RIGHTS LI

Formal Verification of Neural Network Controlled
Autonomous Systems

Xiaowu Sun
Department of Electrical and
Computer Engineering

Haitham Khedr
Department of Electrical and
Computer Engineering

Yasser Shoukry
Department of Electrical and
Computer Engineering

University of Maryland, College Park  University of Maryland, College Park  University of Maryland, College Park

xsun24@terpmail.umd.edu

ABSTRACT

In this paper, we consider the problem of formally verifying the
safety of an autonomous robot equipped with a Neural Network
(NN) controller that processes LIDAR images to produce control
actions. Given a workspace that is characterized by a set of poly-
topic obstacles, our objective is to compute the set of safe initial
states such that a robot trajectory starting from these initial states
is guaranteed to avoid the obstacles. Our approach is to construct a
finite state abstraction of the system and use standard reachability
analysis over the finite state abstraction to compute the set of safe
initial states. To mathematically model the imaging function, that
maps the robot position to the LiDAR image, we introduce the no-
tion of imaging-adapted partitions of the workspace in which the
imaging function is guaranteed to be affine. Given this workspace
partitioning, a discrete-time linear dynamics of the robot, and a
pre-trained NN controller with Rectified Linear Unit (ReLU) non-
linearity, we utilize a Satisfiability Modulo Convex (SMC) encoding
to enumerate all the possible assignments of different ReLUs. To
accelerate this process, we develop a pre-processing algorithm that
could rapidly prune the space of feasible ReLU assignments. Finally,
we demonstrate the efficiency of the proposed algorithms using
numerical simulations with the increasing complexity of the neural
network controller.

CCS CONCEPTS

« Computing methodologies — Artificial intelligence; Con-
trol methods; « Security and privacy — Formal methods and theory
of security;

KEYWORDS

Formal Verification, Machine Learning, Satisfiability Solvers

ACM Reference Format:

Xiaowu Sun, Haitham Khedr, and Yasser Shoukry. 2019. Formal Verifica-
tion of Neural Network Controlled Autonomous Systems. In 22nd ACM
International Conference on Hybrid Systems: Computation and Control (HSCC
’19), April 16-18, 2019, Montreal, QC, Canada. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3302504.3311802

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HSCC ’19, April 16-18, 2019, Montreal, QC, Canada

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6282-5/19/04...$15.00
https://doi.org/10.1145/3302504.3311802

Ay

hkhedr@umd.edu

147

yshoukry@ece.umd.edu
1 INTRODUCTION

From simple logical constructs to complex deep neural network
models, Artificial Intelligence (AI)-agents are increasingly control-
ling physical/mechanical systems. Self-driving cars, drones, and
smart cities are just examples of such systems to name a few. How-
ever, regardless of the explosion in the use of Al within a multitude
of cyber-physical systems (CPS) domains, the safety and reliability
of these Al-enabled CPS is still an under-studied problem. It is then
unsurprising that the failure of these Al-controlled CPS in several,
safety-critical, situations leads to human fatalities [1].

Motivated by the urgency to study the safety, reliability, and
potential problems that can rise and impact the society by the de-
ployment of Al-enabled systems in the real world, several works
in the literature focused on the problem of designing deep neural
networks that are robust to the so-called adversarial examples [2-8].
Unfortunately, these techniques focus mainly on the robustness of
the learning algorithm with respect to data outliers without pro-
viding guarantees in terms of safety and reliability of the decisions
made by these neural networks. To circumvent this drawback, re-
cent works focused on three main techniques namely (i) testing
of neural networks, (ii) falsification (semi-formal verification) of
neural networks, and (iii) formal verification of neural networks.

Representatives of the first class, namely testing of neural net-
works, are the works reported in [9-18] in which the neural network
is treated as a white box, and test cases are generated to maximize
different coverage criteria. Such coverage criteria include neuron
coverage, condition/decision coverage, and multi-granularity test-
ing criteria. On the one hand, maximizing test coverage gives system
designers confidence that the networks are reasonably free from
defect. On the other hand, testing does not formally guarantee that
a neural network satisfies a formal specification.

To take into consideration the effect of the neural network de-
cisions on the entire system behavior, several researchers focused
on the falsification (or semi-formal verification) of autonomous
systems that include machine learning components [19-21]. In
such falsification frameworks, the objective is to generate corner
test cases that forces a violation of system-level specifications. To
that end, advanced 3D models and image environments are used
to bridge the gap between the virtual world and the real world. By
parametrizing the input to these 3D models (e.g., position of objects,
position of light sources, intensity of light sources) and sampling
the parameter space in a fashion that maximizes the falsification of
the safety property, falsification frameworks can simulate several
test cases until a counterexample is found [19-21].

While testing and falsification frameworks are powerful tools
to find corner cases in which the neural network or the neural



RIGHTS

HSCC *19, April 16-18, 2019, Montreal, QC, Canada

network enabled system may fail, they lack the rigor promised by
formal verification methods. Therefore, several researchers pointed
to the urgent need of using formal methods to verify the behavior
of neural networks and neural network enabled systems [22-27].
As aresult, recent works in the literature attempted the problem of
applying formal verification techniques to neural network models.

Applying formal verification to neural network models comes
with its unique challenges. First and foremost is the lack of widely-
accepted, precise, mathematical specifications capturing the correct
behavior of a neural network. Therefore, recent works focused en-
tirely on verifying neural networks against simple input-output
specifications [28-33]. Such input-output techniques compute a
guaranteed range for the output of a deep neural network given
a set of inputs represented as a convex polyhedron. To that end,
several algorithms that exploit the piecewise linear nature of the
Rectified Linear Unit (ReLU) activation functions (one of the most
famous nonlinear activation functions in deep neural networks)
have been proposed. For example, by using binary variables to en-
code piecewise linear functions, the constraints of ReLU functions
are encoded as a Mixed-Integer Linear Programming (MILP). Com-
bining output specifications that are expressed in terms of Linear
Programming (LP), the verification problem eventually turns to a
MILP feasibility problem [32, 34].

Using off-the-shelf MILP solvers does not lead to scalable ap-
proaches to handle neural networks with hundreds and thousands
of neurons [29]. To circumvent this problem, several MILP-like
solvers targeted toward the neural network verification problem
are proposed. For example, the work reported in [28] proposed a
modified Simplex algorithm (originally used to solve linear pro-
grams) to take into account ReLU nonlinearities as well. Similarly,
the work reported in [29] combines a Boolean satisfiability solving
along with a linear over-approximation of piecewise linear func-
tions to verify ReLU neural networks against convex specifications.
Other techniques that exploit specific geometric structures of the
specifications are also proposed [35, 36]. A thorough survey on
different algorithms for verification of neural networks against
input-output range specifications can be found in [37] and the
references within.

Unfortunately, the input-output range properties are simplistic
and fail to capture the safety and reliability of cyber-physical sys-
tems when controlled by a neural network. Recent works showed
how to perform reachability-based verification of closed-loop sys-
tems in the presence of learning components [38-40]. Reachability
analysis is performed by either separately estimating the output set
of the neural network and the reachable set of continuous dynam-
ics [38], or by translating the neural network controlled system into
a hybrid system [39]. Once the neural network controlled system is
translated into a hybrid system, off-the-shelf existing verification
tools of hybrid systems, such as SpaceEx [41] for piecewise affine
dynamics and Flow™ [42] for nonlinear dynamics, can be used to
verify safety properties of the system. Another related technique
is the safety verification using barrier certificates [43]. In such
approach, a barrier function is searched using several simulation
traces to provide a certificate that unsafe states are not reachable
from a given set of initial states.

