Journal of Cosmology and
Astroparticle Physics

Consistent Blandford-Znajek expansion

To cite this article: Jay Armas et al JCAP04(2020)009

View the article online for updates and enhancements.




ournal of €osmology and Astroparticle Physics

An IOP and SISSA journal

Consistent Blandford-Znajek
expansion

Jay Armas,” Yangyang Cai,” Geoffrey Compere,’ David Garfinkle?
and Samuel E. Gralla’

@University of Amsterdam and Dutch Institute for Emergent Phenomena,
1090 GL Amsterdam, The Netherlands

bDepartment of Physics, University of Arizona,
1118 E 4th Street, Tucson, U.S.A.

“Université Libre de Bruxelles and International Solvay Institutes,
Brussels, CP 231 B-1050, Belgium

dDepartment of Physics, Oakland University,
146 Library Drive, Rochester, MI 48309, U.S.A.

E-mail: j.armas@Quva.nl, cyysouldancer@email.arizona.edu, gcompere@Qulb.ac.be,
garfinkl@oakland.edu, sgralla@email.arizona.edu

Received March 2, 2020
Accepted March 11, 2020
Published April 3, 2020

Abstract. The Blandford-Znajek mechanism is the continuous extraction of energy from a
rotating black hole via plasma currents flowing on magnetic field lines threading the horizon.
In the discovery paper, Blandford and Znajek demonstrated the mechanism by solving the
equations of force-free electrodynamics in a perturbative expansion valid at small black hole
spin. Attempts to extend this perturbation analysis to higher order have encountered incon-
sistencies. We overcome this problem using the method of matched asymptotic expansions,
taking care to resolve all of the singular surfaces (light surfaces) in the problem. Working
with the monopole field configuration, we show explicitly how the inconsistencies are resolved
in this framework and calculate the field configuration to one order higher than previously
known. However, there is no correction to the energy extraction rate at this order. These
results confirm the basic consistency of the split monopole at small spin and lay a foundation
for further perturbative studies of the Blandford-Znajek mechanism.

Keywords: GR black holes, Magnetohydrodynamics

ArXiv ePrint: 2002.01972

© 2020 IOP Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1475-7516,/2020/04 /009



Contents

1 Introduction 1
2 Statement of the problem 2
2.1 Stream equation 3
2.2 Boundary conditions 4

3 Perturbation method 5
4 Perturbative solution 7
4.1 Leading scalings 7
4.2 Leading order 8
4.2.1 Mid limit 8

4.2.2 Far limit 9

4.2.3 Near limit 10

4.2.4 Zmajek condition 10

4.3 First relative order 11
4.4 Second relative order 12
4.4.1 Mid limit 13

4.4.2 Near limit 15

4.4.3 Far limit 15

4.5 Third relative order 16
4.5.1 Mid and near limits 16

4.5.2 Far limit 17

5 Comparison with previous work 20
A Mid limit at fourth order 21
B Eigenfunctions of the mid operator 23
B.1 Angular functions 23
B.2 Radial functions 24

C Numerical methods 24

1 Introduction

In 1977 Blandford and Znajek (BZ) [1] discovered that magnetized plasma can continuously
extract rotational energy from black holes, even in a steady state configuration. They pro-
posed this process as the basic engine for relativistic jets from active galaxies, with the
magnetic field provided by an accretion disk and the plasma generated self-consistently by
particle acceleration and collision in rotation-induced electric fields. Large-scale numerical
simulations support the basic features of this model [2, 3], which remains the leading candi-
date for the power source of relativistic jets.



The simplest setting for studying the BZ mechanism is the “split monopole” configura-
tion, where the accretion disk is replaced by a thin current sheet in the equatorial plane of
the black hole, and one considers surrounding force-free plasma with asymptotically radial
magnetic field lines. BZ found an approximate analytic solution valid at small spin [1], and
the finite-spin version has been studied numerically [4-6]. However, attempts to extend the
BZ perturbation analysis to higher order have been only partially successful. Tanabe and
Nagataki [7] computed the subleading correction to the energy extraction rate, but noted
the full subleading solution could not be determined from their method. More recently,
there have been conflicting claims of a high-order solution [8, 9] and that the expansion is
inconsistent [10, 11].

In this paper we introduce an approximation method for the split monopole that resolves
all previous difficulties and appears to extend to arbitrary perturbative order and to any mag-
netic field configuration. Building on analogous work on the pulsar magnetosphere [12, 13],
we use the method of matched asymptotic expansions to resolve the important physical scales
in the problem. In particular, a black hole magnetosphere has both an inner and an outer
light surface [14], which approach the boundaries of the physical domain (the event hori-
zon and infinity) in the original BZ expansion. This necessitates the introduction of two
additional small-spin expansions (one resolving each light surface), and matching the three
expansions together provides the self-consistent solution to the problem, order by order in
spin. Although only one extra expansion (resolving the outer light surface) is needed at
the perturbative order we consider, we discuss all three in order to lay a foundation for
higher-order studies or studies involving other magnetic field configurations.

We carry out the approach to three perturbative orders higher than leading and explore
some aspects of the next correction. At leading order we reproduce the BZ solution. At
next order all corrections vanish. At second relative order we confirm the subleading en-
ergy extraction rate of ref. [7]. At third relative order we resolve the issues with previous
approaches, showing that the perturbation analysis produces consistent equations with so-
lutions we find numerically. Interestingly, while the field configuration is corrected at this
order, a simple analytic argument shows that the total energy extraction rate is not. We
explore some aspects of the next relative order, finding that logarithms will appear.

Although current astrophysical questions do not demand the calculation of high-order
corrections, we have undertaken this calculation on the principle that a fundamental mecha-
nism in relativistic astrophysics deserves a correspondingly thorough treatment. In addition,
the perturbative results may help benchmark high-accuracy codes at small spin where the
separation of scales makes numerical work challenging, and the perturbative method may
prove useful for other magnetic field calculations. Finally, by clarifying the consistency of
the small-spin expansion, our results should remove any lingering doubts about the consis-
tency of the BZ mechanism itself.

In section 2 we formulate the problem at finite spin, and in section 3 we introduce the
perturbation method. We apply the method in section 4 and compare with previous work in
section 5. We follow the conventions of [15].

2 Statement of the problem

We work in Boyer-Lindquist coordinates for the Kerr spacetime, expressing the metric as

2
ds® = —a?dt® + p*(dp — Qzdt)* + 3 <d£ + d02) : (2.1)



where
o? =3A/A, PP =A/S, Qz=2Mar/A (2.2)
with

A =r%—2Mr+a? (2.3)
¥ =r? 4 a®cos?

A= (r?+a*)? - d®Asin? 0.

Note that « and 7 are the redshift factor and angular velocity of observers with zero angular
momentum. The outer root of A is the event horizon,

rg = M+ M? — a2, (2.6)

which rotates with angular velocity

a

Q=5
2 2°
Ty ta

(2.7)

2.1 Stream equation

We now summarize the standard approach to stationary, axisymmetric, force-free fields, using
the approach and conventions of [15]. A stationary, axisymmetric, closed two-form F defines
a flux function v (r, @) by

w@—l/ﬂ (2.8)

27
where the integral is over a surface that is bounded by a loop of revolution at (r, 6), remains
outside the black hole, and pierces the northern symmetry axis § = 0 exactly once. This
implies that

1/}(7170) =0, w(nﬂ—) = 2o, (29)

where 1)y is the monopole charge of the configuration.
When the field is furthermore degenerate (F' A F' = 0), it defines magnetic field line
worldsheets that rotate with an angular velocity €2(¢). It is useful to introduce a “co-rotation

one-form”
1 (Q-9Qz)?

n=d¢ — Qdt, == -

; - (2.10)

Where |5|? = 0 an observer co-rotating with the field lines would move at the speed of light.
These “light surfaces” will play an important role in our analysis.

