that the singular set of u is 't (u)\ R, and similarly for us and ug. Assume,
in order to obtain a contradiction, that there are y, € (3, N K) \ U, which, passing to
a subsequence, we may assume converge a limit yo. Notice that yo € T (ug) N K \ U
because this set is closed.

By assumption yo is a flat point of d{ug > 0}, so there exists rg > 0 such that if
r < 1o then

Wn,
W(Uo,yo,’)") - 7 < 5/47

where € > 0 is as in Proposition 6.2. A limiting argument gives us that for k large enough
(which depends on r), W (ug, yr, ) — %> < £/2. By almost-monotonicity (Proposition 5.2)
this implies that W (ug, yr,0) — %> < £/24+Cr®. If r is small enough, so that ¢/24+Cr® <
e, Proposition 6.2 implies that y; is a flat point of uy for large enough k. This is the
desired contradiction. O

The proof of Theorem 8.1 will now follow exactly as in [37]. Let us simply recall
(without proofs) the sequence of results that gives our dimension estimate.
The following result follows from Lemma 8.2 and a covering argument.

Lemma 8.3. Keeping the notation from Lemma 8.2, for any 0 < m < oo, the estimate
HZ (X N K) > limsupy,_, ., H(Xx N K) holds.

We can then immediately deduce the following.

Lemma 8.4. Again let u be an almost-minimizer for J* in dimension n and suppose that
H™(XN D) >0 for some open set D (where X is the singular set of " (u)). Then there
exists xog € D and a blowup limit, ug, of u at the point xq, such that H™(XoNB(0,1)) > 0,
where Xg is the singular set of d{ug > 0}.

Finally Theorem 8.1 follows.
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9. A quantified version of the free boundary regularity theorem of Alt and Caffarelli

In this section we complete the proof of Theorem 7.1 by showing flatness improvement
estimates on weak solutions. A key feature is that at this point, we have transformed
our initial problem on almost-minimizers into a problem that only concerns harmonic
functions, and more specifically the weak minimizers defined below. Moreover, the proofs
below follow the same scheme as arguments of [4] and then [28]. Because of this, we are
able to go more rapidly over estimates that are very close to those of [4] and [28], and
focus on those that are different.

To emphasize the similarities between the properties of h,, , obtained in Lemma 7.2
and those described in Definition 7.1 in [4] or those studied in [28], we isolate some
of the characteristics of hy, , for g € 0{hs,,, > 0} and p > 0 as in Lemma 7.2. Set
UV = Ny, p, With p = 777, and set 7 = Tﬁ, as we did in (7.22), but also replace 20
by o and ey by —eg (that is, the “positive” direction is where the zero set lies and the
“negative” direction is where the positivity set lies). v € C(B(zg,4r)), is harmonic on
{v > 0} N B(xg,4r), and for z € B(xo,r)

v(xz) =0 if (x — x0,e0) > o7
v(x) > —q4(xo)[{x — z0,e0) + 0] i (x —x0,€0) < —0OF (9.1)
[Vo(z)| < g4 (z0)(1 + 7).

Moreover for H"1-a.e. 2 € OU N B(xzo,7)

otv
) 2 ar (o)1 ), (92)

where, by Proposition 6.3, Av = % dH" 1L 9*{v > 0} in the sense that

/(Vv V() = / C—d’H" ! for all ¢ € CH(B(zo,7)). (9.3)

o*{v>0}

In the present situation we do not need to worry about the regularity of 9{v > 0},
because it is equal to U = I'*(u) near the support of ¢, and we could have integrated
on d{v > 0} rather than the reduced boundary 0*{v > 0} because the difference has
vanishing measure.

Furthermore Corollary 3.2 ensures that there exist 0 < ¢pin < Char < 00 such that
for all z € 0{v >0} N B(xp,3r) and 0 < s < r,

®w | =

Crin < Ud,Hnil < Chaz- (94)

0B(z,s)
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By analogy with definitions 5.1 and 7.1 in [4] we define weak solutions and flat free
boundary points.

Definition 9.1. A non-negative function v is a weak solution in B(xg,4r) if

(1) v e C(B(xo,4r)) is harmonic on {v > 0} N B(zo,4r).

(2) There exist 0 < Cmin < Cmaz < 00 such that (9.4) holds for all z € d{v > 0} N
B(z0,3r) and 0 < s <.

(3) {v >0} is a set of finite perimeter in B(xg, p) for 0 < p < 4r, and (9.3) holds.

Here we added the condition on the finite perimeter so that we can easily integrate by

parts and talk about the reduced boundary. Similarly, we can take (9.3) as a definition of

agy”; we do not need to know that it can actually be computed from v as a derivative in

the normal direction. But anyway, both things are true for our main example v = hy,,
above.

The weak solution v comes with two constants ¢, and Ch,q., Which in the previous
sections were estimated from properties of ¢, but observe here that ¢, does not show
up in the definition of a weak solution.