Differently from the previous work—in the literature of formal
verification of neural network controlled system—we consider, in

Ay

148

X. Sun et al.

this paper, the case in which the robotic system is equipped with a
LiDAR scanner that is used to sense the environment. The LiDAR
image is then processed by a neural network controller to compute
the control inputs. Arguably, the ability of neural networks to
process high-bandwidth sensory signals (e.g., cameras and LiDARs)
is one of the main motivations behind the current explosion in the
use of machine learning in robotics and CPS. Towards this goal,
we develop a framework that can reason about the safety of the
system while taking into account the robot continuous dynamics,
the workspace configuration, the LiDAR imaging, and the neural
network.

In particular, the contributions of this paper can be summarized
as follows:
1- A framework for formally proving safety properties of autonomous
robots equipped with LiDAR scanners and controlled by neural net-
work controllers.
2- A notion of imaging-adapted partitions along with a polynomial-
time algorithm for processing the workspace into such partitions.
This notion of imaging-adapted partitions plays a significant role
in capturing the LiDAR imaging process.
3- A Satisfiability Modulo Convex (SMC)-based algorithm combined
with an SMC-based pre-processing for computing finite abstrac-
tions of neural network controlled autonomous systems.
For brevity, we omit here the proofs of the main technical results
and report them in an extended version of the paper [44].

2 PROBLEM FORMULATION

2.1 Notation

The symbols N, R,R™ and B denote the set of natural, real, positive
real, and Boolean numbers, respectively. The symbols A, = and —
denote the logical AND, logical NOT, and logical IMPLIES operators,
respectively. Given two real-valued vectors x; € R™ and x; €
R"2, we denote by (x1, x3) € R™*"2 the column vector [xlT, xZT]T.
Similarly, for a vector x € R", we denote by x; € R the ith element
of x. For two vectors x1,x2 € R", we denote by max(x, x2) the
element-wise maximum. For a set S € R”, we denote the boundary
and the interior of this set by S and int(S), respectively. Given two
sets S; and S, f : S =2 Sp and f : S; — Sz denote a set-valued and
ordinary map, respectively. Finally, given a vector z = (x, y) € R?,
we denote by atan2(z) = atan2(y, x).

2.2 Dynamics and Workspace

We consider an autonomous robot moving in a 2-dimensional poly-
topic (compact and convex) workspace ‘W C R?. We assume
that the robot must avoid the workspace boundaries W along
with a set of obstacles {O;,...,0,}, with O; c ‘W which is as-
sumed to be polytopic. We denote by O the set of the obstacles
and the workspace boundaries which needs to be avoided, i.e.,
O ={0W,0s,...,00}. The dynamics of the robot is described by
a discrete-time linear system of the form:

) = x4 By, (1)

where x(!) € X C R" is the state of robot at time ¢ € N and
u() ¢ R™ is the robot input. The matrices A and B represent the
robot dynamics and have appropriate dimensions. For a robot with
nonlinear dynamics that is either differentially flat or feedback



RIGHTS LI N

Formal Verification of Neural Network Controlled Autonomous Systems

—
q Preprocess LiDAR Image
LiDAR
Image
(1) Processed
r(z'") LiDAR Image
d( m(t))
L Q
— : : ‘
Control (t) g . /
input | O
Output Hidden Hidden Input
layer layer 2 layer 1 layer

Figure 1: Pictorial representation of the problem setup un-
der consideration.

linearizable, the state space model (1) corresponds to its feedback
linearized dynamics. We denote by {(x) € R? the natural projection
of x onto the workspace W, i.e., { (x()) is the position of the robot
at time ¢.

2.3 LiDAR Imaging

We consider the case when the autonomous robot uses a LIDAR
scanner to sense its environment. The LiDAR scanner emits a set
of N lasers evenly distributed in a 27 degree fan. We denote by

el(ifi)ar € R the heading angle of the LiDAR at time ¢t. Similarly,
we denote by 9§t) = el(iii)ar +(i—-1 ZW”, withi € {1,...,N}, the

(t)
elidar

ot = (Git), R 95\?) the vector of the angles of all the laser beams.

While the heading angle of the LIDAR o)

> “lidar’
; ; @ _ ¢ :
pose changes over time, ie, 0, = f (x()) for some nonlinear

function f, in this paper we focus on the case when the heading

angle of the ith laser beam at time ¢ where HY) =

and by

changes as the robot

angle of the LiDAR, el(iii)ar’ is fixed over time and we will drop
the superscript ¢ from the notation. Such condition is satisfied in
several real-world scenarios whenever the robot is moving while
maintaining a fixed pose (e.g. a quadrotor whose yaw angle is
maintained constant).

For the ith laser beam, the observation signal ri(x(t)) € Ris
the distance measured between the robot position ¢ (x()) and the
nearest obstacle in the 0; direction, i.e.:

ri(x) = min min |z - (D)

;€0 z€0;

s.t. atan2 (z - gv(x('))) =0;. 2
In this paper, we will restrict our attention to the case when the
LiDAR scanner is ideal (with no noise) although the bounded noise
case can be incorporated in the proposed framework. The final
LiDAR image d(x®)) e R2N js generated by processing the obser-
vations r(x(t)) as follows:

di(x(')) = (ri(x(')) cos 0, ri(x(t)) sin Gi) ,

d(x 1)) = (dl(x(t)), . dN(x<f>)) . 3)

149

HSCC *19, April 16-18, 2019, Montreal, QC, Canada

2.4 Neural Network Controller

We consider a pre-trained neural network controller fyy : R?N —
R™ that processes the LIDAR images to produce control actions
with L internal and fully connected layers in addition to one output
layer. Each layer contains a set of M; neurons (wherel € {1,...,L})
with Rectified Linear Unit (ReLU) activation functions. ReLU acti-
vation functions play an important role in the current advances in
deep neural networks [45]. For such neural network architecture,
the neural network controller u(t) = fNN(d(x('))) can be written

as: K1) = max (O, Wod(x(t)) + WO) R

h2(1) = max (0, wipl® 4 wl) S

R = max (0, wk-1pL-10) 4 wal) N

u® = whpt® 4L,

©)

where W! € RM*Mi-1 and w! € RM! are the pre-trained weights
and bias vectors of the neural network which are determined during
the training phase.

2.5 Robot Trajectories and Safety Specifications

The trajectories of the robot whose dynamics are described by (1)
when controlled by the neural network controller (2)-(4) starting
from the initial condition xg = x(%) is denoted by Nx, : N — R
such that 11y, (0) = x¢. A trajectory 7y, is said to be safe whenever
the robot position does not collide with any of the obstacles at all
times.

Definition 2.1 (Safe Trajectory). A robot trajectory 7y, is called
safe if {(nx, (1)) € W, {(nx,(t)) € O;, VO; € O, ¥Vt € N.

