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ACTIVE RANKING FROM PAIRWISE COMPARISONS
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We consider sequential or active ranking of a set of n items based
on noisy pairwise comparisons. Items are ranked according to the
probability that a given item beats a randomly chosen item, and
ranking refers to partitioning the items into sets of pre-specified sizes
according to their scores. This notion of ranking includes as special
cases the identification of the top-k items and the total ordering of the
items. We first analyze a sequential ranking algorithm that counts the
number of comparisons won, and uses these counts to decide whether
to stop, or to compare another pair of items, chosen based on confi-
dence intervals specified by the data collected up to that point. We
prove that this algorithm succeeds in recovering the ranking using a
number of comparisons that is optimal up to logarithmic factors. This
guarantee does depend on whether or not the underlying pairwise
probability matrix, satisfies a particular structural property, unlike
a significant body of past work on pairwise ranking based on para-
metric models such as the Thurstone or Bradley-Terry-Luce mod-
els. It has been a long-standing open question as to whether or not
imposing these parametric assumptions allows for improved ranking
algorithms. For stochastic comparison models, in which the pairwise
probabilities are bounded away from zero, our second contribution is
to resolve this issue by proving a lower bound for parametric mod-
els. This shows, perhaps surprisingly, that these popular parametric
modeling choices offer at most logarithmic gains for stochastic com-
parisons.
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1. Introduction. Given a collection of n items, it is frequently of in-
terest to estimate a ranking based on noisy comparisons between pairs of
items. Such rank aggregation problems arise across a wide range of appli-
cations. Some traditional examples in sports include identifying the best
player in a tournament, selecting the top k teams for playoffs, and find-
ing the full ranking of players. More recently, the internet era has led to a
variety of applications involving pairwise comparison data, including recom-
mender systems [28, 1] for rating movies, books, or other consumer items;
peer grading [31] for ranking students in massive open online courses; and
online sequential survey sampling [29] for assessing the popularity of propos-
als in a population of voters. In many of these and other such applications,
it is possible to make comparisons in an active or adaptive manner—that is,
based on the outcomes of comparisons of previously chosen pairs. Motivated
by those applications, the focus of this paper is the problem of obtaining
statistically sound rankings based on a sequence of actively chosen pairwise
comparisons.

We consider a collection of n items, and our data consists of outcomes of
comparisons between pairs of items in this collection that are collected in
a sequential fashion, also known as the active setting. We assume that the
outcomes of comparisons are stochastic—that is, item ¢ beats item j with
an unknown probability M;; € (0,1). The outcomes of pairwise comparisons
are furthermore assumed to be statistically mutually independent. We define
the ordering of the items in terms of their (unknown) scores, where the score
7; of item ¢ is defined as the probability that item i beats an item chosen
uniformly at random from all other items:

1
(11) T; *— n—lel]
JF#i

In the context of social choice theory [12], these sums are also known as
the Borda scores or counts of the items. Apart from their intuitive appeal,
the Borda counts are of particular interest because they provide a natural
unification of the assumed orderings in several popular comparison models.
Specifically, the parametric Bradley-Terry-Luce (BTL) [5, 24] and Thur-
stone [36] models, as well as the non-parametric Strong Stochastic Transi-
tivity (SST) model [37], are all based on an assumed ordering of the items;
in all of these models, this ordering coincides with that given by the scores
{7:}?_,. In this paper, we consider the problem of partitioning the items into
sets of pre-specified sizes according to their respective scores. This notion
of ranking includes as special cases identification of the top-k items and the
total ordering of the items.
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ACTIVE RANKING FROM PAIRWISE COMPARISONS 3

We make two primary contributions. We begin by presenting and analyz-
ing a simple active ranking algorithm for estimating a partial or total ranking
of the items. At each round, this algorithm first counts the number of com-
parisons won, then computes confidence bounds from those counts, which it
finally uses to select a subset of pairs to be compared at the next time step.
We provide performance guarantees showing that with high probability, the
algorithm recovers the desired partial or total ranking from a certain num-
ber of comparisons. We refer to this sample size as the sample complexity,
and show that it is a function of the (unknown) scores {7;}}" ;, and therefore
distribution-dependent. Conversely, we prove distribution-dependent lower
bounds that are matching up to logarithmic factors, thereby showing that
the algorithm is near-optimal in the number of comparisons. Our analysis
leverages the fact that ranking in terms of the scores {r;}}, is related to
a particular class of multi-armed bandit problems [14, 7, 38]. We note that
this connection has been used in past work [40, 19, 38] in the context of
finding the top item.

Our second main contribution relates to the popular parametric modeling
choices made in the literature. On one hand, the algorithmic analysis of this
paper does not impose any assumptions on the pairwise comparison proba-
bilities. On the other hand, much past work (including some of our own) is
based on specific parametric assumptions on the pairwise comparisons; for
instance, see the papers [35, 16, 26, 15, 9, 34, 32, 25| as well as references
therein. Concrete examples of parametric assumptions include the Bradley-
Terry-Luce (BTL) and Thurstone parametric models. There is a long stand-
ing debate on whether such parametric assumptions are reasonable—that
is, in which situations they (approximately) hold, and in which they fail [3].
When such parametric models are suitable, the natural hope is that their
structure allows some reduction of the sample complexity. In fact, for essen-
tially deterministic comparison models (meaning that pairwise comparison
probabilities may be arbitrarily close to zero or one), there can indeed be
significant gains; see the discussion following Theorem 2 for further details.
However, as we show in the paper, if one considers stochastic comparison
models (in which the pairwise probabilities are bounded away from zero and
one), then assuming a parametric comparison model versus not making any
structural assumption leads to at most a logarithmic gain in the sample com-
plexity. This logarithmic gain needs to be weighed against the potential lack
of robustness incurred by using a parametric model—note that parametric
modeling assumptions often hold only approximately [3], if at all—which
can be significant, as shown in our numerical results section.

Related work: There is a vast literature on ranking and estimation
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4

from pairwise comparison data. Most works assume probabilistic compar-
ison outcomes; we refer to the paper [17] and references therein for rank-
ing problems assuming deterministic comparison outcomes. Several prior
works [16, 26, 15, 34, 32, 30, 11] consider settings where pairs to be compared
are chosen a priori. In contrast, we consider settings where the pairs may be
chosen in an active manner. The recent work [35] assumes the Bradley-Terry-
Luce (BTL) parametric model, and considers the problem of finding the top
item and the full ranking in an active setup. In the stochastic regime, for
certain underlying distributions, the corresponding results [35, Theorem 3
and Theorem 4] are close to what our more general result implies. On the
other hand, for several other problem instances, the performance guaran-
tees of Theorem 3 and Theorem 4 in the work [35] lead to a significantly
larger sample complexity. Our work thus offers better guarantees for the
BTL model in the stochastic regime, despite the additional generality of our
setting in that we do not restrict ourselves to the BTL model. However out-
side the stochastic regime, specifically for models with pairwise comparison
probabilities very close to zero and one, [35, Theorem 3 and Theorem 4]
offer gains over the results afforded by our more general model; we discuss
this regime in more detail later. The paper [25] considers the problem of
finding a full ranking of items for a BTL pairwise comparison model, and
provides a performance analysis for a probabilistic model on the BTL pa-
rameter vector. Eriksson [13] considers the problem of finding the very top
items using graph based techniques, whereas Busa-Fekete et al. [8] consider
the problem of finding the top-k items. Ailon [2] considers the problem of
linearly ordering the items so as to disagree in as few pairwise preference
labels as possible. Our work is also related to the literature on multi-armed
bandits, and we revisit these relations later in the paper.

Organization: The remainder of this paper is organized as follows. We
begin with background and problem formulation in Section 2. We then
present a description and a sharp analysis of our ranking algorithm in Sec-
tion 3. In Section 4, we show that parametric assumptions do not reduce
the sample complexity in the stochastic regime. In Section 5, we study nu-
merically whether algorithms designed for parametric models can yield some
improvement outside the stochastic regime, and study some additional as-
pects of our proposed algorithm. We provide proofs of all our results in
Section 6, and conclude with a discussion in Section 7.

2. Problem formulation and background. In this section, we for-
mally state the ranking problem considered in this paper and formalize the
notion of an active ranking algorithm. We also formally introduce the class
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ACTIVE RANKING FROM PAIRWISE COMPARISONS )
of parametric models in this section.

2.1. Pairwise probabilities, scores, and rankings. Given a collection of
items [n] = {1,...,n}, let us denote by M;; € (0,1) the (unknown) proba-
bility that item ¢ wins a comparison with item j. For all items ¢ and j, we re-
quire that each comparison results in a winner (meaning that M;;+M;; = 1),
and we set M;; = 1/2 for concreteness. For each item i € [n], consider the
score (1.1) given as 7; == ﬁ >_jemn)\ i} Mij- Note that the unknown score
7; € (0,1) corresponds to the probability that item ¢ wins a comparison with
an item j chosen uniformly at random from [n] \ {i}.

