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Abstract—Tensor completion has been successfully applied to
many real-world applications. In a wide variety of situations, data
utilized in many learning tasks are of high dimensions, usually
extracted from multiple heterogeneous sources. Therefore, data
can be represented by a primary tensor and multiple matrices
generated from multi-view side information or metadata. Joint
analysis of tensors and matrices has great potential to gain
better understanding of the underlying relationships among these
multiple heterogeneous sources. The existing tensor completion
methods, which recover the missing elements of a partially known
tensor with single view side information, can yield interpretable
results for large-scale datasets. However, their limitations up to
now are lack of modeling multi-view heterogeneous data and
suitably learning the low-rank property of tensor.

In this study, we fill this gap by developing a novel collective
tensor completion method, which tightly fuses multi-view het-
erogeneous data sources. Our method exploits special common
latent structures from the primary tensor and multiple side
matrices through coupled tensor-matrix decomposition, in which
the common latent structures can compactly represent all the
data. In addition, rank estimation of a tensor is a challenging
task due to its discrete nature. Instead of approximating the rank
by widely used trace norm or nuclear norm, we directly utilize
Schatten p-norm on the latent structures to better approximate
the rank and to enhance its robustness to noise.

Index Terms—Tensor Completion; Heterogeneous Informa-
tion; Multi-view Learning; Couple Tensor-matrix Factorization;
Schatten p-norm

I. INTRODUCTION

Tensors are multidimensional or N-way generalizations of
matrices and have recently gained increasing attention because
of their capabilities to express wealthy multi-modal or multi-
aspect data [1], [2]. Tensor completion, which aims to recover
the missing entries of partially observed tensors by exploring
their intrinsic low-rank structures, has enjoyed a broad range of
many real-world applications such as computer vision [3], [4],
multivariate spatio-temporal analysis [5], [6] and recommender
system [7], [5], [8], [9].

Heterogeneous side information: Side information has
been proved to be very useful in improving the accuracy for
tensor completion [10], [11], [12], [13], [5]. The basic prin-
ciple is that by incorporating additional features/similarities
of entities with a tensor, there can be meaningful correlations
among them. These features/similarities, collected from het-
erogeneous side information, can thus be used to improve the
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quality of tensor completion. One popular model is the so-
called CMTF, which jointly decomposes a tensor with one or
more similarity matrices from a single view to improve perfor-
mance [10]. While the simple matrix/tensor computations and
strong mathematical theory behind those coupled tensor-matrix
models make them appealing, these methods are inherently
limited to incorporate single view of side information [1], [2].

However, data utilized in many emerging tasks are often
heterogeneous, extracted from multiple views/sources [14],
[15], [16], [17], [18]. For instance, a person can be identified
by his/her face (image), voice (audio), or signature (text)
with information from diverse sources. In many situations,
data consist of a primary tensor and multiple matrices from
multi-view side information or metadata. Thus, it is a natural
question whether tensor completion models can be generalized
to incorporate multi-view heterogeneous data sources.

Low-rank tensor: Low-rank is often a necessary condition
to limit the degrees of freedom of high dimensional data
in tensor completion [19]. However, the rank(-) function is
unfortunately not convex and it is NP-hard to calculate the
rank of a tensor [1]. Arguably, the most widely used rank
approximation method is extending matrix trace norm to the
tensor case as a convex surrogate of rank minimization [20],
[3], [4]. For example, Liu et al. first defined the tensor trace
norm as a combination of trace norms of its unfolding matri-
ces [3]. Unfortunately, recent studies show that the tensor trace
norm is substantially suboptimal and is not a tight bound of
the tensor rank [21], [22]. Several rank variants such as tensor-
train rank [23] and tensor tubal rank [24] were also proposed
for high-order tensors but often with heavy computational cost.

Contributions: Here we propose a novel method, named
TenHet (Tensor Completion with Multi-view Heterogeneous
Information), to address two major challenges in tensor com-
pletion. First, we jointly study the tensor along with multi-
view side information to improve our understanding of the
underlying relationships among entities in the tensor. For
instance, a personalized recommender system [7], [5] allows
users to annotate movies with reviews, which forms a 3-way
tensor (user, movie, review) as shown in Figure 1.

In addition to the tensor, rich heterogeneous side infor-
mation of users (e.g., user’s historical behavior data, user’s
location-based social networks), movies (e.g., movie’s cat-
egories, movie’s content in Wikipedia), and reviews (e.g.,
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Fig. 1: Overview of TenHet that jointly utilizes the tensor
user X movie X review with multiple heterogeneous side in-
formation of users, movies and reviews, which are represented
by matrices.

tags and geotags, memes and comments) are very valuable
to improve the recommendation quality [5]. In this scenario,
the tensor and multiple matrices are coupled in the “user”,
“movie” and “review” mode, respectively. Effective use of
such rich information can thus allow us to better understand
why users evaluate movies with the reviews they post.

Second, we provide a tighter approximation of the tensor
rank, by applying Schatten p-norm on each latent matrix factor
of a tensor. Our framework is an extension of the matrix
completion problem [25], [26], [27]. The Schatten p-norm
has been empirically shown to be superior to the trace norm
and it requires much fewer observed elements to recover a
matrix with a small p [28]. Nevertheless, the Schatten p-norm
is non-convex and non-smooth when 0 < p < 1. We therefore
propose an iterative algorithm to solve a smoothed subproblem
by approximating the Schatten p-norm at each iteration, which
guarantees convergence. The experimental results on both
synthetic and real-world datasets show the effectiveness of the
proposed tensor completion model.