Using the previous definition, we now define the problem of
verifying the system-level safety of the neural network controlled
system as follows:

PrOBLEM 2.2. Consider the autonomous robot whose dynamics are
governed by (1) which is controlled by the neural network controller
described by (4) which processes LiDAR images described by (2)-(3).
Compute the set of safe initial conditions Xsaf C X such that any
trajectory nx, starting from xo € Xgp, is safe.

3 FRAMEWORK

Before we describe the proposed framework, we need to briefly
recall the following definitions capturing the notion of a system
and relations between different systems.

Definition 3.1. An autonomous system S is a pair (X, §) consist-
ing of a set of states X and a set-valued map § : X =3 X representing
the transition function. A system S is finite if X is finite. A system
S is deterministic if § is single-valued map and is non-deterministic
if not deterministic.

Definition 3.2. Consider a deterministic system S; = (X4, 84)
and a non-deterministic system S, = (Xp,dp). A relation Q C
Xa X Xp is a simulation relation from S, to Sj, and we write
Sa <0 Sy, if the following conditions are satisfied:

(1) for every x4 € X, there exists xj, € X}, with (xq4,xp) € Q,



RIGHTS LI N

HSCC *19, April 16-18, 2019, Montreal, QC, Canada

X. Sun et al.

2——3

Partition the o
workspace into
imaging-adapted

Use SMC to
compute a finite

i)
"N

Compute the
predecessors of
the unsafe states

set of safe states.

ansate, I
nsate /. Compute the ‘e

=
]

sets

state

Figure 2: Pictorial representation of the proposed framework.

(2) for every (xq,xp) € Q we have that x}, = §4(xq) in Sy im-
plies the existence of x; € Jp(xp) in S}, satisfying (xz, x;) €

Q.

Using the previous two definitions, we describe our approach as
follows. As pictorially shown in Figure 2, given the autonomous
robot system Syn = (X, SnN), where Onn @ x — Ax + Bfan(d(x)),
our objective is to compute a finite state abstraction (possibly non-
deterministic) S¢ = (¥, §#) of SNn such that there exists a simu-
lation relation from Snn to S« i.e., SN <0 S« This finite state
abstraction S¢ will be then used to check the safety specification.

The first difficulty in computing the finite state abstraction S¢
is the nonlinearity in the relation between the robot position {(x)
and the LiDAR observations as captured by equation (2). However,
we notice that we can partition the workspace based on the laser
angles 01, . . ., On along with the vertices of the polytopic obstacles
such that the map d (defined in equation (3) which maps the robot
position to the processed observations) is an affine map as shown
in Section 4. Therefore, as summarized in Algorithm 1, the first
step is to compute such partitioning W™* of the workspace (WKSP-
PARTITION, line 2 in Algorithm 1). While WKSP-PARTITION fo-
cuses on partitioning the workspace ‘W, one needs to partition the
remainder of the state space X (STATE-SPACE-PARTITION, line 5
in Algorithm 1) to compute the finite set of abstract states ¥ along
with the simulation relation Q that maps between states in X and
the corresponding abstract states in #, and vice versa.

Unfortunately, the number of partitions grows exponentially in
the number of lasers N and the number of vertices of the poly-
topic obstacles. To harness this exponential growth, we compute an
aggregate-partitioning ‘W’ using only a few laser angles (called pri-
mary lasers and denoted by 0,). The resulting aggregate-partitioning
‘W’ would contain a smaller number of partitions such that each
partition in W’ represents multiple partitions in W*. Similarly,
we can compute a corresponding aggregate set of states ¥ as:

s'={seF |Ixew,w W, (x,5) €Q}

where each aggregate state s’ is a set representing multiple states
in 7. Whenever possible, we will carry out our analysis using the
aggregated-partitioning ‘W’ (and ¥’) and use the fine-partitioning
W™ only if deemed necessary. Details of the workspace partition-
ing and computing the corresponding affine maps representing the
LiDAR imaging function are given in Section 4.

The state transition map d# is computed as follows. First, we
assume a transition exists between any two states s and s” in F
(line 6- 7 in Algorithm 1). Next, we start eliminating unnecessary
transitions. We observe that regions in the workspace that are ad-
jacent or within some vicinity are more likely to force the need of
transitions between their corresponding abstract states. Similarly,
regions in the workspace that are far from each other are more
likely to prohibit transitions between their corresponding abstract

150

Algorithm 1 VErRIFY-NN(X, 5nNN)

1: Step 1: Partition the workspace
2 (‘W*, ‘W’) = WKSP-PARTITION(‘W, O, 6,, 0,,)

: Step 2: Compute the finite state abstraction Sy
: Step 2.1: Compute the states of S
. (F, ¥, Q) = STATE-SPACE-PARTITON(‘W*, ‘W)
: for each s and s’ in ¥ do
8. ADD-TRANSITION(s, s”)
: Step 2.2: Pre-process the neural network
: for each s in ¥ do
Xs={xeX|(x,5) €Q}
CEs = PRE-PROCESS(Xs, Sxn)
Step 2.3: Compute the transition map ¢
for each s in F and s” in ¥ where s ¢ 5" do
Xs={x e X|(x,5) €Q}
Xy ={xeX|(x,s*)€Q, Vs* €5}
StaTUS = CHECK-FEASIBILITY(XS, X7, Snn, CEs)
if StaTUS == INFEASIBLE then
for each s* in s’ do
S84 .REMOVE-TRANSITION(s, s*)

O 0 N Yo W

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

else
for each s* in s’ do
Xx ={x € X |(x,s*) € Q}
STATUS = CHECK-FEASIBILITY(X;, Xx, Sxn» CEs)
if StaTUS == INFEASIBLE then
87 REMOVE-TRANSITION(s, s*)

26:
27:

Step 3: Compute the safe set
Step 3.1: Mark the abstract states corresponding to obstacles and
workspace boundary as unsafe

‘fonsafe={SE‘FlEIXEX:(x,s)EQ, {(x) € 0;,0; € O}

ul

28: Step 3.2: Iteratively compute the predecessors of the abstract un-
safe states
StATUS = FIXED-POINT-NOT-REACHED
while StaTus == FIXED-POINT-NOT-REACHED do
_ k-1 -1
- ‘};knsafe v PRE(Tfnsafe)

== %1 then
unsafe unsafe

STATUS = FIXED-POINT-REACHED
Feate = F \ Funsafe
Step 3.3: Compute the set of safe states
Xsafe = {x € X | 3s € Fafe : (x, S) € Q}
Return Xg,fe

29:
30:
3t unsafe
32:  if
33:
34:
35:
36:
37:

states. Therefore, in an attempt to reduce the number of compu-
tational steps in our algorithm, we check the transition feasibility
between a state s € ¥ and an aggregate state s’ € ¥”. If our al-
gorithm (CHECK-FEASIBILITY) asserted that the neural network
SNN prohibits the robot from transitioning between the regions
corresponding to s and s’ (denoted by X5 and Xy, respectively),
then we conclude that no transition in d is feasible between the
abstract state s and all the abstract states s* in s’ (lines 13-19 in



RIGHTS

Formal Verification of Neural Network Controlled Autonomous Systems

Algorithm 1). This leads to a reduction in the number of state pairs
that need to be checked for transition feasibility. Conversely, if our
algorithm (CHECK-FEASIBILITY) asserted that the neural network
NN allows for a transition between the regions corresponding to
s and s’, then we proceed by checking the transition feasibility
between the state s and all the states s* contained in the aggregate
state s* (lines 21-25 in Algorithm 1).