A field that is furthermore force-free defines a “polar current” I(1)) giving the current
flowing through the loop of revolution. The force-free condition implies that 1) satisfies the
“stream equation”,

Q- Qy) Ir

Va([n*Vo) + —— 5= Vap Ve + 0, (2.11)

420 p? -



where a prime denotes derivative with respect to 1. The requirements that I = I(¢) and
2 = Q(v) may be expressed as

dl N dy =0, dQ A dyp = 0. (2.12)
After solving egs. (2.11) and (2.12) for v, I, and £, the field strength may be reconstructed as

_ I r2 + a®cos? 0
27 (r2 4 a? — 2Mr)sinf

dr N\ df + dy A\ . (2.13)

Note that every stationary, axisymmetric, degenerate, closed two-form with non-zero poloidal
magnetic field (F - d5 # 0) can be expressed in this form. Thus, apart from trivial cases
of purely toroidal magnetic field, every stationary, axisymmetric force-free solution can be
found by this method.

Surfaces 1 = const are called “poloidal field lines”. Energy flows only along these
surfaces, with the power per field line given by

dP = —IQdy. (2.14)

2.2 Boundary conditions

Eqgs. (2.11) and (2.12) are of a rather non-standard form, and little is known about the
boundary value problem in general. However, actionable understanding has been obtained
for the main cases of interest via heuristic arguments and numerical experimentation — see
e.g. [6, 15] for discussion. For the monopole solution we seek, it appears that the relevant
boundary conditions are simply

1. The field F' is finite on the Kerr exterior and future event horizon.
2. As r — oo, the flux ¥(r,0) remains bounded and the energy is outgoing (dP > 0).

The first condition implies that the solution can occur in a black hole formed from collapse
(i.e. an astrophysical black hole), while the second corresponds to an isolated black hole (no
external source of magnetic field or energy).

We conjecture that these conditions give rise to a unique solution up to an overall
constant factor, which can be taken to be the monopole charge. This conjecture is consistent
with numerical studies and supported by our perturbative analysis. A proof would in effect
generalize the no-hair theorem to include black holes immersed in force-free plasma.!

For use in practice, we now note three consequences of these assumptions. First, as-
sumption 1 implies a relationship among I, €2, and v at the horizon r = rg (e.g. [15]),

2 2
ryg +a

I =27 () - Q) —F———
( H)r?{+a2 cos2 6

sin 6 Op), r=TH. (2.15)

This relationship is called the Znajek condition [17]. It may be derived by changing to regular
coordinates in eq. (2.13). Similarly, assumption 2 implies

I = —27Qsin 691, r — 00, (2.16)

! An astrophysical black hole cannot carry monopole charge, so the theorem would imply that there is no
isolated black hole magnetosphere. This would give rigorous mathematical expression to the well-established
idea that an external magnetic field is required to support a black hole magnetosphere. A uniqueness theorem
would also inform discussion of the status of the split monopole as a kind of metastable ground state, decaying
according to the lifetime of the current sheet that supports it [16].



which can be thought of as a Znajek condition at infinity. It may be derived from assumption
2 by solving the stream equation (2.11) at large 7 [6].? Alternatively, it follows from regularity
conditions at future null infinity [18].

Finally, regularity of F' on the symmetry axis (part of assumption 1) requires that 0yt
vanish there. Combined with egs. (2.9), we have

Ylo=o =0, lo=r = 24y, O lo=0 = Op¥)o=r = 0. (2.17)

The constant g fixes the overall normalization and is proportional to the magnetic
monopole charge of the configuration. However, in the astrophysical application we would
“split” the monopole by multiplying the electromagnetic field F' (2.13) by an overall factor of
sign(cos #). This procedure makes sense because the non-split monopole solution for F is odd
under equatorial reflections,? so that the split monopole is even, and the magnetic charge is
eliminated. The resulting equatorial discontinuity corresponds to a thin sheet of charge and
current that may be viewed as the source of the magnetic field. In the split monopole g
stands for the total magnetic flux per hemisphere. In this paper we will always discuss the
non-split monopole; the split case follows straightforwardly as described. In particular, the
power radiated is the same for the non-split and the split monopoles.

Notice that the equations and boundary conditions for (1, I, 2) are invariant under the
simultaneous operation a — —a, I — —I, and 2 — —Q. This implies in particular that the
power (2.14) can depend only on |a|. We will assume a > 0 without loss of generality.

3 Perturbation method

We now seek a perturbative solution in the dimensionless spin of the black hole,

a
= . .1
€ M>O (3.1)

We can anticipate some non-uniformity in the expansion based on the intuition that im-
portant physics occurs near light surfaces, which are horizons for particles moving on field
lines [14, 15]. A black hole magnetosphere generically has two such surfaces, which we expect
to scale as?

r—ry ~ Mé, Inner light surface (ILS) (3.2)
r~ M/e, Outer light surface (OLS). (3.3)

As we take € — 0 fixing r and M (the usual expansion considered previously), the ILS ap-
proaches the horizon, while the OLS approaches infinity. That is, the light surfaces approach
the boundaries of the problem. This perturbative expansion will invariably miss physics oc-
curing on the light surface scales, and its individual terms will (in general) fail to display
the boundary behavior of the exact solution. Additional € — 0 expansions resolving the ILS
and OLS will in general be required to resolve the physics and recover the proper boundary
behavior.

*We assume a smooth expansion at infinity, ¥(8) = teo(0) + O(1/r), which is consistent with known
properties of the solution.

3The equations and boundary conditions for (1, I,) are invariant under # — 7 — @ and ¢ — 2t — 1,
meaning that diy flips sign under equatorial reflection. It then follows from eq. (2.13) that F' is odd under
reflection.

“The boundary condition (2.15) suggests that Q ~ Q. Choosing 2 to be a constant proportional to Qg
for simplicity, solving ||? = 0 yields the scalings shown.



