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ABSTRACT
While performing distributed computations in today’s cloud-based
platforms, execution speed variations among compute nodes can
significantly reduce the performance and create bottlenecks like
stragglers. Coded computation techniques leverage coding the-
ory to inject computational redundancy and mitigate stragglers
in distributed computations. In this paper, we propose a dynamic
workload distribution strategy for coded computation called Slack
Squeeze Coded Computation (S2C2). S2C2 squeezes the compute
slack (i.e., overhead) that is built into the coded computing frame-
works by efficiently assigning work for all fast and slow nodes
according to their speeds and without needing to re-distribute data.
We implement an LSTM-based speed prediction algorithm to pre-
dict speeds of compute nodes. We evaluate S2C2 on linear algebraic
algorithms, gradient descent, graph ranking, and graph filtering
algorithms. We demonstrate 19% to 39% reduction in total compu-
tation latency using S2C2 compared to job replication and coded
computation. We further show how S2C2 can be applied beyond
matrix-vector multiplication.
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1 INTRODUCTION
Cloud computing and large distributed frameworks like Apache
Spark [44] are being widely used as they enable the execution of
large-scale applications, such as machine learning and graph analyt-
ics on data sizes of the order of tens of terabytes andmore, efficiently
and at lower cost. However, as we “scale out” computations across
many distributed nodes, one needs to deal with the “system noise”
that is due to several factors such as heterogeneity of hardware,
hardware failures, disk IO delay, communication delay, operating
system issues, maintenance activities, and power limits [6]. System
noise leads to uneven execution latencies where different servers
may take different amount of time to execute the same task, even if
the servers have identical hardware configuration. In the extreme
case, a server may be even an order of magnitude slower than the
remaining servers, which we refer to as a straggler node. Such speed
variations create significant delays in task executions and can also
lead to major performance bottlenecks, since the master node waits
for the slowest worker to finish its task. This phenomenon results in
tail latency which can be defined as the high percentile completion
latency of the distributed tasks. If the number of servers within a
cluster experiencing this speed variance increases, the probability
of having long tail latency increases exponentially [8].

Replication approaches are commonly used today to deal with
the straggler delay bottleneck. For example, in distributed compu-
tation and storage frameworks like Hadoop MapReduce [2] and
Spark, data that needs to be processed is split into partitions by the
master node, and each data partition is replicated across a subset of
workers. The master node then keeps track of task progress on each
worker node. After completion of a certain fraction of the tasks,
if the master observes that a particular worker node’s progress is
slow, it schedules a copy of that slow task to be executed on another
node which contains a copy of the data partition to be processed.
Whichever node, either the original or the replicated node, finishes
first will return the results to the master node and the other copy of
the task is terminated. This technique is used in the Hadoop MapRe-
duce framework [2]. However this technique is reactive since the
master node waits until most of the tasks finish their execution
before launching a replica of tasks running on straggler nodes. In
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addition the replica can only be launched on a restrictive subset of
nodes that have a data copy. This process significantly degrades
the overall execution time.

Recently, it has been been shown that “coding” can provide a
novel approach to mitigate the tail latency caused by straggler
nodes, and a new framework named “coded computation” is pro-
posed [11, 22, 27, 34, 42]. The key idea of coded computation frame-
works is to inject computation redundancy in an unorthodox coded
form (as opposed to the state-of-the-art replication approaches) in
order to create robustness to stragglers. For example, it was shown
in prior work [22] that error correcting codes (e.g., Maximum-
Distance-Separable (MDS) codes 1) can be utilized to create re-
dundant computation tasks for linear computations (e.g., matrix
multiplication).

Overview of MDS coding: An (n,k)-MDS coded computation
first decomposes the overall computation into k smaller tasks, for
some k ≤ n. Then it encodes them into n coded tasks using an (n,k)-
MDS code, and assigns each of them to a node to compute. From
the desirable “any k of n” property of the MDS code, the overall
computation can be completed once the results from the fastest k out
ofn coded tasks complete, without waiting for the tasks still running
on the slow nodes (or stragglers). Coded computation schemes use
these (n,k) parameters to encode the data and to determine how
much of the coded dataset is processed by each of the n compute
nodes. The smaller the k value (i.e. the more conservative, highly
redundant), the larger the amount of computation performed by
each node in the cluster.