Checking the transition feasibility (CHECK-FEASIBILITY) be-
tween two abstract states entails reasoning about the robot dy-
namics, the neural network, along with the affine map representing
the LiDAR imaging computed from the previous workspace parti-
tioning. While the robot dynamics is assumed linear, the imaging
function is affine, the technical difficulty lies in reasoning about
the behavior of the neural network controller. Thanks to the ReLU
activation functions in the neural network, we can encode the prob-
lem of checking the transition feasibility between two regions as
formula ¢, called monotone Satisfiability Modulo Convex (SMC)
formula [46, 47], over Boolean and convex constraints representing,
respectively, the ReLU phases and the dynamics, the neural net-
work weights, and the imaging constraints. In addition to using the
SMC solver to check the transition feasibility (CHECK-FEASIBILITY)
between abstract states, it will be used also to perform some pre-
processing of the neural network function dnn (lines 9-11 in Algo-
rithm 1) which is going to speed up the process of checking the the
transition feasibility. Details of the SMC encoding and the strategy
to check transition feasibility (CHECK-FEASIBILITY) are given in
Section 5.

Once the finite state abstraction S¢ and the simulation relation
Q is computed, the next step is to partition the finite states ¥ into
a set of unsafe states Finsafe and a set of safe states F,fe using the
following fixed-point computation:

{seF |IxeX:(x,s)€Q,

k _ {(x)€ 0;,0; €0} k=0
unsafe — k-1
U  PrE(s) k>0
unsafe 1
unsafe
: k
Funsafe = kh—rgo ﬂnsafe’ Feate = F \ Funsate-

where the 70 f Tepresents the abstract states corresponding to the
unsate
obstacles and workspace boundaries, Tu]; safe With k > 0 represents

all the states that can reach 7‘_u Onsafe in k-steps, and PRE(s) is defined
as:

Pre(s) = {s" € F | s € 6#(s")}.

The remaining abstract states are then marked as the set of safe
states Fgafe- Finally, we can compute the set of safe states Xg,¢. as:

Xsafe = {x € X' | 3s € Fgae : (x,5) € O}
These computations are summarized in lines 27-36 in Algorithm 1.

4 IMAGING-ADAPTED WORKSPACE
PARTITIONING

We start by introducing the notation of the important geometric
objects. We denote by Ray(w, 0) the ray originated from a point
w € W in the direction 0, i.e.:

Rav(w, 0) = {w’ € W | atan2(w’ — w) = 0}.

Ay

151

HSCC *19, April 16-18, 2019, Montreal, QC, Canada

Similarly, we denote by LINE(w1, wo) the line segment between the
points wy and wo, i.e.:

LiNE(wi, w2) = {w € W |w =vw; +(1—v)wy, 0 < v < 1}

For a convex polytope P € ‘W, we denote by VERT(P), its set of
vertices and by EDGE(P) its set of line segments representing the
edges of the polytope.

4.1 Imaging-Adapted Partitions

The basic idea behind our algorithm is to partition the workspace
into a set of polytopic sets (or regions) such that for each region R
the LiDAR rays intersects with the same obstacle/workspace edge
regardless of the robot positions {(x) € R. To formally characterize
this property, let O* = {Jg,co O; be the set of all points in the
workspace in which an obstacle or workspace boundary exists. Con-
sider a workspace partition R C ‘W and a robot position {(x) that
lies inside this partition, i.e., {(x) € R. The intersection between
the kth LiDAR laser beam RaY({(x), 0;) and O* is a unique point
characterized as:

2k, ¢ (x) = ar%nq}‘i/n lz— ()2 st zeRav({(x),8)NO*. (5
z

By sweeping {(x) across the whole region R, we can characterize
the set of all possible intersection points as:

LR = ) 200
{(x)eR

(©)

Using the set L(R) described above, we define the notion of
imaging-adapted partitions as follows.

Definition 4.1. A set R C ‘W is said to be an imaging-adapted

partition if the following property holds:
Vk e {1,...,N}. ™)

Figure 3 shows concrete examples of imaging-adapted partitions.
Imaging-adapted partitions enjoy the following property:

Li(R) is a line segment

LEmMA 4.2. Consider an imaging-adapted partition R with cor-
responding sets L1(R), ..., LN(R). The LiDAR imaging function
d: R — RN is an affine function of the form:

de(((x) = P, () + Qpr. d=(d1,....dN)  (8)

for some constant matrices P g and vectors Q. g that depend on the
region R and the LiDAR angle 0.

4.2 Partitioning the Workspace

Motivated by Lemma 4.2, our objective is to design an algorithm
that can partition the workspace W into a set of imaging-adapted
partitions. As summarized in Algorithm 2, our algorithm starts by
computing a set of line segments G that will be used to partition
the workspace (lines 1-5 in Algorithm 2). This set of line segments
G are computed as follows. First, we define the set V as the one
that contains all the vertices of the workspace and the obstacles, i.e.,
YV = Uo,co VERT(O;). Next, we consider rays originating from
all the vertices in ¥V and pointing in the opposite directions of the
angles 01, . . ., On. By intersecting these rays with the obstacles and
picking the closest intersection points, we acquire the line segments



HSCC *19, April 16-18, 2019, Montreal, QC, Canada

Figure 3: (left-up) A partitioning of the workspace that is
not imaging-adapted. Within region R, the LIDAR ray (cyan
arrow) intersects with different obstacle edges depending
on the robot position. (left-down) A partitioning of the
workspace that is imaging-adapted. For both regions R; and
Rz, the LiDAR ray (cyan arrow) intersects the same obsta-
cle edge regardless of the robot position. (right) Imaging-
adapted partitioning of the workspace used in Section 6.

G that will be used to partition the workspace. In other words, G
is computed as:

G = {Ling(v,2) |v eV, z =

N
G = ng
k=1

Thanks to the fact that the vertices v are fixed, finding the inter-
section between Ray(v, Oy + m) and O* is a standard ray-polytope
intersection problem which can be solved efficiently [48].

The next step is to compute the intersection points $ between the
line segments G and the edges of the obstacles & = |, ¢ EDGE(O;).
A naive approach will be to consider all combinations of line seg-
ments in G U & and test them for intersection. Such approach is
combinatorial and would lead to an execution time that is exponen-
tial in the number of laser angles and vertices of obstacles. Thanks
to the advances in the literature of computational geometry, such
intersection points can be computed efficiently using the plane-
sweep algorithm [48]. The plane-sweep algorithm simulates the
process of sweeping a line downwards over the plane. The order
of the line segments G U & from left to right as they intersect the
sweep line is stored in a data structure called the sweep-line status.
Only segments that are adjacent in the horizontal ordering need
to be tested for intersection. Though the sweeping process can be
visualized as continuous, the plane-sweep algorithm sweeps only
the endpoints of segments in G U &, which are given beforehand,
and the intersection points, which are computed on the fly. To keep
track of the endpoints of segments in G U & and the intersection
points, we use a balanced binary search tree as data structure to
support insertion, deletion, and searching in O(log n) time, where
n is number of elements in the data structure.

argmin ||z - oll2}

z€RAY(v, O +1)NO*

©)

RIGHTSE LI MN iy

152

X. Sun et al.

The final step is to use the line segments G UE and their intersec-
tion points P, discovered by the plane-sweep algorithm, to compute
the workspace partitions. To that end, consider the undirected pla-
nar graph whose vertices are the intersection points  and whose
edges are GUE, denoted by GraPH(P, GUE). The workspace parti-
tions are equivalent to finding subgraphs of GRAPH(P, G U &) such
that each subgraph contains only one simple cycle !. To find these
simple cycles, we use a modified Depth-First-Search algorithm in
which it starts from a vertex in the planar graph and then traverses
the graph by considering the rightmost turns along the vertices of
the graph. Finally, the workspace partitions are computed as the
convex hulls of all the vertices in the computed simple cycles. It
follows directly from the fact that each region is constructed from
the vertices of a simple cycle that there exists no line segment in
G U & that intersects with the interior of any region, i.e., for any
workspace partition R, the following holds:

int((R)yNe=0 Vee GUE (10)

This process is summarized in lines 8-16 in Algorithm 2. An impor-
tant property of the regions determined by Algorithm 2 is stated
by the following proposition.