In the perturbative solution of the equations, the need for additional expansions is seen
directly by the inability to satisfy all boundary conditions within a single expansion. This
difficulty was discovered by Tanabe and Nagatake in 2008 [7], who found an inconsistency at
fourth order in e. In 2018 the authors of ref. [10] showed that there is a problem already at
second order, since the approximate solution is not consistent with the exact stream equation
expanded at large r. To rectify these problems we consider three distinct expansions: near,
mid, and far.® The near expansion resolves the ILS; the far expansion resolves the OLS; and
the mid expansion is the usual one previously considered (which resolves neither). We define
characteristic scales associated with each limit,

a® M?
Mv Rmid = M7 Rfar = 77 (34)

and introduce associated dimensionless coordinates,

Rnear =

r—ry  M(r—rg)

= = 3.5
Y Rycar a? ( )
T T
= - 3.6
T R M (36)
_ T ar
o (3.7

We define the near/mid/far expansions as € — 0 fixing Ryear/ Rmid/Rear and y/z/z, where 6
is also fixed in all limits. Noting that Rycar = Me?, Rimia = M, and Rg,, = M /€, we have a
hierarchy of scales Rjear < Rmid < Riar as € — 0. We may therefore associate overlapping
regimes of validity to the expansions:

near expansion: ¢ — 0 fixed Ryear, ¥ r—rg < Rniq (3.8)
mid expansion: € — 0 fixed Rpyiq, T Rpear € 17 < Rpar (3.9)
far expansion: € — 0 fixed Rgr, T r > Riniq (3.10)

We introduce order symbols Opear, Omid, and Ot representing scalings with e in each limit.
Since these can be counter-intuitive, we list some common scalings here:

M = Onear(€” ) Omid(1) = Ogar (€ (3.11a)
= Onear(€” ) Onid(€) = Ofar(€2) (3.11b)

7 = Onear(€ %) = Omia(1) = O (€) (3.11c¢)
Qi = Onear(€’) = Omia(€) = Opar(1). (3.11d)

For expansions in the various limits, we will use a superscript for the order and a subscript
for the limit,

Q = Qi) + QL) + Qi) + Otim(€%). (3.12)

Here Q) is any quantity and lim stands for near, mid, or far. This simple form of the expansion
presumes the lack of fractional powers or logs (or worse). We will see that it suffices at the
perturbative order we consider.

5The problems occur at large r, suggesting that only the far expansion is require to cure them. This is in
fact the case, but we will consider all three limits in order to establish a formalism that should work at any
perturbative order, for any magnetic field configuration.



The method of matched asymptotic expansions requires that the various expansions
agree in the regimes of overlapping validity. The near expansion at large y must agree, order
by order, with the mid expansion at small x. Similarly, the mid expansion at large x must
agree, order by order, with the far expansion at small Z. One proceeds by guessing the form
of the three expansions and modifying as necessary to attain proper matching. It is difficult
to prove uniqueness in such a guess-and-check context, but we can provide some evidence
by systematically searching the typical types of expansions. We will use a “reluctant log”
strategy, where all expansions are assumed smooth in e until the presence of logs becomes
unavoidable to ensure consistent matching. We will find that logs are not necessary to
resolve previous inconsistencies, but they do appear at one order higher than we consider
(appendix A).

4 Perturbative solution

The method outlined in section 3 above should work for any physical configuration. In this
paper we apply it systematically to the monopole configuration, as defined by the boundary
conditions of section 2.2. We treat each order in perturbation theory in a separate subsection,
in each of which we first state the results and then proceed to derive them.

4.1 Leading scalings

We can establish certain scalings by a general argument. We first note that the “no ingrown
hair” theorem [15, 19] guarantees that all poloidal field lines () = const surfaces) link the
horizon to infinity. Thus the flux function must appear at lowest order in all three limits,

1) = Onear(1) = Omid(1) = Ogar(1). (4.1)

However, let 8 denote the angle of intersection of a poloidal field line with the horizon,
and let 0, denote its angle of intersection with infinity. Then the Znajek conditions (2.15)
and (2.16) can be solved to yield [20]

Qpy (sin 6 9pt) [r=o0,0=0.
0 —1- (r2%+a?) sin 6 Opop ) (42)
r%+a? cos? 0

r=rg,0=0g

Since the right-hand side is O(1) (in all three limits), we learn that € scales the same way
as Qp. From Eq. (3.11) we thus have

Q= Onear(ﬁg) = Omid(f) = Ofar(l)- (43)
The Znajek conditions (2.15) and (2.16) now imply the same scalings for I,
I = Onear(eg) = Omid(e) = Ofar(1)~ (4‘4)

When possible, we will discuss “relative order” instead of these detailed scalings. For example,
the leading order flux function in the far limit refers to ¢§§2, while the leading order polar

)

current in the near limit refers to €3Ir(1§ar. For corrections we discuss the nt! relative order,
defined as n powers of € higher than the leading behavior. For example, second relative order
refers to z/)gr) , IIEEZH, and Q(s)

mid”



4.2 Leading order

We now determine the leading order behavior of ¥, I, and €2 in each of the limits. The results
take an identical form in all limits, but to illustrate the method we present full details:

YO, =00 = v = Yo (1 — cosb) (4.5a)
1 0 a

391(16)81 - GQI(m)d = anz = SM2 (45b)

3Ir(1e21r - Iﬁ’u)d - If(a(,)r) - _27T8M2 1/}0 Sin2 6. (45C)

This reproduces the original Blandford-Znajek result in our formal scheme. The total power
may be computed from (2.14) using any of the three limits. We will use the far limit so that
the energy extraction occurs at zeroth order. One finds®

2 s 2,/,2
P =on (i) / sin0 o — =0 (4.6)
0

far 8M 24 M*

This is the famous electromagnetic extraction of energy [1]. Noting that Qg)far =a/(4M?),
we may also write

Q P
b ho(l—cosh), Qm~-2 Ix —QWTH% sin2f, P~ ?%gm .4

where ~ means valid to leading order in any of the limits. Using My as the perturbation
parameter performs better in comparisons to numerical results at finite spin [21], but we will
continue to use € = a/M for simplicity; the results are easily converted if desired. We now
derive egs. (4.5) by working to leading order in all three limits.

4.2.1 Mid limit

We begin with the mid limit. Since I and € are Op,;q(€), these quantities do not appear in
the stream equation (2.11) at leading order. Instead, we have the simple linear equation

Inld [wmld] (48)

where in terms of z = r/M we have

Luia = Oy ([1 - 2} ax> Smga@ < ag> (4.9)
T sin 6

This is the stream equation in Schwarzschild spacetime with I = 2 = 0, which corresponds
to stationary, axisymmetric vacuum magnetic fields in Schwarzschild. The general solution
satisfying the conditions (2.17) at the poles is given in a multipole expansion as (appendix B),

mid —

00 = (1 —cos) + 3 (BFRF (x) + By R7 () ©4(6), (4.10)
/=1

5If one prefers to consider the split monopole, the integral is replaced by twice the integral from zero to
/2, giving the same result.



where B£< and BZ> are numbers. The boundary conditions are a smooth match to the near
and far expansions, which requires finiteness of wr(r?i)d as ¢ — 2 and £ — oo.” This sets
B = B; =0, since R; blows up as  — 2, while R} blows up as  — co. Thus the unique

solution is simply

iy = to(1 — cost), (4.11)

i.e., a pure monopole.

4.2.2 Far limit

As all quantities are O(1) in the far limit, egs. (2.11) and (2.12) retain their form as € — 0,
with the only modification being that a and M are set to zero. That is, the far limit of
the problem is just the stream equation in flat spacetime. The boundary conditions are
assumption 2 (finite flux at infinity and outgoing energy flux) as well as matching to the mid
region (4.11),

O~ aho(1—cosh),  z— 0. (4.12)
That is, we consider an isolated magnetosphere that becomes monopolar near the origin.

