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Abstract— This research focuses on studying the scattering 

phenomenon. Scattering electromagnetic waves from a rotating 

conducting cylinder is investigated when the material of the 

conducting cylinder is linear, homogeneous, isotropic, and 

dispersive. This study is an extension of a previous work that 

investigated the effect of the rotating conducting cylinder on the 

scattered phase and amplitude, when the material of the 

conducting cylinder is linear, homogeneous, isotropic, and 

nondispersive. One of the important result of the previous work 

is that the Franklin transformation is a proper and more 

accurate method to calculate the effect of the rotation, and gives 

more accurate results than Galilean transformation. In this 

research, the Franklin transformation will be used to investigate 

the effect of the rotation of the object on the scattered phase and 

magnitude of the incident waves. The two types of incident 

waves (E-wave and H-wave) will be considered herein. The 

simulation results will clearly display the behavior of the 

scattered phase and magnitude with changes to the incident 

frequency, the speed of rotation, and the radius of the very good 

conducting cylinder. Moreover, this result is compared with the 

result of the previous work (non- dispersive material) to show 

the behavior of the scattered phase and magnitude when the 

incident frequency, speed of the rotation and radius of the very 

good conducting cylinder is changed. 

Keywords—rotating, scattered field, dispersive, nondispersive, 

scattered phase, scattered amplitude 

I. INTRODUCTION (HEADING 1) 

This work sustains past efforts that investigated the effects 
of the rotation of the very good conducting cylinder on the 
scattered phase and magnitude [1]. The material of the very 
good conducting cylinder was linear, homogeneous, isotropic, 
and nondispersive. In other words, the constitutive parameters 

of the conducting material, permittivity   , permeability 

  , and conductivity   are not functions of the applied 

field, the position, the direction of the applied field, and the 
frequency[2]. This simulation helps to create a new model to 
simulate the effect of rotation of the complex object on the 
scattered field. This model is used to develop the capability of 
the radar system to create accurate information about the 
scatterer [3]. In this paper, the Franklin transformation is used 

to calculate the constitutive relations in the instantaneous 
frame (rotating frame) [4].  It is considered that the material 
of the very good conducting cylinder is linear, homogeneous, 
isotropic, and dispersive. Dispersive means the constitutive 
parameters are changed when the incident frequency is 
changed. The only one change in the properties of the very 
good conducting material in comparison with the previous 

work is that the constitutive parameters    ,    , and 

    are a function of the incident frequency. The Drude 

model is used to determine the relative permittivity  r  , 

the relative permeability  r
  , the conductivity    , 

and the refractive index  n  [5]. Finally, the simulation 

result is compared with the previous result to see the effect of 
the dispersive conducting material on the scattered phase and 
magnitude.            

II. SCATTERING FIELDS 

In this section, the scattering of both types of polarization 
of the incident waves (E- wave and H-wave) from a rotating 
very good conducting cylinder are investigated. The accurate 
method to find relation between fields in the laboratory frame 
and the rotating frame is Franklin transformation that is 
defined as [4] 
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where r c  , c is speed of light,   is the angular 

velocity, and r  is the radius of the very good conducting 
cylinder. The constitutive relations in the instantaneous 
inertial frame are defined as 

  D E     (3) 

  B H     (4) 



  J E   ,  (5) 

where E, H, D, B, and J are the electric field, the magnetic 
field, the electrical flux density, the magnetic flux density and 
the current density respectively. The Drude model defined the 
complex permittivity, the complex permeability, the complex 
conductivity, and the complex refractive index as following  
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where 
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m



 , em  is the mass of the charge, q  is 

the amount of the charge, o  is the vacuum electric 

permittivity, and   is the damping coefficient. The 
corresponding constitutive relations in the laboratory frame 
are 
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where  tanhs  , 
0.5

21 s

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A. E-wave (TM mode) 