ProPosITION 4.3. Consider a workspace partition R that is com-
puted by Algorithm 2 and satisfies (10). The following property holds
for any LiDAR ray with angle 0y :

dec &
where L.(R) is defined in (6).

such that Li(R)Ce,

We conclude this section by stating our first main result, quanti-
fying the correctness and complexity of Algorithm 2.

THEOREM 4.4. Given a workspace with polytopic obstacles and a set
of laser angles 01, . . ., O, then Algorithm 2 computes the partitioning
Ri,..., Ry such that:

1) W=Ui; R,

(2) Ri is an imaging-adapted partition Vi=1,...,r,

(3) d:R; — R¥N is affine Vi=1,...,r.
Moreover, the time complexity of Algorithm 2is O(M log M+Ilog M),
where M = |G U &| is cardinality of G U &, and I is number of inter-
section points between segments in G U E.

5 COMPUTING THE FINITE STATE
ABSTRACTION

Once the workspace is partitioned into imaging-adapted partitions
W* = {Ry,...,R,} and the corresponding imaging function is
identified, the next step is to compute the finite state transition
abstraction S¢ = (¥, ) of the closed loop system along with
the simulation relation Q. The first step is to define the state space
¥ and its relation to X. To that end, we start by computing a
partitioning of the state space X that respects ‘W*. For the sake
of simplicity, we consider X c R" that is n-orthotope, i.e., there
exists constants x;,x; € R,i = 1,...,n such that:

X={xeR" |x; <xi <X;, i=1,....,n}
1A cycle in an undirected graph is called simple when no repetitions of vertices and
edges, other than the starting and ending vertex.



RIGHTS LI

Formal Verification of Neural Network Controlled Autonomous Systems

Algorithm 2 WKSP-PARTITION (W, 0, 0,6, )

1: Step 1: Generate partition segments

2 0* =Ugp,e0 01,V = Ug,e0 VERT(O)),
3: fork € {1,..., N} do

4:  Use aray-polygon intersection algorithm to compute:

& = Uo,co EDGE(O;)

Gr = {LiNE(v, 2) [0 €V, z= argmin [lz=ol2}

zeRav(v, O +)NO*

5 G=Ukeo Gr» G’ = Ukeo, Gk
6: Step 2: Compute intersection points
7: P = PLANE-SWEEP(G U &), P’ = PLANE-SWEEP(G' U &)

8: Step 3: Construct the partitions

9: CyYCLES = FIND-VERTICES-OF-SIMPLE-CYCLE(GRAPH(P, G U &))

: Cycres’ = FIND-VERTICES-OF-SiMPLE-CYCLE (GRAPH(P', G’ U &)).
: for ¢ € CycLes do

R = Convex-HuLL(c)

W* .ADD(R)

: for ¢ € Cycres’ do

R’ = Convex-HuLL(c)

W’'.ADD(R’)

17: Return W*, W’

Now, given a discretization parameter € € R*, we define the state
space ¥ as:
F = Atk ks, k) eN"T [ 1<y <,

xi—gi
1<k <

Ji=3,...,n} (1)

where r is the number of regions in the partitioning W*. In other
words, the parameter € is used to partition the state space into
hyper-cubes of size € in each dimension i = 3,...,n. A states € F
represents the index of a region in “W* followed by the indices
identifying a hypercube in the remaining n — 2 dimensions. Note
that for the simplicity of notation, we assume that x; —x; is divisible
by e foralli = 1,...,n We now define the relation Q € X X ¥ as:

Q={(x,s) e X xF | s = (k1,k3,....kn)x = ({(x),x3,...,%n),
{(x) € Ry, x; +elki —1) < x; < x; + €k,
i=3,...,n} (12)

Finally, we define the state transition function & of S¢ as follows:

€

(k7. K}, .. kp) € Sq((ka, ks, .. . kp)) if
Ax = ({(x),x3,...,xn) € Ry, x; +elki — 1) < x; < x; + €k;,
x' = (") x5, xp) € R x; +e(kf — 1) < xf < x; + ekj,

st x" = Ax + Bfyn(d(x)). (13)

It follows from the definition of §# in (13) that checking the transi-
tion feasibility between two states s and s’ is equivalent to searching
for a robot initial and goal states along with a LIDAR image that
will force the neural network controller to generate an input that
moves the robot between the two states while respecting the robots
dynamics. In the reminder of this section, we focus on solving this
feasibility problem.

5.1 SMC Encoding of NN

We translate the problem of checking the transition feasibility in d&
into a feasibility problem over a monotone SMC formula [46, 47]
as follows. We introduce the Boolean indicator variables bjl. with

Ay

153

HSCC *19, April 16-18, 2019, Montreal, QC, Canada

I=1,...,Landj=1,...,M; (recall that L represents the number
of layers in the neural network, while M; represents the number
of neurons in the Ith layer). These Boolean variables represent the
phase of each ReLU, i.e., an asserted bjl. indicates that the output of

the jth ReLU in the Ith layer is hj. = (wh1p1 4+ wl_l)j while a
negated b’ indicates that h = 0. Using these Boolean indicator vari-

ables, we encode the problem of checking the transition feasibility
between two states s = (k1, ks, ..., kn)and s’ = (k/, ké, .o k) as:

Ix,x eR"ueR™ deR¥, (14)
(bl,hl, tl) e BMi x RMi M1
subject to:

J(x) € Rk, A x;+elki—1)<x; <x;+ekj, i=3,...,n (15)

le{1,...,L}

/\{(x')eRkiA§i+e(klf—1)§x;<£i+ek{, i=3,...,n (16)

A x’ = Ax + Bu (17)
Adk:Pk,Rklg(X)+Qk’Rkl’ k=1,...,N (18)
L
A (tl =W + Wo) A (/\ th=wiipl-1 4 wl) (19)
I=2
A (u — whil 4 WL) (20)
L M;
VAR [(hj - tjl) A (tl > 0)] 1)
I=1j=1
L M;
n NN\ -bE— [(hj - o) A (t]l < o)] (22)

where (15)-(16) encode the state space partitions corresponding
to the states s and s”; (17) encodes the dynamics of the robot; (18)
encodes the imaging function that maps the robot position into
LiDAR image; (19)-(22) encodes the neural network controller that
maps the LiDAR image into a control input.