(Note that (4.12) represents a singularity at the origin — a point monopole — since the flux
does not vanish there.) This case was analyzed by Michel [22], who found a large class of

solutions,
Ul = do(1 — cosf
far — ¥0 cos )7 (413&)
0 a
0l — 17340(0), (4.13b)
10 = ox %y, (0)1hg sin” 6 (4.13c)
far — M2 0 0 ) .

where wy(f) is a free function that was made dimensionless using the far lengthscale
Rpar = M?/a.

Although we give no rigorous proof, we expect that the solution family (4.13) is unique,
i.e., there are no further solutions satisfying the boundary conditions. This is supported by
numerical experience (e.g., [6, 23]) suggesting the following general picture: (1) One may
choose the value of ¥ on one inner boundary surface (such as a neutron star), but at infinity
(and on event horizons) it must be left free; (2) Each light surface in the problem contributes
a matching condition that fixes one free function (1(¢), 2(¢)) or some combination). Here
the condition (4.12) is equivalent to choosing v on an arbitrarily small sphere, the value at
infinity is left free (assumption 2 in section 2.2 above), and the far equation (the stream
equation in flat spacetime) has only a single light surface, so we expect to fix only one of the
two free functions I(1)) and ©(1)). Thus we expect the general solution to have a single free
function, as in egs. (4.13).

"Changing to near coordinates y = € %(z —r/rg) ~ (x — 2)/€?, we see that any term in the mid expansion
that blows up as x — 2 will require a term in the near expansion that blows up as ¢ — 0, which violates the
scalings (4.1). Changing to far coordinates T = ex, we see that any term in the mid expansion that blows up
as x — oo would similarly require a term in the far expansion that blows up as € — 0.



4.2.3 Near limit

Letting ¢ = ¢§22r+0near (e), I = 6311(121«—%0%&1«(64), and Q = eSQggeLr—}—Onear(e‘l) in accordance
with the scalings (4.1), (4.3) and (4.4), we find the stream equation (2.11) at leading order
in the near limit to be

(csc2 64201 4@)@@) 0,00, + ( ; Fyesc?f 4 40 — 892> 20, =0, (4.14)

where we use y = (r — rg)/Rnear and introduce
Q( 0) Rneange)ar’ (415)

recalling that Rpear = a?/M. In obtaining eq. (4.14) we have used eq. (2.12) to replace 9
by 8yQ a(,zpfl?ar / 8y¢r(1%)ar. All 6-derivatives have dropped out, so we in effect have an ordinary

differential equation in y. The solution for wﬁféln must match the mid solution (4.11) at large y,

QO ~ (1 —cosh),  y— oo (4.16)

A simple solution is just

wnear ¢0(1 — COs 0) (417)

We do not prove uniqueness here.

4.2.4 Znajek condition

Since ¥(9) depends only on 6 in all three regions (in fact it is identical), the leading order [
and ) must also pure functions of # in all three regions. (This follows from I = I(¢) and
Q = Q(v), or more formally from egs. (2.12).) Thus the matching is exact,

0 a
BQSle)ar - 6Qr(m)d anz - M2 OJ()(Q) (418)
S1P), = et =10 — —27rﬁ1/)0 sin? Ouwo (). (4.19)

In the near expansion we may apply the Znajek condition (2.15) at the horizon. This equation
is non-trivial first at €3, where it states

M
1£2,(6) =20 (9(0) — 13 ) sin0 2002 0). (4.20)

(We need not evaluate at the horizon explicitly, since all quantities above depend only on 6.)
Plugging in using eqgs. (4.17), (4.18) and (4.19) then fixes the free function as wy(f) to be a
constant,

wo = (4.21)

1
g

This completes the solution of the problem at leading order [egs. (4.5) above].

~10 -



4.3 First relative order

We now proceed to the next relative order in e. We will find that all quantities vanish,

P =) =yl =) =@ o) =10 1@ W _g (4.22)

near near mid — °“far near mid — “far

The correction to the power then vanishes as well,

Pl —o. (4.23)
That is, the leading results are not corrected at first relative order in €. Although we could
straightforwardly check that all equations are satisfied, we will instead proceed systematically
in order to elucidate the method and inform the question of uniqueness.

In the mid limit, the current and angular velocity are O(e) and hence do not contribute
to the stream equation until O(e?). Thus the mid equation is identical to the leading order
equation,

L[] = 0 (4.24)

mid

The general solution for ¢$i)d is the right-hand-side of (4.10) without the 1y term, since ¢I(§i)d
must vanish at both poles to preserve the conditions (2.17). However, the remaining terms

are also disallowed by matching to the other expansions,® and the only solution is vanishing
1)
wmid’
W = 0. (4.25)

mid —

At first relative order in the near limit, we find

Lear[tV{h] = 0 (4.26)
with
Luear = 160y + (=1 + 16y + cos 20)0;. (4.27)
The general solution is
{Lh = a(8) + b(9) log(—1 + 16y + cos 26), (4.28)

for arbitrary functions a(f) and b(6). However, the second term blows up on the poles when
y = 0 (the horizon), violating the conditions (2.17). Thus the general solution is a free
function a(6).

However, this function must vanish to match the vanishing mid solution, so we also have

I(er = 0. That is, the only allowed solutions are

Yo =il = 0. (4.29)

041

8Since RS ~ 2**! as z — o0, it contributes a term of order ez**! to the expansion of 1. This reads e *z**!

in the far coordinate & = ex, and hence would require an inverse power of € in the far expansion, which we
do not allow. Similarly, R~ ~ log(z — 2) as z — 2, contributing €log(z — 2) to the expansion. This scales
as elog(e®y) in the near coordinate y = (x — 2)/€?, generating an ¢log e term in the near expansion, which is
excluded by the reluctant log strategy (see discussion at the conclusion of section 3).

- 11 -



Eq. (2.12) now implies that the current and angular velocity only depend on 6 in this regime,

1

20l — 0@ _ (), 274

near mid — 7 r = Imid — le(e)v (430)

where w; and i; are dimensionless. The Znajek condition at the horizon (2.15) may be
applied in the near limit. This yields the restriction

i1(0) = 2w sin® By (6). (4.31)

In the far limit 7, Q, and 1 all appear at the same order. Using eq. (2.12) and matching
to egs. (4.25) and (4.30), we learn that

1 a
Q) = 29 (0) (4.32)
1 a ¢! .
1) = e <2¢§aﬁ cost + ¢021(9)) (4.33)
oD o,z 0. (4.34)

Plugging in to the stream equation (2.11), we find

(1) o . 9
L _ - g 4.
far (Vg ] T6msind Op (sm 991(9)) 0, (4.35)
where
1
Ly, = sinf 0y (sin 0y 89) + sin® 0 9; (:EQXQ (953) + 3 (2 — 3sin? 9) , (4.36)
1 1
2
= - — — 4.37
X T 2sin?e 64 (4:37)
and

g1(0) = i1(0) + 27 sin® Oy (0) = 4 sin? Owr (0), (4.38)

where we use (4.31) in the last step.

The boundary conditions are that (! vanishes at the origin # = 0 [eq. (4.34)] and is
finite as T — oo (to continue to satisfy assumption 2). A simple solution satisfying these
conditions is simply wgg = 0 with wi(f) = 0. We expect that this solution is unique by
similar reasoning to that given at leading order in the far zone below eqs. (4.13): we have
specified ngg at small Z, we have left it free at infinity, and the differential equation (4.35)
contains a single light surface Z sin # = 8 that is expected to fix the free function wy ().

