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Abstract—Clustering is one of the most prominent topics in
machine learning. A multitude of clustering methods have been
proposed, among which the spectral clustering has attracted
much attention. However, in practice, spectral clustering is highly
sensitive to noise data and a post-processing step (e.g., k-means
for eigenvectors) is often required to obtain clustering indicators,
which may be not optimal. Also, it does not scale well to large-
scale data due to its eigen-decomposition procedures.

Here we propose a structure-aware clustering model to address
those issues. To achieve our goal, a high-quality affinity matrix
is extracted from the original noisy data by a sparse additive
decomposition, which is used to approximate the ideal clustering
structure. We then jointly learn the high-quality affinity matrix
as well as the spectral embedding in a unified model— thus,
being robust to noise and obtaining the optimal clustering
indicators without any post-processing steps. We further improve
the clustering stability by considering the Laplacian eigengap
of the affinity matrix. We show that the larger the Laplacian
eigengap, the more stable the clustering results. We introduce
a speedup strategy to effectively compute eigenvectors of large
matrices. Experimental results demonstrate that the proposed
model outperforms existing approaches for noisy data.

Index Terms—Structure-Aware Clustering, Noisy Data, Eigen-
gap, Doubly Stochastic Matrix, Graph Clustering

I. INTRODUCTION

Clustering is an important research topics in machine
learning, which tries to explore the inherent structure of
data. Spectral clustering, exploiting the pairwise relationships
between data instances in spectral domains, has shown great
promise in many applications such as graph analysis [1], [2],
bioinformatics [3], and computer vision. In addition, spectral
clustering has a natural connection to normalized cut, matrix
factorization, and random walk [1]. Easy implementation and
superior performance make spectral clustering become the first
choice for many clustering problems.

Spectral clustering embeds the graph-based similar-
ity/affinity matrix into a low-rank dimensional space before
performing k-means clustering [2]. The low-rank space is
spanned by the first k eigenvectors corresponding to the
k smallest eigenvalues of the (normalized) graph Laplacian
matrix. Thus the performance of spectral clustering is largely
depended on the input affinity matrix. Any noise or variations
to the input affinity matrix may impair the final clustering
performance [4], [5].

To enhance clustering performance, several pre-processing
strategies have been made to build a better affinity matrix
as input from original data [6], [7], [8], [9]. One successful
attempt is the doubly stochastic normalization of the affinity
matrix, which achieves superior clustering performance [7].
However, the doubly stochastic matrix cannot handle noise in
the data. The designed doubly stochastic matrix is expected to
be very closer to original affinity matrix (e.g., using relative-
entropy or Frobenius norm minimization), but the original
affinity matrix can be corrupted by considerable noise, leading
to a noisy doubly stochastic matrix. Moreover, even with the
doubly stochastic matrix approximation, the clusters are still
not obvious and post-processing like k-means is often required
to get the final cluster indicators, which is sensitive to the
initializations [1], [2], [9].

To address these challenges, we propose structure-aware
SCAN, a Spectral Clustering algorithm for noisy data via
Augmenting eigeNgap. The core idea is that the input affinity
matrix can be decomposed into two matrices: a high-quality
affinity matrix and an irrelevant noise matrix. Rather than
directly operating on the original affinity matrix, we learn a
better doubly stochastic matrix from the high-quality affinity
matrix, which explicitly reflects the true data structure. In-
spired by the rank minimization [10], [11], we impose a rank
constraint on the Laplacian matrix of the desirable doubly
stochastic matrix, thereby guaranteeing that the number of
connected components in the data is exactly k, i.e., the number
of clusters. Moreover, unlike traditional spectral clustering
algorithm requiring two stages, we simultaneously learn the
doubly stochastic matrix as well as spectral embedding in a
unified model. We show that as long as the doubly stochas-
tic matrix is optimal, the cluster indicators can be directly
obtained without any post-processing steps. To be robust
against noise, we further strengthen the clustering stability via
augmenting the Laplacian eigengap. The underlying intuition
is that a clustering structure is stable if small distortions/noises
in the data do not affect its eigenspace that is spanned by
the primary k eigenvectors [12], [2]. Mathematically, we
turn our attention to regularized spectral learning [12], which
indicates that the larger the Laplacian eigengap, the more
stable the clustering results. We model the problem of robust
spectral clustering as an optimization problem and introduce
an efficient optimization algorithm to solve it. Our method978-1-7281-0858-2/19/$31.00 c©2019 IEEE
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can heuristically find more stable clusters for noisy data.
We also report an empirical study on both synthetic and
benchmark datasets. The experimental results demonstrate the
effectiveness of our proposed method. Our contributions are
summarized as follows:

• We propose a structure-aware clustering model for noisy
data. Specifically, we decompose the original affinity
matrix into a high-quality affinity matrix and an irrelevant
error matrix, in which high-quality affinity matrix should
better reflect the true data structure.

• We learn a structured doubly stochastic matrix to approx-
imate our high-quality affinity matrix, in which the clus-
tering indicators can be obtained without post-processing
steps. To find stable clusters, we further consider the
Laplacian eigengap to refine the eigenspace.

• We formulate the clustering problem as a optimization
problem and propose an effective algorithm to solve
the optimization problem. Extensive experiments on both
both synthetic and benchmark datasets demonstrate the
effectiveness of our model.

The rest of the paper is organized as follows. Section II
reviews some related work. Sections III defines the problem.
IV and V propose our optimization problem with an efficient
optimization algorithm to solve it. Section VI reports experi-
mental results. Section VII concludes the paper.

