
Evaluating the impact of traffic volume on air quality in South

Carolina

Gurcan Comert a, Samuel Darko a, Nathan Huynh b,⇑, Bright Elijah a, Quentin Eloise a

aComputer Science, Physics, and Engineering Department, Benedict College, Columbia, SC 29204, USA
bCivil and Environmental Engineering Department, University of South Carolina, Columbia, SC 29208, USA

a r t i c l e i n f o

Article history:

Received 13 February 2019

Received in revised form 24 May 2019

Accepted 28 May 2019

Available online 7 June 2019

Keywords:

Air quality index

Annual average daily traffic

Emissions

Grey systems

Multilevel linear models

a b s t r a c t

Many studies have reported associations between respiratory symptoms and resident

proximity to traffic. However, only a few have documented information about the relation-

ship between traffic volume and air quality in local areas. This study investigates the

impact of traffic volume on air quality at different geographical locations in the state of

South Carolina using multilevel linear mixed models and Grey Systems. Historical traffic

volume and air quality data between 2006 and 2016 are obtained from the South

Carolina Department of Transportation (SCDOT) and the United States Environmental

Protection Agency (EPA) monitoring stations. The data are used to develop prediction mod-

els that relate Air Quality Index (AQI) to traffic volume for selected counties and schools.

For the counties, two models are developed, one with Ozone (O3) and one with PM2:5 as

the dependent variable. For the schools, only one model is developed, with O3 as the depen-

dent variable. The number of counties and schools studied are limited by the availability of

air monitoring stations dedicated to measuring O3 and PM2:5. Several types of models were

investigated. They include linear regression model (LM), linear mixed-effect regression

model (LMER), Grey Systems (GM), error corrected GM (EGM), Grey Verhulst (GV), error

corrected GV (EGV), and LMER + EGM. The LM model produced the least accurate estimate

while the LMER + EGM model produced the most accurate estimate (average RMSE is less

than 5%). The models’ estimates suggest that air quality in South Carolina will continue to

get worse in the coming years due to increasing AADT. An interesting finding of this study

is that some counties and schools will have higher levels of O3 or PM2:5 when AADT

decreases. This finding suggests that there are other factors, other than AADT, that influ-

ence the air quality in these counties and schools.

� 2019 Tongji University and Tongji University Press. Publishing Services by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Studies have indicated vehicle emissions as a primary source of ambient air pollutants in urban areas. Over the past dec-

ade, traffic volume has been observed to be steadily rising without any sign of decline. Previous studies have established

associations between respiratory diseases and/or symptoms such as asthma with residential proximity to major roads with

high traffic volume (Gauderman et al., 2005; McConnell et al., 2010). Studies have also shown higher rates of morbidity and
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mortality for drivers, commuters and individuals living near major roadways (e.g., Wjst et al., 1993; Zhang and Batterman,

2013). Exposure to traffic-related air pollution has been linked to a variety of short-term and long-term health effects,

including asthma, reduced lung function, impaired lung development in children, and cardiovascular effects in adults, as well

as academic performance (Brunekreef et al., 1997; Rakowska et al., 2014). The exposure of children to traffic-related air pol-

lution while at school is a growing concern because many schools are located near heavily traveled roadways (e.g., Janssen

et al., 2003; Janssen et al., 2001; Mohai et al., 2011; Adams and Requia, 2017; Mohammadyan et al., 2017). Pollutants such as

ozone (O3) and PM2:5 are known to cause serious respiratory defects (Guarnieri and Balmes, 2014). Ground ozone (O3) is

formed when NO2 reacts with VOC in the presence of heat from sunlight. PM2:5 is composed of particulate matter with diam-

eter of 2.5 micrometers (lms) or smaller.

To date, only a few studies have investigated the relationship between traffic volume and AQI. To this end, this study aims

to develop predictive models that relate air quality in the form of Air Quality Index (AQI) to traffic volume, specifically, the

annual average daily traffic (AADT). AQI is a numeric value ranging from 0 to 500 used for reporting daily air quality. An AQI

value of 50 or below represents good air quality. It should be noted that in this study we are assessing the impact of traffic

volume on air quality at a macroscopic level. This approach is similar to the work by de Miranda et al. (2017) who studied the

relationship between black carbon and heavy traffic in Sao Paulo, Brazil and by Hao et al. (2018) who evaluated the environ-

mental impact of traffic congestion. Alternatively, air quality, or emissions can be more accurately determined at a micro-

scopic level by using a traffic microsimulation software such as VISSIM and the U.S. EPA MOVES model. Examples of such

studies include the work of Abou-Senna et al. (2013) who used VISSIM and MOVES to predict emissions from vehicles on

a limited-access highway, Xu et al. (2016) who developed a tool to combine VISSIM and MOVES to estimate vehicle emis-

sions for a corridor or network and Shaaban et al. (2019) who used VISSIM and MOVES to assess the impact of converting

roundabouts to traffic signals on vehicle emissions along an urban arterial. The EPA MOVES model uses the Vehicle Specific