Independently of the question of uniqueness, the solution ¢§;2 = 0 and w;(f) = 0 also
requires i1(0) = 0 by (4.31), completing the derivation of egs. (4.22).

4.4 Second relative order

At second relative order we find non-trivial corrections. For the flux function we will find

) _, (4.39)

far

%@ar = o R(2) sin® 0 cos 6, ¢(2) = YoR(z)sin’ 0 cos b, )

mid
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where R(z) is a function that vanishes at large z, given below in (4.49). For the rotation
we find,

a
3006) — B )d — 0@ _

near far — M2 2(9) (4.40)

where wy(0) is given below in eq. (4.71). Finally, the current is given by

S10) = —27T¢0% sin? 9 <w2(6) if%( ) cos? 9) , (4.41)
1~

elr(jl)d —277@!10% sin? @ <wz(c9) ZR( ) cos? 9) , (4.42)

If(:r) = 2777#0% sin? Qs (). (4.43)

Notice that the near and far expansions are still essentially trivial, just reproducing the
asymptotic value of the mid function. This is why previous work using a single expansion
did not encounter any inconsistency at this order. The correction to the energy flux is

p _ (56 — 31?) a1}
far 1080 ML

(4.44)

These expressions have all appeared before in the literature [1, 7, 8]; see section 5 for detailed
discussion. We now derive these results.
4.4.1 Mid limit

We again begin in the mid expansion, where the flux function is decoupled from I and €2
order by order in the expansion. At second order, we now find a source term,

Luvia i) = S (4.45)
with
242
@, =02 De,), (4.46)

where we remind the reader that ©2(#) = cos@sin?f. We require that wml 4 Vanish at both
poles to preserve the conditions (2.17). Decomposing into the eigenmodes Oy, the general
such solution is

P2 = oR(x (0) + > (Bf Ry (z) + By R} (x)) ©4(6), (4.47)
=1

where ¢0R is any particular solution to the £ = 2 equation. A particular solution may be
found by variation of parameters as

Yol = —2R5(z) / B3 (2)s?) (x)dz + 2R3 (z) / Ry (2)s'2) (z)dz. (4.48)
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Performing the integrals and choosing the free constants for regularity of Rat 2 =2 and
T = oo, we have

1
R(x) = —— |24 + 112 + 362" — 362" + (62 + 182 — 362°) log (g)

+ (2723 — 182%) log (%) log (T) +923(—3 + 22)Liy (i) ] ,(4.49)

where the dilog Lis is defined as

Lia(2) = —/01 IOg(ltZt)dt. (4.50)

The asymptotic behavior is
R(2) = %(—49 + 672), (4.51a)
R~ ﬁ, T — 0o. (4.51b)

Eq. (4.47) with eq. (4.49) constitute the general solution satisfying the pole condi-
tions (2.17). However, matching to the near and far regions again sets Bf = B€> = 0.7 Thus
the unique solution is

P2 = o R()O2(0). (4.52)

This solution provides boundary conditions for the near and far expansions via matching its
asymptotic behavior. As this is the first order where position-dependence appears, we will
devote more explanation to the matching. At small z we have

Y ~ 1ho(1 — cos ) + €21 R(2)O(6), €™ 0 then z — 2. (4.53)

The method of matched asymptotic expansions demands agreement with the large-y behavior
of the near limit. Thus to achieve a match we require

wge)ar ~ 1/}0]%(2)@2(0)7 Yy — oQ. (454)
To understand the role of the large-x behavior, we note that
1 mi
¥ ~ (1 — cosf) + 62¢OZ@2(9), € 5 0 then z — oo. (4.55)
x

This must agree with the small-Z behavior of the far limit. Noting & = xe, we therefore need

@ g

far ’

z — 0. (4.56)

9Since R< ~ z**! as & — oo, it contributes a term of order e2z‘*! to the mid expansion at large x. This
reads e “*1z7% in the far coordinate T = ex, which has an illegal inverse power of € except when £ = 1. In
the ¢ = 1 case we have €’Z, which would match to a term that grows like Z at small Z in the far expansion at
zeroth order. However, such a term is not present in the solution wf(gr) = 1o(1 —cosf). For the other boundary
x — 2, we note that B> ~ log(z — 2) as ¢ — 2, contributing ¢? log(x — 2) to the mid expansion. This reads
€*log(e®y) in the near coordinate y = (z — 2)/€?, generating an illegal €? log e term in the near expansion.
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This is all that is required for the second relative order, but note that (4.55) also imposes a
condition at the next order,
Vi ~ % 2(0), z—0. (4.57)
We display this condition here because of its importance in resolving previous inconsistencies.
We finally consider the form of I and 2. From eq. (2.12) we have

1
o — 17+2(0), (4.58)
I(nl)d 7’(/)m1d cos 6 + qfw (0)’ (459)

where wy(6) and iz(#) are dimensionless.

4.4.2 Near limit

At second relative order in the near limit, we again find

Lncar[¥Zh] =0, (4.60)

where Lyear was given in eq. (4.27) above. As before, the general solution is a free function
of . This must match the small-z value of the mid limit by eq. (4.54), so we have

@) =P R(2)0(6). (4.61)

Eq. (2.12) implies that I and € depend only on 6 at this order, and matching to the mid
limit (4.58)—(4.59) gives

M

Qe = €200 = Zw(0) (4.62)
_ —rM . YoM .
10, =219 |,y = ooz Volt(2)2(0) cosd + 3722(9). (4.63)

The horizon Znajek condition (2.15) then yields

i2(f) = 2msin® 6 (m(a) - % + 4]%(21 sin? 9) : (4.64)
4.4.3 Far limit
From (2.12) in the far limit at O(€?) we find
Of = ]\jzw(@) (4.65)
1% = % <_277¢1Sj) cosf + Wg(a)) , (4.66)

where we have used (4.56), (4.58), and (4.59) to match to the mid limit. The far equation
takes an identical form to the first order equation (4.35),

(20

Lfarwgr)] - m O (Siﬂ2 992(9)) =0, (4-67)
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with

g2(8) = i2(8) + 27 sin? Hus (0) (4.68)
, 1 4R(2)—1 |
— 2 _ 2
= 4msin® 6 (wg(ﬂ) %9 + og Sin 9) , (4.69)

where we use (4.64) in the second line. As in first order, eq. (4.67) has a single light surface
and a single free function wy(f), so we expect a unique solution for ¢f(a23 and wy given the

boundary condition (4.56). One simple solution is where wgr) and g2(#) both vanish, giving

Y =0 (4.70)
and
)= L RO, (4.71)
w2 = 39 64 S u. .

As a consistency check, notice that egs. (4.64) and (4.71) imply
in(0) = —2mwo(0) sin? 6, (4.72)
which is equivalent to the infinity Znajek condition (2.16) given ¢f(a23 = 0.

4.5 Third relative order

At third relative order, we find
b= v =0, ¥l 0. (4.73)
We derive the partial differential equation obeyed by wg’r) and solve it numerically (figure 2

below). The angular velocity and current are given in the far region as

a (3)_ ™ a

a .
QSB = ng(ﬁ), I = _§W¢gr) cos 0 + WQW% sin? Buws(6), (4.74)

where w3(#) is known numerically [eq. (4.98) below]. The contribution to the total energy
flux turns out to vanish at this order,

r¥=o. (4.75)

far

Mathematically, this result follows from an integrand being a total derivative (eq. (4.94)
below); we have not identified any deeper reason for the vanishing of this correction.