II. RELATED WORK
Spectral clustering, which aims to partition data into several

groups, has been studied extensively. The literatures [1], [2]
provide a very detailed overview of spectral clustering. Here,
we review several robust spectral learning methods according
to different principles.

The only input to spectral clustering is the graph-based
affinity matrix, which is thus largely responsible for the final
clustering results. However, constructing pairwise similari-
ties for spectral clustering is challenging because data can
be noisy, incomplete, heterogeneous, and without any prior
knowledge [1]. Researchers have thus attempted to build a
better affinity matrix for spectral clustering [13], [14], [6],
[15]. For example, Zelnik et al. [13] proposed a local similarity
scaling approach to learn an adaptive scaling factor in the
Gaussian kernel when computing the affinity between two
data instances. It worked well on noise-free data but was
susceptible to noisy inputs. To alleviate this issue, Correa et
al. [15] introduced a new method to improve the robustness
by using empty regions and a diffusion based local scaling
approach. Similarly, Premachandran et al. [14] developed a
k-NN neighborhood selection method to obtain strong local
neighborhoods. They made use of the consensus information
from multiple k-NNs to discard noisy edges so that the
resulting affinity matrix is more robust against noisy data.

In addition to local scaling approaches, doubly stochastic
normalization of affinity matrix is another promising strategy
to enhance the clustering results [7], [9], [8], [16]. Ron et
al. [7] first showed that the doubly stochastic normalization of
an affinity matrix was intimately related to kernel k-means. By

doing so, they obtained an improved affinity matrix providing
superior clustering performance. Zhang et al. [16] presented
a decomposition method for clustering, which surprisingly
leaded to a doubly-stochastic approximating matrix. Such
matrix had been shown to be desired for balanced graph
cuts. Recently, Douik et al. [17] developed a Riemannian
optimization framework for solving clustering problems on the
set of symmetric doubly stochastic matrices, which produced
satisfactory for graph clustering. Although the doubly stochas-
tic matrix can improve clustering performance, the clustering
structures in the doubly stochastic matrix are still unknown.
The post-processing like k-means is often required to get the
final cluster indicators.

To overcome this problem, Nie et al. [11] and Wang et
al. [9] proposed two convex models to learn the structured
doubly stochastic matrix by imposing low-rank constraints on
the graph Laplacian matrix. Their structured doubly stochastic
matrix could explicitly uncover the clustering structure without
post-processing steps. Jiwoong et al. [8] further introduced
a novel method to build a doubly stochastic affinity matrix
by incorporating Davis-Kahan theorem of matrix perturba-
tion theory such that every cluster was well retained in its
eigenspace. Furthermore, considerable efforts have been made
to find more stable clusters [12], [18]. For example, Meila et
al. [12] first investigated the clustering stability by considering
the Laplacian eigengap in the regularized spectral learning
methods. They further proved that a larger Laplacian eigengap
corresponded to better clustering stability. Inspired by this
idea, Juhua et al. [18] developed a multi-clustering method
to obtain a certain number of stable clusters by directly
maximizing the Laplacian eigengap.

Other methods for robust spectral clustering include ran-
dom forest-based affinity construction [6], Laplacian smooth-
ing [19], and random binning features [20]. However, those
method require post-process steps (e.g., k-means) to obtain the
final clustering indicators, thus are sensitive to the initializa-
tions. Recently, several studies jointly learn the affinity matrix
as well as the spectral embedding in one unified model [5],
[11], [10], [21]. However, their eigenspaces are still sensitive
to noise, resulting in suboptimal performance.

III. PROBLEM FORMULATION

Notations: Throughout this paper, matrices are denoted as
uppercase letters (e.g., A). λ(A) is a vector containing all
eigenvalues of A in decreasing order (e.g., λ1(A) ≥ λ2(A) ≥
· · · ) and λi(A) is the i-th largest eigenvalue of A; σ(A)
denotes all singular values of A in a similar way. 1 is a vector
whose elements are all one.

Problem Setup: Given a set of n data points [x1, . . . ,xn] =
Xn×d, with xi ∈ R

d. The spectral clustering algorithm
typically constructs a graph affinity matrix A ∈ R

n×n, where
Aij represents the similarity between xi and xj . A common
way to construct such affinity matrix is the Gaussian kernel:

k(xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)
(1)
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where σ is the bandwidth parameter. The goal of spectral
clustering is to use A to partition data points into k different
clusters. Therefore, the graph affinity matrix is largely respon-
sible for the performance.

Doubly stochastic normalization of affinity matrix often
induces a significant performance boost in practice [7], [9],
[17]. For the doubly stochastic normalization problem, a new
affinity matrix S is learned from the graph affinity matrix A
by minimizing the following objective function:

min
S

‖S−A‖2F s.t. S ≥ 0, S = ST , S1 = 1 (2)

where ‖·‖F denotes the Frobenius norm; S ∈ R
n×n is a

doubly stochastic matrix with the following constraints: non-
negativity, symmetry, and row/column-wise sum being one.
However, there are two drawbacks with this approach: (i)
the doubly stochastic matrix is highly sensitive to noisy. The
doubly stochastic matrix S is expected to get closer to matrix
A, but the original affinity matrix A may be corrupted by
noise, leading to a noisy matrix S. (ii) the cluster structures
are not obvious from the matrix S and a post-processing step
(e.g., k-means) is needed to uncover the clustering indicators.

IV. STRUCTURE-AWARE SPECTRAL CLUSTERING

To address these two challenges, we aim to learn a new
doubly stochastic matrix that can handle noise and maintain
the data clusters at the same time.