Power (VSP) framework to characterize modal emission rates. VSP was first developed by Jimenez-Palacios (1998). This

framework allows MOVES to be applied to any transportation network (as long as VSP data are available), including those

outside the U.S. The MOVES model has been used in other countries such as China, India, Mexico, Qatar, and Brazil. The mod-

els are developed using the traffic data from 19 South Carolina counties that are selected based upon the availability of EPA

air monitoring stations.

To our knowledge, no such study has correlated the impact of AADTs on AQIs in South Carolina. Such models can be used

by various agencies, urban planners, and developers to identify suitable locations for K-12 schools and hospitals and to gen-

erate environmental policies. For example, in Atlanta Georgia, the Clean Air Act requires areas with poor air quality (non-

attainment areas) to have transportation plans that are consistent with air quality goals and standards (Howitt and

Moore, 1999; Hallmark et al., 2000). In this study, the Grey models based on Grey System theory are utilized and they

are compared against regression models. This approach is adopted because it is known to be capable of handling datasets

with missing independent variables (Liu et al., 2010). Additionally, Grey models can be used to model systems that are

non-stationary and nonlinear. The performance of Grey models against back propagation neural network (NN) and radial

basis function was evaluated by An et al. (2012), and the authors found that the Grey model performed better in predicting

monthly average daily traffic volume. Similarly, Gao et al. (2010) found that Grey models outperformed support vector

machine (SVM) and artificial NN models in predicting average hourly volumes. Compared to NN and SVM, Grey models

can handle low sample size and do not require as much computational power. This study is the first to apply Grey models

to predict emissions.

The remainder of this paper is organized as follows. Section 2 provides a description of the data. Sections 3–3.3 discuss

the modeling techniques used in the study: multiple linear regression, multilevel linear regression, and Grey Systems. Sec-

tion 4 presents the model validation results. Lastly, Section 5 provides concluding remarks and future research directions.

2. Data description

The data used in this study are obtained from the South Carolina Department of Transportation (SCDOT) and the United

States Environmental Protection Agency (EPA) websites. Fig. 1 shows the 29 locations of EPA monitoring stations located

throughout the state of South Carolina. The South Carolina Department of Health and Environmental Control has stations

that monitor CO;NO2;O3; PM2:5; PM10 and SO2 throughout the state. However, not every county has sensors that monitored

all of these pollutants. Only O3 and PM2:5 are available for every county in the state. Therefore, air quality is limited to just

O3 and PM2:5 in this study. In developing the county-level models, data from all monitoring stations are used. For the school-

level models, only those schools with nearby EPA monitoring stations and those that are adjacent to major roadways with

high traffic volume are considered. Only 7 schools in South Carolina met these criteria.

Table 1 shows the emissions and AADT data obtained for 19 South Carolina Counties and selected schools in 2006. Note

that the AADT shown in Table 1 represents the average AADT, taken from several count stations located in the proximity of

EPA monitoring stations. Similar data were obtained up to 2016, for a total of 11 years. The datasets from EPA tend to contain

missing data. To deal with this issue, missing data are treated with mixture models and are imputed using R-package

(Gelman et al., 2015). Fig. 2 shows the utilized dataset before and after the missing data imputation. The black regions rep-

resent missing data that were subsequently imputed. The color in Fig. 2 denotes standardized values via transformation of

( x� lx

� �
=2rx) of the observations.
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In Fig. 3, average O3 and PM2:5 measurements for multiple years are shown. It can be seen that ozone levels can be

expressed as a multilevel model with different coefficients for each county, and it can also be expressed as a single-

parameter model with a covariance matrix of counties. Note that these emission values are averaged annually and they

are assumed to be representative of the air quality level over the entire county and school.