4.5.1 Mid and near limits

At third relative order in the mid limit, we have no source term (like the first relative order),

L[] = 0. (4.76)

mid
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The general solution for ¢f§i)d is again the right-hand-side of (4.10) without the g term.
However, as before we may exclude the homogeneous terms based on their failure to match
to the near and far expansions,'® and the only solution is trivial,

»® = 0. (4.77)

mid —
In the near limit at third relative order we again find

Lyear [djr(lse;r] =0, (478)

and again the only regular solution is a free function of #. To match to the mid solution (4.77)
this function must vanish,

v =0. (4.79)

near
Eq. (2.12) implies that I and € are just functions of 8 at this order, which match as

1

O, = 0 = Lu0), 1, = 1%, = Liy(0). (4.80)

The Znajek condition at the horizon (2.15) now says
i3(0) = 2 sin® Bz (6). (4.81)

4.5.2 Far limit
At third order in the far limit, eq. (2.12) requires

a
) = 7 ws(0) (4.82)
3 a (—7 (3 .
1) = e (2%(&3 cosf + 1/1013(9)> : (4.83)

where we have also matched to the mid limit using (4.80). (The first term in (4.83) matches
to the first term in (4.59) recalling (4.54) and (4.57) as well as T = ex.) The stream equation
now has a source term,

3),_ _ Yo .9 NG
Ly Wfar] 167 sin O (Sln 993(0)) = 5¢0, (4.84)
with
93(0) = i3(0) + 2 sin® w3 (0) (4.85)
= 4 sin? Gws(0), (4.86)
(using (4.81) in the second step) and
3 g sin? 6 cos 0
galz - 73 . (4.87)

'9The argument is identical for R;, which would introduce €’ log € terms into the near expansion. The Ry
terms behave as z‘*! at large x, and hence contribute 32+ = 277+ to the expansion. The £ > 2 terms
would introduce invserse powers of € to the far expansion, while the £ = 1 and ¢ = 2 terms do not match the
first and zeroth order far expansions (respectively), which have already been determined.
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The boundary condition at small Z is provided by a match to the mid expansion, which has
already been determined to be [we copy (4.57) here],

® Z’? 2(0), 0. (4.88)

The boundary condition at large z is that we preserve assumption 2,
O ~ finite, T — o0. (4.89)

We again have an equation with a single light surface and a single free function ws(6), so
we expect a unique solution for ¢f(§r) (r,0) and w3(#). Our numerical analysis below will bear
this out.

Before proceeding to the numerical solution, it is useful to note that the Znajek condition
at infinity (2.16) gives

i3(0) + 2mws(0) sin® 0 = T <2 cos 09p) — sin 0 891@@) , (4.90)
4o
where
3)
s () = lim P (4.91)

This can also be derived directly from eq. (4.84) at large r. Using (4.81) relates ws(€) to
U2 (6) s
ws(0) = 1 (2 cos Oy — sin089¢(3)> . (4.92)
164/ sin? @ o o

Eq. (4.92) allows us to derive analytically that the correction to the total power vanishes
at third relative order. From eq. (2.14) in the far limit as » — oo, we have

Pl = /0 Q000 + 100000000 + 1000 | b (4.93)

This integral may be done at any radius r. Each term contributes a non-zero result, but
letting 7 — oo and using (4.92) shows that the total result vanishes,

Pf(j;) =27 ’QZJO

8M2 / dy(sin? 09 3))do = 0. (4.94)

Note that the flux vanishes separately in each hemisphere provided that ) is odd under
0 — m — 0. It is expected on general grounds that Jyi is even for the monopole solution,
since it is even at leading order and nothing in the problem breaks that symmetry. Since
the corrections 1/1(") must vanish at both poles, there is no freedom to add a constant and it
follows that (™ should be odd. That wg’r) should be odd can also be seen from structure of
the equation (4.84), since the source SSB is odd, while the operator Lg,, preserves partiy.

We now describe our numerical method and present the results; further details are given
in appendix C. We regard zpéi)(e) as the free function, with ws(6) given by eq. (4.92). We
parameterize @Déz) (0) using the ©,(0) described in appendix B,

o =vo Y a®(b), (4.95)

0=2,4,6,...
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Figure 1. Illustration of the parameter optimization. On the left, we show the light surface mismatch
[|AW|| for the initial guess (c2 = ¢4 = ¢ = 0), and at each subsequent one dimensional parameter
optimization. On the right, we show the two values of W on the light surface as a function of
z = Z cos b, for the final iteration where the parameter values are given in eq. (4.97).

where we include only even ¢ since ¥(®) should be odd (see discussion below eq. (4.94)). For
each choice of ng) (0), we consider the quantity W (r,0) = ng’g — 1/1&2) and solve eq. (4.84)
for W separately inside and outside the light surface. These two solutions generally disagree
on the light surface, and we measure the amount of this disagreement by |[AW]|, the L?
norm on the light surface of the difference between the two values of W. In order to obtain a
global solution of eq. (4.84), we need ||AW|| to vanish, so we minimize ||AW|| as a function
of the ¢y. We find that the inferred value of ¢S) settles to a fixed function as we increase the
number of ¢y we consider, demonstrating the existence of a solution and providing support
for its uniqueness. In practice, a good fit is provided by including three terms,

) (0) = o (c202(0) + c404(0) + c6O6(0)) - (4.96)

Figure 1 left shows the behavior of ||AW|| as a function of the iteration number in parameter
optimization, culminating in an optimal set of parameters for which ||[AW]|| is very small.
The result is

cg = 0.0218, cq = 0.00271, ce = —0.000316. (4.97)

Figure 1 right shows the two values of W on the light surface. Note the excellent agreement
between them. Given the definition of W and the boundary conditions used, the agreement
of the two values of W leads to agreement of the two values of ¥ and the gradient of .
Thus we have found a numerical global solution of eq. (4.84) for wf(jr) . This solution is shown
in figure 2.

The form of w(()i) (0) determines the function ws(f) via eq. (4.92). Plugging eq. (4.96)
into eq. (4.92) gives

- 35¢co — 14cy + 8cg Tcy — 4cg 1lcg
ws(f) ~ 560 01(0) + —55—03(0) + 175 ©s(0), (4.98)
— 001301 (0) + .0002505(6) — .00003105(6), (4.99)

where we use (4.97) in the second line.
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Figure 2. The numerical solution for wf(:r) /1o as a function of p = Zsinf and z = T cos 6.

5 Comparison with previous work

Using what we call the mid expansion, Blandford and Znajek [1] obtained the leading order
solution and energy extraction rate. Their strategy was to demand that the solution obey
the same relationship between I and ) as a corresponding flat spacetime solution (in this
case the Michel monopole). Our approach clarifies the meaning of this step: it is imposed by

smooth matching to the far limit. Blandford and Znajek also found the first non-vanishing
@)

correction to the flux function, which we denote 9 /.