Definition 9.2. Let o4,0_ € (0,1], 7 € (0,1/2). We say that
v € F(oy,0-;7) in B(xg,r) in the direction eg (9.5)
when

(1) v is a weak solution in B(xq,4r)
(2) xo € {v > 0} and, for x € B(xg,r),

{ v(x) =0 if (x — x0,e0) > o4
(9.6)
v(x) > —qy(xo)[{(x — mo,e0) + o_7] if (x — x0,€0) < —0O_T.
®) sup [Vo()] < gy (20)(1+7), (9.7)
B(zo,r)
and
8+U n—1 *
k(z) = (2) > q4(z0)(1 —7) for H" *-a.e. z € 0"{v >0} N B(zp,r). (9.8)

v

A few comments on this definition may help the reader get more familiar with the
notion. The definition only depends on g4 through the number ¢4 (z¢), and incidentally
this number could be estimated from v, with a relative error of roughly 27, by com-
paring (9.7) and (9.8). So the variations of ¢; do not matter: we just use ¢y (xo) as a
normalization.
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Some of our constraints (such as xy € 9{v > 0}) will concern generic points of
d{v > 0}, while others concern points of the reduced boundary 9*{v > 0}. We’ll try to
distinguish between the two, but when v comes from an almost minimizer u as in the
sections above, the two sets are almost the same because 0*{v > 0} C 9{v > 0} (as
always) and

H Y (B(0,3r) N 9{v > 0} \ 8*{v > 0}) =0 (9.9)

by the local uniform rectifiability properties of I'* (u) that were proved above. Possibly
there is a simple argument that says that this stays true for any weak solution v, but
we did not find it, so the reader that wants to feel safe could simply assume that (9.9)
holds.

The main difference between Definition 7.1 in [4] and Definition 9.2 concerns the
behavior of the derivative of v at the boundary. A detailed analysis of the work in
[4] reveals that condition (9.8) (with the normal derivative for which we have (9.3)) is
enough to obtain some degree of improvement. Definition 9.2 can be understood as a
perturbation of the case studied in [28], where the authors considered the case when
7 = 0. Given the extent to which the arguments presented below are related to those in
[4] and [28] we only state the main results and describe in detail the proofs in which the
condition concerning the behavior of the derivative of v at the boundary plays a role.

The following preliminary technical lemma is closely related to Lemma 4.10 in [4] (see
also Lemma 0.3 in [28]).

Lemma 9.1. Let v be a weak solution in B(xg,4r). Suppose that (9.7) and (9.8) hold. Let
z € {v > 0} N B(xg,7) and assume that there exists a ball B C {v =0} so that z € 0B.
Then

()
i @ B)
ze{v>0}

> q+(zo)(1 = 7). (9.10)

Proof. Without loss of generality assume that ¢ (z¢) = 1. Let I = liin J?f %. Choose
ze{v>0}

a sequence {yx}r>1 in {v > 0} that tends to z and such that d(véz%) tends to [. Set

dr, = d(yk, B) and choose zj, € 9B so that |y — x| = di. Set v (x) = d;lv(dkx—l—xk) for

z € B(0,2/dy) and 2z, = d; ' (yx — x). Without loss of generality we may assume that

zr — e as k — oo, with |e] = 1, and that vy converges to some limit v, in a suitable
sense. We shall not get into details here, because the argument is the same as in [28], but
one gets that v (e) = I (using the uniform convergence of the vy) and v (y) = I{y, e)+
for y € B(0,1) (this time, using a detailed analysis of the blow-up speed of {v > 0} as
well as the maximum principle).
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Set hy(z) = %(dkx + xy); then for ¢ € C*(B(0,1)), ¢ > 0,

/ ChydH™ 1 :f/wk.vgkjof/wm.vgz / ICaH™ 1 (9.11)

0{vr>0} R~ Rn {(y,e)=0}

by (9.3), because the Vv, happen to converge weakly to Ve, because v (y) = I{y, €) +,
and by the reverse integration by parts. Thus

k—o0

8{Uk>0} {(y,e):O}

lim / ChpdH™ ! = / ICdH™ . (9.12)

On the other hand since ¢ > 0 and by the divergence theorem (recall that {v > 0} is
locally a set of finite perimeter),

/ CdH™ ! > / Cle,vp) dH" ™t = / div (Ce). (9.13)
8{vk>0} 8{’Uk>0} {’Uk>0}
Since
/ div((e)k—> / div (Ce) = / CdH ™ = / CdH™ !, (9.14)
—00
{vk>0} {ves >0} 0{veo>0} (y,e)=0
then by (9.13) and (9.14)
lim / CaH™ ! > / CdH™ . (9.15)
k—o0
o{v, >0} {(y,e)=0}

Since by (9.8)

aayv > (1 —7)qs(zg) =1 — 7 for H" L-a.e. point of 9*{v > 0} N B(xo,7),

klim / hpCdH™ ' > (1 — 1) lim sup / CaH™ ! (9.16)
— o0

k—o0
{vi >0} {vi >0}

and hence, by (9.12) and (9.15),

l / CAH™ > (1—7) / CdH™ ! (9.17)
{(y,e)=0} {{y.€)=0}

for any ¢ € C°(B(1,0)) such that ¢ > 0. Therefore (9.16) yields
I>1-1, (9.18)

which is the same as (9.10). O
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The next two lemmata will play an important role in the proof. They are quite close
to Lemmata 7.2 and 7.9 in [4] or Lemmata 0.4 and 0.5 in [28], but nonetheless we shall
sketch their proof for the reader’s convenience.

Lemma 9.2. Suppose v is a weak solution in B(xq,4r). There exists o, > 0 (that depends
only on m), such that if 0 < 0 < o0,,0<7<0,e€S", andv € F(o,1,7) in B(xg,r)
in the direction e, then v € F(20,Co; 1) in B(xo, 5) in the direction e.