3. Methods

To determine air pollutant variation with respect to AADT for each of the selected schools in South Carolina, mixed effect

multilevel linear regression models as well as multiple linear regression models are utilized. It was observed that AADT is

highly correlated to vehicle-miles travelled (VMT), as shown in Fig. 4. For this reason and due to the fact that AADT data

are much more readily available, AADT is used in the developed models instead of VMT. They can be simply expressed as

additive models z � AADT þ Year þ Countyþ e, where the response variables z are O3 or PM2:5 levels, the covariates are AADT

and Year, and the factors are counties and schools. For the multiple linear regression model, the coefficients of AADT and

Year are fixed regardless of county or school, whereas in the multilevel model, the coefficients of AADT and Year are variable.

Similarly, the error term e is assumed to be fixed for the multiple linear regression model and variable for the multilevel

model. However, this assumption can be relaxed by selecting an appropriate correlation structure and/or using a more

sophisticated parameter estimation method.

In the classic regression modeling approach, the following assumptions need to be met: (1) normality of the residuals, (2)

constant variance of the errors, (3) correlation of the errors, and (4) nonlinearity of the predictors. In this study, visual diag-

nostics was performed to ascertain that these assumptions are met. From Fig. 5, it can be observed that residuals do not exhi-

bit any pattern and most of the quantile-quantile (Q-Q) plots follow a straight line. Therefore, homogeneous variance and

normality can be assumed. No autocorrelation of errors were observed; however, if there were, the GMs can handle corre-

lated error structure. In addition, regression models are able to handle geographic variations through hierarchical structure.

Due to the temporal and spatial nature of the data, this study adopts the combined, LMER + GM, modeling approach as sug-

gested by Clements and Harvey (2010).

3.1. Simple linear regression models

For the county-level model, multiple linear regressions as shown in Eq. (1) with ordinary least squares estimators were

fitted using data from 2006 to 2012; note that the data set are split into two sets, one for model estimation (2006–2012) and

one for model validation (2013–2016).

Fig. 1. EPA Stations (star = PM2:5 , circle = O3) and nearby schools (numbered marker).
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z ¼ bþ b1x1 þ b2xt2þ ci þ e ð1Þ

where z is either O3 or PM2:5 level, x1 is years, x2 is AADT and c is county (i = 1; . . . ;19) and e � N 0;r2
z

� �
is white noise error.

The school-level model has a similar specification.

These models are estimated using the lm package in R. Table 2 provides the estimated coefficients and p-values for 3 lin-

ear regression models, O3 for counties and schools, and PM2:5 for counties. These models do not have intercepts. Their R2 val-

ues are 0:989;0:986 and 0:996%, respectively. Only the AADT coefficient for the school-level model is not statistically

significant. However, since AADT has been shown to be a significant covariate in past studies and also in the county-level

model of this study, it is retained in the model.

3.2. Multilevel linear regression models

Hierarchical, multilevel, or linear mixed-effect regression models (LMER) can address the changes of covariates (AADT

and Year) with respect to different factors (i.e., counties and schools). The LMER specification for counties is shown in Eq. (2).

z ¼ b0 þ b1x1 þ b2x2 þ yi b0i þ b1ix1 þ b2ix2 þ ei½ � ð2Þ

where z is either O3 or PM2:5 level, x1 is years, x2 is AADT, yi 2 0;1½ � are indicator variables, i=1; . . . ;19 corresponds to counties,

and ei � N 0;r2
i

� �
is white noise error. The LMER specification for schools is similar.

These models were fitted using the lme4 package in R which uses the maximum likelihood (ML) and restricted maximum

likelihood estimation (REML) where ML assumes normality and independence (Bates et al., 2015; Gałecki and Burzykowski,

2013) and REML assumes independent observations with homogeneous variance. Table 3 provides the estimated coefficients

and p-values for the LMER models. In Table 3, the ”Fixed” estimate corresponds to the first three terms of Eq. (2). The county

or school estimate corresponds to the additive effect (fourth term) of Eq. (2).

Table 1

O3 and PM2:5 AQIs with Traffic counts for different counties and schools.