Tanabe and Nagataki [7] later found a solution for Ir(ri)d, 9521) 4 and @bﬁﬁi)d which contained
two undetermined parameters. They noted that no value of these parameters could prevent
wr(;li)d from diverging at large r, and concluded that a better understanding of boundary con-
ditions at infinity was necessary. Interestingly, they were able to obtain a unique energy
extraction rate from their partial solution, apparently due to a coincidental cancelation of
terms involving the undetermined parameters. Our work settles the issue of boundary con-
ditions — one must match to the far expansion and then impose finiteness of 1 at infinity
(equivalently (2.16))—and confirms the subleading energy extraction rate first calculated by
Tanabe and Nagataki.

Pan and Yu [8] later found the full expression for II(Ii)d and Qr(ji)d by imposing the condi-
tion that the fourth-order source term for the stream equation must vanish at large r (egs. (29)
and (30) therein). While this happens gives the correct answer because (as we show) this
source does happen to fall off (egs. (A.2), (A.5), and (A.6) below), we see no justification for
imposing the falloff condition (and none is given in ref. [8]). Furthermore, to derive results at
any given order in perturbation theory, it should never be necessary to appeal to properties
at higher order. Indeed, our work shows that Ilgi)d and QS:I) 4 may be straightforwardly derived
using only the relative order to which they belong (as well as lower orders). Our work shows
that, despite the flawed derivation in ref. [8], the results are in fact correct.

Pan and Yu later applied their method at higher order in ref. [9]. This paper contains
unjustified assumptions and erroneous claims. The unjustified falloff condition (“convergence
condition”) is used at all orders. Expressed in our notation, the authors claim that wr(;li)d
vanishes at large r (eq. (18) therein). Three independent analyses (ref. [7], ref. [10] and

egs. (A.8) and (A.9) below) have shown that this claim is false: wr(éi)d in fact diverges at
large r. The authors then make the same claim at all orders, asserting (in our notation) that
Y(r — o0) = (1 — cos ) exactly (see discussion above eq. (30) therein), or equivalently
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that all perturbations to v vanish at infinity. This claim is false both in the mid limit they
(4)

consider (as described above for 1 ;) and in the far limit that is necessary to actually access

the asymptotic region, as we show by finding a non-zero value for wéi) in eq. (4.96).

The pertubative monopole solution was revisited more recently in ref. [10]. The authors
also considered a perturbative approach they termed “matched asymptotic expansions”, and
concluded that this approach fails. In terms of our notation, they assume a jointly smooth
expansion in (e, M/r). We would call this an assumption of overlapping regular expansions
(large r and small €), rather than the method of matched asymptotic expansions, because
there is no “mixing” between the perturbation parameter ¢ and the radius r. The anal-
ysis of [10] shows that this assumption of overlapping regular expansions is inconsistent,
indicating the need for a true matched asymptotic expansions approach like ours. (ref. [11]
further demonstrates the need for matched asymptotic expansions.) Our work shows that the
monopole flux function is jointly C? in (ex, 1/x), where x = r/M,'! with similar statements
for the other quantities. However, at next order logarithms will appear, and ultimately the
near limit may become important, so we make no claims about the behavior of the solution
family to higher order. See section II of ref. [24] for further discussion of the relationship
between matched asymptotic expansions and jointly smooth behavior in “mixed” variables.
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A Mid limit at fourth order

We now discuss the mid limit at one order higher than considered in the text. This allows
us to connect with previous work and also speculate about the behavior of the solution at
higher order. First we note that if there is a smooth expansion through fourth order in € in
the mid limit, the flux function will satisfy

Lia [@bl(ﬁi)d] = Sr(ji)d’ (A-l)
where the source term is
st = Y0f2(2)0a(0) + o f4(x)0a(0) (A.2)
with
1 .

— 222 R(2)(—704 + 480z — 6422 + 32° + 32(z — 2)2°R (z) + 16(x — 2)%2°R" (2))
+ 48R(2)x + 2(—288 + 112z + 722% — 162* 4 2°)
+ 22%(—384 + 1922 — 3222 + 162° — 22° + %) R (2)

A~/

+ 2(384 — 288z + 11222 — 3223 — 22° + 2R (2)) (A.3)

"let a = ex and b = 1/z. The mid limit € — 0 fix 2 is equivalent to a — 0 fix b, and the far limit ¢ — 0 fix
ex is equivalent to b — 0 fix a. The behavior we find in the overlap region corresponds to Taylor expansion
of ¥ in a and b, demonstrating the joint smoothness.

~921 —



and
3 4 H2
fa(x) = m(—1152(a¢ —2)z"R*(x)
— 222 R(2)(3(512 — 64z — 962> + 2°) — 192(x — 2)2°R (x) — 96(x — 2)?2°R" (z))
+ 48R(2)z" 4 2(384 — 9622 — 22 + 2°) + 2(x — 2)2?(—256 + 1622 + 2°) R ()

+ (z — 2)2°(256 — 64z — 322% + 2°) R (). (A.4)

The function R(z) was given in eq. (4.49) above. At large x we have

3 log x
9 log x
~—— . A.
fa(x) 896$+O< . ), r — 00 (A.6)

Analogously to (4.47), we write the general solution as
4 R o
B = GoRa()0a(0) + YoRu()04(0) + 3 (BFRF (z) + By R (2)) 0.(6), (A7)
/=1
where Ry and Ry are particular solutions to the £ = 2 and ¢ = 4 equations,
Ry(z) = —2R5 (x) /R;(x)fg(x)dx + 2R3 (z) /R;(x)fg(x)d:x, (A.R)

Ra(z) = —SRE () / R (2) fa(w)de + SR () / RE(2) fal(z)da. (A.9)

Expanding the solutions near infinity gives

~ 3 5 xr  227—60log(2)+60log(x) logz
—— — Al
Ry(w) ~ G <$ v >+448+ 100800 O\ ) (4.10)
xd 59:4 5r3  ba? 9z  3(—121+40log(2)—40log(x)) logz
Ry(z)~Cf | ————+———— — O
1(@) ~ 0 < 6 8 &4 21) 17920 896000 + < x >
(A.11)

where C§ and C§ are constants of integration that are degenerate with By and By in
eq. (A.7). Even if we set these constants to zero, the solution still blows up like z, as first
observed in ref. [7]. In a mid-only perturbation approach the blowup indicates an inconsis-
tency. Our approach has resolved the inconsistency by including the far limit and noting
that there is a contribution at third relative order, i.e. one order lower than the presumed
inconsistency. Note, however, that we infer from the third order far equation (4.84) that

T— ) O,(0 O4(0)\ _ ~
o O (S0 oo

We already discussed that the leading 1/Z term matches with wgl) 4 in the matching region
between the middle and far region. The subleading Z term now matches with the large radius
behavior of wr(fi)d derived in (A.10)—(A.11) after setting C§ = C{ = 0.
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In this work we do not go beyond the third relative order. However, we can antic-
ipate already that the next order will involve logarithms, such that the assumption of a
smooth expansion that underlies eq. (A.1) is unlikely to be correct. The reason is that the
solutions (A.10) and (A.11) contain logz terms which contribute terms of order ¢*logz =
e*log(z/€) to the flux function, indicating the need for an ¢*log e term in the far expansion.
In cases like this one typically circles back and includes logarithms in the next-order ansatz
for all expansions in order to consistently derive an €*log e relative correction. We leave such
analysis for future work.