The end user must decide on the value of n and k at the applica-
tion launch time so as to determine the data encoding and decoding
process. For (n,k)-MDS code the assumption is that there may be at
most n − k very slow nodes or failures. But estimating the number
of stragglers during the application launch time is a challenging
task [5, 45]. As such application designers may assume worst case
scenarios for the number of stragglers by specifying a conservative
n − k .

If the number of persistent stragglers during a particular ex-
ecution instance is fewer than what the coding scheme is built
to support, efficiency of coded computing drops. For instance, in
MDS coding as explained above there is no significant performance
benefit if there are fewer than n − k stragglers, since the coded
computation still has to wait for k nodes to complete their execu-
tion. In cloud computing systems partial stragglers are more often
encountered i.e., nodes that are slower but can do partial amount
of work assigned to them. Existing coded computation schemes
always waste the compute capability of the n − k partial stragglers
and do not take advantage of the fact that data which is needed
for computation already exists with them and they can do partial
amount of useful work (More on this in section 7.2). It is this lack
of elasticity that makes coded computing unpalatable in large scale
cluster settings. What is ideal is to allow the developer to select
high redundancy coding to be conservative (essentially assuming
a reasonable worst case straggler scenario) but allow a workload
scheduler to decide how much redundant computing to perform

1MDS codes are an important class of block codes since they have the greatest error
correcting and detecting capabilities. For more information see [15] Chapter 16.

based on observed speed variations in a distributed or cloud com-
puting environment.

In this work, we design a new dynamic workload distribution
strategy for coded computing that is elastic with the speeds of nodes
measured during runtime, irrespective of how much redundancy
is chosen for creating the coded data. Our proposed S2C2 (Slack
Squeeze Coded Computing) strategy adapts to varying number of
stragglers by squeezing out any computation slack that may be built
into the coded computation to tolerate the worst case execution
scenarios. The performance of S2C2 is determined by the actual
speeds measured and actual number of straggler nodes seen rather
than by the redundancy used in encoding the data. As the speeds
of nodes change, S2C2 responds by appropriately increasing or
decreasing the amount of work allocated to each node in the cluster
to maximize the performance.

To predict the speeds of the nodes as they change during runtime
we use a prediction mechanism. We model speed prediction into a
time series forecasting problem and use a Long Short-TermMemory
(LSTM) based learning model to predict the speeds. These predicted
speeds are used by S2C2 to do work allocation among the nodes.

In summary, the main contributions in this paper are as follows:
• We empirically measure the speed variations of compute
nodes in a large-scale cloud computing cluster. Using the
measured data we design an LSTM based model to predict
the speed of each node in the next computation epoch.
• We propose S2C2 which exploits the data redundancy avail-
able in coded data and elastically distributes work based
on speeds predicted from the LSTM model. S2C2 increases
performance without compromising on robustness. We also
propose a new fine-grained replication baseline that com-
bines over-decomposition of data [21] and speed prediction
based workload distribution.
• We propose two variations of S2C2 and evaluate their per-
formance on our local cluster and on a commercial cloud
setting while running machine learning and graph ranking
workloads.
• While executing algorithms such as gradient descent, graph
ranking, and graph filtering S2C2 is able to reduce the to-
tal compute latency by up to 39.3% over the conventional
coded computation and by up to 19% over the fine-grained
replication baseline.
• Finally, we go beyond matrix vector multiplication to demon-
strate the versatility of S2C2 by applying its workload dis-
tribution and scheduling strategies on top of polynomial
code [42], a coded computing strategy for polynomial com-
putations.

Rest of the paper is organized as follows: section 2 provides back-
ground on coded computation, section 3 describes speed prediction
and overheads of coded computation, section 4 describes proposed
S2C2 algorithm, section 5 describes extensions to non-linear coded
computing, section 6 provides implementation and system details,
section 7 shows evaluations, section 8 describes related work.

2 CODED COMPUTING BACKGROUND
In this section we briefly introduce the coded computation. For
clarity of explanation we first focus on how coded computing is
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applied for linear algebraic operations. Let us consider a distributed
matrix multiplication problem where a master node wants to mul-
tiply a matrix A with the input vector −→x to compute A−→x . The data
matrix A is distributed across 3 worker nodes on which the matrix
multiplication will be executed in a distributed manner.