In the case of the E-wave, the geometry of the rotating very 
good conducting cylinder is shown in the fig. 1. It is shown 

that the direction of the electric filed is parallel to the axes of 
rotation of the very good conducting cylinder. Since the 
direction of the incident wave is in x-axes, so the magnetic 
component is in negative y-axes. The incident electric field is 
given by [6] 
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where  k c  is the wave number. The form of the 

Maxwell’s equations inside the conducting cylinder are 
written as 
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Substituting (10)-(14) into (18)-(20) gives 
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Equation (21) is known a Bessel type equation and its 
solution is given as[7] 
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where zE  the electric field inside the very good conducting 

cylinder and enA   is the constant coefficient. The scattered 

electric field can be written as 
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where enB  is the scattered coefficient. The boundary 

conditions are applied at r a  to find the unknown 

coefficients as following [8] 
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 Combining (17), (22), and (23) with the Maxwell’s 
equations in the laboratory frame gives 
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Solving (26) and (27) for enB  and enA  yields 
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Fig. 1 Scattering of E-wave 



In the case of the TM mode, the scattering coefficient that is 

defined by (28) does not function on the angular velocity 
. In other words, the scattering of the rotating very good 
conducting cylinder is similar to the stationary case.  

B. H-wave (TE mode) 

In this case, the axes of rotation of the very good 
conducing cylinder is z-axes as shown in Fig. 2. It is seen that 
the direction of the component of the magnetic field is parallel 
to the axes of rotation. According to the Maxwell’s equations, 

the direction of the electric field is in y-axes because the 
direction of the propagating wave is in x-axes. The incident 
magnetic field is given by 

  i jkx n jn

z nH e j J kr e



 



  .  (30) 

Maxwell's equations are defined as [9] 
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Substitution (10)-(16) into (30)-(33) gives 
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Equation (34) is the Bessel type, so its solution is [7] 
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where hnA  is the constant coefficient. The scattered 

magnetic field is found as 
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where 
hnB  is the scattering coefficient. The unknown 

coefficients are determined by using boundary conditions as 
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  where 
s  is surface charge density. Substituting (30), (35), 

and (36) into (37) and (38) gives 
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When (39) and (40) are solved for hnB  and hnA , the final 

solution is  
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In the case of H-wave, the angular velocity   showed up 

in the terms of the scattering coefficient hnB as shown in (41)

. It can be concluded that the effect of the rotation on the 
scattered fields is more evident in the case of H-wave than E-
wave.    

III. SIMULATION RESULT 

In this section, the pattern of the phase and magnitude of 
the backscattered fields are shown in both polarizations when 
the frequency of the incident waves is varied at different 

values of a

a
c

   and a .Also, these simulation results 

are compared with the previous results to see the effect of the 
characteristics of the material of the rotating very good 
conducting cylinder on the scattered phase and magnitude.      

A. TM mode 

The backscattered electric field in the far field region is 
define by  

  1
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where 
en

B  is the scattering coefficient and given by (28). 

It is clearly seen that the backscattered phase and magnitude 
of the rotation case is similar to the stationary case as show in 
Fig. 3 and 4. It can be said that the effect of rotating the very 
good conducting cylinder in the case of dispersive material is 
vanished in the case of E-wave. In comparison with previous 
work (non-dispersive material), the scattered field is not 
affected by the rotation of the very good conducting cylinder. 
That means both cases (dispersive, and non-dispersive) give a 
similar result. 

 

 

 
 

Fig. 2 Scattering of H-wave 



 

 

B. TE mode 

In the case of H-wave, the far magnetic field is written as  
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where 
hn

B  is the scattering coefficient and defined by (41). 

The simulation result shows that the backscattered phase and 
magnitude are affected by the rotation of the very good 
conducting cylinder. Figs. 5 and 7 show periodic pulses 
during the rotation of the conducting cylinder. Equation (41) 

shows that  the scattering coefficient 
hn

B depends upon the 

rotation velocity   and the radius of the cylinder  a . 