Assuming that the scores are all distinct, they define a unique ranking
of the n items; more specifically, this unknown ranking is defined by the
permutation 7 : [n] — [n] such that 7,1y > 7r2) > ... > Tr(y). In words,
7(i) denotes the i*" ranked item according to the scores. A number of ranking
problems can be defined in terms of 7: at one extreme, finding the best item
corresponds to determining the item 7(1), whereas at the other extreme,
finding a complete ranking is equivalent to estimating 7(j) for all j € [n]. We
introduce a general formalism that allows us to handle these and many other
ranking problems. In particular, given an integer L > 2, we let {k¢}}_; be a
collection of positive integers such that 1 < k) < ko < ... < kp_1 < kp =n.
Any such collection of positive integers defines a partition of [n] into L
disjoint sets of the form

(2.1) 81 = {7‘(’(1), ce ,71'(]{31)}, SQ = {7‘('(]{31 + 1), ce ,W(kg)},
oy Sp={n(kp—1+1),...,7(n)}.

For instance, if we set L = 2 and k; = k, then the set partition (S1,S2)
corresponds to splitting [n]| into the top k items and its complement. At
the other extreme, if we set L = n and (k1,ko,...,kn) = (1,2,...,n), then
the partition {S,}Z, allows us to recover the full ranking of the items, as
specified by the permutation .

For future reference, we define the set

(22) CMmin = {M S (0, 1)n><n | Mz’j =1- Mji,Mij > Mminy
and 7; # 7; for all (¢,7)},

corresponding to the set of pairwise comparison matrices with pairwise com-
parison probabilities lower bounded by M, and for which a unique ranking
exists. We note that our results actually do not require the entire underlying
ordering of the scores to be strict; rather, we require strict inequalities only
at the boundaries of the sets Si,...,Sr.
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2.2. The active ranking problem. An active ranking algorithm acts on a
pairwise comparison model M € Cy. Consider any specified values of L and
{k¢}L_,, which define a partition of the form (2.1) in terms of their latent
scores (1.1). The goal is to obtain a partition of the items [n] into L disjoint
sets of the form (2.1) from active comparisons. At each time instant, the
algorithm can compare two arbitrary items, and the choice of which items
to compare may be based on the outcomes of previous comparisons. As a
result of comparing two items ¢ and j, the algorithm receives an independent
draw of a binary random variable with success probability M;; in response.
After termination dictated by an associated stopping rule, the algorithm
returns a ranking Sy, ...,Sr.

For a given tolerance parameter 6 € (0, 1), we say that a ranking algorithm
A is d-accurate for a comparison matriz M if the ranking it outputs obeys

(2.3) Puy |S; =8y, forall ¢=1,...,L| >1-06.

For any set of comparison matrices C, we say that the algorithm A is uni-
formly d-accurate over C if it is d-accurate for each matrix M € C. The
performance of any algorithm is measured by means of its sample complez-
ity, by which we mean the number of comparisons required to obtain the
desired partition.

2.3. Active ranking and multi-armed bandits. It is worthwhile noting
that the ranking problem studied here is related to multi-armed bandits [22,
6]. More precisely, a (stochastic) multi-armed bandit model consists of a
collection of n “arms”, each associated with an unknown and stochastic
reward function. When an arm is “pulled”, a reward is drawn i.i.d. from
a corresponding distribution, and the goal is to maximize the reward ob-
tained via a sequential choice of arms. In past work, various researchers
(e.g., [39, 40, 38, 19]) have drawn links between pairwise comparison rank-
ing and such bandit problems. In particular, by definition of the score 7;,
comparing item 4 to a distinct item chosen from the n — 1 alternatives can
be modeled as drawing a Bernoulli random variable with mean 7;. Our sub-
sequent analysis in Section 3 relies on this relation. When cast in the multi-
armed bandit setting, the setting of pairwise comparisons is often referred to
as that of “dueling bandits”. Prior works in this setting [39, 40, 19] address
the problem of finding the single “best arm”— meaning the item with the
highest score—or the set of top-k arms [38], based on noisy comparisons. By
contrast, this paper treats the more general problem of finding a partial or
total ordering of the items.
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ACTIVE RANKING FROM PAIRWISE COMPARISONS 7

Despite these similarities, there is an important distinction between the
two settings. If we view our problem as a multi-armed bandit problem with
Bernoulli random variables with means {7;}!' ;, these means are actually
coupled together, in the sense that information about any particular mean
imposes constraints on all the other means. In particular, any set of scores
{7}, must be realized by some valid set of pairwise comparison probabil-
ities {Mi;}; jejn)- Since these pairwise comparison probabilities must obey
the constraint M;; = 1 — Mj;, the induced scores must satisfy certain con-
straints, not all of which are obvious. One obvious constraint, which follows
immediately from the definition (1.1), is that Y ;" | 7, = n/2. Another less
obvious constraint is the collection of inequalities Z?:l Tr(i) = ﬁ@
for j = 2,...,n — 1; see the papers [23, 20] for discussion. These conditions,
while necessary, are certainly not sufficient, as can be seen by studying some
simple cases.! Our algorithm, presented in the next section, does not take
the coupling of the scores explicitly into account. Nevertheless, our algo-
rithm is shown to be optimal up to a logarithmic factor in the stochastic

regime.

2.4. Parametric models. In this section, we introduce a family of para-
metric models that form a basis of several prior works [35, 16, 26, 15, 32].
To be clear, we make no modeling assumptions for our algorithm and its
analysis in Section 3. Rather, we focus on these parametric models in Sec-
tion 4, where we show that, perhaps surprisingly, outside of the deterministic
regime, none of these parametric assumptions provide more than a logarith-
mic gain in sample complexity.

Any member of this family is defined by a strictly increasing and con-
tinuous function ®: R — [0, 1] such that ®(t) = 1 — ®(—t), for all ¢t € R.
The function ® is assumed to be known. A pairwise comparison matrix in
this family is associated to an unknown vector w € R"™, where each entry
of w represents some quality or strength of the corresponding item. The
parametric model Cpar(®) associated with the function ® is defined as:

(2.4) Cpar(®) = {M;; = ®(w; —w;) for all 7,5 € [n], for some w € R"}.

Popular examples of models in this family are the Bradley-Terry-Luce
(BTL) model, obtained by setting ® equal to the sigmoid function (®(t) =
ﬁ), and the Thurstone model, obtained by setting ® equal to the Gaus-
sian CDF. Note that 71 > 70 > ... > 7, is equivalent to wy > w9 > ... > wy,

!For instance, there is no set of pairwise comparison probabilities with scores [1,1,0,0],
even though those scores satisfy the aforementioned constraints. In order to verify this fact,
note that 71 = 1 implies M12 = Mi3 = M14 = 1. Thus, we have M2; = 0, which implies
79 < 2/3 and therefore contradicts 72 = 1.
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meaning that the ranking induced by the scores {7;}}" ; is equivalent to that
induced by w.

It is worthwhile noting that a common assumption in the setting of para-
metric models [26, 32, 9] is that ||w||,, < B for some finite constant B.
This boundedness assumption implies that the pairwise comparison prob-
abilities {Mij}ﬁjzl are all uniformly bounded away from 0 and 1, thereby
guaranteeing a stochastic comparison model.

3. Active ranking from pairwise comparisons. In this section, we
present our algorithm for obtaining the desired partition of the items as
described earlier in Section 2, and a sharp analysis of this algorithm proving
its optimality up to logarithmic factors.

3.1. Active ranking (AR) algorithm. Our active ranking algorithm is
based on the following two ingredients:

e Successive estimation of the scores {7;}? ;, where 7; is estimated by
comparing item ¢ with items chosen uniformly at random from [n]\ {7}.

e Assigning an item ¢ to an estimate LSA’g of the set Sy once a certain
confidence level of ¢ belonging to Sy is attained.

This strategy is essentially an adaption of the successive elimination ap-
proach from the bandit literature, proposed in the classic paper [27], and
studied in a long line of subsequent work (see, for example, the papers [14,
7, 38, 19]). While we focus on an elimination strategy in this paper, we
note that an algorithm based on carefully using lower and upper confidence
bound (LUCB) information, in a manner similar to the top-k arm identifica-
tion LUCB algorithm [21, 10], would result in the same sample complexity.

The first input to the algorithm is a collection of positive integers {k@}é;o
such that kg =0 < k1 < ko < ... < kr_1 < kr, = n, which define a desired
ranking. The second input is a tolerance parameter 6 € (0, 1), which defines
the probability with which the algorithm is allowed to fail. Finally, our
algorithm uses a confidence bound based on an non-asymptotic version of
the law of the iterated algorithm [22, 18], that takes on the form a; o

M, for time t € {1,2,...}. We explicitly choose the constants

involved by setting

(3.1) a; = /200 (t’zi/ n),

with B(t,d") = log(1/d") + 0.751oglog(1/6") 4+ 1.5log(1 + log(t/2)).
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Fig 1: Tllustration of the AR algorithm applied to the problem of finding
the top 2 items out of n = 4 items total, corresponding to 1 = {1,2},S =
{3,4}. The figure depicts the estimates 7;(t), along with the corresponding
confidence intervals [7;(t) — 4oy, 7;(t) +4ay], at different time steps ¢. At time
t = 5, the algorithm is not confident about the position of any of the items,
and hence it continues to sample further. At time ¢ = 10, the confidence
interval of item (1) indicates that (1) is either the best or the second best
item, therefore the AR algorithm assigns (1) to S Likewise, it assigns item
(4) to Sa. At time step t = 15, the AR algorithm assigns items (1) and (2)
to §1 and §2, respectively, and terminates.