Lemma 9.3. Suppose v is a weak solution in B(xg,4r). Given 6 € (0,1) there exist
one >0 andn =mn,e € (0,1) so that if 0 < opg, T072 < 0pg, Tg € d{v > 0}, and
v € F(o,0;7) in B(xo,r) in the direction ey, ., then v € F(0o,1;7) in B(xo;nr) in some
direction ey nr such that

lexg,r — €xor| < Co. (9.19)

In both lemmata the constants o, and C depend only on n, ¢min, Cmaz, ||4+]]c0, and
co > 0 such that g4 > ¢o. Probably there are strong relations between these constants,
but we decided not to investigate. In Lemma 9.3, o4, 9 and n,, ¢ depend on these constants,
plus 6.

Here is a consequence of Lemma 9.2 and Lemma 9.3, which we shall establish before
we discuss the proof of the lemmata.

Corollary 9.1. Given 0 € (0,1) there exist op9 > 0 and n = nn9 € (0,1) so that if
0 < 0ng, T0 2 < 0np, o € O{v >0}, and v € F(o,0;7) in B(zo,r) in the direction
€x,r5 then v € F(00,00;7T) in B(xo;nr) in some direction ey, ,r such that

|€J)o,'r‘ - 63’,‘0,7]'r‘| S CO (920)

Proof of Corollary 9.1. Apply Lemma 9.3 to 8’ = 0/C, where C' > 2 is as in Lemma 9.2.
Then there exist o, ¢ > 0 and 1’ =1, ¢ € (0,1) so that if 0 < 0y, 4/, T672 < 0,9 and
v € F(o,0;7) in B(zg,r) in the direction ey, , then by Lemma 9.3 v € F(#'0,1;7) in
B(zo;n'r). By Lemma 9.2, v € F(20'0,C80;7) in B(xo, %/T) Letting n = %/ we have
v € F(0o,00;7) in B(xg;nr), and (9.20) holds. O

As mentioned earlier the proofs of Lemmas 9.2 and 9.3 are very similar to those
presented in [4] (Section 7) (see also [28]), so we will insist on differences and sometimes
skip details.

Proof of Lemma 9.2. Without loss of generality we may assume that zo = 0 € 9{v > 0},

g+(xg) =1, 7 = 1 and e = e,. By hypothesis v € F(o,1;7) in By = B(0,1) in the

direction e,,, so sup |Vv| <147, and k(q) > 1 — 7 for H"~! a.e. ¢ € 9*{v > 0}; this in
B

1
particular implies that for ¢ € C°(R™) such that ¢ > 0,
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—/Vv Vo>(1-1) / A (9.21)
o*{v>0}
Let n(y) = exp (%) for |y| < % and n(y) = 0 otherwise. Choose sy > 0 to be the
maximum s so that

Bin{v>0}cD={x€By:z, <20—snT)}, (9.22)

where z = (T, x,), with T € R"™1 x {0}. Since 0 = 29 € d{v > 0} and 7(0) = 1, then
0 <20 — sg and sg < 20. Since o < 7, that can be chosen as small as we want, both o
and sg are very small.

By the maximality of sg, we can find z € 9D N d{v > 0} N B;. Furthermore, 2z, < o
(because v € F(o,1;7) in By), which implies that 1(z) # 0 and hence, z € B(0,1/3).

Recall that sg < 20 < 20,,, which we can take small; thus 9D N By is quite smooth
and almost horizontal, and we can find a ball B C D¢, tangent to 0D at z, and with a
radius at least C,, /o, (which is as large as we want).

Consider the function V defined by

AV =0 in D
V=0 on 0D N By
V=01+471)(20—=2,) ondD\B;.

For the following computations, we refer to [4] or [28] for some of the details. By the
maximum principle V' > 0 in D and

v<Vin D, (9.23)

in fact v <V on 9D (by (9.6) and since v € F(o,1;7) in B;) and v is subharmonic.
From (9.23) we deduce that

. v(x) . v(z) oV

lim su < limsu < —(2), 9.24
x_wp e — 2| — x_mp d(z,B) ~ an( ) ( )

ze{v>0} z€{v>0}

where ‘g—‘g =(VV, ﬁ} and 7/ denotes the outward unit normal vector to dD.

For x € D define F(z) = (14 7)(20 — x,) — V(z); then F is a harmonic function on
D, F(z)=(147)(20 —x,) on 0D N By, and F'=0on 0D \ By.

Recall that 9D N By = {(,z,,) € B1; @, = 20 — so1(Z) }. Thus if we set G(Z, z,,) =
(L+7)son(T), we see that F(T,x,) = (1+7)(20 — [20 — son(T)]) = G(T, z,) on 0D N By.
In fact, F' = G on the whole 9D, because on 9D \ By, n(Z) = 0 (as |Z| > 1/3). Thus
F — G vanishes on D, and on D its Laplacian is A(F —G) = —AG = —(1+7)s0A[n(T)],
which is smooth. By [24, Lemma 6.5] (with possibly a minor adaptation because D has
corners far from z),
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IV(F = &) < O+ 7)s0||A[0(@)]|loc + CIIF = G0 (9.25)

in, say, B(z,1071). Now so < 20, 50 |[|AN(T)]||so + ||Gl|ec < Co, and ||F||o < Co too,
by the maximum principle and because F' = G on dD. Finally ||VG||e < Csy < Co
too, and (9.25) implies that |VF(x)| < Co near z. Therefore, since V(x) = (14 7)(20 —
Zn) — F(z) and 7 < o,