When 0.005a   and 0.03a  , the period of the pulses 

is 3GHz as shown in Fig. 5. When the speed of rotation is 

increased  0.009a  , the period of the periodic pulses 

is increased (5.4 GHz) as shown in Fig. 7. In contrary, the 
period of these periodic pulses is decreased when the radius 

of the very good conducting cylinder is increased as shown 

in Figs. 7 and 9. When 0.009a  and 0.09a m , the 

period of the pulses is 1.8 GHz as shown in Fig. 7. The peaks 

of the pulses approached 0.8 GHz when the radius  a  is 

increased to 0.2m . The backscattered phase of the rotation 

case shows a similar pattern to the backscattered magnitude 
as shown in Figs. 6, 8, and 10. In other words, the 
backscattered phase shows a periodic pulse in comparison 
with stationary case. It is found that the relation between the 

rotation frequency
2

r
f


  

 
and the period frequency 

 p
f  is equal to  0.0026

2
ar

p p

cf

f f a




  . This ratio is 

unique for this kind of dispersive material. In comparison 
with the previous result (non-dispersive), the backscattered 
phase and magnitude was affected by the rotation [10]. This 
effect is shown as a sinusoidal behavior of the backscattered 
phase. The period of this sinusoidal pattern is decreased when 
the rotation of the very good conducting cylinder is increased. 
Also, the backscattered magnitudes showed a periodicity, 
especially in higher frequencies.  

 
 

Fig. 3 Magnitude of the backscattered electric field  

 
 

Fig. 4 Phase of the backscattered Electric field 

 
 

Fig. 5 Magnitude of the backscattered magnetic field 

 
Fig. 6 Phase of the backscattered magnetic field 

 



 

The magnitude of the backscattered field is generated with 

0.009
a

   , 6.45f GHz  , 0.05a m  . The black 

line represents the cylinder when it is stationary, while the red 
and blue lines represents the Galilean and Franklin 
transformations respectively. In comparison to the previous 
result, the effect of the rotating very good conducting cylinder 
in the case of dispersive material is primarily seen in the side 
lobes of the forward facing backscattered field. The minor 
shift is happening in the primary lobe. The shifting of both the 
primary and side lobes happened in the direction of rotation as 
shown in Fig 11 and 12. The Galilean transformation, like the 
previous result, did not exhibit the same behavior as the 
Franklin transformation. The effect of rotation, in the case of 
dispersive material, is only seen at the peak frequencies of the 
pulses.  
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Fig. 7 Magnitude of the backscattered magnetic field 

 

 
Fig. 8 Phase of the backscattered magnetic field 

 

 
Fig. 9 Magnitude of the backscattered magnetic field 
 

 
Fig. 10 Phase of the backscattered magnetic field 

 

 
Fig. 11 Incident H-wave immersed, very good 

conducting cylinder  0.009a    

 
 

 
 

Fig.12 Incident H-wave immersed, very good 

conduction cylinder  0.009a     



IV. CONCLUSION 

This research investigated the backscattered field of 
a rotating dispersive very good conducting cylinder. The 
cylinder was made of linear, homogenous, dispersive, and 
isotropic material. This investigation expands on a previous 
work in the case of a non-dispersive rotating very good 
conducting cylinder. This investigation shows that there is a 
difference that is more evident in the rotating case than in the 
stationary case. This difference can be seen more in the case 
of the incident H-wave than in the incident E-wave. In TE 
mode, this effect is shown as periodic pulses where the period 
of these pulses is increased when the rotation of the dispersive 
very good conducting cylinder is increased. Also, this period 
is decreased when the radius of the dispersive very good 
conducting cylinder is increased. In comparison to the 
previous work, where the results took the form of a sinusoidal 
wave for the backscattered phase, and the backscattered 
magnitude showed periodicity (especially at higher 
frequencies). In the case of TM-mode, there is no difference 
between dispersive and non-dispersive rotating very good 
conducting cylinders. That means the stationary case is the 
same as the rotation case. Future work will include 
investigating the effect of a moving (rotation and translation) 
dispersive very good conducting cylinder on the 
backscattered phase and magnitude. Also, a new model will 
be created using the backscattered field data to simulate 
rotation and translation. 
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