ALGORITHM 1 (Active Ranking (AR)). At time t = 0, define and ini-
tialize the following quantities:

e S=1[n] (set of items not ranked yet);
e S;=0 forallleclL (estimates of the partition);
o ki=k foralle{0,... L} (borders of the sets);

e T(0)=0 forallic€|n] (estimates of the scores).

At any time t > 1:

1. For every i € S§: Compare item i to an item chosen uniformly at
random from [n]\ {i}, and set

t—1~ 1 e .
t=lxp 1y 41
I e A A i
it —1) otherwise.
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2. Sort the items in set S by their current estimates of the scores: For any
k € [|S]], let (k) denote the item with the k-th largest estimate of the
score (if the k-th largest estimate is not unique, break ties arbitrarily).

3. With parameter oy as defined in equation (3.1), do the following for
every j € S:

If the following pair of conditions (3.3a) and (3.3b) hold simultane-
ously for some ¢ € [L],

(3.3a) ke-1 =0 or 75(t) < ?(Eefl)(t) — 4oy

(j likely is one of the lower n — ky_q — 1 items)
(3.3b) ke=1|S| or 7;(t) > ?@ﬁl)(t) + 4oy

(j likely is one of the top kg items),

then add j to gg, remove j from S, and set 7{:\@/ — 7{:\@/ —1 foralll > ¢.
4. If S =0, terminate.

See Figure 1 for an illustration of the progress of this algorithm on a par-
ticular instance.

3.2. Guarantees and optimality of the AR algorithm. In this section, we
establish guarantees on the number of samples for the AR algorithm to
succeed. As we show below, the sample complexity is a function of the gaps
between the scores, defined as

(3.4) Api=Toy ) — T and Ay =T — Tr(r,41)-

)

The dependence on these gaps is controlled via the functions

_ log(2loa(2/x))

(3.5) fo(z) = iza and  far(z) : =

x
In part (a) of the theorem to follow, we prove an upper bound involving far
on the AR algorithm, and in part (b), we prove a lower bound involving fy
that applies to any uniformly J-accurate algorithm. As one might intuitively
expect, the number of comparisons required is lower when the gaps between
the underlying scores are larger. See Figure 2 for an illustration of the gaps
for the particular problem of finding a partitioning of the items {1,2,...,6}
into three sets of cardinality two each.
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Fig 2: Tllustration of the gaps A&i and Ay ; relevant for finding a partitioning
of the items {1,2,...,6} into the sets S; = {1,2}, So = {3,4}, and S3 =
{5,6}.
THEOREM 1.
There are positive universal constants (cup, Clow) Such that?:

(a) For any M € Cy, and any § € (0,0.14] the AR algorithm is d-accurate
for M using a number of comparisons at most

(3.6a)  cup log< ) { > Fan(Ary)

IS

+ Z S max { fan(Be), FanlBe) ) + 3 fanBr) b

(=2 ieS, iE€ST,

(b) For any ¢ € (0,0.14], consider a ranking algorithm that is uniformly -
accurate over Cyjg. Then when applied to a given pairwise comparison
model M € Cyg, it must make at least

(3.6b)  Clowlog < ) {3 han)

€S
L—1
+ZZmax{f0 Ay ;) fol (Agy) } Zfo (Ars) }
=2 ics, 1€ST,

comparisons on average.

Part (a) of Theorem 1 proves that the AR algorithm is J-accurate, and
characterizes the number of comparisons required to find a ranking as a
function of the gaps between scores. In contrast, part (b) shows that, up
to logarithmic factors, the AR algorithm is optimal, not only in a minimax
sense, but in fact when acting on any given problem instance. The proof of

2Without having optimized for the constants, our proof yields cup = 2003 and ciow =
1/16.
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part (b) involves constructing pairs of comparison matrices that are espe-
cially hard to distinguish, and makes use of a change of measure lemma [22,
Lem. 1] from the bandit literature. For the special case of top-1 identification
(corresponding to L = 2 and k; = 1), Jamieson et al. [19] and Urvoy et al.
[38] observe that by using the relation to multi-armed bandits discussed in
Section 2.3, a standard multi-armed bandit algorithm can be applied which
in turn is known to achieve the sample complexity (3.6a). Again for the spe-
cial case of top-1 identification, part (b) of Theorem 1 recovers Theorem 1 in
[19]. For the special case of top-k identification (corresponding to L = 2 and
k1 = k), part (a) of Theorem 1 reduces to Theorem 1 in [38], which applies
to a generic elimination algorithm (SAVAGE) particularized to the dueling
bandit problem (see [38, Sec. 4.2]). However, the dependency of Theorem 1
on the gaps is by a logarithmic factor better than that in Theorem 1 in [38].
Note that our negative result in part (b) applies to the stochastic regime,
where the pairwise comparison probabilities are bounded away from zero,
and does therefore not rule out the possibility that in the regime where the
pairwise comparison probabilities are very close to one, improvements in
sample complexity are possible.

As Theorem 1 shows, while the AR algorithm is optional, the number of
comparisons is at least linear in n, and can be (significantly) larger, depend-
ing on the gaps between the scores. In order to gain intuition on this result,
in particular the dependence on the squared gaps, it is useful to specialize
to the toy case n = 2. In this special case with n = 2, we have 71 = Mo
and 79 = Moy = 1 — Mjs. Thus, the ranking problem reduces to testing
the hypothesis {r; > 72}. One can verify that the hypothesis {7 > 7o}
is equivalent to {Miy > %} Let X;,i = 1,...,Q be the outcomes of Q
independent comparisons of items 1 and 2, that is, P[X; = 1] = Mjs and
P[X; =0] = 1 — Mjs. A natural test for {Mia > %} is to test whether

X > 1/2, where X = éZZQ:l X;. Supposing without loss of generality that
Mo > %, by Hoeffding’s inequality, we can upper bound the corresponding
error probability as

P[X <1/2] = P[X — My < 1/2 — My] < ¢ 2QU/2-M12)* _ o=8Q(n-72)*

Thus, for Q > % the error probability is less than §. The bound (3.6a)
in Theorem 1(a) yields an identical result up to a logarithmic factor.

More generally, testing for the inclusion i € Sy amounts to testing for
Ay; > 0 and Ay; > 0, where Ay = Tr(ke_y) — Ti and Dy, = T — Tr(p,41)-
These requirements provide some intuition regarding the dependence of our
bounds on the inverses of the squared gaps.
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ACTIVE RANKING FROM PAIRWISE COMPARISONS 13

3.3. Gains due to active estimation. In order to understand the benefits
of an active strategy, it is worthwhile to compare the performance of our
active method to the (minimax optimal) guarantees obtainable by passive
comparison strategies. We hasten to add that these gains should not be seen
as surprising in of themselves, since it is well-known that active estimators
can often yield significant improvements over passive schemes.

Recent work by a subset of the current authors [30] considers the prob-
lem of ranking items from pairwise comparisons in a passive random design
setup. On one hand, it is shown (Theorem 1) that a simple passive scheme—
namely, one that ranks items according to the total number of comparisons

won—recovers the top k items with high probability using (T”IT% compar-

isons in total (assuming without loss of generality that 74 > 70 > ... > 7,);
the same paper also establishes a matching lower bound, meaning that no
passive scheme can do better up to constant factors. In contrast, Theorem 1
of the present paper shows that in the active setting, the number of com-
parisons necessary and sufficient for finding the top k items is of the order
k
DD P—

=1

n

1
st D o

- Tk-i—l) il (T — 7i)

up to a logarithmic factor. Readers familiar with the bandit literature, will
notice that this expression is equivalent to the complexity of top-k arm
identification with 7; being the expected reward of arm i, see e.g., [21].
By comparing this guarantee to the passive sample complexity (T:_li%,
we can understand when active strategies do or do not lead to substantial
gains. First, note that the complexity of the non-active estimator is always
higher, except for scores satisfying the linear constraints = = ... = 7%
and 7p4+1 = ... = T, in which case the two estimators would have similar
performance. Second, the difference in sample complexity can be as large as
a factor of n, up to logarithmic factors. In particular, suppose that the score
difference 7; — 7;41 is on the order of 1/n: in this case, up to logarithmic
factors, the sample complexity of the active and passive schemes scale as n?
and n? respectively. A similar conclusion holds if we compare the results of
the paper [30] with those of the present paper for the problem of recovering
the full ranking.

Having seen that the gains from active estimation depend on the distri-
bution of the scores {7;}}" |, it is natural to wonder how these scores behave
in real-world settings. As one illustration, Figure 3 shows some real-world
examples of this distribution for data collected by Salganik and Levy [29];
the left panel shows the scores estimated in the paper [29] of a collection of
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Fig 3: Estimated scores from comparisons of the proposals in the PlaNYC
(a) and OECD (b) surveys, as reported in the paper [29] (only scores of
items (proposals) that were rated at least 50 times are depicted). Esti-
mation of the top k proposals or another ranking with an active scheme
would require a significantly smaller number of queries compared to a
non-active estimator. For example, for the PlaNYC survey and top-k,
k = 10, identification the ratio of the sample complexity of the passive
estimator over the sample complexity of the active estimator is about

n(ty — Tk+1)_2/ <Zf:1(7'i — Tpy1) 2 F Z?:k+1(7'k — Ti)_2> =~ 30.

environmental proposals for New York City, whereas the right panel shows
a collection of educational proposals for the Organisation for Economic Co-
operation and Development (OECD). These data were collected by asking
interviewees in corresponding online surveys for preferences between two op-
tions. The goal of such online surveys is, for example, to identify the top
proposals or a total ranking of the proposals. Our results show that estima-
tion of the top k proposals or another ranking with an active scheme would
require a significantly smaller number of queries compared to an non-active
estimator.