A. Noise-free Affinity Matrix

We assume that the graph affinity matrix A is not perfect
but may contain certain level of noise. Inspired by the robust
principal component analysis [22], we naturally decompose the
original graph affinity matrix A into two parts: a high-quality
affinity matrix Ah and an error matrix Ae:

A = Ah +Ae (3)

The high-quality affinity matrix Ah should perfectly reveal
the true memberships of the data clusters. Meanwhile, the
irrelevant noise matrix Ae is expected to be relatively sparse.
If not, the noise will dominant the affinity matrix and a
reasonable clustering cannot be detected effectively.

Based on these assumptions, instead of approximating the
original affinity matrix A, we learn the doubly stochastic
matrix S from the high-quality affinity matrix Ah. The Eq.
(2) can then be improved as follows:

min
S,Ah,Ae

‖S−Ah‖2F+α‖Ae‖0
s.t. S ≥ 0, S = ST , S1 = 1, A = Ah +Ae

(4)

where α controls the sparsity of error matrix Ae by using
l0-norm.

B. Structure-aware Representation

In the ideal case, the doubly stochastic matrix S in Eq.
(4) should be a block-diagonal structured matrix with proper

permutation [10], [11], [9]. The reason is that the ideal
clustering structure of the data have exactly k (the number
of the clusters) connected components and only data instances
from the same cluster are connected to each other in the graph
affinity matrix S. Given the graph affinity matrix S and its
corresponding Laplacian matrix LS = DS − S, where DS is
a diagonal matrix whose i-th diagonal element is

∑
j Sij , we

have the following Lemma 1 from spectral graph theory [23]:

Lemma 1. The multiplicity k of the eigenvalue zero of the
Laplacian matrix LS is equal to the number of connected
components in the graph.

According to Lemma 1, if the matrix S has exactly k blocks
along with diagonal, then the first smallest k eigenvalues of
its Laplacian matrix LS are zeros. Suppose λi(LS) is the i-th
largest eigenvalue of LS , we have λi(LS) ≥ 0 since LS is
positive semi-definite. The Eq. (4) can be rewritten as:

min
S,Ah,Ae

‖S−Ah‖2F+α‖Ae‖0+β

n∑
i=n−k+1

λi(LS)

s.t. S ≥ 0, S = ST , S1 = 1, A = Ah +Ae

(5)

when β → +∞, the optimal solution S to the Problem (5)
will make term

∑n
i=n−k+1 λi(LS) = 0, in which a k-block

diagonal matrix S will be satisfied. Under this condition, we
can directly partition the data into k clusters based on the
structured S without post-processing steps [11]. According to
the Ky Fan’s Theorem [24], we further have

n∑
i=n−k+1

λi(LS) = min
F∈Rn×k,FTF=I

Tr(FTLSF)

Therefore, Eq. (5) can be converted to a much easier objective
function with auxiliary variable F (as shown in Eq. (6)).

In addition, in the ideal case the probability of a certain
node to correlate with nodes in the same cluster should be
the same, which can be regarded as a prior knowledge of
structured matrix S. We thus add another regularized term
γ‖S‖2F to the Eq. (5), where a large parameter γ forces the
elements in each block of matrix S to be the same [11].

C. Clustering Stability

Beyond the structured property, we also hope to recover an
optimal affinity matrix S that is stable for clustering tasks. A
clustering is said to be stable if small distortions/noises on
data do not affect its eigenspace of LS [12], [2]. Fortunately,
the eigenspace is only spanned by the first k eigenvectors
of the Laplacian matrix LS corresponding to the k smallest
eigenvalues. We next show how to find a stable clustering
based on the matrix perturbation theory.

Note that LS = I− S1, it is easy to verify that the first
k eigenvectors of matrix S corresponding to the k largest
eigenvalues are identical to the first k eigenvectors of LS

corresponding to the k smallest eigenvalues. Now we have
a nice property of stability on our doubly stochastic matrix S.

1We have DS = I since S is a doubly stochastic matrix.
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Lemma 2. (Stability [18]): Given a doubly stochastic affinity
matrix S, if the eigengap Δ = λk(S) − λk+1(S) is large
enough, then the top k eigenvectors of Sperb = S + ε
corresponding to the k largest eigenvalues are the sames as
those of S, where ε a symmetric perturbation matrix of small
spectral norm ‖ε‖2.

We know that the top k largest eigenvalues of S are all
one since the first k smallest eigenvalues of LS are all zero.
According to Lemma 2, the assumption that eigengap Δ being
large is exactly the assumption that λk+1 be bounded away
from 1. To obtain stable clustering, we can thus add one further
constraint λk+1(S) ≤ 1 − δ in our Eq. (5), where δ is the
eigengap within (0, 1).

D. The SCAN Model

To better uncover the data clusters, we propose SCAN
model for spectral clustering with full benefit of the noise-
free, structured and stable affinity matrix. Formally, we obtain
a unified objective function as following:

min
S,F,Ah,Ae

‖S−Ah‖2F+α‖Ae‖0+β Tr(FTLSF) + γ‖S‖2F
s.t. S ≥ 0, S = ST , S1 = 1, FTF = I

LS = I− S, A = Ah +Ae, λk+1(S) ≤ 1− δ
(6)

We next propose an efficient algorithm to solve our model.

V. OPTIMIZATION ALGORITHM
Problem (6) is challenging to solve due to the non-convex

l0-norm. We replace with l1-norm on Ae since l1-norm is the
convex envelope of l0-norm. Furthermore, the singular values
of S are equivalent to its eigenvalues i.e., σ(S) = λ(S), since
matrix S is symmetric and positive semi-definite. We thus fo-
cus on the singular value of S due to its easy implementation.