One natural approach to tackle this problem is to vertically and
evenly divide the data matrix A into 3 sub-matrices, each of which
is stored on one node. Then when each node receives the input
−→x , it simply multiplies its locally stored sub-matrix with −→x and
returns the results, and the master vertically concatenates the re-
turned matrices to obtain the final result. However, since uncoded
approach relies on successfully retrieving the task results from all
3 nodes, it has a major drawback that once one of the nodes runs
slow, the computation may take long to finish. Coded computa-
tion framework deals with slow or straggler nodes by optimally
creating redundant computation tasks. An MDS-coded computing
scheme vertically partitions the data matrix A into 2 sub-matrices
A1 and A2, and creates one redundant task by summing A1 and A2.
Then A1, A2 and A1 + A2 are stored on worker nodes 1, 2, and 3
respectively. Each node then performs computations on its own
data matrix partition. In this case the final result is obtained once
the master receives the task results from any 2 out of the 3 nodes,
without needing to wait for the slow/straggler node. Let us assume
worker node 2 is a straggler and the master node only collects re-
sults from node 1 and 3. Then the master node can compute A2

−→x
by subtracting the computed task of node 1, i.e. A1

−→x , from the
computed task of node 3, i.e. (A1 + A2)−→x .

Broader use of coded computing:MDS-coded computing can
inject redundancy to tolerate stragglers in linear computations.
Coded computing is applicable to a wider range of compute in-
tensive algorithms, going beyond linear computations. Polynomial
coded computing [42] can tolerate stragglers in bilinear computa-
tions such as Hessian matrix computation. Lagrange coded com-
puting [43] can add coded redundancy to tolerate stragglers in
any arbitrary multivariate polynomial computations such as gen-
eral tensor algebraic functions, inner product functions, function
computing outer products, and tensor contractions [35]. Recent
works [19, 20, 33] demonstrate promising results by extending
coded computing to non-linear applications such as deep learn-
ing inference. Finally, coded computing has also been leveraged
recently for secure and privacy preserving distributed machine
learning [37].

3 MOTIVATION
3.1 Straggler Mitigation Overheads
Consider an uncoded strategy with r -replication i.e., each data
partition is replicated across r different worker nodes where r is
the replication factor. Consider a node N executing task T on data
partition DPT . If the node N is determined to be a straggler at some
future time, the master node can replicate task T on any one of
the nodes which has a replica of data partition DPT to speed it up.
However, there are two challenges. First, when should the master
determine that N is a straggler? Second, even if the master has early
knowledge of N as a straggler, it is restricted to launching the task
T only on a subset of nodes that have the required data partition
DPT . Third, in the worst case if all the nodes with replicas are also
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Figure 1: Logistic regression experiments

stragglers i.e., if the system has r stragglers, the uncoded replication
strategy cannot speed up computation at all. An alternative is to
move the data partition DPT to another available faster node and
execute T on that node. This option forces data transfer time into
the critical path of the overall execution time.

Next let us consider the (n,k)-MDS coded computation onmatrix
multiplication. The master node divides the original matrix A into
k sub-matrices, encodes them into n partitions and distributes them
to workers. As we discussed before, a small k needs to be chosen for
dealing with worst case scenarios. However, this over-provisioning
with a small k comes with a price. If the original data size is S , then
each of the worker nodes must compute on a coded partition of size
(S/k). Ifk becomes smaller, eachworker node has to execute a larger
fraction of the computation independent of their actual speeds. On
the other hand with a large k the robustness of the computation
decreases. This is a difficult tradeoff since the selection of k must
be done prior to creating a correct encoding and decoding strategy,
and distribution of the encoded data partitions appropriately to
all nodes, which are usually done once before executing the given
workload.

One solution to deal with the straggler uncertainty with MDS-
coded computation is to store multiple encoded partitions in each
worker node, such that the system can adapt and choose the appro-
priate encoded partition dynamically when the number of stragglers
changes in the cluster. For example, in a cluster with 12 worker
nodes, each worker node can store a (12, 9)-MDS encoded partition
and a (12, 10)-MDS encoded partition at the same time. Assume the
original data size is S , when it’s observed there are three straggling
nodes, (12, 9)-MDS-coded computation will be performed with each
worker node operating on an encoded partition of size (S/9); and
when it’s observed there are fewer straggling nodes, (12, 10)-MDS-
coded computation is performed with each worker node operating
on partition of size (S/10). This approach is optimal only for two
scenarios, and supporting a wider range of scenarios means storing
more copies of the encoded data. This dramatically increases the
storage overhead. It is possible to encode the data at run time and
redistribute the large data partitions based on measured speeds
and slow node count. However, this will dramatically increase the
communication overhead and is not practical.