_v
ox,,

oF
(z)=1+7+

5 (2) <1+Co (9.26)

and, by (9.26)

ov ov
G ) = (VLT ) = (VY T e — (9.27)
<14 Co+|VV(2)||T (2) - en]
<1+ Co+ (14 Ca)|7 (2) - en).
() = —sDn(z) 1 =N -
Recall that 7 (z) = (\/1+82|Dn(2)‘2, \/1+s2\Dn(2)|2)’ and so |7 (z)—ep| < Co. Combining
(9.24) and (9.27) we obtain that
[ := limsu v(z) <1+4Co (9.28)
TS (@, B) ‘ '
ze{v>0}
Lemma 9.1 ensures that
l1-0<1—-7<I[<1+Co. (9.29)

Our goal now is to estimate v from below by the linear function, —x,,, with an error
on the order of ¢. Let £ € 0B (0, %) N {mn < —%} Consider the solution wg of

Awe =0 in D\B (5, 1—16)
we =0 on 0D (9.30)
we = —z, on 0B (5, %) .

The Hopf boundary point lemma ensures that

—%(z) > c(n) > 0. (9.31)

Let K > 0 be large (to be chosen later) and assume that for every z € B (f , %)

v(z) <V(z) + Koxy,. (9.32)

The maximum principle would then imply that
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1
v(z) <V(z) — Kowg(z) in D\B (5, 16) . (9.33)
Thus combining (9.26), (9.29), (9.31), (9.32) and (9.33) we would conclude that

v(x) V(z) — Kowe(x)

l—-0c<Ii=1 < li
7 si=lmone g Ty = e e B)
ze{v>0} ze{v>0}
8V 8&)5
< () - Ko=) < - )
<35 (2) — Ko o (2) <1+ Co—c(n)Ko (9.34)

which is a contradiction for K > g(';;

Thus we can find x¢ € B (ﬁ, %) such that

v(we) = V(weg) + Ko(ze)n (9.35)

for some large, fixed, K.
We want to show that v > 0 on B(ze, 1) C B(0,1). Let z € B(w¢, ) be given. By
definitions and the maximum principle,

V(z) > —x, forz e D. (9.36)
Then we can estimate, for o,, small enough,

o(e) 2 o(ee) — o — el sup |Vol 2 ulwe) — 5 (1+7)

Bl(we, g
1
2 Viwe) + Ko(ze)n — g (1+7) 2 —(¢)n + Ko(zg)n — g (1+0)
7 13 1

where the inequalities follow by the mean value theorem, the definition of flatness, (9.35),
(9.36), 7 <o and ¢ € B(£,1/8) so —=7/16 > (x¢)n > —13/16, respectively.

Since v(z) > 0forz € B (xg, %), v is harmonic on B (acg, %) and so is V —v. Moreover
V—v>0onB (xg, %) OB (f, %6) because these sets lie well inside D and by (9.23).
Therefore Harnack’s inequality combined with (9.35) yields

(V=)&) < C(n)(V —v)(w¢) < —CKo(ze), < Co, V€ B(0,3/4)N{&, < —1/2}
(9.38)

and
v(€) > V(€)= Co > =&, —Co, VE€dB(0,3/4)N{&, < —1/2}. (9.39)

Forz € DN B(O, %), let &, € GB(O7 %) N {fn < —%} be such that £, = 7, and write
x =&, + tey; then
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v(x) =v(€+te,) >v(&)— 1+7)t>—(6+1t)—Co (9.40)

by (9.7) and (9.39), and since 7 < ¢. Since v € F(o,1;7) in By in the direction e, (9.40)
ensures that v € F(20;Co;7) in B(0, 1) in the direction e,. O

Proof of Lemma 9.3. We will proceed by contradiction, using a non homogeneous blow-
up. This argument follows closely the argument in [4] and [28]; we only include the proofs
which are somewhat different than those that already appear in the literature.

It is enough to prove the lemma for xy = 0 and r» = 1, with varying functions ¢,
although with uniform bounds on ||¢+||ecc and ¢o > 0 such that ¢4 > ¢o. In addition,
notice that when we multiply v and ¢4+ by a same positive number, Av is still a weak
solution, with ¢4, and Cpe, multiplied by A, and \v € F(o4,0_,7) implies that
M € F(o4,0-,7), in the same direction, but with Agy. Because of this we just need
to prove the lemma when ¢, (0) = 1. Notice that ¢, only shows up in the statement
through ¢4 (0), so after this remark (applied with A = ¢4 (0)~!, which does not upset
too much our uniform bounds for ¢,,;, and Cj,q.), we will be able to forget about g4
altogether.

Assume that Lemma 9.3 does not hold. There exists a 6y € (0, 1) such that for any
n > 0 (later we specify one), there exist non-negative decreasing sequences {o,}, and
{7j};, with o; — 0 and O'j_27'j — 0, weak solutions v; in B(0,4), and unit vectors v;, so
that

vj € F(oj,05;7;) in B(0,1) in the direction v; (9.41)

but we cannot find 7; such that (9.19) holds (with a constant C' that will be chosen later,
but that is independent of j) and

vj € F(6po;,1;7;) in B(0,n) in the direction v;. (9.42)

By rotation invariance of the lemma, we may assume that all the v; are equal to the
last coordinate unit vector e,. Let us record some of our assumptions. First, Av; = 0 in
{v; >0} N B(0,4) and (by (9.3))

— / Vv, - Vodr = / PkjdH" (9.43)
8*{1}j>0}

for ¢ € C°(B(0,1)) and where k; is our normal derivative for v; on 9{v; > 0}. Also,
(9.41) holds with v; = e,, and ¢;,4+(0) = 1 and in particular

sup |[Vu;| < (1+7) and k; > (1—7;) H" 'ae in 0*{v; > 0}. (9.44)
B(0,1)

We also have that 0 € 9{v > 0} and (9.6), which says that for x € B(0, 1),
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{ vj(x) =0 if z,, > 0 (0.45)

vj(z) > —xp —0o;  ifz, < —0j.