A. Learning Algorithm

We solve Eq. (6) via Augmented Lagrange Multiplier
(ALM) method [25]. First, we introduce the auxiliary variables
L and M such that L = I− S and S = M, the Eq. (6)
becomes:

min
S,F,L,Ah,Ae

‖S−Ah‖2F+α‖Ae‖1+β Tr(FTLF) + γ‖S‖2F
s.t. S ≥ 0, S = ST , S1 = 1, FTF = I, L = I− S

A = Ah +Ae, σk+1(M) ≤ 1− δ, S = M
(7)

The objective of Eq. (7) is much easier to solve since the
term β Tr(FTLF) is now independent of S, and the eigen-
value constraint only involves matrix M. By using augmented
Lagrangian function, the above problem is equivalent to:

min
S,F,LAh,Ae

‖S−Ah‖2F+α‖Ae‖1+β Tr(FTLF) + γ‖S‖2F+

〈Λ,L− I+ S〉+ 〈Θ,A−Ah −Ae〉+ 〈Σ,S−M〉+
μ

2
(‖L− I+ S‖2F+‖A−Ah −Ae‖2F+‖S−M‖2F )

s.t. S ≥ 0, S = ST , S1 = 1, FTF = I, σk+1(M) ≤ 1− δ
(8)

where Λ,Θ,Σ ∈ R
n×n are the Lagrange multipliers and μ is

the penalty parameter for Eq. (8). By using ALM, we optimize
one variable while fixing others and this procedure repeats
until convergence.

1) Optimize S: The Eq. (8) with respect to S is defined as:

min
S

‖S−Ah‖2F+γ‖S‖2F+μ

2
‖L− I+ S+

1

μ
Λ‖2F+

μ

2
‖S−M+

1

μ
Σ‖2F

s.t. S ≥ 0, S = ST , S1 = 1

(9)

Let T̂ = 1
μ+γ+1

(Ah+ μ
2
(I− L− 1

μ
Λ+M− 1

μ
Σ)), then the Eq.

(9) can be simplified to:

min
S

‖S− T̂‖2F s.t. S ≥ 0, S = ST , S1 = 1 (10)

Above objective function is similar to Eq. (2) and can be
effectively solved by Von Neumann’s successive projection
learning algorithm [7].

2) Optimize L, Ah and Ae: Similarly, we can update the
variables L, Ah and Ae using following closed-form solution
in each iteration:

L = I− S− 1

μ
Λ− β

μ
FFT (11)

Ah =
1

μ+ 2
(2S+ μA+Θ− μAe) (12)

Ae = Sαμ−1(A−Ah + μ−1Θ) (13)

where Sτ : R → R denote the shrinkage operator, which is
defined as Sτ [x] = sgn(x)max(|x|−τ, 0), where sgn(·) is
the Sign function. It is extended to a matrix by applying the
function to each element [25].

3) Optimize F: The Eq. (8) with respect to F becomes

min
F∈Rn×k,FTF=I

Tr(FTLF) (14)

The optimal solution can be obtained by the k eigenvectors of
L corresponding to the k smallest eigenvalues.

4) Optimize M: The optimal M can be obtained by solving:

min
M

‖M− S− 1

μ
Σ‖2F s.t. σk+1(M) ≤ 1− δ (15)

Let S̃ = S+ 1
μΣ. According to Theorem 1 in Appendix, the

optimal solution is

M = UDiag(σ(M))VT (16)

σi(M) =

{
1 if 1 ≤ i ≤ k

min(1− δ, σi(S̃)) if k + 1 ≤ i ≤ n

where U and V are the left and right orthonormal matrices in
the SVD of S̃.

Our algorithm to solve objective function in Eq. (6) is
outlined in Algorithm 1. We obtain the structured doubly
stochastic matrix S, and optimal matrix F from Algorithm 1.

49



With the block diagonal structure of S, we can immediately
obtain clustering indicators without any post-processing steps.
In other words, the optimal solution F is formed by the first k
eigenvectors of L (or LS) in Eq. (14). We can thus directly use
the optimal F to get the final clustering results without post-
processing, which is normally required by traditional spectral
clustering algorithms [11].

Algorithm 1: SCAN
Input: affinity matrix A, regularized parameters α, β and γ,

constant δ, the number of clusters k.
1 Initialize S = A, L = I−A. Randomly initialize matrix F,

Ah, Ae and M. Set the Lagrange multiplier
Λ = Θ = Σ = 0, μmax = 108, ρ = 1.15 and μ = 10−4.

2 repeat
3 Update S by solving the Problem (10)
4 Update L, Ah and Ae by Eq. (11) to Eq. (13)
5 Update F by solving the Problem (14)
6 Update M by Eq. (16)
7 Update Λ by Λ ← Λ+ μ(L− I+ S)
8 Update Θ by Θ ← Θ+ μ(A−Ah −Ae)
9 Update Σ by Σ ← Σ+ μ(S−M)

10 Update μ by μ ← min(ρμ, μmax)
11 until convergence
12 return S and F

B. Speedup Strategy
Although the optimization problem in Eq. (6) can be

solved by the algorithm proposed in the earlier section, the
computational cost is high (O(n3)) because of the eigen-
decomposition for updating F and the SVD for updating M.
It is thus imperative to develop an efficient algorithm that
can scale well for large datasets. We further propose pSCAN,
a provable SCAN, that is efficient for large datasets. The
gain of pSCAN mainly comes from two aspects. First, we
propose to use a more sparse affinity matrix for the noisy
data, which saves both space and running time for large
matrix computation. Second, we adopt some most recent
advances [26] in solving eigen-decomposition and SVD [27]
to improve the overall efficiency.