Figure 1 shows the computation latency in a cluster of 12 nodes
with three schemes: uncoded with 3-replication, (12,10)-MDS coded
computation, and (12,9)-MDS coded computation as the number of
stragglers increases. In the uncoded with 3-replication strategy, if
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Figure 2: Measured speeds

the number of straggler nodes is r = 3 or more, computation latency
increases significantly. The computation time of (12,10)-MDS coded
computation increases exponentially when there are more than two
stragglers. The computation time of (12,9)-MDS coded computation
is constant with more stragglers. But there is an increase in baseline
execution latency with this strategy compared to other schemes,
because (12,9)-MDS code requires each worker node to perform
more work than (12,10)-MDS code, even if the number of stragglers
is fewer than 3.

In summary, although conservative MDS-coded computation
can provide robust protections against stragglers, its computation
overhead per node is higher and remains the same even when all
the nodes in the cluster are fast, since it does not make efficient
use of all worker nodes. These drawbacks bring us to our key idea
which is to have a workload scheduling strategy that provides the
same robustness as the (n,k)-MDS-coded computation, but only
induces a much smaller computation overhead as if (n, s)-MDS-
coded computation is being usedwhen there are onlyn−s stragglers
in the cluster with 0 ≤ (n − s) < (n − k).

3.2 Speed prediction and coded data
In the introduction section, we noted that it is important to consider
the speed variations across compute nodes when determining the
efficacy of discarding the work done by slow nodes in the MDS
coded computing framework. To collect and analyze the execution
speeds of servers, we conducted experiments on 100-compute nodes,
referred to as droplets in Digital Ocean cloud [3]. Each droplet is
similar to a t2.micro shared compute instance in Amazon AWS.
For our experiments, each droplet node executes matrix-matrix
multiplication and logs its execution times after completion of every
1% of the task. The size of each matrix is 20000 by 5000. We analyzed
the measured speeds at 1% granularity intervals at all nodes. Figure
2 shows the speed variations in 4 of the representative nodes. X-axis
in each plot corresponds to time. Y-axis in each plot corresponds
to speed of the node normalized by its maximum observed speed
during the experiment.

One critical observation from the figure is that while the speed
of each node varies over time, on average the speed observed at
any time slot stays within 10% for about 10 samples within the
neighborhood. This relatively slow changing speed provides us an
opportunity to estimate speeds of nodes in future intervals using
speeds from past intervals. The speed estimates can be reasonably
accurate for most of the time intervals except for a short time
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window when the speed changes drastically, but again we will soon
be able to track the new speed as the nodes stay in that speed zone.

To find a good prediction mechanism, we considered the speeds
of each node as a time series and modeled our problem as a time
series forecasting problem.We evaluated several LSTM (Long Short-
Term Memory [16]) and Auto Regressive Integrated Moving Av-
erage (ARIMA) models to predict the speeds. The details of the
speed prediction models are described in section 6.1. The prediction
accuracy of the LSTM model is better than the ARIMA models. As
expected, only immediately after a large speed variance is observed
the model prediction lags behind but catches up with the observed
speed soon after.

Based on this critical observation we hypothesize that reliably
estimating the speeds for next computation round allows master
node to perform appropriate task assignment to the workers such
that the computations performed by all workers can be utilized to
obtain the final result. But this fine-granularity task assignment and
utilization of all worker nodes becomes feasible only if there is no
data movement overhead between rounds of computation. Coded
computing is well suited for this fine-grained task assignment since
the input data that is distributed among workers is encoded and as a
result there would be no additional data movement needed between
rounds of computation. However, this feature is not exploited in
conventional MDS-coded computation. In uncoded computation,
to assign workload optimally based on the predicted speeds, either
each worker node will need to store significant percentage of the
entire data, which can impose huge storage overhead; or it requires
the master to redistribute the data among nodes at run-time, which
can add huge communication overhead for iterative workloads such
as gradient descent and page rank. To measure the storage overhead
of uncoded computation, we performed experiments in our local
cluster consisting of 12 worker nodes. We measure the total data
moved to each node between rounds of computation and consider it
as the effective storage needed at that node to avoid additional data
movement. Figure 3 shows the mean effective storage needed at
each node to avoid data movement during the course of 270 gradient
descent iterations for Logistic Regression. In this experiment, the
uncoded computation has accurate predictions of speed of nodes
for next iteration. It needs 67% of the total data to be stored at each
worker node to have zero data movement overhead. For S2C2 with
(12,10)-MDS coding the data storage remains fixed at 10% of the
total data and much lower than the uncoded computation.
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Following from these observations, we argue for S2C2 that ex-
ploits the unique feature of coded data availability and thereby
utilize the compute capacity of all worker nodes.