Compared to Mixed-Integer Linear Programs (MILP), monotone
SMC formulas avoid using encoding heuristics like big-M encoding
which leads to numerical instabilities. The SMC decision proce-
dures follow an iterative approach combining efficient Boolean
Satisfiability (SAT) solving with numerical convex programming.
When applied to the encoding above, at each iteration the SAT
solver generates a candidate assignment for the ReLU indicator
variables bjl.. The correctness of these assignments are then checked
by solving the corresponding set of convex constraints. If the con-
vex program turned to be infeasible, indicating a wrong choice of
the ReLU indicator variables, the SMC solver will identify the set of
“Irreducible Infeasible Set” (IIS) in the convex program to provide
the most succinct explanation of the conflict. This IIS will be then
fed back to the SAT solver to prune its search space and provide the
next assignment for the ReLU indicator variables. SMC solvers were
shown to better handle problems (compared with MILP solvers) for
problems with relatively large number of Boolean variables [47].

5.2 Pruning Search Space By Pre-processing

While a neural network with M ReLUs would give rise to 2M com-
binations of possible assignments to the corresponding Boolean



RIGHTS

HSCC *19, April 16-18, 2019, Montreal, QC, Canada

indicator variables, we observe that only several of those combina-
tions are feasible for each workspace region. In other words, the
LiDAR imaging function along with the workspace region enforces
some constraints on the inputs to the neural network which in
turn enforces constraints on the subsequent layers. By performing
pre-processing on each of the workspace regions, we can discover
those constraints and augment it to the SMC encoding (15)-(22) to
prune combinations of assignments of the ReLU indicator variables.

To find such constraints, we consider an SMC problem with the
fewer constraints (15), (18)-(22). By iteratively solving the reduced
SMC problem and recording all the IIS conflicts produced by the
SMC solver, we can compute a set of counter-examples that are
unique for each region. By iteratively invoking the SMC solver
while adding previous counter-examples as constraints until the
problem is no longer satisfiable, we compute the set R-CoNFLICTS
which represents all the counter-examples for region R. Finally, we
add the following constraint:

-C (23)

c€R-CONFLICTS
to the original SMC encoding (15)-(22) to prune the set of possible
assignments to the ReLU indicator variables. In Section 6, we show
that pre-processing would result in several orders of magnitude
reduction in the execution time.

5.3 Correctness of Algorithm 1

We end our discussion with the following results which assert the
correctness of the whole framework described in this paper. We first
start by establishing the correctness of computing the finite state
abstraction S# along with the simulation relation Q as follows:

ProrosITION 5.1. Consider the finite state abstraction Sy =
(F, 6) where F is defined by (11) and d is defined by (13) and com-
puted by means of solving the SMC formulas (15)-(23). Consider also
the system SNy = (X, Onn) where Onn = x — Ax + Bfyn(d(x)). For
the relation Q defined in (12), the following holds: SNy <0 S

Recall that Algorithm 1 applies standard reachability analysis
on S¢ to compute the set of unsafe states. It follows directly from
the correctness of the simulation relation Q established above that
our algorithm computes an over-approximation of the set of unsafe
states, and accordingly an under-approximation of the set of safe
states. This fact is captured by the following result that summarizes
the correctness of the proposed framework:

THEOREM 5.2. Consider the safe set Xsqf, computed by Algorithm 1.
Then any trajectory nx with nx(0) € Xy, is a safe trajectory.

While Theorem 5.2 establishes the correctness of the proposed
framework in Algorithm 1, two points needs to be investigated
namely (i) complexity of Algorithm 1 and (ii) maximality of the
set Xgafe- Although Algorithm 2 computes the imaging-adapted
partitions efficiently (as shown in Theorem 4.4), analyzing a neural
network with ReLU activation functions is shown to be NP-hard.
Exacerbating the problem, Algorithm 1 entails analyzing the neural
network a number of times that is exponential in the number of
partition regions. In addition, floating point arithmetic used by the
SMC solver may introduce errors that are not analyzed in this paper.
In Section 6, we evaluate the efficiency of using the SMC decision

i,

154

X. Sun et al.

Table 1: Scalability results for the WKSP-PARTITION Algo-

rithm
Number of | Number of | Number of | Time
Vertices Lasers Regions [s]
8 111 0.0152
8 38 1851 0.3479
118 17237 5.5300
8 136 0.0245
10 38 2254 0.4710
118 20343 6.9380
8 137 0.0275
38 2418 0.5362
12 120 23347 8.0836
218 76337 37.0572
298 142487 86.6341

procedures to harness this computational complexity. As for the
maximality of the computed X,¢ set, we note that Algorithm 1 is
not guaranteed to search for the maximal Xg,¢..

6 RESULTS

We implemented the proposed verification framework as described
by Algorithm 1 on top of the SMC solver named SATEX [49]. All
experiments were executed on an Intel Core i7 2.5-GHz processor
with 16 GB of memory.

6.1 Scalability of the Workspace Partitioning
Algorithm

As the first step of our verification framework, imaging-adapted
workspace partitioning is tested for numerical stability with in-
creasing number of laser angles and obstacles. Table 1 summarizes
the scalability results in terms of the number of computed regions
and the execution time grows as the number of LiDAR lasers and
obstacle vertices increase. Thanks to adopting well-studied com-
putational geometry algorithms, our partitioning process takes
less than 1.5 minutes for the scenario where a LiDAR scanner is
equipped with 298 lasers (real-world LiDAR scanners are capable
of providing readings from 270 laser angles).

6.2 Computational Reduction Due to
Pre-processing

The second step is to pre-process the neural network. In particular,
we would like to answer the following question: given a partitioned
workspace, how many ReLU assignments are feasible in each region,
and if any, what is the execution time to find them out. Recall that
a ReLU assignment is feasible if there exist a robot position and the
corresponding LiDAR image that will lead to that particular ReLU
assignment.

Thanks to the IIS counterexample strategy, we can find all feasi-
ble ReLU assignments in pre-processing. Our first observation is
that the number of feasible assignments is indeed much smaller
compared to the set of all possible assignments. As shown in Ta-
ble 2, for a neural network with a total of 32 neurons, only 11 ReLU
assignments are feasible (within the region under consideration).



RIGHTS

Formal Verification of Neural Network Controlled Autonomous Systems

Table 2: Execution time of the SMC-based pre-processing as
a function of the neural network architecture.

Number Total Number of Number of Time
of Hidden | Number Feasible Counter- [s]
Layers of Neurons | ReLU Assignments | examples
32 11 60 2.7819
72 31 183 11.4227
92 58 265 18.4807
102 68 364 43.2459
152 101 540 78.3015
172 146 778 104.4720
202 191 897 227.2357
1 302 383 1761 656.3668
402 730 2614 1276.4405
452 816 4325 1856.0418
502 1013 3766 2052.0574
552 1165 4273 4567.1767
602 1273 5742 6314.4890
652 1402 5707 7166.3059
702 1722 6521 8813.1829
22 3 94 1.3180
42 19 481 10.9823
62 35 1692 53.2246
82 33 2685 108.2584
2 102 58 5629 292.7412
122 71 9995 739.4883
142 72 18209 2098.0220
162 98 34431 6622.1830
182 152 44773 12532.8552
32 5 319 5.7227
3 47 7 5506 148.8727
62 45 72051 12619.5353
4 22 9 205 10.4667
42 5 1328 90.1148

Comparing this number to 232 = 4.3E9 possibilities of ReLU assign-
ments, we conclude that pre-processing is very effective in reducing
the search space by several orders of magnitude.