1) Random Binning Features: To address the first chal-
lenge, we effectively compute the affinity matrix by adopting
the random binning features, which are successfully scaling
up for large-scale kernels [28], [29], [20]. The random binning
features consider a feature map:

k(xi,xj) =

∫
ω

p(ω)φBω (xi)
TφBω (xj)dω (17)

where a set of bins Bω is a random grid parameterized by
ω = (ω1, u1, . . . , ωd, ud) drawn from a distribution p(ω), and
a pair (ωi, ui) denotes width and bias in i-th dimension of a
grid. For any bin b ∈ Bω , its feature vector φBω (x) has

φb(x) = 1, if b = (�x(1)− u1

ω1
	, . . . , �x(d)− ud

ωd
	) (18)

and φb(x) = 0 otherwise.

Following the procedures in [28], [20], [29], given R grids
{Bωr}Rr=1 and the data points: [x1, . . . ,xn] = Xn×d, we first
draw ωr from pr(ω) (e.g., uniform distribution). The random
binning feature for point xi: zr(xi) is the indicator vector
of bin index (�xi(1)−u1

ω1
	, . . . , �xi(d)−ud

ωd
	). In order to obtain

good features, a simple Monte Carlo method is used to average
over R grids of random binning features. The result feature
matrix Z ∈ R

n×D is constructed for the original data matrix
X ∈ R

n×d, where D is determined jointly by the number of
grids and kernel width (more details can be found in [29]).
Moreover, Z is a binary matrix and the number of nonzero
elements in each row nnz(Z(i. :)) = R, which is thus very
sparse. A more sparse affinity matrix A can be computed by
the inner product of the random binning features: A = ZZT

in linear complexity [28], [20], [29].
Since the input A is sparse, its high-quality affinity Ah is

naturally sparse with proper initialization. The sparse property
also hold for S and L. We next show that operations on those
sparse matrices can improve the time complexity.

2) Fast eigen-decomposition and k-SVD: To deal with
the orthogonality constraint in Eq. (14), we use a gradient
descent procedure with curvilinear search [26] to update F.
In each iteration, given the current feasible point F, and its
corresponding gradient G = ∇Tr(FTLF) = 2LF, we define
the skew-symmetric matrices: P = GFT − FGT . The next
feasible point F can be searched along the smooth curve:

Q(τ) = (I+
τ

2
P)−1(I− τ

2
P)F (19)

It is easy to verify that Q(τ) is staying on the Stiefel manifold:
M = {X : XTX = I}. The derivative with respect to
τ is given dQ(τ)

dτ
= −(I + τ

2
P)−1P(F + Q(τ))/2. Because

dQ(τ)
dτ

|τ=0= −PF is the same as the projection of -P onto
the tangent space of M at current point F = Q(0), the curve
Q(τ) is a descent curve along τ > 0. We use the classical
nonmonotone line search with the Barzilai-Borwein algorithm
to accelerate the gradient at each iteration:

τ (t) =
Tr[(F(t) − F(t−1))T (F(t) − F(t−1))]

|Tr[2(F(t) − F(t−1))T (LF(t) − LF(t−1))]|η
h

here h is the smallest integer that satisfies:

F [Q(t)(τ (t))] ≤ r(t) + ντ (t) · d

dτ
F [Q(t)(τ (t))]|τ=0

where F [Q(t)(τ (t))] = Tr[Q(t)(τ (t))
T
LQ(t)(τ (t))]; η, ν, ζ are

all pre-define positive constants. r(0) = Tr(F(0)TLF(0)), r(t) =
[ζs(t−1)r(t−1)+Tr(F(t)TLF(t))]/s(t), in which s(0) = 1, s(t) =
ζs(t−1)+1. The theoretical convergence of curvilinear search
algorithm can be found in the study [26].

In addtion, computing M = UDiag(σ(M))VT in the orig-
inal algorithm (Eq. (16)) requires SVD decomposition of S̃,
which is also not scalable to large data. Here, we will use
a low-rank approximation of M. From previous analysis, the
top-(k + 1) singular values of M are more informative, we
use rank-(k + 1) approximation of M as :
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Mk+1 = Uk+1Δk+1Vk+1

where Uk+1 = [u1, . . . ,uk+1], Vk+1 = [v1, . . . ,vk+1], and
Δk+1 = [1T

k , 1−δ]. With the low-rank approximation, the error
between M and Mk+1 is bounded as:

‖M−Mk+1‖2F= ‖
n∑

i=k+2

σiuiv
T
i ‖2=

n∑
i=k+2

σi
2 < (n− k − 1)

To this end, we only need the first k + 1 singular vectors
of the matrix S̃, which leads to a k-SVD problem. Recently,
a few breakthroughs have been discovered for k-SVD, such
as block Krylov method [27], variance-reduction stochastic
method [30], and LazySVD [31]. In this work, we use the
block Krylov method due to its gap-free convergence results.

C. Convergence and Time Complexity

The convergence of ALM has been proved and discussed
in previous studies [25]. The complexity of pSCAN can
be derived as follows. The computational complexity for
computing random binning feature matrix Z takes O(ndR).
Computing Q(τ) requires O(nk2 + k3) by using Sherman-
Morrison formula [26]. Evaluating objective function of Eq.
(14) and its derivatives takes O(nnz(L)k2). In addition,
the block Krylow method for k-SVD takes O(nnz(S)k +
nk2 + k3). Therefore, the total time complexity of pSCAN
O(nnz(L)k2 + nnz(S)k + nk2 + k3 + ndR). In practice,
matrices L and S are sparse due to the random binning
features. Furthermore, the number of clusters k, the number
of grids R, and the number of features d are all much smaller
than n. pSCAN is thus more effective than most of spectral
clustering algorithms with time complexity of O(n3).