B Eigenfunctions of the mid operator

An important operator that appears in our analysis is

Lunid = Os [(1 - 2) ax] Smeag [ L 5 } (B.1)
T sin 6

This operator separates into

LI =0y (Siieaa) | g(fi:;) (B.2)
o [(1-2)a) -2 (B.3)

These operators are analyzed in ref. [25], and we present the needed results here.

B.1 Angular functions

Solutions Lg [©(0)] = 0 that vanish quadratically at both poles only occur for integers ¢ > 1,
and are given by (with k& > 0 a positive integer)

@2]{,1(9) = 2F1 |: k k— %, %,COS2 9:| (B.4)
13
O (0) = oF | =k, k + §,§,COS 0| cosb. (B.5)
The first several eigenfunctions are

01(0) =sin? 6 (B.6)

©5(6) = cosfsin? (B.7)

03(0) = (1 — 5cos® ) sin? 0 (B.8)

©4(0) = ( ;cos 9> cos fsin® 6. (B.9)

These ©, are orthogonal with weight csc §. We presume they are also complete for functions
vanishing at both poles, but the differential operator (B.2) is not sufficiently regular to apply
the standard Strum-Liouville theorems.
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B.2 Radial functions

For ¢ > 0, the general solution Ry to the homogeneous radial equation L7[Rs] = 0 is a linear
combination of

2T (0 +2)°
2 T(20+1)

R (z) = —\; (2)_6 { By [£+ 2,0,1;1 — i] log <1 - i) + P (g)} , (B.11)

where the polynomials P, are defined recursively by

R (z) = o Fy [£+2,1 Y g} (B.10)

Pi(z) = 2° + g (B.12)
72
Py(z) = 4a* — 2% — " (B.13)
(20— D)L —1)(2x — 1) — 1|zPp_y(z) — 2(0 — 2)2%Py_o(x)
Py(z) = . B.14
() ((+1)(C— 1) (B.14)
The normalization has been chosen so that

R (x) ~ 2", x — 00 (B.15)

R} (x) ~ 2%, T — 00. (B.16)

C Numerical methods

We now present the numerical methods used to solve eq. (4.84) for @bg’r) We will find it
helpful to introduce the quantity W defined by

W=yl — v (c.1)

Then eq. (4.84) becomes

YPosin®@cosf  sinh d 1 dwé‘z)
L [W] = — ek A L 2
far W] 7 72 df \ sin0 do (©2)
Here we have used eqs. (4.85) and (4.92) to express g3(#) in terms of wf,i)(e).
We will also find it helpful to introduce cylindrical coordinates (p, z) given by
p=1=Zsinf, z=Tcosh. (C.3)
Then eq. (C.2) becomes
2 2 2
p oW W 1 p\owWw 1 .9
1- 2 (22 (2 3sin20
< 64) [8p2 T p ! dp * 32( 3t O)W
B _wosin20 cosd B sinf d 1 dwéi) (C.4)
N z3 72 df \sinf do |- ’

Here 7 and 6 are to be thought of as functions of p and z given by z = /p? + 22 and
0 =tan"1(p/z).
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Eq. (C.4) is a singular elliptic equation. That is, this equation is elliptic except at p = 8.
Furthermore, it is clear that at p = 8 any nonsingular solution must satisfy

ow 1 o Agsin?fcosf  dsing d [ 1 dpld
oy g simOW = 73 72 d6 \sind o (C:5)

Therefore, one should think of eq. (C.4) as two singular elliptic equations: one defined
on an inner domain where 0 < p < 8 and one defined on an outer domain where 8 < p < co.
In each case p = 8 is a boundary of the domain on which one imposes the boundary condi-
tion of eq. (C.5)). We know of no general theorems on singular elliptic equations that would
allow us to deduce existence or uniqueness for each of the two singular elliptic problems.
Nonetheless, we can apply the standard numerical method of relaxation to the problems and
see what happens.

Relaxation is an iterative method that works as follows: the function is represented as
a set of values at regularly spaced grid points. Eq. (C.4) then becomes an expression for
the value of the function at each grid point in terms of the values at each of its nearest
neighbors. This expression is used to give the value of the function at the next iteration.
The method computes a residual that is a measure of how badly the function at the current
iteration fails to satisfy the finite difference version of the differential equation. Once the
residual falls below some preset tolerance, the program declares that it has found a solution
and the iteration terminates. If after a preset number of iterations, the specified tolerance
is not reached, the program declares failure to find a solution and the program halts. The
iteration actually reaching the specified tolerance should be taken as prima facie evidence
both that the equation has a solution and that the numerical method has found it.

We now want to be more precise about the boundary conditions for each of the domains.
Though W is defined on an infinite size domain, computer grids are finite. We therefore
introduce quantities pmax and zmax as the maximum values of p and z respectively. By the
definition of W it follows that W — 0 as p — oo or z — oo. We will implement this condition
numerically by requiring that W = 0 at p = ppax and at z = zpax. From eq. (4.88) it follows
that W is singular at small Z. So we introduce the quantity Zpi, as the minimum allowed
value of Z in the domain, and we impose the condition that at that boundary

W ¢0sin2?cos¢9 _ wg)

- (C.6)

Finally, the angular dependence of () is such that it vanishes at # = 0 and at § = /2, from
which we conclude that W vanishes at p = 0 and at z = 0. To summarize: the inner domain
has boundaries at p =0, z = 0 and z = zpax at which W vanishes, a boundary at & = Ty,
at which eq. (C.6) is imposed, and a boundary at p = 8 at which eq. (C.5) is imposed. The
outer domain has boundaries at z = 0, 2 = 2pax and p = pmax at which W vanishes, and a
boundary at p = 8 at which eq. (C.5) is imposed.

It is clear that this numerical method is making multiple approximations. Thus we
expect to obtain a solution of eq. (C.2) only in the simultaneous limit in which grid spacing
goes to zero, Tmin — 0 and ppax and zmax go to infinity.

Having solved eq. (C.4) on both the inner domain and the outer domain, subject to the
appropriate boundary conditions, we still do not have a global solution to eq. (C.4). The
reason is that in general the value of W at p = 8 for the inner domain (which we will call W7)
will not be the same as the value of W at p = 8 for the outer domain (which we will call W3).
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However, we have at our disposal the function 1/15,2) which we will choose in an attempt to
make Wj equal to Wa. More precisely, we define ||[AW|| to be the L? norm of Wy — W7, and

we pick a parametrized space of possible wéi). We then find the value of the parameters that
lead to the smallest |[|[AW]|. As usual with such numerical methods, if we can get |[|[AW|]|
sufficiently small, we declare that we have found an approximate solution. (And if we can’t,
then we either declare failure to find a solution, or we look for a better parameter space).
We will choose the following parameter space

PE)(0) = 202(0) + c404(0) + c6O06(0) (C.7)

Where co, ¢4 and cg are the parameters. We find the minimum by applying the line min-
imization method given in Numerical Recipes [26]. That is, we start out with guesses for
c9, ¢4 and cg. Then keeping ¢4 and cg fixed we use the Numerical Recipes one dimensional
search to find the value of co that minimizes ||[AW||. Then with that value of co, we pick the
c4 that gives the smallest ||ATV||. Then on to cg, then back to c2 and so on until [|AW|| isn’t
getting any smaller, at which point we can declare victory if ||AW|| is sufficiently small.
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