Recall also that o; — 0 and TjUJ72 — 0 as j — oo, and that we are assuming that
(9.42) fails for v; close to e, (as in (9.19)), and this is what we want to contradict
for j large. The idea is to define sequences of scaled height functions (in the direction
en) corresponding to d{v; > 0}, prove that this sequence converges to a subharmonic
Lipschitz function, and use this information to prove (9.42) for j large.

Set B = B(0,1/2) and B’ = BN [R""! x {0}]. Define, for y € B’,

[ (y) =sup{h: (y,0;h) € d{v; > 0}} <1, (9.46)
where the last inequality is by v; € F(o0j,0;,7;), and
fj_(y) = inf{h; (y,o;h) € 0{v; > 0}} > —1, (9.47)

where again we are > —1 by the assumed flatness.

This non-homogeneous (so called because the e, direction is weighted differently)
blow-up is the key ingredient of the proof of Alt and Caffarelli’s result. From now on
the statement of the results, and a good part of the proofs, are almost identical to those
appearing in [4] and [28]; this will allow us to be a little more sketchy at times.

Lemma 9.4 (Non homogeneous blow up (Lemma 7.3 [}] or Lemma 0.6 [28])). There
exists a strictly increasing subsequence {jx} such that for y € B’,

f(y) = limsup fjt (z) = lim inf 15 (2). (9.48)
k—00 k=00
z—y =Y

See [4] or [28] for the proof of this lemma and the next one. Also, from now on we as-
sume, without loss of generality, that we actually started with the subsequence, and write
f; instead of f;, . In what follows we establish that f is a subharmonic Lipschitz function
bounded above by an affine function. From this we eventually deduce a contradiction
with the definition of the v;.

Lemma 9.5 (Corollary 7.4 [4] or Corollary 0.7 [28]). The function f that appears in
(9.48) is a continuous function in B’, f(0) = 0; and f;' and f; converge uniformly to
f on compact sets of B'.

Lemma 9.6 (Lemma 7.5 [4] or Lemma 0.8 [28]). The function f introduced in Lemma 9./
is subharmonic in B’.

Proof. We proceed by contradiction, i.e. assume that f is not subharmonic in B’. Then
there exists yo € B’ and p > 0 so that B’(yg,p) C B’ and
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f(yo) > 7[ f(z)dz. (9.49)

9B’ (yo,p)

Set 6 = f(yo) — faB’(yO ) f(x)dx > 0 and pick gg so that % <eg < 23—5. Then let g be the
solution to the Dirichlet problem

_ .
(% 2 5. B2,
Note that
f < gondB (vo,p), 0.51)
and

9(yo) = ][ g=¢eo+ ][ f<d+ ][ f=f(yo) (9.52)

9B’ (yo,p) 9B’ (yo,p) 9B’ (yo,p)

The main idea of the proof is to compare the (n — 1)-dimensional Hausdorff measure of
d{vk, > 0} inside the cylinder B’(yo, p) x (—1,1) to that of the graph of oy, g inside the
same cylinder to obtain a contradiction with an estimate on the size of the area enclosed
by these 2 surfaces. We introduce some new definitions.

Let Z = B'(yo, p) X R be the infinite cylinder. For ¢ defined on R"~! define

ZH (o) ={(y.h) € Z:h > ¢(y)} (9.53)
Z7(¢)={(y,h) € Z:h < &(y)}
Z°(¢) ={(y,h) € Z : h = ¢(y)}.

We left some room in the choice of €3 above, and this way we can assume that
H* Y Z%,9) N O{v; > 0}) =0, (9.54)

because the set of values of ¢y for which this fails is at most countable.
Let us make three claims, then show how to combine them to get the desired contra-
diction, then discuss their proofs.

Claim 1.

H" N (ZH (059) N 0{v; > 0}) < TF—TJ H"H(Z°(09) N {v; > 0}). (9.55)

—
Claim 2. Let E; = {v; > 0} U Z " (0;9). Then Ej is a set of locally finite perimeter and

H Y ZNO*E;) <H" 1 (0{v; >0}NZT(0j9) + H* ' ({v; = 0} N Z%0;9)). (9.56)
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Here 0*E; denotes the reduced boundary of E;.

Claim 3.
H'"NZNO*E;) > W (Z2%(059)) + Cosp™ ! (9.57)

where C' > 0 is a constant independent of j.