4. When parametric assumptions don’t help. The active ranking
algorithm described and analyzed in the previous section applies to any com-
parison matrix M—that is, it neither assumes nor exploits any particular
structure in M, such as that imposed by the parametric models described
in Section 2.4. Given that the AR algorithm imposes no conditions on the
model, one might suspect that when ranking data is actually drawn from
a parametric model—for example, of BTL or Thurstone type—it could be
possible to come up with another algorithm with a lower sample complexity.
Surprisingly, as we show in this section, this intuition turns out to be false in
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ACTIVE RANKING FROM PAIRWISE COMPARISONS 15

the following sense: for stochastic comparison models—in which the compar-
ison probabilities are bounded strictly away from zero and one—imposing
parametric assumptions can lead to at most a logarithmic reduction in sam-
ple complexity.

Recall that a parametric model is described by a continuous and strictly
increasing CDF @; in this section, we prove a lower bound that applies
even to algorithms that are given a priori knowledge of the function ®.
For any pair of constants 0 < ¢min < dmax < 00, we say that a CDF &
i (Amin, Pmax, Mmin)-bounded if it is differentiable, and its derivative @’
satisfies the bounds

(4.1)  fmin < P'(t) < bmax, for all t € [®7H( Mpin), @71 (1 — Min)]-

Note that these conditions hold for standard parametric models, such as the
BTL and Thurstone models.

The following result applies to any parametric model Cpag (®) described
by a CDF of this type. It also involves the complexity parameter

L-1
F(r(M)) = Z fo(él,i) + Z Z max {fO(é&i>7 fO(AZ,i)} + Z fO(AL7i)7

1€S] (=2 i€Sy 1EST,

which appeared previously in the lower bound from Theorem 1(b).

THEOREM 2.

(a) Given a tolerance 6 € (0,0.15], and a continuous and strictly increasing
CDF ® whose derivative s (¢min, Pmax, Mmin)-bounded, consider any al-
gorithm that is uniformly 6-accurate over Cpar(®) NChar,,,- Then, when
applied to a given pairwise comparison matriz M € Cpar(®) NChy, ., it

must make at least

in?

(4.2) Cpar l0g <215> F(r(M))

- . Mmin(b?ﬂin
comparisons on average, where cpar = m

(b) Let 7 € (0,1)™ be any set of scores that is realizable by some pair-

wise comparison matric M' € Car,., Mmin > 0. Then for any con-
tinuous and strictly increasing ®, there exists a pairwise comparison
matriz in M € Cpar(®) NChr,,, with scores T, and in particular with

F(r(M)) = F(r(M’)).
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First, let us provide some concrete settings of the constant cpar: for
Min = %, we have cpar = 0.164 and cpar = 0.169 for the BTL and Thur-
stone models, respectively; whereas for My, = %, we have cpar = 0.07 and
cpar = 0.079 for the BTL and Thurstone models, respectively.

Second, let us turn to the implications of Theorem 2. To start, it should
be noted that the lower bound (4.2) is, at least in a certain sense, stronger
than the lower bound from Theorem 1, because it applies to a broader
class of algorithms—mnamely, those that are §-accurate only over the smaller
class of parametric models. On the flip side, it is possible that the lower
bound (4.2) might be weaker in some sense. That is, could there be some
“difficult” matrix M’' € Cps,, such that the supremum of F(7(M)) over
M € Cpar(®)NCyy, .. is much smaller than F(7(M’))? Part (b) of the theo-
rem rules out this possibility: it guarantees that for any pairwise comparison
matrix M'—which need not be generated by a parametric model—there ex-
ists a parametric model M for which the ranking problem is equally hard.
This result is surprising because one might think that imposing paramet-
ric assumptions would simplify the ranking problem. In fact, the full set
Ch,,, is substantially larger than the parametric subclass Cpar (®) NCar,,,;
in particular, one can demonstrate matrices in Cyps, ,, that cannot be well-
approximated by any parametric model; for example, see the paper [33] for
inapproximability results of this type.

A consequence of Theorem 2 is that up to logarithmic factors, the AR al-
gorithm is again optimal, even if we restrict ourselves to algorithms that are
uniformly d-accurate only over a parametric subclass (provided the compar-
ison probabilities are bounded away from zero and one). Thus, for stochas-
tic comparison models, imposing parametric assumptions only limits the
flexibility while failing to provide any significant reductions in sample com-
plexity for ranking. It is worth commenting that for deterministic or near-
deterministic comparison models—in which the pairwise probabilities can be
arbitrarily close to zero or one— the constant c¢pay in the lower bound (4.2)
can become small. For this reason, our lower bound does not contradict the
fact that parametric assumptions might help for (near)-deterministic com-
parison models. As one example, recalling that the BTL model described
in Section 2.4 is based on a parameter vector w € R", suppose that we
set w; = &(n — i) for all ¢ € [n], and then let ¢ tend to infinity. Since
M;; = m under the model, taking the limit £ — oo leads to a fully
deterministic comparison model in which items i beats j with probability
one if and only if w; > w;. In this limit, pairwise ranking reduces to a de-
terministic sorting problem, and sorting-based algorithms (e.g., [35]) can be
used to achieve top item identification with O(nlogn) comparisons. In con-
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ACTIVE RANKING FROM PAIRWISE COMPARISONS 17

trast, in this deterministic setting, the AR algorithm requires O(n?logn)
comparisons, which can be guaranteed by applying Theorem 1(a) with the
associated score vector 7; = 1 — 7:11 To be very clear, this example does not
violate any of our claimed results since the lower bound of Theorem 1(b),
and hence the associated claim of optimality, applies only to the case when
the pairwise comparison probabilities are bounded away from 0 and 1 by

some constant Mpin.

5. Numerical results. We now turn to some numerical comparisons of
our active ranking (AR) algorithm with algorithms designed for parametric
models. One finding—consistent with our theory—is that the AR algorithm
is on par or outperforms these algorithms, unless the pairwise comparison
probabilities are close to zero or one. Moreover, we find that algorithms
designed for parametric models start to break down even if the parametric
modeling assumption is only slightly violated. Finally, in the supplement, we
experiment with the choice of constants setting confidence intervals «; for the
AR algorithm, and find that the choice given by our theory is conservative.

5.1. Comparison to algorithms tailored to parametric models. Our re-
sults in Section 4 show that for stochastic comparison models, algorithms
that exploit parametric structure can have sample complexities lower by
at most a logarithmic factor. On the other hand, for (near)-deterministic
comparison models, we gave an example showing that parametric structure
can allow for significant gains. In this section, we perform some numerical
experiments to quantify and understand these two different regimes.

To this end, we consider the problem of top-item recovery, that is, the
problem specified by L = 2 and k; = 1. We study this top-item recovery
problem (also known as the dueling bandit problem) because of availabil-
ity of previous algorithms for this special case of the more general ranking
problem considered in our paper. We compare the AR algorithm to the
Plackett-Luce PAC (PLPAC) [35] and Beat the Mean Bandit (BTMB) [39]
algorithms. Both algorithms yield an d-accurate ranking provided the BTL
modeling assumptions hold. We choose the PLPAC algorithm for compar-
ison as it is based on sorting: a BTL problem with pairwise comparison
probabilities close to one and zero is in essence a noisy sorting problem,
thus we expect sorting based procedures to work well here. The BTMB al-
gorithm is guaranteed to succeed if Strong Stochastic Transitivity (SST)
(or a relaxed version thereof) and a certain stochastic transitivity trian-
gle inequality hold?; both assumptions are satisfied for the BTL model.

3 A necessary and sufficient condition for a matrix to satisfy the SST condition is the
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Regarding the algorithms parameters; for the AR algorithm we set oy =

log(n/9)+0.75log log(%&)ﬂ'slog(HlOg(t/ ) as for this choice the AR algorithm
provably succeeds according to our main result (in practice, the constants
in oy may be chosen smaller, see Section 8.3 for a discussion for the choice
of a¢, which leads to even better performance). We set n = 10 and consider
two different BTL models parameterized by n > 0 and £ > 0, respectively,
and denoted by M and M©. The parameters n and ¢ determine how
close the minimal and maximal pairwise comparison probabilities are to 0
and 1; the larger, the closer. Specifically, the parameters of the BTL model
M are given by w; = log(1/n+mn—1i),i = 1,...,n. This results in pairwise
comparison probabilities Mi(f) = M%
BTL model, M©), are w; = £(n — 1) which implies that the probability that
item ¢ beats the next best item ¢ + 1 is Mz’(,a-l = 1+i*€' Thus, each item
beats all lower ranked ones with probability at least 1-&-%’ which results in
all the pairwise comparison probabilities being skewed away from 1/2; the
larger & the “closer” those probabilities are to 0 and 1.