Our contributions are summarized as follows:

o We investigate the problem of tensor completion with
multi-view heterogeneous side information. We formulate
this problem as a coupled tensor-matrix optimization
problem. The key idea of our formulation is to collec-
tively leverage the primary tensor as well as multi-view
side information to infer a latent low-rank representation
for each mode of the tensor.

o« We propose a tighter estimation of the tensor rank by
applying Schatten p-norm on each latent matrix factor
of a tensor. We further develop an iterative algorithm to
solve a non-convex Schatten p-norm problem.

o« We propose an effective algorithm (TenHet) for our
optimization problem and further analyze its optimality,
convergence, and complexity. The algorithm can be easily
scaled up through parallel computing for large datasets.

¢ We perform extensive experiments on both synthetic
and real-world datasets to validate the effectiveness of
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our proposed algorithm. The results demonstrate TenHet
consistently outperforms several state-of-the-art methods.

The rest of the paper is organized as follows. Section II
introduces some related work. Section III gives the tensor
algebra and task description. Section IV introduces the collec-
tive tensor completion with multi-view side information. The
learning algorithm and its theoretical analysis are discussed in
Sections V. Section VI presents experimental results. Section
VII concludes the paper.

II. RELATED WORK

Kolda et al. provided a comprehensive survey on different
tensor decomposition methods [1]. Subsequently, tensor com-
pletion has garnered increasing attention in a wide range of
applications including computer vision, spatio-temporal anal-
ysis, and recommender systems [3], [6], [8]. Similar to matrix
completion [27], low rank is often a necessary assumption for
high dimensional tensor data. However, computing the rank of
a tensor is an NP-hard problem [29], [30].

To address this problem, one common approach is to
assume that the CP rank of the target tensor is fixed [1],
[2]. Nevertheless, it is quite challenging to manually select
the rank of a tensor. Another popular approach is to apply
the trace norm minimization as a convex surrogate for rank
minimization [31], [3], [32], [1]. For example, Liu et al.
extended matrix completion to the tensor case by treating
the tensor norm as the combination of the trace norm of its
unfolding matrices [3]. They further presented an efficient
framework by applying the nuclear norm of factor matrices
rather than unfolding matrices [4]. However, Cun et al. showed
that those approaches may lead to sub-optimal solutions by
using trace norm for tensors [22]. Several rank variants such
as tensor-train rank [23] and tensor tubal rank [24] were also
proposed for high-order tensors but often involving with heavy
computation for obtaining these tensor ranks.

Recently, Schatten p-norm was suggested to replace the
trace norm for matrix completion since it had empirically
shown to be superior to the trace norm [25]. Moreover, Zhang
et al. theoretically proved that Schatten p-norm with a small
p required much fewer observed elements than the trace
norm did [28]. In the case of tensor, Ryota et al. introduced
structured Schatten p-norms on the unfolding matrices of
a tensor to improve system’s performance, but with heavy
computational cost [26]. Our work here builds on this line
of work but extends it by applying the Schatten p-norm on
the latent factors of tensor, rather on the tensor itself.

On the other hand, side information has been proved to
be very helpful in improving the accuracy for tensor com-
pletion [10], [11], [13], [5], [12], [33]. For example, Acar et
al. jointly decomposed a tensor with one or more similarity
matrices in one unified framework [10]. Narita et al. applied
the graph Laplacians regularization on the factor matrices of a
tensor to improve its accuracy [11]. Lamba et al. developed a
kernelized probabilistic tensor completion model to effectively
deal with the cold-start problem [13]. Zhou et al. proposed
a Riemannian tensor model that integrated the tensor and



the side information by overcoming their inconsistency [12].
However, most existing tensor models can only incorporate
single view of side information, which may lead to poor
performance.

Multi-view learning significantly improved performance of
many systems by providing compatible and complementary
information from a diversity set of data sources [14], [18],
[34]. Zhang et al. introduced a low-rank tensor model to ex-
plore the complementary information for multi-view subspace
clustering [35]. Nevertheless, their goal was to stack multiple
subspace representation matrices as a tensor structure and
performed the task of clustering, which is distinct from the
task of tensor completion in this work. Our proposed method
seamlessly integrates the primary tensor with multi-view side
information to infer a latent low-rank representation for each
mode of the tensor, which can obtain more interpretable
results.

III. BACKGROUND AND PROBLEM SETUP

Notations. Throughout the paper, we denote X as matrix.
A tensor is denoted X. The main notations are listed in Table
I. More tensor operators can be found in the literature [1].