Year. O3 PM2:5 Avg. AADT County Missing O3 Missing PM2:5

2006 56 40 1561 Abbeville FALSE TRUE

2006 53 52 5573 Aiken FALSE FALSE

2006 42 43 5280 Anderson FALSE TRUE

2006 48 53 2247 Barnwell FALSE TRUE

2006 41 42 7429 Beaufort TRUE FALSE

2006 38 59 8959 Berkeley FALSE TRUE

2006 48 48 14842 Charleston FALSE FALSE

2006 45 50 5108 Cherokee FALSE TRUE

2006 49 30 3448 Chester FALSE TRUE

2006 45 51 2226 Chesterfield FALSE FALSE

2006 45 53 3823 Colleton FALSE TRUE

2006 54 57 3017 Darlington FALSE TRUE

2006 39 49 1768 Edgefield FALSE FALSE

2006 65 47 6550 Florence TRUE FALSE

2006 45 47 4632 Georgetown TRUE FALSE

2006 45 59 9759 Greenville TRUE FALSE

2006 37 44 9382 Horry TRUE FALSE

2006 48 55 8946 Lexington TRUE FALSE

2006 43 41 3836 Oconee FALSE FALSE

2006 53 38 5023 Pickens FALSE TRUE

2006 52 53 11772 Richland FALSE FALSE

2006 63 52 7168 Spartanburg FALSE FALSE

2006 53 22 2218 Union FALSE TRUE

2006 45 43 1763 Williamsburg FALSE TRUE

2006 47 52 7237 York FALSE TRUE

Year School O3 Avg. AADT

2006 (1) Dent Middle School 48 16900

2006 (2) Dixie High School 56 550

2006 (3) Jackson Middle School 53 4283

2006 (4) Spring Valley High School 59 22150

2006 (5) WE Parker Elementary School 39 900

2006 (6) Westgate Christian School 63 3525

2006 (7) Wilson High School 54 4267
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3.3. Grey systems and its modifications

Grey systems are especially suited for datasets with low number of observations, as is the case in this study. The Grey

Systems theory was developed by Deng in 1982 (Ju-Long, 1982) and since then it has become the preferred method to study

and model systems in which the structure or operation mechanism is not completely known (Deng, 1989). Grey System the-

ory applications have been applied mainly in the area of finance (Kayacan et al., 2010). Its application in transportation is

limited; examples include prediction of number of accidents and pavement degradation (Gao et al., 2010; An et al., 2012;

Liu et al., 2014).

According to the Grey Systems theory, the unknown parameters of the system are represented by discrete or continuous

Grey numbers encoded by the symbol �. The theory introduces a number of properties and operations on the Grey numbers

such as the core of the number �̂, its degree of Greyness g�, and whitenization of the Grey number. The latter operation gen-

erally describes the preference of the number towards the range of its possible values (Liu et al., 2010).

In order to model time series, the theory suggests a family of Grey models, where the basic one is the first order Grey

model with one variable, will be referred to as GM(1,1). The principles and estimation of GM(1,1) is briefly discussed here;

readers are referred to Deng (1989) for additional information. Suppose that X 0ð Þ ¼ x 0ð Þ 1ð Þ; x 0ð Þ 2ð Þ; . . . ; x 0ð Þ nð Þ
� �

denotes a

sequence of non-negative observations of a stochastic process and X 1ð Þ ¼ x 1ð Þ 1ð Þ; x 1ð Þ 2ð Þ; . . . ; x 1ð Þ nð Þ
� �

is an accumulation

sequence of X 0ð Þ computed as in Eq. (3).

x 1ð Þ kð Þ ¼
Xk

i¼1

x 0ð Þ ið Þ ð3Þ

then (4) defines the original form of the GM(1,1).

x 0ð Þ kð Þ þ ax 1ð Þ kð Þ ¼ b ð4Þ

Fig. 2. Imputation of Missing Data Using Gaussian Mixtures.
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Fig. 3. Correlation matrices of AQIs for different counties, schools, AADT and year.
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Let Z 1ð Þ ¼ z 1ð Þ 2ð Þ; z 1ð Þ 3ð Þ; . . . ; z 1ð Þ nð Þ
� �

be a mean sequence of X 1ð Þ calculated by formula Eq. (5) and defined for k ¼ 2;3; � � � ;n

z 1ð Þ kð Þ ¼
z 1ð Þ k� 1ð Þ þ z 1ð Þ kð Þ

2
ð5Þ

Eq. (6) gives the basic form of GM(1,1).

x 0ð Þ kð Þ þ az 1ð Þ kð Þ ¼ b ð6Þ

If â ¼ a; bð Þ
T
and

Y ¼

x 0ð Þ 2ð Þ

x 0ð Þ 3ð Þ

.

.