4 S2C2

4.1 Basic S2C2 algorithm
The major goals of the algorithm are to achieve high tolerance
to stragglers and reduce computation work assigned per worker
when the number of slow nodes observed during run time is less
than the conservative estimate. To achieve high straggler tolerance
the master node encodes and distributes the large matrix using a
conservative (n,k)-MDS coding once at the beginning. To assign
reduced computation work to worker nodes, master node then
employs S2C2 algorithm. There are two key insights, in a cluster
using conservative (n,k)-MDS coding, that underlie our algorithm.
• Each worker node stores high redundancy encoded matrix
data partition
• The master node can decode and construct the final product
as long as it receives any k out of n responses corresponding
to each row index of partitioned matrix

Let there be n-s < n-k stragglers in the (n,k)-MDS coded cluster. As
we explained in previous section, when there are (n-s) stragglers
(n,s)-MDS coding is the best suited coding strategy. But rather than
using a new (n,s)-MDS code to re-encode the data, we use the
(n,k)-MDS coded data partition as is but we change the amount
of work done by each node. In particular, S2C2 allocates decodable
computational work assignment per node equal to that in (n,s)-MDS
coding instead of (n,k)-MDS coding. If D is the number of rows
in the original matrix, each node gets an allocation k

s ×
D
k = D

s
number of rows to be computed.

Figure 4 provides an illustration of the S2C2 strategy in a cluster
consisting of 4 worker nodes (and 1 master node). Figure 4a shows
the conventional (4,2)-MDS coded computation performed when
worker 4 is the only straggler node and the remaining 3 workers
have same speed. Note that (4,2)-MDS coding is conservative here,
since it can support 2 stragglers but in this case there is only 1
straggler. Each worker node computes on its full partition but the
master node needs only the results from workers 1 and 2 and can
ignore the result from worker 3. Sub-matrices A1,A2 refer to the
vertical divisions of the matrix A. Data stored in worker 3 is a
coded matrix, A3 = A1 + A2. Data stored in worker 4 is coded as
A4 = A1 + 2A2. These codes are generated as per MDS-coding
principles.

In figure 4b, conventional (4,3)-MDS coded computation when
worker 4 is the straggler node is shown. Each non-straggler node
computes on its full partition but the size of the partition here is
smaller than partition size in the previous coding. The master node
needs the results of all workers to construct the final product. Sub-
matrices A1,A2,A3 are the vertical divisions of the matrix A into
three parts. Data stored in worker 4 is coded as A4 = A1 +A2 +A3.

S2C2 with (4,2)-MDS Coded computation for this scenario is
shown in figure 4c. If we consider data in each worker as composed
of 3 equal size partitions, worker node 1 computes only on the
first and second of its partitions. Worker 2 computes only on the
first and third of its partitions. Worker 3 computes only on the
second and third of its partitions. As a result, each worker node is

performing less amount of compute and this compute is equal to
the amount performed by each worker in conventional (4,3)-MDS
coded computation. Partitions to be computed at each worker are
assigned to ensure that each row index is computed by exactly two
workers. This is necessary for successfully decoding the results by
the master node at the end of computation. For instance, worker
node 3 computes on the middle third of matrix A3 (which is the
coded A1+A2 matrix) and worker node 2 skips computing that
portion of A2. As such the master has to decode the missing A2
from the computations performed by worker node 1 and worker
node 3 to reconstruct the middle portion of A2.

4.2 General S2C2 Algorithm
In cloud computing services and data centers, compute nodes within
a cluster can have different speeds during run time, as described
in section 3.2, due to them being shared or due to various micro-
architectural events such as cache misses and other control/data
bottlenecks. They can also be heterogeneous. We present a General
S2C2 algorithmwhich, unlike basic S2C2, can consider the variation
in speeds of all nodes and assign work to them. At the beginning of
execution of every application, matrix data is partitioned, encoded
and distributed to the worker nodes using (n,k)-MDS coding. For
efficient decoding and work allocation, general S2C2 algorithm also
decomposes and considers each matrix partition as composed of
chunks (groups) of rows i.e., over-decomposition. The speed pre-
dictions from LSTM model are provided to the general S2C2. Then
workers are sorted according to their speeds. Starting from the
worker with highest speed, each worker is assigned chunks to be
computed equal to the ratio of its speed to the total available com-
putational speed of all workers. If the assigned chunks for a worker
turn out to be more than the total chunks in the partition already
stored in a worker, the algorithm re-assigns these extra chunks
to next worker. This case occurs when one worker is relatively
much faster than all other workers. The algorithm is summarized
in Algorithm 1. It can be noted that general S2C2 algorithm uses rel-
ative speed predictions of the nodes during work allocation. In the
scenarios where all non-straggler nodes have equal speed general
S2C2 would reduce to basic S2C2.