In Figure 4 we depict the empirical sample complexity for both models as
a function of Mpyax == max; ; M;;, along with the corresponding complexity
parameters F(7(M)) and F(r(M©)). Here, we choose the model param-
eters  and £ such that My .« varies between 0.65 and 0.99. The results
show, as predicted by our theory, that the sample complexity of the AR
algorithm is essentially a constant times the complexity parameter F. In
contrast, the sample complexity of the PLPAC and the BTMB algorithms
improves in Mp,.x relative to the complexity parameter F. Note that the
AR algorithm performs better than PLPAC and BTMB if M.y is not too
large, while both PLPAC and BTMB have lower sample complexity than
the AR algorithm in the regime where M.« is very close to one. We remark
that the relative improvement is not determined solely by My ax, as shown
by the curves for the two differently parameterized BTL models differing.

Our next simulation shows that, however, even if the pairwise comparison
matrix only deviates slightly from the BTL model, both the sample com-
plexity and more pertinently the failure probability (that is,

. The parameters of the second

Pas [gg % Sy, for one or more £ =1, ... ,L}) can become very large. Specif-

ically, as before, we generate a BTL model M with n = 10 and parameters
w; = log(14+n—1i),i =1,...,n. We then substitute a fraction of A of the off-

existence of a permutation of the items, such that the permuted pairwise comparison
matrix M is non-decreasing across rows and non-increasing across columns. The stochas-
tic transitivity inequality demands that for each triplet with 7 > 7; > 7%, we have
that Mlj — 1/2+Mjk — 1/2 > My, — 1/2.
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Fig 4: (a) Empirical sample complexity of the AR, PLPAC, and BTMB
algorithms applied to the BTL model M with parameters w; = log(n +
n—i),i =1,...,10, and (b) applied to the BTL model M(© with parameters
w; =&(n —1),i=1,...,10, as a function of My = max; ; M;;. For panel
(a) and (b) we varied n and £ such that Mpax € [0.65,0.99]. The error
bars correspond to one standard deviation from the mean. While the AR
algorithm has even lower sample complexity than the PLPAC and BTMB
algorithms in the regime where M. is not to close to 1; the PLPAC and
BTMB perform better when M.« is close to one.

diagonal elements of M with a number drawn uniformly from [0, 1]. Thus,
the model M transitions from a BTL model to a random pairwise compar-
ison matrix in A; for small A\, the model M is close to the original BTL
model. The results, depicted in Figure 5, show that, while the AR algorithm
succeeds for all values of A as expected, the sample complexity and more
importantly the failure probability of the PLPAC and BTMB algorithms
become very large. We hasten to add that both the PLPAC and BTMB
algorithm are not designed for this scenario; therefore it might not be sur-
prising that they fail. The results show that these algorithms are, however,
not robust to violations of their assumed models.

6. Proofs. In this section, we provide the proofs of our two main the-
orems. In order to simplify notation, we take the underlying permutation 7
equal to the identity, so that 71 > 7 > ... > 7,. This assumption entails
no loss of generality, since it can also be satisfied by re-indexing the items
if necessary.

6.1. Proof of Theorem 1(a). In this section, we provide a proof of the
achievable result stated in part (a) of Theorem 1. Our proof consists of three
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Fig 5: (a) Relative sample complexity defined as the number of compar-
isons until termination, @, divided by the complexity parameter F(7(M)),
and (b) failure probability on a BTL model M with n = 10 and with a
fraction of A of the off-diagonals of M substituted by a random pairwise
comparison probability. The model transitions from a BTL model to a ran-
dom pairwise comparison matrix in A; the closer A to zero the closer M
to the original BTL model. The results show that, while the AR algorithm
yields an d-accurate ranking after O(F(7(M))) comparisons, irrespectively
of A, the sample complexity and more importantly the failure probability of
the PLPAC and BTMB algorithms become very large in A.

main steps. We begin by showing that the estimate 7;(¢) is guaranteed to be
ag-close to 7;, for all ¢ € §, with high probability. We then use this result to
show that the AR algorithm never misclassifies any item, and that it stops
with the number of comparisons satisfying the claimed upper bound.

Throughout the paper, we use S to denote the set of items that have not
been ranked yet; to be clear, since items are eliminated from S at certain
time steps t, the set S changes with ¢, but we suppress this dependence for
notational simplicity.

The following lemma ensures that the estimated score 7; is close to the
latent score 7;. As shown below, the lemma follows by noting that 7;(¢) is a
sum of ¢ independent Bernoulli random variables, each of which has mean
7;/t, and application of a version of the law of the iterated logarithm.

LEMMA 1. Under the theorem’s assumptions, the event
(6.1) Ea ={|Ti(t) — 1| <y, forallieS and for allt > 1}

occurs with probability at least 1 — §.
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Our next step is to show that provided that the event &, occurs, the AR
algorithm never misclassifies any item, that is, Sy C Sy for all ¢ and for all
t > 1. First suppose that, at a given time step ¢, the AR algorithm did
not misclassify any item at a previous time step. We show that, at time t,
conditioned on the event &,, any item j € S is added to §g only if 7 € S,
which implies that the AR algorithm does not misclassify any item at time
t. This fact is a consequence of our second auxiliary result.

In order to state this second lemma, we require some additional notation.
Let 7y denote the k-th largest score among the latent scores 7;, i € S.
Note that we use the notation {-} to emphasize that the index {k} is not
necessarily equal to the index (k), since the latter corresponds to the k-th
largest score amongst the estimated scores 7;(t), i € S.

LEMMA 2. Suppose that the event £, occurs. Then both of the implica-
tions

(6.2a)
o foranyjeS, Tt < T )(t) — 4oy implies T < Ty and

(6.2b)
o foranyjeS, T;(t)> ?@[H)(t) + 4oy implies  T; > Tihet1)

hold for all t > 1.

Provided that the AR algorithm did not misclassify any item at a previ-
ous time step, some consequences of implications (6.2a) and (6.2b) are the
following;:

e first, for any index ¢, an item is added to S\g at time ¢ only if j € Sp.
e therefore, we are guaranteed that Sy C Sy at time ¢ + 1.

These consequences allow us to apply an inductive argument to conclude
that the AR algorithm never misclassifies any item.

Our next step is to show that, conditioned on the event £, on which the
AR algorithm does not misclassify any item, all items are eliminated after
the number of comparisons given in equation (3.6a) have been carried out.
Since, by Lemma 1, the event &, holds with probability at least 1 — d, this
concludes the proof of Theorem 1(a).

In order to establish the former claim, we use the following lemma, in
which we made the dependence of the set of candidates S on t explicit by
writing S(t).
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LEMMA 3.  Suppose that the event &, occurs. For any index { € {2,...,L}
and any item i € Sy N S(t;), we have, with ¢; = 654,

s N _ _ c1 n 2
(6.3a) Ti(t;) < T(Ee—l)(ti) —4ag, wheret; = A—?i log <5 log <A€,i>> ,

ANy =Tg,_, —Ti, and for £ € {1,...,L — 1} and any item i € S; N S(t;), we
have

N =N o a n 2
(6.3b) Ti(t;) > T@HI)(Q) — 4oy, wheret; = A—?i log <5 log (Ah>> )

Dy =Ti— Thyt1-

Consequently, the index ¢ € Sy is eliminated from the set of candidates
S after no more than the following number of many time steps (and hence

comparisons):
max(t;,t;), iffe{2,...,L—1}.
t;, if¢=1

Using the relations

_ log(2log(2/Ay;
t; < cup o8 Oi(%/ £))

log(2log(2/A;))
A7

log(n/d), and t; < cyp log(n/9),

where the inequalities hold for some constant ¢, (in particular, we can set
cup = 2003), it follows that the AR algorithm terminates after the number
of comparisons stated in equation (3.6a) has been carried out.

It remains to prove Lemmas 1, 2, and 3, and we do so in the supplement.

6.2. Proof of Theorem 1(b). We now turn to the proof of the lower bound
from Theorem 1. We first introduce some notation required to state a useful
lemma [22, Lem. 1] from the bandit literature. Let v = {v;}7"; be a collec-
tion of m probability distributions, each supported on the real line R. Con-
sider an algorithm A, that, at times ¢ = 1,2, ..., selects the index i; € [m)]
and receives an independent draw X; from the distribution v;, in response.
Algorithm A may select i; only based on past observations, that is, i; is
Fi—1 measurable, where F; is the o-algebra generated by i1, X;,, ..., 4, X;,.
Algorithm A has a stopping rule x that determines the termination of A.
We assume that y is a stopping time measurable with respect to F; and
obeying P [y < oo] = 1.
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Let Q;(x) denote the total number of times index i has been selected
by the algorithm A (until termination). For any pair of distributions v and
V', we let KL(v,v') denote their Kullback-Leibler divergence, and for any
p,q € [0,1], let d(p,q) = plog g +(1—p)log }%{; denote the Kullback-Leiber
divergence between two binary random variables with success probabilities
P q

With this notation, the following lemma relates the cumulative number
of comparisons to the uncertainty between the actual distribution v and an
alternative distribution /.