A. Tensor Algebra

In this work, we follow the notations introduced by Kolda
and Bader [1]. Tensors are multidimensional arrays that extend
the concept of matrices. The order of a tensor is the number
of its dimensions, also known as ways or modes. A fiber is a
vector extracted from a tensor by fixing every index but one.
A slice is a matrix extracted from a tensor by fixing all but
two indices. Note that an N-way tensor X € Rt > 72X xIn
reduces to a vector when N = 1, and a matrix when N = 2.
The (i1,...,in)-th element of X is denoted as X;, ;-

Matricization, also known as unfolding or flattening, is
the process of reordering the elements of a tensor into a
matrix. The mode-n matricization of an N-way tensor X €
RIl xIz2X...xIn is represented as X(n) c RI"xIl...I,,L,1]7L+1...IN
and is arranging the mode-n fibers of the tensor as columns
of the long matrix. We further give the definition of CAN-
DECOMP/PARAFAC (CP) decomposition and coupled tensor-
matrix factorizations as follows:

Definition 1. (CP Decomposition). Given an N-way tensor
X, its CP decomposition is an approximation of N factor
matrices U; € REXE 4 =1,... N, such that:

X~ HUlaUQa"'7UNﬂ

where [-] denotes the Kruskal operator and R is a positive
integer denoting an approximation of the rank of tensor X.
Tensor Rank: The rank of a tensor is the smallest number of
rank-one tensors, that generates the tensor as their sums, i.e.,
the smallest R that achieves exact CP decomposition.

Definition 2. (Coupled Tensor-Matrix). If a tensor shares
one or more modes with other matrices or other tensors, then
they can be coupled with one another [36]. For example, in
a recommender system, a triple relationship user x movie x
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TABLE I: Notation.

Symbol  Description

e Frobenius norm

ll-Ils,, Schatten p-norm

|| |2’1 lz’l norm

® Khatri-rao product

(X,Y) Inner product of two matrices

X ) Matricized tensor X on ¢-th mode

review tensor and a user x user friendship matrix can be
coupled since they share the user mode.

Definition 3. (Schatten p-norm). The Schatten p-norm (0 <
p < o0) of a matrix U € R"™*" is defined as:

min (n,m) P 1

y D
Wls,={ X o) =(m(@'vh)’
i=1
where o; is the i-th singular value of U. A widely used Schat-
ten norm is the Schatten l-norm: |[U|s,= > .} (nm)

=1 79
which is also called trace norm or nuclear norm.

B. Problem Definition

We are often interested in analyzing tensors when additional
side information are also available from distinct sources. In the
multi-view tensor completion settings, let X € RI1x 12X .. xIn
denote the input data tensor, in which only partial elements are
observed. The order N represents the number of dimensions
for tensor X'. In addition, we have N sets of affinity/similarity
matrices from multi-view heterogeneous side information
(AW AP . AMYN where each set corresponds to
one mode of tensor X and n; denotes the number of views for
mode-i. Our goal is to recover the tensor X with the guidance
from those multi-view side information.

Taking a recommender system as an example (Figure 1), a
primary user X movie X review tensor represents the triple re-
lationships among users, movies, and reviews. Moreover, sev-
eral affinity/similarity matrices from multiple heterogeneous
information can be constructed to describe the relationships
among user X user, movie X movie, and review X review,
respectively. The goal is to improve the quality of tensor
completion with the help of these multi-view side information.

IV. MULTI-VIEW TENSOR COMPLETION
A. Preliminaries

As an extension of the standard tensor factorization, Acar
et al. first proposed a coupled tensor-matrix factorization
model to jointly analysis the tensor and matrix [10]. The joint
factorization of a third-order tensor X with a matrix Y on its
first mode can be written as:

1% — [A, B, ClIIF+IY — AVT[E (1)

min
AB,C,V

where [A, B, C] denotes the CP decomposition of the tensor
X [1]. The model captures the common underlying latent



structures (e.g., A) from the tensor and matrix simultaneously,
which obtains more accurate results than standard tensor
factorization model.

Similarly, several variants of coupled tensor-matrix fac-
torization models have been proposed to boost the system
performance in many of applications [11], [5].

However, these methods have several limitations: i) Most of
existing work can only incorporate single view side informa-
tion. While in reality, data may have multiple representations
(views). Ignoring those rich side information might lead to
unsatisfied results. ii) They are highly sensitive to noisy input
data. The input tensor X might be corrupted by noise, which
leads to misleading factor matrices A, B and C. iii) The low-
rank structure of tensor is still unclear. The CP decomposition
of tensor in Eq. (1) does not contain the low-rank information
unless they can obtain the smallest number of rank one tensor
decomposition, i.e., the CP rank, which is generally NP-hard
to compute [1].

B. The Proposed Model

To address the above issues, we propose a collective
tensor-matrix completion model that can incorporate multi-
view heterogeneous side information with the tensor data. We
present our model in terms of its robustness, generalization,
and low-rank approximation in details.

1) Robust Tensor Completion: To be robust against noise,
we assume that the observed tensor X is not perfect but
contains two components: a high-quality tensor £ and a
noise tensor £. Here we adopt an additive decomposition,
ie, X = L + £. In addition, the high-quality tensor £
should better reveal the underlying low-rank structure of the
tensor data while the noise tensor £ is expected to be sparse.
Therefore, rather than performing the CP decomposition of
original data tensor X, we decompose the tensor £ as:

N
2w, 16— [0 Uz, UM+ 3 A - Reg(U2)
st, X=LA+E
)
where U; € RI*F for 4 = 1,..., N are the factor matrices

of the tensor £ and R denotes the dimensionality of U;. The
parameter (3 controls the sparsity of the noise tensor £ by
using [p-norm. Reg(U;) denotes the constraints on each mode
of factor matrix U;, which are guided by prior knowledge
from multi-view side information (see the definition in
Eq. (3)) and \; represents the impact of side information for
each mode.