Before addressing the claims we can combine them to get the desired contradiction.
We use (9.57), (9.56), (9.55), and the harmonicity of g to prove that for j large, since
Vgll2(p) is bounded and o; — 0,

H*H(Z%(0,9)) + Cofp" "
<H"NZNO'E))
< H" N 0{v; > 0y N ZF(059)) + H" ' ({v; = 0} N Z%(0;9))

LT 1 (290,9) 0 {; > 0F) + H* L ({u; = 0} N 2%(0;9))

IN

177']'

L+7 1,50, Naym—1770(

< I H (2 059)) < (14 4 H (2%(05)) (9.58)
J

<H"H(Z%0;9)) + Crip" "

Note that (9.58) yields 1 < CO’;QTJ‘, which is a contradiction since we are assuming
7“7y —+0and j — 0.
Claim 2 is straightforward and anyway does not use normal derivatives. The proof of

9

Claim 3 here is identical to the corresponding one in [4] or [28]. To verify Claim 1, notice
that (9.44) and then (9.43) imply that for ¢ € C°(B(0,1)) such that ¢ > 0,

(1—m;) / ddH" T < / d)(x)k:j(x)d’]-l”_l(x) = — / (Vv;, Vo). (9.59)

6*{1}j>0} 6*{Uj>0} {’Uj>0}

Take an increasing sequence of mappings ¢, € C°(B(0,1)) that converges to
17+ (s;9)nB(0,1); then

R B B A CEULEACT))
—+o0
0% {v; >0} 0*{v; >0}NZ*(o;9)

(9.60)

for instance by Beppo-Levi and because 9*{v; > 0} N Z does not get high enough to
meet Z N Z*(cjg) \ B(0,1). Next Z*(0;g) is an open set with finite perimeter, whose
boundary is composed of a vertical piece of 97, plus two roughly horizontal smooth
pieces (a piece of dB(0,1) above and a piece of the graph of o;¢g below). Denote by v
the outward unit normal for this domain; we want to show that
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lim / (Vo;, Vy) = — / (Yo, v)dH" (9.61)
k——+o0 : :
{v; >0} 8Z+ (oj9)N{v; >0}

By (9.51), f < g on dB'(yo, z), so for j large Z*(o;g) lies strictly above {v; > 0} in a
neighborhood of 8Z. This neighborhood does not contribute to either side of (9.61), so
we only consider the rest of Z, where all the contributions come from a small region on
and slightly above the graph of 0;g.

In this region, V¢ (z)dz converges weakly to —1/?’-{%}1+ (059) with no need to disturb
sets of finite perimeters here because Z*(o;g) is the region above a smooth graph. But
maybe Vv; varies a little bit too wildly for this weak convergence, so we’ll cut the region
in two.

Recall from (9.54) that H"~*(Z%o;9) N 0{v; > 0}) = 0. Let ¢ > 0 be given; by
regularity of the restriction of H"™! to Z%,g) we can choose § > 0 so that if H;
denotes the d-neighborhood of 8{v; > 0}, H" 1(Z°%(0;g) N Has) < €. Recall from (9.44)
that Vv, is bounded; then with a small covering of Z°(c;g) N Hs by balls of radius 4,/10,
we can see that for k large the contribution of Hj to both sides of (9.61) are less than Ce.

In the remaining region {v; > 0} \ Hj, Vv, is smooth (because v; is harmonic in
{v; > 0}), we can use the weak convergence of Vo (z)dz to _Vﬂﬁ’;zlﬂajg) to construct
a region X3, that contains {v; > 0} \ Hs, and where the analogue of (9.61) holds. Then
(9.61) itself follows by letting § tend to 0.

We may now return to (9.59), take a limit, and we get that

(1= m)H" (0" {v; > 0} N Z*(0;9))

< — / (Vo;,v)dH" "

0Z+(0;9)N{v; >0}

< / Vos [dHm L < (1+7;) H1(2%059) N {v; > 0})  (9.62)
Z%(oj9)N{v; >0}

by (9.60), (9.61), the fact that {v; > 0} does not meet 0ZNIZ " (0;g), and (9.44). This
concludes the proof of (9.55); (9.58) and Lemma 9.6 follow. O

The proof of the fact that f is Lipschitz will rely on the following lemma, which claims
that on average, the averages of f converge to f faster than linearly. We denote these
averages by

fom = ][ FdH™Y, with OB (y,r) = OB(y,) O [R™ x {0}]. (9.63)
aB/(y7r)

Lemma 9.7 (Lemma 7.6 [4] or Lemma 0.9 [28]). There is a constant C = C(n) > 0 such
that for y € B{/4 = B(0, %) NR"* ! x {0}
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0< [ - f) G <C. (9.64)
0

Proof. Let y € Bi/4 be given; since v; € F(0j,05;7;) in B(0,1), we also get that
v; € F(80;,80;;7;) in B (7;,3), where § = (y,0;f; (y)). Notice that we choose the last
coordinate of 7 so that ; lies in d{v; > 0}. We shall prove the lemma in the special case
when y = 0, so that we can refer to the fact that v; € F(o;,0;;7;) directly, but with the
observation above, the proof would also work for general points y (with slightly worse
constants). We also have the additional advantage that since f(0) = 0, we do not have
to subtract the limit f(y) of the f;r (y)). With this reduction it is enough to prove that
%

0< /7"% ][ faH"t < C, (9.65)

0 OB

where B]. = B'(0,7) and C only depends on n. By Lemma 9.6, f is subharmonic in B’.
Thus for r € (0,1), f(0) < faB; fdH™ 1, which proves the first inequality in (9.65).

Let A > 0 be small, and restrict to j large, so that 20; < h. Set B = B (0; i), and
let G}, denote the Green function of B N {x, < 0} with pole —he,,. Using a reflection
argument we know that G}, can be extended to be a smooth function on B\{%he,},
with Gp(z, x,) = =Gp(x, —x,) for z, > 0.