Furthermore, we conducted an experiment to study the scala-
bility of the proposed pre-processing for an increasing number
of ReLUs. To that end, we fixed one choice of workspace regions
while changing the neural network architecture. The execution
time, the number of generated counterexamples, along with the
number of feasible ReLU assignments are given in Table 2. For the
case of neural networks with one hidden layer, our implementa-
tion of the counterexample strategy is able to find feasible ReLU
assignments for a couple of hundreds of neurons in less than 4
minutes. In general, the number of counterexamples, and hence
feasible ReLU assignments, and execution time grows with the
number of neurons. However, the number of neurons is not the
only deciding factor. Our experiments show that the depth of the
network plays a significant role in affecting the scalability of the
proposed algorithms. For example, comparing the neural network
with one hidden layer and a hundred neurons per layer versus the
network with two layers and fifty neurons per layer we notice that
both networks share the same number of neurons. Nevertheless,
the deeper network resulted in one order of magnitude increase
regarding the number of generated counterexamples and one order
of magnitude increase in the corresponding execution time. Inter-
estingly, both of the architectures share a similar number of feasible
ReLU assignments. In other words, similar features of the neural
network can be captured by fewer counterexamples whenever the
neural network has fewer layers. This observation can be accounted

i,

155

HSCC *19, April 16-18, 2019, Montreal, QC, Canada

Table 3: Execution time of the SMC-based pre-processing
as a function of the workspace region. Region indices are
shown in Figure 3.

Region Number of Number of | Time
Index Feasible Counter- [s]
ReLU Assignments | examples
A2-R3 33 2685 108.2584
Al14-R1 55 4925 215.8251
A13-R3 7 1686 69.4158
A1-R1 25 2355 99.2122
A7-R1 26 3495 139.3486
Al12-R2 3 1348 54.4548
A15-R3 25 3095 121.7869
A19-R1 38 4340 186.6428

for the fact that counterexamples that correspond to ReLUs in early
layers are more powerful than those involves ReLUs in the later
layers of the network.

In the second part of this experiment, we study the dependence
of the number of feasible ReLU assignments on the choice of the
workspace region. To that end, we fix the architecture of the neural
network to one with 2 hidden layers and 40 neurons per layer. Ta-
ble 3 reports the execution time, the number of counterexamples,
and the number of feasible ReLU assignments across different re-
gions of the workspace. In general, we observe that the number of
feasible ReLU assignments increases with the size of the region.

6.3 Transition Feasibility

Following our verification streamline, the next step is to compute
the transition function of the finite state abstraction d, i.e., check
transition feasibility between regions. Table 4 shows performance
comparison between our proposed strategy that uses counterex-
amples obtained from pre-processing and the SMC encoding with-
out preprocessing. We observe that the SMC encoding empow-
ered by counterexamples, generated through the pre-processing
phase, scales more favorably compared to the ones that do not take
counterexamples into account leading to 2-3 orders of magnitude
reduction in the execution time. Moreover, and thanks to the pre-
processing counter-examples, we observe that checking transition
feasibility becomes less sensitive to changes in the neural network
architecture as shown in Table 4.

ACKNOWLEDGMENTS

The material presented in this paper is based upon work supported
by the National Science Foundation award number #1845194.

REFERENCES

[1] Wikipedia, “List of autonomous car fatalities,” https://en.wikipedia.org/wiki/List_
of_autonomous_car_fatalities.

A. Ferdowsi, U. Challita, W. Saad, and N. B. Mandayam, “Robust deep reinforce-
ment learning for security and safety in autonomous vehicle systems,” arXiv
preprint, 2018.

T. Everitt, G. Lea, and M. Hutter, “AGI safety literature review,” arXiv preprint,
2018.

M. Charikar, J. Steinhardt, and G. Valiant, “Learning from untrusted data,” in
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing.
ACM, 2017, pp. 47-60.

[2]



HSCC *19, April 16-18, 2019, Montreal, QC, Canada X. Sun et al.

Table 4: Performance of the SMC-based eHCOdlng for com- [23] S. A. Seshia, D. Sadigh, and S. S. Sastry, “Towards verified artificial intelligence,”
puting ¢ as a function of the neural network (timeout = 1 arXiv preprint, 2016.
hour). [24] S. A. Seshia, A. Desai, T. Dreossi, D. Fremont, S. Ghosh, E. Kim, S. Shivaku-
mar, M. Vazquez-Chanlatte, and X. Yue, “Formal specification for deep neural
Number of Total Number Time [s] Time [s] netv&forks,” arXiv'preprint, 2018. .
Hidden Layers | of Neurons | (Exploit Counter- | (Without Counter- (251 J. I:ielskel,‘ Mél\iizrltlc,f\ft. Kga};ovnalth;!A, )(??t;ga‘;”l': Iivzeéllt;’ A Lefrancg, L. Orseau,
and S. Legg, safety gridworlds,” arXiv preprint, .
examples) examples) [26] F. Leofante, N. Narodytska, L. Pulina, and A. Tacchella, “Automated verification
82 0.5056 50.1263 of neural networks: Advances, challenges and perspectives,” arXiv preprint, 2018.
102 7.1525 timeout [27] K. Scheibler, L. Winterer, R. Wimmer, and B. Becker, “Towards verification of
1 112 12.524 timeout artificial neural networks,” in Workshop on Methoden und Beschreibungssprachen
122 18.0689 timeout zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV), 2015,
132 20.4095 timeout pp. 30-40.
22 0.1056 15.8841 [28] G.Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex: An effi-
42 4.8518 timeout cient smt solver for verifying deep neural networks,” in International Conference
62 3.1510 timeout on Computer Aided Verification. Springer, 2017, pp. 97-117.
32 26112 timeout [29] R.Ehlers, “Formal verification of piece-wise linear feed-forward neural networks,”
2 102 11.0984 Himeout in International Symposium on Automated Technology for Verification and Analysis.
122 38860 fmeout Springer, 2017, pp. 269-286.
142 07608 timeont [30] R.Bunel, I Turkaslan, P. H. S. Torr, P. Kohli, and M. P. Kumar, “A unified view of
162 27917 tmeout piecewise linear neural network veriﬁcatio“n,” arXiv preprint, 291&
5 193.6693 tmeout [31] W. Ruan, X. Huang, and M. Kwiatkowska, “Reachability analysis of deep neural
. networks with provable guarantees,” arXiv preprint, 2018.
32 0.3884 3'88'549 [32] S.Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Output range analysis
3 47 0.9034 timeout for deep feedforward neural networks,” in NASA Formal Methods Symposium.
62 59.393 timeout Springer, 2018, pp. 121-138.

[33] L.Pulina and A. Tacchella, “An abstraction-refinement approach to verification
of artificial neural networks,” in International Conference on Computer Aided
Verification. Springer, 2010, pp. 243-257.