.

x 0ð Þ nð Þ

2

66664

3

77775
; B ¼

z 1ð Þ 2ð Þ 1

z 1ð Þ 3ð Þ 1

.

.

. .
.
.

z 1ð Þ nð Þ 1

2

66664

3

77775
:

then, as in Liu and Lin (2006), the least squares estimate of the GM(1,1) model is â ¼ BTB
� ��1

BTY and Eq. (7) is the whiteniza-

tion equation of the GM (1,1) model (GM).

dx
1ð Þ

dt
þ ax 1ð Þ kð Þ ¼ b ð7Þ

Suppose that x̂ 0ð Þ kð Þ and x̂ 1ð Þ kð Þ represent the time response sequence (the forecast) and the accumulated time response

sequence of GM at time k respectively. Then, the latter can be obtained by solving Eq. (7):

x̂ 1ð Þ kþ 1ð Þ ¼ x 0ð Þ 1ð Þ �
b

a

� �
e�ak þ

b

a
; k ¼ 1;2; . . . ;n ð8Þ

According to the definition in Eq. (3), the restored values of x̂ 0ð Þ kþ 1ð Þ are calculated as x̂ 1ð Þ kþ 1ð Þ � x̂ 1ð Þ kð Þ:

x̂ 0ð Þ kþ 1ð Þ ¼ 1� eað Þ x 0ð Þ 1ð Þ �
b

a

� �
e�ak; k ¼ 1;2; . . . ;n ð9Þ

Eq. (9) gives the method to produce forecasts for all k in 2;3; . . . ;n. However, for longer time series, a rolling GM is preferred.

The rolling model observes a window of a few sequential data points in the series: x 0ð Þ kþ 1ð Þ; x 0ð Þ kþ 2ð Þ; . . . ; x 0ð Þ kþwð Þ,

where w P 4 is the window size. Then, the model forecasts one or more future data points: x̂ 0ð Þ kþwþ 1ð Þ; x̂ 0ð Þ kþwþ 2ð Þ.

The process repeats for the next k.

Fig. 4. Correlation between average VMT and average AADT.
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3.4. The Grey Verhulst model (GV)

The response sequence Eq. (9) implies that the basic GM works best when the time series exhibits a steady growth or

decline and may not performwell when the data has oscillations or saturated sigmoid sequences. For the latter case, the Grey

Verhulst model (GV) is generally used (Liu et al., 2010). The basic form of the GV is shown in Eq. (10).

x 0ð Þ kð Þ þ az 1ð Þ kð Þ ¼ b z 1ð Þ kð Þ
� �2

ð10Þ

The whitenization equation of GVM is:

dx
1ð Þ

dt
þ ax 1ð Þ ¼ b x 1ð Þ

� �2
ð11Þ

Fig. 5. Diagnostics for the linear models.
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Similar to the GM(1,1), the least squares estimate is applied to find â ¼ BTB
� ��1

BTY , where

Y ¼

x 0ð Þ 2ð Þ

x 0ð Þ 3ð Þ

.

.

.

x 0ð Þ nð Þ

2

66664

3

77775
; B ¼

�z 1ð Þ 2ð Þ z 1ð Þ 2ð Þ2

�z 1ð Þ 3ð Þ z 1ð Þ 3ð Þ2

.

.

. .
.
.

�z 1ð Þ nð Þ z 1ð Þ nð Þ2

2

666664

3

777775
:

The forecasts x̂ 0ð Þ kþ 1ð Þ are calculated using Eq. (12).

x̂ 0ð Þ kþ 1ð Þ ¼
ax 0ð Þ 1ð Þ a� bx

0ð Þ
1ð Þ

� �

bx
0ð Þ

1ð Þ þ a� bx
0ð Þ

1ð Þ
� �

ea k�1ð Þ
�

1� eað Þea k�2ð Þ

bx
0ð Þ

1ð Þ þ a� bx
0ð Þ

1ð Þ
� �

ea k�2ð Þ
ð12Þ

3.5. Error corrections to Grey models

In order to increase the accuracy of the Grey models, suppose that � 0ð Þ=� 0ð Þ 1ð Þ; . . . ; � 0ð Þ nð Þ is the error sequence of X 0ð Þ,

where � 0ð Þ kð Þ= x 0ð Þ kð Þ � x̂ 0ð Þ kð Þ. If all errors are positive, then a remnant GM(1,1) model can be built (Liu et al., 2010). Whether

the errors are positive or negative, � 0ð Þ can be expressed using Fourier series (Tan and Chang, 1996) as in Eq. (13).