For j large let G (z) = Gp(x + 0je,), which is defined on B/ = B — oje,,, minus the
two poles —o e, + he,. In the definition of B’, we may always replace the radius 1/4
with something slightly different (and the estimates would be the same). So, avoiding an
at most countable set of radii, we may assume that for j large,

H (OB N9 {v; > 0}) =0. (9.66)

We claim that by Green’s formula (applied on the domain B’ N {v; > 0}, minus a tiny
ball centered at the pole —(h + 0;)e,),

— / <V’Uj, VG£> = / ’Ujal,GidHnil — ’Uj(*(h —+ oj)en)

Bin{v; >0} 0*[Bin{v; >0}]

_ / 0,0, GLAH™™ — vy (=(h +0;)en),  (9.67)

8BiN{v; >0}

where &,G{L = (VG{L, v), and v denotes the inward pointing unit normal. For the first
line, the overanxious reader may be worried about the joint regularity of the boundary
and v;, but the part of boundary where Vuv; may be wild is near B; N9*{v; > 0}, where
Gfl is smooth and v; is Lipschitz (by (9.44)); we may need a small limiting argument here,
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but an argument a little similar to the rapid justification of (9.61), where you integrate
against a smoothed out version of v; and go to the limit, will do the job. Notice that G{L
is smooth away from the pole, so does not create trouble, and also the contribution of
B;no*{v; > 0} to the right-hand side of the first line disappears, because v; (is Lipschitz
and) vanishes on that part of the boundary. A different Green-type computation yields

—~ / (Vv;, VGI) = / Gk dH" 1 (9.68)

Bin{v;>0} 9{v;>0}NBJ
if G{L were a smooth, compactly supported function in B’, this would be (9.43). Now
G, has a singularity at the pole —(h + 0;)e,, but where VG is locally integrable, and
since Vv; is smooth near the pole, a small approximation allows one to get rid of the
singularity. Similarly, G} vanishes nicely on 0B7, and we can approximate it by smooth
compactly supported functions (because on dB7 \ d{v; > 0}, Vv, is smooth, and by

(9.66) the contribution near B’ N d{v; > 0} can be estimated as near (9.61)).
Now (9.67) and (9.68) yield

0,05 G — vy(=(h + 0)en) — / kGl dH" = 0 (9.69)
OBIiN{v; >0} o{v;>0}NBJ

A new application of Green’s formula, as in the first line of (9.67) but with v; replaced
by x,, yields

- / (Va,, VGI) = / 2, 0,GLdH" ™ + (h + 0;) (9.70)
Bin{v; >0} 0*[BiN{v;>0}]
But (Vz,, VGI) = div(z,GY), so by Green again
- / (Va,, VGY) = / G (en, v)dH" "
Bin{v; >0} 0*[Bin{v;>0}]

_ / G {en, v)dH (9.71)

Bind*{v; >0}

where v denotes the inward pointing normal, and because G{L vanishes on B7. We cut
the boundary in (9.70) into two pieces, compare with (9.71), and get that

(Glen — 2, VG, vy dH" ™ = (0 + h) + / 2,0,G dH™ L. (9.72)

Bino*{v; >0} OBIiN{v; >0}

Let us even write v; for v, to stress the dependence on j. Thus
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23,0y, G, dH"

Bino*{v; >0}
_ / Gilen, v)dH™™ = (0, + 1) — / 200, GLAHY . (9.73)
Bind*{v; >0} oBIN{v; >0}

Dividing (9.69) by 1 — 7; and subtracting it from (9.73) we obtain

. 1 .
/ 2,0y, G dH" " = / ( kj + (en, uj>> GldH"

1— Tj
Bindg*{v; >0} Bing*{v; >0}

- / (@ + —2—)0, Gdp"
].—Tj
8BiN{v; >0}

1

+1—Tj

vi(—=(h+0j)en) — (0j + h). (9.74)

We estimate each term separately. Recall that h > 20, and v; € F(0j,0;;7;) in B(0, 1)
in the direction e,. Then GJ, < 0 on d{v; > 0} N Bé; this is the reason why we lowered
B to get BY

Moreover, since k; > 1 —7; H" ! a.e. on 0*{v; > 0} (see (9.44)), then %ﬁkj +
(én,v;) >0 and

/ (ij + (en, uj>) GdH™ ! <. (9.75)

1-— Tj
Bno*{v; >0}

Furthermore since v; > 0 and v;(0) = 0, (9.44) ensures that

[vj(—=(h+ 0j)en)| = |vj(=(h + 0j)en) — v;(0)] (9.76)
< {sup} |Vvj[(h+0;) < (1 +75)(h+0j).
v; >0

Hence (9.76) yields

L (—(h+ 0j)en) — (h+0y) < —2

_(h+ 0 9.77
11— l—Tj( + ;) ( )
Recall that {v; > 0} C {z,, < 0;}. For z,, < o; and by (9.44),
0 (@, 20) < |vj(2, 2n) —v(2,05)| < (05 — @n) sup [Vo;| < (L4 75)(05 —2n),  (9.78)

which yields for z,, € [0, 0]

. " 1 . 1 ; 27; 1 i
0< @) o M T < i T L 2 LT g0
l—Tj 1—7']‘ l—Tj 1—Tj 1—7']‘
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and for z,, € [—0;,0]

1+7'j . 27‘j <1+3Tj

Vi\xT, T
j( : n)+xn< g5 — Tp >
1—Tj 1—Tj

l—Tj _].—’Tj

—0y S gj. (980)

Since vj € F(oj,05;7;) in B(0,1) in the direction e,
vj(z,n) > —xn — 0 for Ty < —0; (9.81)
(and even for x,, < 0) and so

o;+x
+xn2_u+xn>_

vj(x,xn) gj T > gj
n

1—Tj —Tj l—Tj ].—Tj - ].—Tj

(9.82)

We combine the fact that &,G{L > 0 on dB’ (by the Hopf boundary lemma) and (9.79),
and (9.82) to estimate

Uy

o o o
/ (0o + )0, G = / (r+ )0, G

-7 T
OBIiN{v; >0} OBIN{v;>0}N{z, <0}

Yy

+ / (2 + )0, G dH"!