[5] J.Steinhardt, P. W. W. Koh, and P. S. Liang, “Certified defenses for data poisoning
attacks,” in Advances in Neural Information Processing Systems, 2017, pp. 3520—

3532. . . L . . [34] V. Tjeng and R. Tedrake, “Verifying neural networks with mixed integer pro-
[6] L. Muifioz-Gonzélez, B. Biggio, A. Demontis, A. Paudice, V. Wongrassamee, E. C. gramming,” arXiv preprint arXiv:1711.07356, 2017
Lupu, and F. Roli, “Towards poisoning of deep learning algorithms with back- [35] T.Gehr, M.)Mirman, D. Drachsler-Cohen, P. "lisankov, S. Chaudhuri, and M. Vechev,

gradient optimization,” in Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security. ACM, 2017, pp. 27-38.
[7] A.Paudice, L. Mufioz-Gonzélez, and E. C. Lupu, “Label sanitization against label [36]
(8] &piﬁfnpaszgﬁiagsﬁk; gﬁ;g rg) rI?ri)le?Llfg and M. Kwiatkowska. “Global safety verification for neural networks with relu activations,” arXiv preprint
. Co > i > > i > arXiv:1712.08163, 2017.
robusines)s( gvaluat¥0;1 ;Oflieep neural networks with provable guarantees for 10 [37] W. Xiang, P. Musau, A. A. Wild, D. M. Lopez, N. Hamilton, X. Yang, J. Rosenfeld,
» Iréor;:i gvrCI:OPGEPYV;f; g and- S. Jana, “Deepxplore: Automated whitebox testing and T. E Johnson, “Verification for machine learning, autonomy, and neural
f e ST > ) . . networks survey,” arXiv preprint arXiv:1810.01989, 2018.
g;gifrf’s l;:li;rcl;;i:ysi[cn& ;x(;l};r(;c;eftnlgss of the 26th Symposium on Operating [38] W. Xiang and T. T. Johnson, “Reachability analysis and safety verification for
N N N 2 > PE- 2788 . neural network control systems,” arXiv preprint arXiv:1805.09944, 2018.
(10] zggziﬁfagizg;ﬁzioﬁgi' i?;’” (E)re)?ilw)/t;srzpjr\il:ztt(’;:;tii?];;?lorggjgi t;;?;—neural— [39] R Ivan(?v, J. Weimgr, R. Alur, G J. Pappas, and L. Lee, “Verisig”: Averifying §afety
(11] M. Wicker, X. Huang, and M Kwia;kowska “Feature-euided biack—bl)x @ fét test- properties of hybrid systems with neural network controllers,” in Proceedings of
) > & ’ > g Y the 22nd International Conference on Hybrid Systems: Computation and Control

“Ai 2: Safety and robustness certification of neural networks with abstract inter-
pretation,” in Security and Privacy (SP), 2018 IEEE Symposium on, 2018.
W. Xiang, H.-D. Tran, and T. T. Johnson, “Reachable set computation and

ing of deep neural networks,” in International Conference on Tools and Algorithms (HSCC), to appear. ACM, 2019

f orsthe Constructwn(;md Analy sis o‘]‘? 4 sz.femz. Sprmgelr, 2018, EP . 4087426' . [40] M.E. Akintunde, A. Lomuscio, L. Maganti, and E. Pirovano, “Reachability analysis
(12] g('n;n’ X. Huang, and D. Kroening, "Testing deep neural networks,” arXiv preprint, for neural agent-environment systems,” in Proceedings of the Sixteenth Interna-

: tional C Principl Knowledge R tati d R ing (KR

[13] L. Ma, F. Juefei-Xu, J. Sun, C. Chen, T. Su, F. Zhang, M. Xue, B. Li, L. Li, Y. Liu, 2’51”8“) ‘Xf/{f";g&" rinciples of Knowledge Representation and Reasoning (i

J. Zha_o, and Y. Wz.mg, ‘Deepgauge: Comprehensive _and multi-gr’z’inulalfity testi}"ng [41] G. Frehse, C. L Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,

criteria for gauging the robustness of deep learning systems” arXiv preprint, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable verification of hybrid systems,”

2018.

in International Conference on Computer Aided Verification (CAV). Springer, 2011,
Pp. 379-395.

[42] X. Chen, E. Abraham, and S. Sankaranarayanan, “Flow*: An analyzer for non-
linear hybrid systems,” in International Conference on Computer Aided Verification
(CAV).  Springer, 2013, pp. 258-263.

[43] C.E. Tuncali, J. Kapinski, H. Ito, and J. V. Deshmukh, “Reasoning about safety
of learning-enabled components in autonomous cyber-physical systems,” in
Proceedings of the 55th Annual Design Automation Conference (DAC). ACM,
2018.

[44] X. Sun, H. Khedr, and Y. Shoukry, “Formal verification of neural network con-
trolled autonomous systems,” arXiv preprint arXiv:1810.13072, 2018.

[45] A. Krizhevsky, L. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing
systems, 2012, pp. 1097-1105.

[46] Y. Shoukry, P. Nuzzo, A. L. Sangiovanni-Vincentelli, S. A. Seshia, G. J. Pappas,
and P. Tabuada, “SMC: Satisfiability Modulo Convex optimization,” in Proceedings
of the 20th International Conference on Hybrid Systems: Computation and Control
(HSCC).  ACM, 2017, pp. 19-28.

[47] ——, “Smc: Satisfiability modulo convex programming [40pt],” Proceedings of the
IEEE, vol. 106, no. 9, pp. 1655-1679, 2018.

[48] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars, Computational geometry:
algorithms and applications. ~Springer-Verlag TELOS, 2008.

[49] (2018, Jun.) SatEX Solver. [Online]. Available: https://yshoukry.bitbucket.io/
SatEX/

[14] J. Wang, J. Sun, P. Zhang, and X. Wang, “Detecting adversarial samples for deep
neural networks through mutation testing,” arXiv preprint, 2018.

[15] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li, Y. Liu, J. Zhao,
and Y. Wang, “Deepmutation: Mutation testing of deep learning systems,” arXiv
preprint, 2018.

[16] S. Srisakaokul, Z. Wu, A. Astorga, O. Alebiosu, and T. Xie, “Multiple-

implementation testing of supervised learning software,” in Proceedings of the

AAAI-18 Workshop on Engineering Dependable and Secure Machine Learning Sys-

tems (EDSMLS), 2018.

M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad: Gan-based

metamorphic autonomous driving system testing,” arXiv preprint, 2018.

[18] Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and D. Kroening, “Concolic
testing for deep neural networks,” arXiv preprint, 2018.

[19] T. Dreossi, A. Donzé, and S. A. Seshia, “Compositional falsification of cyber-
physical systems with machine learning components,” in NASA Formal Methods
Symposium.  Springer, 2017, pp. 357-372.

[20] C.E. Tuncali, G. Fainekos, H. Ito, and J. Kapinski, “Simulation-based adversarial

test generation for autonomous vehicles with machine learning components,”

arXiv preprint arXiv:1804.06760, 2018.

Z. Zhang, G. Ernst, S. Sedwards, P. Arcaini, and 1. Hasuo, “Two-layered falsifica-

tion of hybrid systems guided by monte carlo tree search,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 2018.

[22] Z.Kurd and T. Kelly, “Establishing safety criteria for artificial neural networks,”
in International Conference on Knowledge-Based and Intelligent Information and
Engineering Systems.  Springer, 2003, pp. 163-169.

(17

[21

156

RIGHTSE LI MN iy