� 0ð Þ kð Þ ffi
1

2
a0 þ

Xz

i¼1

aicos
2pi

T
k

� �
þ bisin

2pi

T
k

� �� 	
ð13Þ

where k ¼ 2;3; . . . ;n; T ¼ n� 1, and z ¼ n�1
2

� �
� 1.

The solution is found via the least squares estimate, presuming that � 0ð Þ ffi PC where C is a vector of coefficients:

C ¼ a0a1b1a2 . . . anbn½ �
T
and matrix P is:

Table 2

LMs for O3 and PM2:5 AQIs for different counties and schools LM model for O3 AQIs for different schools.

Variable Estimate p-value Estimate p-value

Year �1.294 <0.001 �1.462 <0.001

Avg AADT 0.010 <0.001 0.004 0.014

Abbeville 2632 <0.001 2973 <0.001

Aiken 2590 <0.001 2957 <0.001

Anderson 2589 <0.001 2953 <0.001

Berkeley 2545 <0.001 2941 <0.001

Charleston 2491 <0.001 2920 <0.001

Cherokee 2591 <0.001 2952 <0.001

Chesterfield 2620 <0.001 2972 <0.001

Colleton 2601 <0.001 2964 <0.001

Darlington 2616 <0.001 2970 <0.001

Edgefield 2621 <0.001 2973 <0.001

Florence 2580 <0.001 2954 <0.001

Greenville 2548 <0.001 2945 <0.001

Horry 2554 <0.001 2939 <0.001

Lexington 2570 <0.001 2947 <0.001

Oconee 2605 <0.001 2958 <0.001

Pickens 2599 <0.001 2952 <0.001

Richland 2527 <0.001 2933 <0.001

Spartanburg 2581 <0.001 2953 <0.001

York 2569 <0.001 2946 <0.001

Variables Estimate p-value

Year �2.375 <0.001

Avg AADT �0.0008 0.539

Dent Middle School 4830 <0.001

Dixie High School 4819 <0.001

Jackson Middle School 4820 <0.001

Spring Valley High School 4839 <0.001

WE Parker Elementary School 4813 <0.001

Westgate Christian School 4828 <0.001

Wilson High School 4819 <0.001
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Table 3

LMER models for O3 and PM2:5 AQIs for different counties LMER model for O3 AQIs for different schools.

Var. Int. (p-val) Year(x1) AADT(x2) Int Year(x1) AADT(x2)

Fixed 2630.00 �1.288 0.0007 2630.00 �1.288 0.0007

p-values (<0.001) (<0.001) (0.122) (<0.001) (<0.001) (0.085)

Abbeville 2634.99 �1.288 �0.0004 2973.57 �1.459 0.0003

Aiken 2629.44 �1.289 0.0010 2974.10 �1.460 0.0004

Anderson 2628.95 �1.288 0.0004 2979.30 �1.465 0.0005

Berkeley 2632.87 �1.287 �0.0010 2977.04 �1.463 0.0004

Charleston 2632.14 �1.288 �0.0003 2977.50 �1.463 0.0004

Cherokee 2628.90 �1.288 0.0007 2981.43 �1.467 0.0005

Chesterfield 2629.55 �1.288 0.0007 2971.60 �1.457 0.0003

Colleton 2625.80 �1.288 0.0009 2973.18 �1.459 0.0003

Darlington 2632.91 �1.288 0.0003 2970.71 �1.457 0.0003

Edgefield 2626.29 �1.289 0.0014 2972.70 �1.459 0.0003

Florence 2629.72 �1.288 0.0005 2973.95 �1.460 0.0003

Greenville 2630.08 �1.288 0.0005 2968.98 �1.455 0.0002

Horry 2630.63 �1.288 0.0003 2980.12 �1.466 0.0005

Lexington 2625.29 �1.290 0.0027 2971.43 �1.457 0.0003

Oconee 2628.88 �1.288 0.0007 2979.93 �1.465 0.0005

Pickens 2630.36 �1.289 0.0014 2981.44 �1.467 0.0005

Richland 2629.86 �1.288 0.0006 2973.61 �1.459 0.0003

Spartanburg 2627.23 �1.289 0.0021 2971.90 �1.458 0.0003

York 2630.39 �1.288 0.0002 2978.24 �1.464 0.0004

Var. Int. Year (x1) AADT (x2)