LEMMA 4 ([22, Lem. 1]). Let v,/ be two collections of m probability
distributions on R. Then for any event £ € F, with P, [€] € (0,1), we have

m

(6.4) > B [Qi(0)KL(v, ) > d(By [€] Py [€]).

=1

Let us now use Lemma 4 to prove Theorem 1(b). In particular, we apply it
using the event

(6.5) £ = {@zsg, for aM:1,...,L},

which corresponds to success of the algorithm A. Note that here {gg}é;l
are the estimated sets at termination of the algorithm. Recalling that y is
the stopping rule of algorithm A, we are guaranteed that £ € F,. Given
the linear relations M;; = 1 — Mj;, the pairwise comparison matrix M is
determined by the entries {M;j,i =1,...,n, j =i+ 1,...,n}. Let Q;;(x)
be the total number of comparisons between items 7 and j made by A. For
any other pairwise comparison matrix M’ € Cy, Lemma 4 ensures that

n

(6.6) Z Z Enr [Q45] d<Mij7Mi/j) > d(P [E], P [E]).
i=1 j=i+1

In order to aid in subsequent exposition, we augment the notation S; defined
in (2.1) earlier to explicitly depict the underlying pairwise-probability matrix
which Sy depends on. Specifically, for any matrix M € [0,1]"*" such that
M;;+M;; = 1 for every entry (i, j), we let S¢(M) denote the value of S; when
the probabilities of the outcomes of the pairwise-comparisons are governed
by the matrix M (we will drop this additional dependence on the matrix
whenever it is clear from the context).
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For some ¢ > 1 and item m € S;(M), our next step is to construct a
matrix M’ € Cy/g such that m ¢ Sy(M') under the distribution M’. Since
the algorithm A is uniformly d-accurate over C; /g by assumption, we are
guaranteed that

Py €] >1—060 and Py [€] <6,

from which it follows that

1

_5>10 —
=08 55

6.7)  d(Pu €], Pay [€]) > d(6,1 — 8) = (1 — 26) log ~

where the last inequality holds for ¢ < 0.15.
It remains to specify the alternative matrix M’ € Cy for use in inequal-
ity (6.7): it is defined with entries

Mpji + (Thy_y — Tm), ifi=m,j€[n]\{m}
(6.8) Mj; = M, — (T, , — ), if j=m,i€ [n]\{m}
M;; otherwise.

From this definition, it follows that

1
T = n—1 Z n—1 Z (Minj + (Tkyy = Tim)) = Ty

J€M\{m} j€n\{m}

Similarly, all other scores 77,4 € [n]\ {m}, are smaller than 7; by a common
constant, that is, for i € [n] \ {m} 7/ = 7, — 25 (74, , — 7). See Figure 8 in
the supplement for an illustration. It follows that, under the distribution M’,
the score of item m is among the ky_; highest scoring items, which ensures
m ¢ Sg(M'). Moreover, we claim that M’ € Cy 5. This inclusion follows from
the assumption M € C3/g, which 1mphes that M’ S + ( ) < %. An
analogous argument shows that Mv’m

Next, consider the total number of comparisons item m is involved in
that is, Q,, = Eje[n}\{m} Qmj- Recall that Q;; is the total number of com-
parisons between items ¢ and j made by the algorithm A. By the linearity
of expectation, we have the following bound on the expectation of Q,,:

max d(My,j, My, ) En [Qm] =  max  d(My,;, M, ;) Z En [Qmy]
jen\{m} J€m\{m} J/€ln)\{m}

> Z EM[Qmj] (meM,)
JEMN\{m}
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Now observe that by the definition of M in equation (6.8), we have d(M;;, M;;) =
0 for all (7,7) outside of the sets {(m,7) | j € [n] \ {m}} and {(i,m) | ¢ e
[n] \ {m}}. Removing these terms from the sum yields

max _d(Mpmj, M}, )Ep [Q] > Z Z Ens [Qig] d(Mij, M)
jeln)\{m} -
=1 j=i+1
Q) @ 1
(6.9) > (P[], Par [€]) 2 log g5

where step (i) follows from inequality (6.6) in Lemma 4; and step (ii) follows
from inequality (6.7).

We next upper bound the KL divergence on the left hand side of inequal-
ity (6.9). Using the inequality logz < x — 1 valid for = > 0, we have

(M — M,)?

(610)  d(Mns, My) < S

< 10(Th,_, — Tm)?,

where the last step uses the definition of M’ in equation (6.8), as well as the
inclusion i 3§ <My, ro< , which implies that m <64/7 < 10.

Applying 1nequahty (6.10) to the left hand side of inequality (6.9) yields
(6.11)

B, (0] > o8(1/29)

= 10(7,_, — ™m)?’

valid for each m € §;(M) and ¢ > 1.

Now consider an index m € Sy(M) for some ¢ < L. In this case, again
construct an alternative pairwise comparison matrix M’ under which m ¢
S¢(M"). Specifically, for notational convenience, we set

Mmj - (Tm - Tke-l-l)? = maj € [n] \ {m}
Mj; = § My + (Tm — Thy41),  J =m,i € [n]\ {m}
M;; otherwise.

In a similar manner to our earlier argument, we have 7/ = 7,4 2= (7 —Th,+1)
for i € [n] \ {m} and 7}, = 73,41 (relative to the scores 7;, the score of m is
smaller and all others are larger by the same factor). Under M’, item m is
not amongst the k; items with the largest scores, and therefore m ¢ Sy(M’).
Carrying out the same computations as above yields:

log(1/(24))
N 1O(Tm Tk[+1)2‘

(6.12) M [Qm] >
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Combining inequalities (6.11) and (6.12) across all items m yields the bound

Em(Q =) E[Qi]
=1
> Clow log(1/(26)) ZA“—FZZmaX{A Ah} A2,

1€S] (=2 i€Sp i€S,

with ¢jow = 1/10, thereby yielding the claimed result.

6.3. Proof of Theorem 2(b). Let 7 € (0,1)" be any set of scores that
is realizable by some pairwise comparison matrix in Cp_, that is not nec-
essarily in Cpar(®) N Chs,,,,- Theorem 2(b) is proven by showing that for
any continuous and strictly increasing ®, there exists a pairwise comparison
matrix in Cpar(®) N Car,,,, with scores 7. As mentioned before, the proof
of Theorem 2(b) relies on results established by Joe [20] on majorization
orderings of pairwise probability matrices. For convenience, we define the

set of pairwise probability matrices with scores 7 = (71,...,7,) as

C(r)= {M €C | . ZM@- =;, for all 2}
T A

Minimality for pairwise comparison matrices. Our proof requires some
background on majorization and a certain notion of minimality for pair-
wise comparison matrices. We say that a vector y € R™ is non-increasing
if its entries satisfy y1 > yo > ... > ym. Given two non-increasing vectors
y,z € R™ such that ;" y; = > /", z;, we say y majorizes z, written y > z,
it S g >z, forallk=1,...,m— 1.

Given pairwise comparison matrices M, M’ € C(7), we let v(M),v(M') €
(0,1)»=1) be vectors with entries corresponding to the off-diagonal ele-
ments of M and M’, respectively, in non-increasing order. We say that M
magorizes M' if v(M) = v(M’), and we use the shorthand M = M’ to denote
this relation. Finally, a matrix M € C(7) is minimal if any other M’ € C(1)
obeying M = M’ satisfies the relation v(M') = v(M).

In order to prove Theorem 2(b), we show that there is a minimal M €
C(t) N Cu,,,,, and this minimal M takes a parametric form and thus M €
Crar(®) N Car,,.. We first note that Joe [20, Thm. 2.7] observed that the
argument minimizing any Schur convez* function over the set C(7) is a min-
imal M. Let us now construct a function that is Schur convex. In particular,

“In our context, a function f: (0,1)"*™ — R is Schur convex (or order-preserving) if
for all M, M’ € C(t) such that M is majorized by M’, we have f(M) < f(M').
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we first define a scalar function 4 : [0, 1] — [0, 00| as

L e @)de, e [§,1],
(6.13) P(u) = {_% 1261 a)dz, we[o,b).

The function 1 is well defined since the inverse ®~! exists due to our as-
sumption that @ is strictly increasing and continuous. Since ® is strictly
increasing, so is ®~'. It follows that 1 is strictly convex. From the prop-
erty that all symmetric and strictly convex functions are also strictly Schur
convex, it follows that the function Z” y (M;;) is strictly Schur convex
over C(7). As a result, we are guaranteed that the argument minimizing the
following convex program corresponds to a minimal matrix:

(6.14) minimize Y (4(My;) + (1 — M)

subject to 0 < M;; <1, forallie[n], j=i+1,...,n, and

1 i—1 1 n .
n_lz(l—Mﬂ)—}—m Z Mij =T for all 7 € [n]
j=1 j=i+1
Here the minimization is performed over the variables M;; for i = 1,...,n

and j=14+1,...,n.