2) Model Multi-view Side Information: As discussed
before, each factor matrix U; of £ is knowledgeable with
the guidance of its side information. To incorporate those in-
formation, we adopt the idea of collective matrix factorization
model, due to its flexibility to model complicated dependency
structures in the multi-view learning [14], [37], [38]. The key
idea is to collectively leverage the primary tensor as well as
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multi-view side information to infer a shared latent low-rank
representation for each mode of the tensor. To be specific,
given one factor matrix U; in Eq. (2) and its multi-view side
information {Al(-l),---,Al(.”i)}, the co-training optimization
function Reg(U;) can be formulated as:

3

min Reg(Us) =D (|AY -GG [7+G'S ~Ui7)
U,;,G;

j=1
3)
where GV € RI>E is the low-rank representation for
j-th view matrix AY) and SY) € RE*E can be re-
garded as a scale matrix for GEJ ) since different views
might not be comparable at the same scale when factorizat-
ing them together. We define the scale matrix as: ng) =
diag(>>. GV (1,1),32. GY)(r,2),...,3. GY)(r, R)).

The Eq. (3) has an intuitive interpretation: all low-rank
factor matrices {G:El)7 e GEM)} extracted from multi-view
side information {Agl), - ~,A1(-ni)} should be consistent
with the factor matrix U; from the tensor. For example, as
shown in Figure 1, the factor matrices learned from multiple
user X user matrices should be close to the factor matrix
from the user X movie X review tensor because they all
represent the same set of users involving in the recommender
system. Similarly, we can apply the constraints Reg(U;) on
all modes of the tensor (see Eq. (5)).

3) Tensor Rank Reduction: To preserve the low-rank
structure, the tensor rank of £ should be considered. How-
ever, the tensor rank is not very well defined. As discussed
earlier, computing the CP rank of a tensor is an NP-hard
problem. Another popular tensor rank is the Tucker rank [1],
which defines as rank(L) := (rank(L)), - - -, rank(Ly)),
where L;) is the mode-i matricization of L. By such rank
reduction, the Tucker rank is then computable. For example,
the Sum of Nuclear Norm (SNN) define the tensor rank as
rank(L) = >, ||L)||«, which is the combination of the trace
norm of each matricization of the tensor [3]. Some variants
of tensor rank are also proposed for high-order tensors [21],
[39]. However, those methods are not efficient for large-scale
data, i.e., heavy computation of singular value decomposition
for the huge unfolded matrix at each iteration.

To tackle this issue, we turn our attention to the factor
matrices of the tensor £. Motivated by the fact that mode-
1 matricization L(;) can be represented by its factor matrices,
i.e., L(i) = U,(UNG .- Ui+1 oOU;_1®--- Ul)T, where © is
the Khatri-rao product [1]. By using the fact that rank(AB) <
min (rank(A), rank(B)) for any two matrices A and B,
we then have a nice upper bound: rank(L;)) < rank(U;).
Based on the above observations, we can reduce the Tucker
rank as: rank(L) := (rank(Uy), -+, rank(Uy)). Instead of
directly computing the rank for the matrix L;), we can then
approximate the rank for a much smaller matrix U,. In this
work, we provide a novel tensor rank approximation as the
combination of Schatten p-norm on each latent factor matrix:



N
rank(£) < » [ Uils, )
i=1
where [-||s, is the matrix Schatten p-norm.

Remark: The Eq. (4) has following benefits: (i) Clearly,
the size of U; € REi*% i far less than mode-i matricization
L) € RI>M#l which can be computed efficiently and
scalable to large dataset. (ii) The Schatten p-norm has been
empirically shown to be superior to the trace norm since
it requires much fewer observed elements to recover a
tensor [26]. (iii) In fact, the trace norm of factor matrices
(e.g., SNN) is a special case of Schatten p-norm when p = 1.
Moreover, when p — 0, rank(U;) = ||U;||s, is exactly the
matrix rank [25], the rank of tensor becomes the sum of the
ranks of all factor matrices, i.e., rank(L) + Zf\il rank(U;).

4) The Overall TenHet Model: By combining Eqs. (2)-(4),
we then formulate our model as:

N
minJ = [|£ — [U1, Uz, -+, Un]|5+B/IE |20+ - D _IIU:%

i=1

N n;
. . T . .
22 DAY - GG G - Ul
i=1

s.t. X=L+E

=1

)]
where \; is a parameter representing the impact of side
information on factor matrix U;, and ~ controls the influ-
ence of Schatten p-norm for U;, ¢ = 1,..., N. Moreover,
the [p-norm on tensor £ is nonconvex and challenging to
solve, we replace [yp-norm with 5 1-norm to characterize the
sparsity of noise tensor since the l5 i-norm is more robust
to noise [40]. Moreover, instead of Schatten p-norm, the p-th
power of Schatten p-norm, i.e., ~||p o is computed for its easy
implementation.