VI. EXPERIMENTS

In this section, we assess the performance of the proposed
methods on both synthetic and real benchmark datasets and
compare it with several popular spectral clustering methods.

A. Experimental Settings

We compare the proposed SCAN and pSCAN with the
following baseline methods:

• NCut [1]: the traditional normalized cut algorithm.
• SNMF [32]: a symmetric nonnegative matrix factoriza-

tion method to decompose affinity matrix.
• DSN [7], a doubly stochastic normalization for affinity

matrix, and using Ncut to obtain the clusters.
• SDS [9], a structured doubly stochastic approximation

model for graph-based clustering.
• CSC [33], a scalable constrained spectral clustering

method by using sparse coding.
• CSS [34], a spectral clustering algorithm with additional

sparsity constraint.
• SCN [35], a fast spectral clustering method based on

Nyström approximation method.

We use two commonly used clustering metrics for cluster
quality evaluation: Accuracy (ACC) and Normalized Mutual
Information (NMI) [36]. Accuracy denotes the percentage of
the correctly assigned labels and is defined as:

ACC =

∑n
i=1 δ(yi,map(ci))

n

where n is the total number of instances; yi is the ground truth
class label; ci is the label assigned by the algorithm, which
is mapped to a true class label through the mapping function
map(ci) [36]; δ(x, y) is the delta function that equals one if
x = y and equals zero otherwise.

NMI is defined as:

NMI(C,C′) =
MI(C,C′)

max(H(C), H(C′))

where C and C ′ denote the real and the predicted label vectors,
MI(C,C ′) is the mutual information based on C and C ′; H(·)
is the entropy of clusters. The detailed definition of MI(C,C ′)
and H(C) can be found in [36].

In the experiments, we set the number of clusters to be
the same as ground truth in each dataset [7]. For all compared
methods, their parameters are tuned for optimal performance in
the experiments. For our model, the eigengap δ is tuned within
(0, 1). The regularized parameters α, β and γ vary in the range
of {10−2, 10−1, 100, 101, 102}, and the number of grids for
random binning features is suggested as R ≤ D ≤ nR [29].
All parameters can be tuned for each dataset and the optimal
results are reported. The impact of parameters will be studied
later. For each method, the experiments are running repeat 20
times independently and the average results are reported.

B. Synthetic Dataset

We first conduct experiments on a synthetic dataset to
test robustness of SCAN and pSCAN with noisy data. The
synthetic dataset is a 100 × 100 matrix with four 25 × 25
block sub-matrices along the diagonal [9]. The data within
same block indicates that they are in the same cluster and
should be connected, while the data outside all blocks denotes
noise (which should be zeros in the ideal clustering structure).
The affinity values within each block are randomly generated
within (0, 1); while the off-diagonal noise data is randomly
generated in the range of (0, c), where c is set to be 0.55,
0.65 and 0.75, respectively, to reflect different levels of noise.
Note that the random binning feature technique is not used for
pSCAN in the synthetic dataset, since we directly generate the
noise affinity matrix.

Among the comparison methods, DSN [7] and SDS [9] are
the most closely related approaches to our proposed models
since all of them aim to learn a doubly stochastic affinity
matrix. In the synthetic dataset experiments, we mainly com-
pare SCAN and pSCAN against these two methods. Figure 1
shows the original affinity input matrix and corresponding
approximation results from DSN, SDS, SCAN and pSCAN.
We can observe that SCAN and pSCAN constantly perform
better than DSN and SDS at all levels of noise. In particular,
SDS seems to outperform DSN at low levels of noise (e.g.,
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Fig. 1: Illustrations of clustering results on the block diagonal synthetic data with different levels of noise. The left column
is the original graph affinity matrix in the experiment. The rest are the doubly stochastic affinity matrices obtained by DSN,
SDS, SCAN and pSCAN respectively.

TABLE I: Statistics of the benchmark datasets.

Dataset # instances Dimensions # Classes
COIL 1500 241 6
Yeast 1484 8 10

Statlog 946 18 4
ORL 400 1024 40
USPS 9,298 256 10

Pendigits 10,992 16 10
Letter 20,000 16 26
Mnist 70,000 780 10

c = 0.55, 0.65). As the noise increases (e.g., c = 0.75), SDS
fails to detect the intrinsic cluster structure from the data.
The proposed SCAN and pSCAN successfully learn a stable
doubly stochastic matrix with explicit block structure even
with high level of noise, which illustrate their robustness.

C. Benchmark Datasets

We further compare the performance of SCAN with other
approaches on four small benchmark datasets: COIL2, Yeast3,

2http://olivier.chapelle.cc/ssl-book/benchmarks.html
3https://archive.ics.uci.edu/ml/datasets/Yeast

Statlog4 and ORL5. COIL is subset of the Columbia object
image library (COIL-100), which contains a set of color im-
ages of 100 different objects taken from different angles. The
subset contains 1500 images from 6 objects. Yeast contains
1484 sequences of proteins and each protein belongs to one
of nine different cellular components. The original study is
to utilize various descriptors to predict protein localizations
in a cell. Statlog collects 946 vehicles, the features of which
can be extracted from a 2D silhouette image. ORL contains
a set of face images from AT&T lab. There are ten different
images for each of 40 distinct subjects. We also choose another
four large dataset from the Lib-SVM project6, which are
USPS, Pendigits, Letter and Mnist. USPS is an image database
for handwritten text recognition research. Pendigits is also
handwritten digit data set consisting of 250 samples from 44
users. Letter is a collection of images for 26 capital letters in
the English alphabet. Minst is another popular collection of
handwritten digit data set, in where each image is represented
by a 780 dimensional vector. A summery of these datasets is
given in Table I.