First note that any M that is feasible for the problem (6.14) obeys M €
C(7). We next show that any optimal solution M* to the problem (6.14) has
entries satisfying the interval inclusion M} € [Minin, 1 — Muyin] for all pairs
(i,7), and therefore M* € Cypy, ., as desired. Indeed, suppose that there were
an optimal solution M* that violated this inclusion. By assumption, there
exists a matrix M’ € C(7) N Chy,,,. Thus, if the inclusion were violated,
then there would be some index pair (i,j) such that M;; > 1 — M. This
would imply that M* is strictly larger than M’ in the majorization ordering.
But since the objective function (6.14) is Schur convex, this contradicts the
optimality of M*.

We have established that M* € C(7) N Cps, .- We next show that M*
takes a parametric form, which establishes M* € Cpar(®) N Cpr, .., which
concludes the proof. Since there exists a solution to the convex optimiza-
tion problem (6.14) that satisfies the inequality constraints strictly (due to
Min > 0, by assumption), Slater’s conditions hold, and the Karush-Kuhn-
Tucker (KKT) conditions are necessary and sufficient for optimality (see,

for instance, [4, Sec. 5.5]). Thus, the primal and dual optimal solutions M,
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and {5, k5, '} must satisfy the KKT conditions

ij» Nij» Vi
(6.15a) ijo kg = 0,
(6.15b) NG(Mj;—1) =0, &M =0, and
(6.15¢) V(M5) = ' (1 = M) + Nj — w35 + v —vi = 0.

Since M5 € (0,1) for all pairs (i,j), the KKT conditions imply that
/\,’{j =0 and £7; = 0. Consequently, equation (6.15¢) takes the simpler form

vy — v = ¢/(Mij) - W(l - Mij) = 5‘1’ 1(Mij) - §‘I> 1(1 - Mij)
(6.16) Do),

where step (i) follows because ®(t) = 1 — ®(—t) for all ¢ € R by assumption.
It follows that M}, = @(V;‘ —v}) for all pairs (4, j), meaning that M* takes
a parametric form, as claimed.

7. Discussion. In this paper, we considered the problem of finding a
partial or complete ranking from active pairwise comparisons. We proved
that a simple and computationally efficient algorithm succeeds in recover-
ing the ranking with a sample complexity that is optimal up to logarith-
mic factors. We furthermore proved that this algorithm remains optimal
when imposing common parametric assumptions such as the popular BTL
or Thurstone models—provided the pairwise comparison probabilities are
bounded away from 0 and 1. This show that, perhaps surprisingly, imposing
common parametric assumptions cannot reduce the sample complexity of
ranking by more than a log-factor in the stochastic regime. That being said,
it should be noted that in practice, the possibility of gaining (at most) a log
factor from assuming the parametric model may be overshadowed by the sig-
nificant additional robustness afforded by our more general model class. For
instance, see Ballinger et al. [3] for some empirical evidence that parametric
models do not provide good fit in many applications, and, as our numerical
results demonstrated, algorithms relying on parametric models can be quite
sensitive to violations of those modeling assumptions.

There are a number of open and practically relevant questions suggested
by our work. From a theoretical perspective, it would be interesting to pro-
vide an algorithm and corresponding guarantees for parametric models that
matches our lower bound in the regime where the comparison probabilities
are bounded away from zero and one, and at the same time is optimal in the
regime where the pairwise comparison probabilities are very close to zero
and one. A final interesting topic is related to approximate rankings, as in
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practice, one might only be interested in finding an approximate ranking, or
might only be able to find an approximate ranking due to a limited budget.
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SUPPLEMENTARY MATERIAL

Additional numerical results and proofs
(doi: COMPLETED BY THE TYPESETTER; .pdf). We provide additional
numerical results as well as the proofs of some of the results in our paper.

8. Additional numerical results. In this section we present addi-
tional numerical results.

8.1. Comparison to algorithms tailored to parametric models. In the ex-
periment reported in Figure 6, we fixed n = 10, and saw that the PLPAC
and BTMB algorithm improve slightly over the AR algorithm if M, is very
close to one. In our next experiment, we show that this relative improvement
does only mildly depend on n. Specifically, we consider the model M), with
parameters w; = &(n —i),i = 1,...,n, where for each n, we choose £ such
that M. ~ 0.9; thus we are in the regime where PLPAC outperforms the
AR algorithm. As the results in Figure 6(a) show, even in that regime, the
AR algorithm requires at most 30% more samples across all n.

108 8
: T 10 § . ‘ --- PBR
) i \\ ........ SAVAGE
g 1 [ . 107 ; ~~~~ AR
g P E ~~~ ]
z I |
8 106 F . TTeell
2 05 | B P X g
: e ]
3 0P TN
0 | | | i : ‘ ‘ ‘ ‘ :
20 40 60 0.7 0.8 0.9 1
n Mmax

Fig 6: (a) Empirical sample complexity of the AR, PLPAC, and BTMB
algorithms applied to the BTL model M) with parameters w; = & (n —
i), =1,...,10 chosen such that My,,x = 0.9. Even in this regime where the
PLPAC algorithm has a lower sample complexity than the AR algorithm,
the difference is minor (30% improvement at the most). (b) Empirical sample
complexity of the PBR, SAVAGE, and AR algorithms applied to the BTL
model M with parameters w; = log(n+n—1i),i=1,...,10, as a function
of Myax = max; j M;;. We varied n such that M.y € [0.65,0.99]. The error
bars correspond to one standard deviation from the mean.
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8.2. Comparison to top item identification algorithms. We next compare
the AR algorithm to the SAVAGE algorithm introduced in [38] and the
PBR algorithm from [8]. Both algorithms provably succeed in recovering the
top item. We perform the same experiment as in Section 5.1. The results,
depicted in Figure 6(b), show that the AR algorithm has a significantly
lower sample complexity. This observation may be explained as follows. The
SAVAGE is a generic elimination algorithm, which, when applied to top-1
recovery, is similar to our approach, however the corresponding confidence
bound a4 is larger which results in a larger sample complexity. The PBR
algorithm proposed in [8] estimates the pairwise comparison probabilities
instead of the scores directly, and therefore is not competitive in terms of
sample complexity.

8.3. Selection of confidence interval. Recall that the AR algorithm elim-
inates an item if the confidence that it belongs to one of the sets Sy, ...,Sy,
is sufficiently large. Our main results show that the AR algorithm succeeds
at recovering the ranking with probability at least 1 — §, provided that the
length of the confidence interval is chosen as

log(n/6)+0.75loglog(g/té)—&-l.tilog(1+10g(t/2)). While this result is optimal

up to log-factors, the particular choice of the constants might be overly con-
servative, and improvements in the (empirical) sample complexity might be
obtained by choosing the constants in a; smaller, as we show next. To inves-

% \/log(n/S(lotg(t)—i-l)/é)

comparison model with n = 5, scores 7 = (0.9,0.7,0.5,0.3,0.1), and use the
AR algorithm to find the top 2 items, for different values of the desired
accuracy 6. The results, depicted in Figure 7, show that, even with those
significantly smaller constants, the AR algorithm is §-accurate.

ay =

tigate this claim, we set a; = . We generate a pairwise

9. Proof of Lemmas 1, 2, and 3. In this section we provide the proofs
of Lemmas 1, 2, and 3, which are part of the proof of Theorem 1(a).

9.1. Proof of Lemma 1. In order to show that the event &, occurs with
probability at least 1—9, first recall that comparing item 4 to an item chosen
uniformly at random from [n]\{:} is equivalent to taking an independent
draw from a Bernoulli random variable with mean 7;. One can verify from
the recursion (3.2) that 7;(¢) is a sum of ¢ independent Bernoulli random
variables, each of which has mean 7;/¢. In order to control the fluctuations
of 7;(t), we make use of a non-asymptotic version of the law of the iterated
logarithm from Kaufmann, Cappé and Garivier [22] and Jamieson et al. [18].
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Fig 7: (a) Number of comparisons required to find the top-2 items out of 5
items, for o = 14/log(n/3(log(t) + 1)/8)/t. (b) Empirical error probability
required to find the top-2 items out of 5 items. The particular choice of
the constants in a; = \/log(125nlog(1.12¢)/8)/t in our theoretical results
is very conservative, in the sense that for obtaining a d-accurate ranking,
the constants in oy can be chosen smaller, which in turn results in fewer
comparisons.

LeEMMA 5 ([22, Lem. 19]).  Given an i.i.d. sequence {Xs}32, of Bernoulli
variables with mean u, then for any §' € (0,0.0005), we have

t !
e —u)‘ < /22D forans =1
s=1

with probability at least 1—¢§'. Here, B(t,0") :=log(1/6")+0.751oglog(1/8") +
1.5log(1+1log(t/2)). The statements continues to hold for any § € (0,1) with
B(t, ") = 2log(1251log(1.12t)/4").

In the current context, applying Lemma 5 with ' =n/d and oy = B3

2t
yields

)
P[\ﬂ(t) — 7| > oy for some t > 1} < —.
n

Taking the union bound over all indices ¢ € S C [n] yields that P[E,] > 1—4,
as claimed.

9.2. Proof of Lemma 2. We show that implications (6.2a) and (6.2b) fol-
low from the inequality in event &,. We start by showing that the inequality
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in event &, implies that
(9.1) ’T{k} — T(k)| < 20ét.