V. OPTIMIZATION ALGORITHM
A. Learning Algorithm

We solve the optimization problem in Eq. (5) by using
the alternating direction method of multipliers (ADMM) [41],
which is the most widely used solver for tensor completion
problems. The objective function in Eq. (5) is not joint convex
wrt. U; for 1 <¢ < N, and it involves a fourth-order term
W.I.L. GEJ). To address these challenges, we use a variable
substitution technique by setting M; = U, and Q,Ej ) = G,gj ),
and obtain the equivalent form of Eq. (5) as:

N
21y Y IM%

=1

min Ji = ||£ — [U1, Uz, -, Ux]||5+B8]|€]

N ng
. . T " .

+3 A (1A - QPG [F+IGY S - UillR)
i=1 j=1
st. X=L+E

M, =Ui(i=1,...,N), QV =GP =1,...,n)
Q)
The partial augmented Lagrangian function of Eq. (6) is:
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N
T =5+ 3 (Y M= Ui} + 5 M - U3

1=1
N i ) ) ) I ) ) %)
+33 (122, -6 + Lo - 6|
i=1 j=1

+<T,x—c—s>+g|\x—a—e|\§

where Y, ZEJ ), and T are the Lagrange multipliers and p is
the penalty parameters. (-,-) denotes the matrix/tensor inner
product. We then successively update each variable until
convergence.

Updating M,;: The objective function involving M, is:

min 7 (M) = A|MilJ5, +5 M = Ui + Yo/ulh - ®)
By setting the derivative of 7(M;) to zero, we have:
Mi(yDs 4+ pl) —pU; +Y; =0
Using the above equation, we obtain:
M; = (pU; — Yi)(yDi + pI) ™! C)

where D, = p(MZTMi)%. Note that Eq. (9) is not a closed-
form solution since D; is dependent on M,. Nevertheless, if
D; is known, then the matrix M; can be computed by Eq. (9).
Inspired by this observation, we use an alternative updating
algorithm to solve M;. Function solverM() is described in
Algorithm 1. At each iteration, M; is updated with current
D;, and then D, is updated with the current M;. Theorem 1
shows that algorithm solverM() will converge when 0 < p < 2,
which covers the range we are interested.

Theorem 1. When 0 < p < 2, the solverM() in Algorithm 1
will monotonically decrease the objective function in Eq. (8)
at each iteration until convergence.

The proof details can be found in Appendix.

Algorithm 1: solverM()
Input: M;, U;, Y;, p, v and p € (0,2]
Output: M: the solution for Eq. (10) .

) _ pv.. DO — TMANEE ¢ = 0
Initialize M, = M;, D,/ = p(M; M;) 2 ,t=0;
repeat

Update M§t+1> — (pU; — Yi)(”yDEt) +ul)~ L
T —2
Update D£t+1> ep(MEtJrl) M§t+1>)PT ;
t+—t+1;
until Convergence
return M} = M§t+1>

N

w

I - NN

Updating U;: To compute U;, we can minimize the fol-
lowing objective function:

minJ(U;) = [UB{ - L[5+ D_IIGY'SY - U3
j=1

+ £1IUs = My = Yo/l



where B, = (UN [OXEN @U,‘+1 oU 1O @Ul). L(i) denotes
the mode-¢ matricization of £. U; can then be updated by:

=1

U;
(10)

Updating ng): The solution for ng ) can be obtained by

optimizing 7 (G and its solution is:

=2A)"Q +2Ui(s7)" + 1QY” + 27
Q) QY +287(87)" + 1)

Similarly, we can solve the auxiliary variable QY as

16
‘ an

Q(j) :(2A(~j)G(~j) + HG('j) _ Z(j))(2(G§j))TG§j) +HI)71
7 K 7 7 7 7 1 (12)
Updating £: The optimal solution for L is:
L=(2-[U, -, Un]+pX —pE+T)/(n+2) (13)

Updating £: The noise tensor £ is obtained by solving:
Bl

Since the 5 1-norm of tensor £ can be defined on its mode-N
matricization, i.e., ||€|[2,1= ||E(n)||2,1, above objective function
can be transformed into the matrix form:

min
£

LlIE =& + £ T/ullk

min 5\|E(N)|I2,1+g\|E(m ~-F|%

where F = X(n) — L(y) + T(n)/p. According to [40], The
close-solution for Eyy is:

IECAI=Blup (. 5), if |F(:,i)|la> B/u
E<N><:,i>{ TE T2

0, otherwise
(14)
where E(y)(:,4) is the i-th column of the matrix E(y). After
computing E(y), we then transform it back to tensor €.
Updating Y, Z; @) and T The Lagrange multipliers are

updated by using the gradient ascent as:
Y, <Y, + M(Mi — Ul)
Z(j) — Z(_.i) + /J,(Q(-j) o G<-j))
T+—T+pXx—-L-E)

The overall procedure of TenHet with initializations of all
variables is summarized in Algorithm 2.

15)

B. Convergence and Complexity Analysis

There is no theoretical guarantee for the global convergence
of ADMM for the non-convex problems or convex problems
with multiple block variables. Here, we show the convergence
property of ADMM under mild conditions in Theorem 2. The
proof sketch of Theorem 2 is similar to [42] and it is omitted
here due to page limitation.