OBiN{v; >0 N{0<z, <o;}

1—7;

9,GY. (9.83)

oBIN{v;>0}N{x, <0}

Combining (9.74), (9.75), (9.77) and (9.83) we obtain

1 ,
lim sup — / 2,0, G dH" ! (9.84)
o0 Oj |
BiNd{v; >0}

< lim sup auGid"Hn*l
j—o0 —Tj

O0BIiN{v;>0}N{x, <0}

< / 9,GrdH" ! < Ch.

oBN{z, <0}

The last inequality was obtained by applying the comparison principle for non-negative
harmonic function in the domain D = Bi N{z, < 0} to the harmonic measure of D and
the function s(z,x,) = —x, at the point —he,, (see [25, Lemma 4.10]).

The rest of the proof is exactly as the one presented in [28], so we just describe the
scheme.



G. David et al. / Advances in Mathematics 350 (2019) 1109-1192 1189

Notice that since v; € F(0j,05;7;) then x{y,>0} — X{az,<o0} in L'(B(0,1)) and
j—o0 -

0{v; > 0} — {z,, = 0} in the Hausdorff distance sense uniformly on compact subsets.
Moreover since f;‘ and f;” converge uniformly to f on compact sets and VG, converges
to VG}, smoothly away from +he,, we have that

sup
(z,2n)€0*{v;>0}NBI

VG] (@, xn) — f(2)VGL(z,0)] — 0. (9.85)

j*}OO

Thus combining (9.84) and (9.85) we obtain that

1
E/f(w)v,enGh(ac,O)dx <C. (9.86)
Note that V_enGh‘ = gf: . —o is radially symmetric on B'. Let gn(r) = gn(|z|) =

gf“ (2,0) for x = 0 and 6 € S"~1. With this notation (9.86) becomes

1

%/f(x)gh(m)dx— %/rn_lgh(r) / F(r0)d0dr (9.87)
B sn-1

0

-1 /r"ilgh(r) ][ fdH" tdr < C.

0 o8B!,

Comparing gn(r) with the Poisson kernel of R™ with pole at —he,, Py(r) (see [27,
Lemma 4.3]), and using once more the comparison principle for non-negative harmonic
functions on B~ ([25, Lemma 4.10]) we obtain

gn(r) Gh(z) Gn(An)
= lim > C, , 9.88
Py(r)  e—=r0.0) Gi°(x) — " G(Ap) ( )
here G}° denotes the Green’s function of R™ with pole at —he,; and A, = 64 e,. Since
G3°(Ap) < 782 and Gi(Ap) > 7521, (9.88) yields
Cnh
gn(r) > ————y- (9-89)
(r2 + h2)< 1
Combining (9.87) and (9.89) we obtain
1
P

0 OB

here C only depends on n. Letting h tend to 0 we conclude that (9.65) holds. O
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Lemma 9.8 (Lemma 7.7 [{] or Lemma 0.10 [28]). The function f introduced in
Lemma 9./ is Lipschitz on FI%G with a Lipschitz constant that only depends on n.

Lemma 9.9 (Lemma 7.8 [}] or Lemma 0.11 [28]). Let f be the function introduced in
Lemma 9.4. There exists a large constant C' = C(n) > 0 such that for any given 6 € (0,1)
there exist n =n(f) > 0 and I € R™ x {0} with |I| < C so that

W) <{y)+gn for ye B, (9.91)

Contradiction in the proof of Lemma 9.3. Recall that by assuming that the statement
in Lemma 9.3 was false, we were able to construct sequences of functions {v,} and {k;}
satisfying (9.41)-(9.45). Using the functions {v,} we constructed sequences of functions
{f;“} and {f; } defined in B’ (see (9.46) and (9.47)). The function f introduced in
Lemma 9.4, and defined in B’ is a limit of subsequences of { f;“} and {f; } (which we
relabeled). In Corollary 9.5, and Lemmas 9.6, 9.7, 9.8 and 9.9 we studied the properties
of f. We now combine all this information about f to produce a contradiction. By
Corollary 9.5, f;‘ jjo f uniformly on compact subsets of B’. Therefore Lemma 9.9

yields that for every 6 € (0,1) there exists n > 0 so that for j large enough

[ <Ly)+0n for ye B (9.92)

This is how we define 7 = 7(6), independently of the sequence itself, as promised. Hence
by the definition (9.46)

vj(z) =0 for x = (x,x,) € B(0,n) with z,, > o;(l, z) + Ono;. (9.93)

Let v = (14 0]2»|l\2)_%(—0jl, 1), and notice that v satisfies (9.19); in addition, (9.93)
implies that

9170']‘

vj(z) =0 for x € B(0,n) and (z,v) > ——————
e (O and (5:9) > Ty

> 20?70’j, (994)

for j large enough. Note that (9.94) says that v; € F(200;,1;7;); this contradicts our
contradiction assumption that (9.42) fails for all 7 that satisfies (9.19); Lemma 9.3 fol-
lows. O
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