We claim that 7(;) — 7(x) > —2ay. By definition of (k), there are k indices
{i1,...,ix} such that 7, (t) > 7(;,(t) for every £ € [k]. In conjunction with
the inequality in event &,, we obtain

Tip O 2 T(k) — O4-

Since this inequality holds for £ many indices {i1, ..., i}, it must also hold
for {k}, due to Ty 2 T2y = - = Ty s)y- 1t follows that 7, — 7(4) > —204.
It remains to establish that 7,y — 74y < 2a4. By definition of (k), there are
|S| — k& + 1 many indices j in S obeying

7j(t) < Ty (t).

By the inequality in event &, this yields 7; — a¢ < 7(3) + at. Since this
inequality holds for |S| — k + 1 indices j, it must hold for 7 = {k}, which
implies 7(3; < 7(x) + 2c4. Thus, we have established that inequality (9.1)
must hold under event &,.

We are now ready to establish the claim (6.2a). As long as 7;(t) < ?@e_l) -
4oy, we have

N L)
day < T(Eefl)(t) n Tj(t) < T(ke_y) Ta =Tt

(9.2) < Thy — T T 20 + 20

Here step (i) follows by the inequality in event &,, whereas inequality (9.2)
follows by inequality (9.1). Noting that inequality (9.2) is equivalent to 7; <
Tih,p We have established the claim (6.2a). The proof of claim (6.2b) is
analogous, so we omit the details.

9.3. Proof of Lemma 3. We first prove that, if the event &, occurs, then
for any given index i € Sy, and for all £ > 1, inequality (6.3a) holds. Recall
that 7 is the k-th largest score out of the latent scores 7;,i € S. On the
event &,, we have, for any ¢;, that

R @
Ty (ti) = 7,y —og, 27,y — 305,
(i)
Z Tké—l - 30‘@
= Ag,i — 30@1, + 7

(iii) _ _
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Here step (i) follows by inequality (9.1), which holds on the event &, and
inequality (ii) follows from Ty = Theois which is seen as follows. As
shown above, on the event &,, the AR algorithm never misclassifies any item,
meaning that an item j is only assigned to the set g'g if j € &p. Therefore the
k¢_1-th largest score among the items in the set S must be larger or equal
to the ky_1-th largest score among all scores. Finally, inequality (iii) follows
from 7;(t;) — 7 < ag,, which holds on the event &,.
From the definition of a3, , some algebra leads to the lower bound

(9.4) Ay > 8oy,

with ¢; as defined in Lemma 3. See the end of this subsection for details of this
calculation. Application of inequality (9.4) on the RHS of inequality (9.3)
yields

7'\(”;[71)(@) > 40&{1 + 7/'\1(%,),
which concludes the proof of inequality (6.3a). Analogously, it follows that
inequality (6.3b) holds for a given item i if the event &, occurs.

Proof of the lower bound (9.4). We prove the bound for the more conser-
\/log(125nlog(1.12t)/5)
t

vative choice of a; given by a; = . By definition of «y
and t;, we have that

o (1 L1281 (1100 ()]
oF =
x4 log (%log ( )

A? log (12(?71108; [1 14261 gﬁzj ])
S N2

1 log (ﬁlog (‘L»

A2, 1og<125” (112“”)1/3310g( ))
<

& log (1o (=2;))

) e\1/3

A?,i %]og (375 (%) / 3 log <52u>>

<
C tee(3ee(35)).
AZi
82’
where the last inequality holds for ¢; = 654.

<
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Fig 8: Illustration of the distributions M, M’ and the corresponding scores
7j,7;: Suppose that m = 4 and k¢_; = 2. The probabilities M;; are obtained
from the probabilities M;; by increasing the probabilities surrounded by a
rectangle, and decreasing the probabilities surrounded by a circle, all others
remain unchanged.

10. Proof of Theorem 2(a). As stated before in the original paper,
our goal is to prove that any algorithm A that is uniformly d-accurate over
Cpar(®) N Ch,,;,,» when applied to a given pairwise comparison model M €
Crar(®) N Car,,,, must make at least

EM [Q] > Mmind)?nin

1
= 2.00462,,., log (25) F(r(M))

comparisons on average. Here F'(7(M)) is the complexity parameter defined
in Section 4.

The proof is similar to that of Theorem 1(b), with the primary difference
being that the alternative matrix M’ must now be constructed such that
it lies in the parametric class. In what follows, we show how to modify the
proof of Theorem 1 at appropriate positions in order to accommodate this
difference.

Consider any parametric pairwise comparison matrix M € Cpar(®) N
CM, - Then there exists a parameter vector w € R" such that M;; = D (w; —
wj). By the assumption 7 > ... > 7, this parameter vector obeys w; >

. > wy. Consider an item m € Sy(M),¢ > 1, and set k = ky_q, for
notational convenience. We construct an alternative matrix M’ € Cpar(®)N
Cwm,,;, as follows. Consider some scalar value p that lies in the interval 0 <

imsart-aos ver. 2014/10/16 file: active_ranking aos_final.tex date: October 24, 2018



ACTIVE RANKING FROM PAIRWISE COMPARISONS 37

p < wi — wg_1. Define a set of alternative parameters as

Wi if i =m,
wh= < w, —p ifi =k,
w; otherwise.

Now let M’ be the matrix with pairwise comparison probabilities M;; =
@(wé—w}). By definition, we have wy > w} > wy, for all i € [n], which ensures
that M’ € Cpar(®) N Car,,,.- Moreover, by definition, item m is among the
top k items, so that m ¢ Sy(M’). Since (by assumption) algorithm A is
uniformly d-accurate over Cpar(®) N Car, .., we have both Py [E] > 1 — 0
and Py [€] < 0, which ensures that inequality (6.7) holds. Here £ denotes
the previously defined event (6.5) that the algorithm A correctly recovers
the set structure.

Next consider the total number of comparisons of item m with all others

items, denoted by @,,. As in inequality (6.9), we are guaranteed that

max duwmﬁﬂfl)EMIQm}Z E: EM’Qm] mepﬂw )

Jemitm) jelm}
(:Z Z Enr [Qis] d(Mij, Mj;) — Z v Q] d( Mk, M}y
i=1 j=i je[m\{k,m}
(i)
> d(Pa [€], Py [E]) — Z M [Qjr] d(Mjy, M)
je[n}\{kvm}

(iii)

> d(Pa [€],Par [€]) — 0.001d(Pay [E], P [€])
(10.1) > 0.9991og 2—15

Here inequality (i) follows from the fact that d(M;;, M;;) = 0 for all (i, 7)
with 4,7 € [n] \ {k,m}, by definition of M. Inequahty (i) follows from
inequality (6.6) (that is, from Lemma 4). Inequality (iii) is a result of the
fact that lim, o d(M;, M) = lim,—o d(®(w; — wy), (w; — wi + p)) =0
for every i € [n] \ {k,m}, where we have also employed the continuous
mapping theorem: Due to this relation we can choose p sufficiently close to
0 to obtain the bound of (iii). Finally, inequality (10.1) is a consequence of
inequality (6.7).

Our next step is to upper bound the KL divergence d(Mm],M’ ) For
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each j € [n] \ {k,m}, we have

(M,; = Mij)? (i) (Myj — Myj)?

d(MM7M7/n) < -
’ ’ M7/nj(1 - M’I’TL]) My (1 — My;)
(i) 2 9
ST (P(wi — wj) — P(wm —w;))
@ 2 202,
(102) S M7(¢max(w1€ — wm))2 S W(Tk — Tm)2.

Here step (i) follows by definition of the parameters M;;; step (ii) follows
because M;; belongs to the interval [Mmin,1 — Muyin; and step (iii) is a
consequence of assumption (4.1). Finally, the last inequality (10.2) follows
from the relations

ﬁ(@(wk — W) — (W, — wy)

+ > (@ —wy) = O(wm —wy) )

Tk — Tm =

Jj€M\{k,m}
» 1
> m<¢min(’wk — Wi — (W, — wg)) + | Z Grnin (Wi, — wm))
j€[n\{k,m}
(10.3)
n
- mgbmin(wk — W) 2 Pmin (W — Win).

Here inequality (i) follows from assumption (4.1); in particular, recall that
W > Wy, so the difference wy, — w,, above is positive.
Similarly, we have

2 # 2.001
d(Mmka Mflnk) < M (¢max(p + wg — wm))2 < M (¢max(wk: - wm))2
(i) 2.001¢42,,,
(104) = : 22 = (7 — Tm)?,

where inequality (i) follows from choosing p sufficiently close to 0, whereas
inequality (ii) follows from the relation (10.3).

Given an index m in a set Sy(M) with £ > 1, combining inequalities (10.2)
and (10.4) with inequality (10.1) yields

Minin@p, log(1/(20))
(10.5a) En [Qm] > 200462, 0, (Thy o — T )2
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Similarly, for an index m € Sy(M) with ¢ < L, we define an alternative
matrix M’ by defining corresponding parameters as w;, = Wk 41, Wy, | =
Wi,41 + p for p € (0,wy, — wy,41), and w, = w;, for all i ¢ {m, ky+ 1}.
Under the model specified by M’, item m is not amongst the k, items with
the largest scores, and therefore m ¢ Sp(M’'). The same line of arguments
as above yields

Myin@2, log(1/(26))
(10.5b) En [Qm] > 200462 . (= T 1 B

Combining the lower bounds (10.5a) and (10.5b) concludes the proof.
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