Theorem 2. (Weak Convergence Condition) Let VW
(M, U;, G, QY. £,£,Y,, 20, T) and {W™}32, be
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Algorithm 2: TenHet

Il'lpllt: X, R, {Agl)7 A(ﬂl)} i=1 ﬁv v {)‘Z} s Ds tol.
1 Initialize Ul(.o), (G(.j))(o) and £(©) randomly.
2 Set £(0) — X, MZ <0> (Q(i))(O) _ (G(i))(o).
Y© — 0, (29)0 — o, T =0, 4= 1076,
repeat
for i <~ 1to N do

3
4
(t+1) . .
5 Update M; by solverM() in Algorithm 1
6
7

Update U by Eq. (10)
Update Y\"™) by Eq. (15)
/+ Update each mode of tensor
8 for j <— 1 to n; do
9 Update (GE.]))(HI) and (QE]))(HU by Eq. (11)
and Eq. (12)
Update (Z{7))(*+1) in Eq. (15)
end

*/

10
11
12

13
14

end
Update £+ and £+ by Eq. (13) and Eq. (14)
Update 71 by Eq. (15)
H[:(t+1) L(t) Iz <
1£9) g fol

15 until

16 return L

the sequence generated by Algorithm 2. Assume that {W}52 ,
is bounded and W) —W®) 5 0. Then any accumulation
point of {V\/’(k)}go:1 satisfies the KKT condition of objective
function in Eq. (6)

The time complexity is mainly dominated in the steps
of updating M; and U;. According to solverM(), updating
M; requires O(T(I?R + R?)), where T is the number of
iterations for solverM() to converge. Moreover, the complex-
ity of updating U; is O(R Zgil H%#Im + RON_| I, +
niIiRQ). In practice, R < I;, the order of tensor N and
the number of views n; can be regarded as small constants.
Therefore the actual time complexity can be denoted as

(RZn 1Hm;é117n+RH7n 1I +TIZ2R)

VI. EXPERIMENTS

In this section, we evaluate TenHet on both synthetic and
benchmark datasets and compare it against the following
baselines:

o TRPCA: a robust tensor principal component analysis
model [19].

o FaLRTC: which estimates the low rank structure by
imposing the trace norm on its unfolding matrices [3].

o« TNCP: which imposes the trace norm on each factor
matrix [4].

o TFAI: which recovers the tensor by incorporating a single
view of auxiliary information [11].

o CMTF: which constructs common latent factors shared
by a tensor and single view of side information by using
coupled matrix-tensor factorization [10].

o CGSI: which exploits the side information to improve the
accuracy of Riemannian tensor completion [12].

o TenHetOne: a degraded version of TenHet with single
view side information.
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Fig. 2: (a) True clusters in tensor, (b) Tensor with noise, (c)
Side similarity matrix with low noise and (d) with high noise.
All with five balanced disjoint clusters.

A. Synthetic Dataset

The synthetic dataset we used is similar to the dataset in
the task of matrix completion with multi-view side informa-
tion [43]. In this scenario, the underlying structures for both
tensor and multi-view side information are consistent with
each other. More specifically, the true cluster structure is first
embedded into the primary tensor, and noise is then added
such that the true structures should not be easily obtained
by mining the tensor alone. We first generate a noisy block-
wise diagonal 3-way tensor X € R ™" with ¢ disjoint
balanced clusters on the diagonal. The entries on the block-
wise diagonal of X are randomly sampled from a uniform
distribution within [1,2] and the off-diagonal are within [0, 1].
Figure 2a shows an example of a block-wise diagonal tensor
with five balanced disjoint true clusters and Figure 2b is the
input tensor X with noise. For multi-view side information,
we generate multiple similarity matrices for each mode of
the tensor by first incorporating the cluster information of the
tensor (e.g., clusters are also on the diagonal) and then adding
different levels of noise [43]. Different similarity matrices have
different amounts of noise. To be specific, we first generate
a true block-wise diagonal similarity matrix S},,.. for mode-
¢ of the tensor such that the block-wise diagonal elements
are all one and off-diagonal are all zero. We then generate
n; similarity matrices for mode-i by adding different level
of noise. Figures 2c and 2d show two examples of similarity
matrices with low and high level of noise, but maintaining the
clusters the same as the tensor.

Implementation Details: We set the size of tensor r» = 500,
the number of clusters ¢ = 50 and the number of views n; = 3
for each mode of the tensor. In the experiments, we randomly
remove elements from X* with various missing ratios ranging
from 20% to 80%. All the algorithms will try to recover the
whole tensor. To evaluate the quality of different methods, we
adopt the relative square error (RSE) as the evaluation metric,
which is defined as RSE := ||£ — X[z /|| X || [4], [3].

Note that the models TRPCA, FaLRTC, TNCP do not
consider any side information. TFAI, CMTF, CGSI and Ten-
HetOne can only incorporate single view side information.
For these methods, the side matrices with the least noise are
used for each mode. For all methods, the dimensionality of all
factor matrices is set to R = 40. For comparison methods, their
parameters are tuned for optimal performance. For TenHetOne
and TenHet, we fix the regularization parameters as 3 = 1073,
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Fig. 3: RSE of different tensor completion methods.

v = 0.01, \; = 0.1, and p = 0.5 (Schatten p-norm). The
impact of parameters will be discussed later. For each method,
the experiments are repeated ten times independently and the
average results are reported.