Fixed 5008.00 �2.465 �0.00036

p-values (<0.001) (<0.001) (0.396)

Dent MS 5008.50 �2.473 0.00036

Dixie HS 5008.40 �2.469 0.00003

Jackson MS 5008.40 �2.470 0.00010

Spring Valley HS 5006.80 �2.433 �0.00314

WE Parker ES 5008.50 �2.472 0.00030

Westgate Christian 5008.20 �2.465 �0.00032

Wilson HS 5008.40 �2.471 0.00015

Fig. 6. Prediction errors for 2013–2016 AQIs.
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4. Modeling results and discussion

This section compares the performance of the linear regression model (LM), LMER, GM, error corrected GM (EGM), GV,

error corrected GV (EGV), and LMER + EGM on the validation data set. Average RMSEs for O3 and PM2:5 county-level models

are: 3:2;5:1;3:9;3:3;3:3;2:7;2:1½ � and 5:2;7:0;3:3;2:3;2:8;2:1;1:9½ �. Average RMSEs for O3 school-level models are

4:0;4:1;4:9;3:7;3:6;3:6;2:1½ �. In each case the highest accuracy was achieved by the combination method. Fig. 6 shows

Fig. 7. Predictions for O3 and PM2:5 levels for different counties.
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the RMSEs for the different models in predicting the O3 and PM2:5 levels for counties and schools. It can be observed that the

LMER + EGM model has the lowest RMSE as well as the lowest variance of RMSE. For the county-level models, all have RMSE

less than 10.0. For school-level models, all predicted levels have RMSE less than 6.0. It can also be observed that the GMmod-

els outperformed the LMER and LM models. This result suggests that perhaps there are correlated residuals in the data. In

summary, all models produced estimates within 
10% of true values.

In Fig. 7, better performing methods are presented, i.e., LMER, EGM, and LMER + EGM. It can be observed that the LMER

model is the least accurate and the LMER + EGM is the most accurate. The results corroborate previous research findings (e.g.,

Clements and Harvey, 2010) that a combined model with competing methods produce superior results. In this study, the

combined model’s weighted forecast is zc ¼ aẑ1 þ 1� alphað Þẑ2 where z1 and z2 are predictions from different models, specif-

ically LMER and EGM. The optimal a� from training or partial testing data can be determined as

a� ¼
PT

t¼1e
2
2t �

PT
t¼1e1te2t

� �
=

PT
t¼1e

2
1t þ

PT
t¼1e

2
2t � 2

PT
t¼1e1te2t

� �
where e1t=Zt � bZ1t and e2t=Zt � bZ2t (Newbold and Harvey,

2008). However, in this study, the optimal weight a was empirically derived to be 0.15.

5. Conclusions

This paper developed prediction models for O3 and PM2:5 levels for different schools and counties in South Carolina. Sev-

eral types of models were investigated. They include LM, LMER, GM, EGM, GV, EGV, and LMER + EGM. The LM model pro-

duced the least accurate estimate while the LMER + EGM model produced the most accurate estimate (average RMSE is

less than 5%). The model estimates suggest that air quality in South Carolina will continue to decrease in the coming years.

An interesting finding is that some counties (namely, Abbeville, Berkeley and Charleston) and schools (namely, Spring Valley

HS and Westgate Christian HS) will have higher levels of O3 or PM2:5 when AADT decreases. This finding suggests that there

are other factors, other than AADT, that influence the air quality in these counties and schools. An explanation for this is that

these counties or schools are in close proximity to an industrial park. For example, Berkeley County is home to the Boeing

plant that assembles the 787 Dreamliner and Charleston County is home to the Port of Charleston.

The EPA’s national emissions standards have contributed to air quality improvements since 1990, which enabled many

areas of the country to meet standards set to protect public health and the environment. The developed methods can be seen

as a step forward in air quality prediction that consider both spatial and temporal factors. These models are important for

planning purposes to identify risk areas and to find suitable locations for sensitive facilities such as K-12 schools and hos-

pitals. By knowing which areas are at risk the decision makers can implement countermeasures. There are a number of

options to control sources of pollution. From the transportation perspective, the state could seek to implement emission con-

trol on vehicles; that is, South Carolina does not require vehicle emission testing. The state could also require the use of clea-

ner fuel such as California. Future work will focus on developing site-specific models using hourly traffic and air quality

measures; high-quality portable air quality sensors will be used.
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