4https://archive.ics.uci.edu/ml/datasets/StatlogVehicle+(Vehicle+Silhouettes)
5https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
6https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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TABLE II: Experimental results on real benchmark datasets.

ACC

Dataset Ncut SNMF DSN SDS CSC CSS SCN SCAN pSCAN
COIL 0.219 0.206 0.286 0.302 0.276 0.298 0.293 0.314 0.312
Yeast 0.401 0.411 0.454 0.483 0.463 0.479 0.449 0.502 0.498

Statlog 0.462 0.458 0.477 0.479 0.453 0.473 - 0.486 0.481
ORL 0.618 0.621 0.638 0.659 0.614 0.657 - 0.667 0.654
USPS 0.663 0.654 0.668 0.679 0.621 0.685 0.601 0.683 0.673

Pendigits 0.761 0.771 0.769 0.776 0.763 0.778 0.757 0.821 0.813
Letter 0.306 0.304 0.311 0.317 0.309 0.312 0.301 0.323 0.311
Mnist 0.659 0.712 0.671 - 0.698 - 0.553 - 0.734

NMI

Dataset Ncut SNMF DSN SDS CSC CSS SCN SCAN pSCAN
COIL 0.203 0.201 0.207 0.206 0.207 0.212 0.201 0.218 0.213
Yeast 0.254 0.257 0.259 0.263 0.255 0.261 0.254 0.276 0.273

Statlog 0.187 0.188 0.192 0.194 0.186 0.191 - 0.212 0.196
ORL 0.782 0.796 0.806 0.816 0.791 0.818 - 0.821 0.813
USPS 0.632 0.620 0.649 0.668 0.590 0.674 0.583 0.671 0.664

Pendigits 0.713 0.738 0.735 0.739 0.724 0.733 0.702 0.791 0.786
Letter 0.386 0.382 0.397 0.410 0.396 0.408 0.392 0.412 0.401
Mnist 0.592 0.631 0.586 - 0.586 - 0.502 - 0.694

All methods require an affinity matrix as the input. For
all methods except pSCAN, We adopt a widely used self-
tune Gaussian kernel method to construct the input affinity
matrix [13], in which the number of neighbors is set to be
five and the value of σ is self-tuned. For pSCAN, we use the
random binning features kernel to generate the affinity matrix
that is more sparse than the matrix from Gaussian kernel.
Among those methods, NCut, DSN, SDS, CSS and SCAN
require full computation of SVD or eigen-decomposition and
are thus slow to handle large datasets.

1) Experimental Results: For Mnist dataset, we skip the
experiments for SDS, CSS, and SCAN due to their requiring
full SVD and eigen-decomposition at each iteration. For
Statlog and ORL datasets, we omit SCN because the sampling
steps make little sense for small datasets. The results for
other datasets are listed in Table II. Both SCAN and pSCAN
perform well in almost all experiments. There are several
interesting observations. First, for a majority of the benchmark
datasets, the performance of DSN, SDS, pSCAN and SCAN
are better than that of the Normalized cut, which shows the
importance of doubly stochastic normalization of the original
affinity matrix. Second, pSCAN, SCAN and DSN consistently
perform better than SNMF. The primary reason is that SNMF
assumes the affinity matrix to be low-rank. The block-diagonal
affinity matrices of pSCAN, SCAN, and DSN characterize the
data clusters more accurately, which are not only low-rank
but doubly stochastic. Third, SCAN and pSCAN have better
results than DSN with an average improvement of 5.6% in
terms of ACC and 5.3% in terms of NMI, respectively. Forth,
among the seven benchmark datasets, SCAN outperforms all
the methods on all datasets with the only exception of the
USPS dataset, on which CSS has the best performance, mainly
due to its sparsity constraint. In comparison with SDS, SDS
learns a structured doubly stochastic matrix with the rank
constraint on its Laplacian matrix to maintain an explicit block
structure. However, the doubly stochastic matrix of SDS may
be biased since it is expected to be close to the original affinity
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Fig. 2: Robustness to noise. Our SCAN and pSCAN clearly
outperform other spectral clustering methods.

matrix, which may be corrupted by noise. On the contrary,
SCAN and pSCAN learn the doubly stochastic matrix from a
more clean affinity matrix.

2) Robustness to Noise: We analyze the robustness of our
proposed methods. To be specific, we study how an increasing
degree of noisy data will affect the clustering performance.
We use perturbed USPS data by adding Gaussian noise to its
affinity matrix with variance from 0 to 0.3. For this analysis,
we mainly compare SCAN and pSCAN with Ncut, SDS and
CSS, based on their promising results in previous section.

Figure 2 shows the results of our methods and other spectral
clustering algorithms. The lines represent the mean ACC and
NMI values, while the error bars represent the variance for
different runs. Clearly, SCAN and pSCAN are more robust
to noise and outperform other approaches. The clustering
quality of other spectral clustering (i.e., Ncut, SDS and CSS)
decreases rapidly as the noise increases. The main reason is
that SCAN and pSCAN learn an explicit error matrix to split
the noise from the input data in Eq. (3). Furthermore, SCAN
and pSCAN consider the Laplacian eigengap to refine the
eigenspace of the top k eigenvectors, which make the clusters
of SCAN and pSCAN more stable than others.
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Fig. 3: Parameter studies of α, β, γ, and δ on the USPS dataset.