Experimental Results: Figure 3 shows the average RSE of
different methods with various missing ratios. Clearly, TenHet
achieves the best performance across a wide range of missing
ratios. We also have the following observations. First, most of
tensor completion models perform well when the fraction of
missing data is less than 40%. With a larger fraction of missing
data, the models that consider side information (i.e., CMTF,
TFAI, CGSI, TenHetOne and TenHet) generally perform better
than the rest approaches. Even with a significant of missing
data in the tensor (up to 80%), with the guidance of side
information, the intrinsic tensor structures are still preserved
by these approaches. Second, TenHet outperforms TenHetOne,
indicating the contributions of adding more side information.
Third, in terms of low rank constraints, TNCP performs better
than FaLRTC, indicating the superiority of trace norm on the
factor matrices rather on the unfolded matrices of the tensor.
Having this analogy, our TenHet, imposing the Schatten p-
norm on factor matrices of the tensor, can thus capture more
accurate intrinsic structures in the data. Also, TenHet is robust
to noise due to its decomposition of a high-quality tensor data.

We further study the convergence behavior of TenHet on
the synthetic data with 50% missing. Instead of checking the
overall value of the objective function in Eq. (6), it is more
interesting to see how well the tensor L is recovered [4].
Figure 4(a) shows the relative change of LY between two
consecutive steps with respect to the number of iterations. It
clearly shows that the error decreases rapidly during initial
iterations. Usually, less than 30 iterations are sufficient for
convergence.

Scalability: The scalability of TenHet is also studied. We
vary the size of the tensor r from 400 to 750, and set the
number of clusters ¢ = 0.17. The experiments are performed
on a 2.40GHz machine over ten independent runs and the
performance is measured in running time (seconds). The
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Fig. 4: (a) Convergence of TenHet. (b) Running time of
different tensor-based models.

running time of FaLRTC and TNCP is not included here be-
cause of their low prediction accuracy. Figure 4(b) reports the
running time on different tensor completion models. TenHet
and CGSI achieve similar performance while both of them are
much faster than the other approaches. At the same time, as
shown earlier, by incorporating more side information, TenHet
can obtain more accurate results than CGSI. Also note that
TenHet is more efficient (and more accurate) than the other
two approaches that can incorporate side information, namely
TFAI and CMTF.

B. Real Benchmark Datasets

We further evaluate the proposed method on two real-
world datasets: Last FM' and DrugBank®. For recommenda-
tion dataset Last.fm, similar to [9], [44], we can obtain a
user X item X tag tensor, in which &X’;;;, = 1 means that user
¢ has tagged an item j with the tag k; &X';;, = 0, otherwise.
Totally, we have 219, 702 observed elements involving 2, 917
users, 1,853 items, and 2,045 tags. For side information,
two affinity matrices for users are computed. One is from
anonymized user’s social network, i.e., user-user interaction
matrix, the other is from the user-item rating matrix, i.e., each
user has an item vector profiles, an affinity matrix can be
measured by the self-tune Gaussian method [45]. In Last.fm
dataset, the items are artists, two affinity matrices can be also
constructed from side sources. One is from the user vector
profiles from the rating matrix and the other is from items’
semantic context (e.g., artists’ context) in the Wikipedia. The
similarity between two web documents can be then measured
by using the text mining package gensim?. For tags, only one
affinity matrix is computed by their semantic similarity [44].

For DrugBank dataset, the objective is to identify unknown
drug-target-disease relationships in computational drug dis-
covery. We first download the drug-disease associations from
the literature [46]. For each drug-disease pair, their target
proteins can be collected from the public DrugBank database.
To obtain a dense tensor, we only focus on those targets that

Thttps://grouplens.org/datasets/hetrec-2011/

Zhttps://www.drugbank.ca/
3https://radimrehurek.com/gensim/
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TABLE II: Basic dataset statistics.

Dataset  # Users # Items # Tag # Triples
Last. FM 2917 1,853 2,045 219,702
DrugBank 593 501 313 20,778

interact with at least two drugs. Finally, we can obtain a
drug X target x disease tensor with size of 593 x 501 x 313
and 20, 778 known triple relationships of drug-target-disease.
For side information, we collect several well-studied similarity
matrices for drugs, targets, and diseases from literatures [46],
[15], [43], [47], respectively. Specifically, we have two drug-
drug similarities based on drug chemical structures and side-
effects; two target-target similarities based on their protein
sequences and Gene Ontology (GO) annotations; two disease-
disease similarities based on disease phenotypes and Human
Phenotype Ontology (HPO). For tensor completion methods
that can only incorporate a single view side information,
we choose the similarities defined based on drug chemical
structures, target protein sequences, and disease phenotypes
since all of which have long been considered valuable domain
knowledge in drug discovery. The statistics about Last.FM and
DrugBank dataset are shown in Table IT*.

We adopt a widely used evaluation protocol for tag rec-
ommendation [9], [44]. Briefly, for each user ¢, we randomly
select one post from the dataset, i.e., a user-item pair (4, j) that
user ¢ has provided tags for item j. We then remove all triples
(i,7,k) from the observed data. The post (i,7) will form a
test set Sies:. The remaining observations are the training set
Strain = S/ Stest. We then predict a ranked top-n list for each
of the removed post in S;.s;. The evaluation metric used in this
work is the F1-measure for the top-n list, where n = 5, 10, 15,
and the definition of Fl-measure score can be found in [9].

Table III shows the Fl-measure scores of all the methods.
TenHet consistently outperforms the competing methods on
most of the experiments. For instance, TenHet performs better
than TRPCA and CGSI with an average improvement of
9.9% and 7.2% in terms of Fl-measure scores, respectively.
The trend is very similar to the results on the synthetic
data. Approaches with side information perform better than
approaches without side information, and TenHet with multi-
view information performs better than approaches with single
side information. An intuitive explanation is that models
without or with single view side information can be sensitive to
the noise or bias contained in the input tensor. Utilizing multi-
view data can help improve the performance by exploiting the
compatible and complementary information across multi-view
data sources.

Parameter studies: There are three kinds of regularization
parameters (3, v and {)\;} ;) and one pre-defined parameter
p (Schatten p-norm) in the proposed model. For third-order
tensor with size ny X ny X ns, since we matricize the noise
tensor in the third mode in Eq. (14), we can empirically set

B8 = 1/y/max(ni,n2)ng as suggested by [19]. We next study

4Table II regards the triple (drug, target, disease) as (user, item, tag).



TABLE III: Experimental results on real benchmark datasets.

Method Top-5 Top-10 Top-15
LastFM [ DrugBank | LastFM [ DrugBank | LastFM [ DrugBank
TRPCA 0.453 0.634 0.407 0.415 0.319 0.421
FalLRTC 0.439 0.512 0.387 0.367 0.297 0.384
TNCP 0.443 0.514 0.395 0.386 0.302 0.397
TEAI 0.461 0.597 0.412 0.416 0.326 0.439
CMTF 0.453 0.657 0.408 0.411 0.321 0.434
CGSI 0.466 0.660 0.411 0.419 0.334 0.432
TenHetOne 0.476 0.669 0.414 0.501 0.323 0.441
TenHet 0.513 0.673 0.424 0.514 0.336 0.448

the influence the rest parameters.
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Fig. 5: Parameter sensitivity of our model.

1) The impact of v and \;: Recall that v controls the
influence of Schatten p-norm and \; controls the contributions
of side information for mode-i of the tensor. If the side
information for mode-i is noisy, then a relative small \; is
preferred. In this study, we simply set Ay = Ao = A3 = A
We first set p = 0.5 and vary values of A and ~ from
{0.001,0.01,0.1,1,10}. We then estimate the F1 score for
the Top-5 performance on DrugBank dataset. As shown from
Figure 5(a), our method is relatively stable, and slightly better
when \; and ~y are within {0.01,0.1, 1}.

2) The impact of Schatten p-norm: Parameter p reflects
the impact of tensor rank reduction. To better study its
influence, we set all A\; = 0 (i.e., exclude all multi-view
side information), then compare it with two tensor completion
models: TRPCA and FaLRTC. The p varies from 0.2 to 2
and y is simply set to 0.1. Figure 5(b) shows TenHet has
better performance with smaller p, consistent with the fact
that Schatten p-norm can approximate the rank function when
p — 0. Although Schatten p-norm is not convex and is not
smooth when 0 < p < 1, it still constantly performances better
than TRPCA. When 1 < p < 2, the performance of TenHet is
better than FaLRTC, but not as good as TRPCA.

VII. CONCLUSION

In this paper, we have proposed a general framework to
perform tensor completion with multiple heterogeneous side
data sources. The proposed method, TenHet, integrates the
tensor with multi-view side information simultaneously, which
is able to find accurate and interpretable low-rank structures
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in the data. By formulating multi-view tensor completion as
an optimization problem, we propose an effective algorithm
based on ADMM to solve the optimization problem, and
prove its optimality, correctness and scalability. Extensive
experiments on synthetic and real-world datasets demonstrate
the effectiveness of our approach.
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APPENDIX

we first introduce a matrix inequality in Lemma 1.

Lemma 1. For any two positive definite matrices A1, Ay € R™*",
the following inequality holds when 0 < p < 2 [25]:

2 P p=2 P pP—2
Tr(AZ) — 5T7‘(A1A2 2 )< Tr(As) — 5TT(A2A2 2)
we next prove Theorem 1 in details.

proof of Theorem 1
Proof. 1t can be easily verified that Eq. (9) is the solution to the
following equivalent problem:
. u 2 1 T
—||M; - O =Tr(M; M;D;

min o | [e+5Tr( ) (16)

where O = U; — Y;/p. Thus in the ¢ iteration:
MY = arg min £ |M; — 0||2F+3Tr(MiTMiD§”)
M; 2’}/ 2

which indicates that:
LMD — Ol (M) M DY)
S
1
< oo MY — O+ Tr((M(”) "M DY)
Y

By substituting D{" = p[(Mgt))TMEi)]p%z, we have:

2i||M§t+1) -~ 0‘|2F+I§?TT((M§t+1))TM§t+1)[(Mgt))TMgt)]%)
Y

< 5 IMLY = Ol B (M) M (V) TV )
a7

On the other hand, according to Lemma 1, we have:

(M) M) — (v )M (v ) M) )

< Tr((af?) M) = Ern(a?) M () M) )
(18)

Combining the inequalities (17) and (18), we have:
D
Tr() M) LM o

<Tr((M")"M"]%) + %IIME” - 0|3

Multiplying both sides of the above inequality with ~, we have
JMIY) < 7(MP), where 7(M) is defined by Eq. (8). [