3) Parameter Studies: In our model (Eq. (6)), there are four
major parameters α, β, γ, and δ, where α is used to control the
sparsity of the error matrix in the graph; β is used to maintain
the block diagonal structure of the learning matrix; γ forces the
elements in each block of the matrix to be the same; and δ is
a threshold for eigengap. One can adopt a grid-based search
algorithm to find the set of best parameters, which requires
significant computation time. Here, we perform a partial search
by fixing the value of three parameters and study the impact
of the last one on the inference results. For example, while
studying the impact of parameter α, we fix eigengap δ = 0.6
and the regularized parameters β = γ = 0.1. We then vary α
in the range of {10−2, 10−1, 100, 101, 102} in the experiments.
Figure 3 show the clustering accuracy on the USPS dataset.
Generally speaking, the regularized parameters α, β, and γ are
relatively stable between (0.1, 1). For eigengap, a relatively
high accuracy can be achieved when δ is between 0.5 to
0.7. The experiments can be performed on other benchmark
datasets, we omit the results due to space limitation.

4) Complexity and Convergence: In terms of efficiency,
we mainly compare SCAN and pSCAN with CSS and SDS
since they all involve full computation of SVD or eigen-
decomposition. We evaluate the efficiency of different algo-
rithm by using the Letter dataset. We randomly generate a
subset of the balanced classes with different number of in-
stances within {2, 000, 4, 000, . . . , 20, 000}. The experiments
are conducted on a 2.40GHz machine with 48GB memory.
Figure 4(a) shows the running time when varying the number
of instances. Generally, the proposed pSCAN are much more
efficient than the others, which demonstrate the effectiveness
of our speedup strategy.

Figure 4(b) also shows the value of the objective function of
Eq. (6) w.r.t. the number of iterations on Letter datasets with
10, 000 instances. Usually, less than 80 iterations are needed
for convergence. Although in general SCAN requires less
number of iterations for convergence comparing to pSCAN,
pSCAN still runs faster because each of its iteration actually
costs much less time comparing to SCAN.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a structure-aware clustering algo-
rithm for noisy data. Our proposed models are able to learn
a better doubly stochastic affinity matrix, from which we can
immediately partition the data into k connected components.
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Fig. 4: (a) Running time of different methods. (b) Convergence
of SCAN and pSCAN.

To achieve this goal, we learn a better doubly stochastic matrix
from the high-quality affinity matrix, which explicitly reflects
the true clusters. We also apply the idea of clustering stability
based on Laplacian eigengap. The intuition is that a clustering
is stable if small distortions on the data does not affect the
discoverability of the data clustering structure. Mathematically,
we augment the eigengap of our target affinity matrix. We
model the clustering problem as a constrained optimization
problem and derive an efficient algorithm to solve the problem.
Experimental results on both synthetic and real-world datasets
demonstrate the effectiveness and robustness of the proposed
models for noisy data.

The stable doubly stochastic affinity matrix from our pro-
posed algorithm can be directly applied to any machine
learning tasks that require an affinity matrix as an input,
such as semi-supervised learning. For example, many semi-
supervised learning methods generally include two steps [37]:
graph affinity matrix construction and label propagation on the
graph. SCAN can learn a better graph affinity matrix in the
first step. As future work, we are interested in extending our
approach to semi-supervised learning.
Acknowledgments: This work has been supported in part by
NSF CCF1815139 and by an allocation of computing time
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APPENDIX

We first introduce the von Neumann’s trace inequality [38] as:

Lemma 3. (von Neumann’s trace inequality) For any two matrices
X and Y ∈ R

m×n(m ≤ n). Let σ1(X) ≥ σ2(X) ≥ · · · ≥ 0 and
σ1(Y) ≥ σ2(Y) ≥ · · · ≥ 0 are the singular values of X and Y,
respectively. We have

Tr(XTY) ≤
m∑
i=1

σi(X)σi(Y)

The equality holds if and only if there exist matrices U and V such
that X = UDiag(σ(X))VT and Y = UDiag(σ(Y))VT are the
Singular Value Decomposition (SVD) of X and Y, simultaneously.

Theorem 1. The following gives the global optimal solution to Eq.
(15):

M = UDiag(σ(M))VT

where

σi(M) =

{
1 if 1 ≤ i ≤ k

min(1− δ, σi(S̃)) if k + 1 ≤ i ≤ n

where U and V are the left and right orthonormal matrices in the
SVD of S̃.

Proof. By Lemma 1, we have

‖M− S̃‖2F=Tr(MTM) + Tr(S̃T S̃)− 2Tr(MT S̃)

=

n∑
i=1

σ2
i (M) +

n∑
i=1

σ2
i (S̃)− 2Tr(MT S̃)

≥
n∑

i=1

σ2
i (M) +

n∑
i=1

σ2
i (S̃)− 2

n∑
i=1

σi(M)σi(S̃)

=
n∑

i=1

(σi(M)− σi(S̃))
2

(20)

From Eq. (20) we obtain the lower bound for Eq. (15). Note that the
above equality holds when M = UDiag(σ(M))VT , where U and
V are the left and right orthonormal matrix in the SVD of S̃. And
Eq. (15) is simplified as:

min
M

n∑
i=1

(σi(M)− σi(S̃))
2 s.t. σk+1(M) ≤ 1− δ (21)

Since Eq. (21) consists of individual quadratic function for every
σi(M) independently, it’s easy to obtain every σi(M) under the
inequality constraint and the first k singular values are all one. The
optimal solution is

σi(M) =

{
1 if 1 ≤ i ≤ k

min(1− δ, σi(S̃)) if k + 1 ≤ i ≤ n
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