4.3 Dealing with mis-prediction or failures
Speed prediction algorithm can mis-predict when there is a sudden
and significant change in the speeds of workers. Also, one of the
worker nodes can die or fail during execution. To handle these
scenarios, S2C2 algorithm employs a timeout mechanism. S2C2

collects results from the first k workers that complete their work
and measures their average response time. If the remaining n − k
workers do not respond within 15% of the average response time,
S2C2 considers this situation as a mis-prediction and reassigns the
pending work among the k completed workers. We choose 15%
based on the average error from our speed prediction algorithm
(16.7%).

4.4 Robustness of S2C2

Coded computing with S2C2 is robust and can tolerate the same
number of stragglers as conventional coded computing because:
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Figure 4: S2C2 illustration on MDS codes

Figure 5: General S2C2 on polynomial codes

• Data distribution in S2C2 is identical to the data distribution
in conventional coded computing.
• The worst case scenario may occur when the speed predic-
tions for S2C2 completely fails. In this case the general S2C2

along with the timeout mechanism, described in section 4.3,
essentially turns into a conventional coded computing.

5 EXTENSION TO BI-LINEAR CODED
COMPUTING

S2C2, being a workload distribution strategy, can be extended to
many different coded computations. In this section we demonstrate
how to apply it on top of the popular polynomial codes [42]. We
refer the reader to the paper for the mathematical underpinning
of polynomial codes and we will only provide brief overview to
demonstrate its working and how S2C2 can be applied to such a
generalized codes. The idea of polynomial codes is to encode data
by computing polynomial functions.

Consider computing AB on two matrices A and B, in a dis-
tributed manner using a cluster with n nodes. Matrix A is divided
into a sub-partitions along rows, and matrix B is divided into b
sub-partitions along columns. Then n encoded partitions each for
A,B are computed from these sub-partitions. Let us consider the
scenario where n = 5 nodes. In this scenario, a = b = 2 i.e., each
matrix has 2 sub-partitions. A0,A1 are sub-partitions of A. B0,B1
are sub-partitions of B. Computing AB is composed of four partial
computations A0B0,A0B1,A1B0,A1B1. Each encoded partition of
A is of the form Ãi = A0 + iA1 and each encoded partition of B is
of the form B̃i = B0 + i2B1, where i is the node index ∈ {0,1,..n-1}.
In this scenario, node 0 stores Ã0 = A0 + 0.A1, B̃0 = B0 + 0.B1 and

node 2 stores Ã2 = A0 + 2A1, B̃2 = B0 + 22B1, and so on. Each
node computes product of it’s two stored partitions. For instance,
node 2 computesA0B0+2A1B0+22A0B1+23A1B1. To fully decode
the four partial computations, A0B0,A0B1,A1B0,A1B1, we need to
get coded computation results from any 4 of the nodes. If none
among the 5 nodes is a straggler, there is wastage of one node’s
computation similar to MDS coding.

In figure 5 we illustrate how our S2C2 framework can be applied
on top of such a polynomial coded bilinear computation. In fig-
ure 5, the cluster has n = 5 nodes. For illustration purposes each
matrix partition Ãi has 9 rows. A minimum of 4 responses per
each row are needed for successful computation ofAB. The relative
speeds of each nodes are {2,2,2,2,1}. Node 4 is a partial-straggler.
Conventional polynomial coded computing ignore the computation
from this node. However, general S2C2 does not and it allocates
partial work to it. General S2C2 allocates {8,8,8,8,4} rows to the 5
nodes respectively as highlighted by the bounding rectangles in
each worker node. The last worker (speed 1) is shown to compute
the last set of rows. Product of each row with B̃i is computed by
exactly 4 nodes and sent to the master node.

6 IMPLEMENTATION
At the beginning of computation, master node encodes the matrix
data and distributes the encoded sub-matrices to the corresponding
worker nodes. For MDS coding we are dealing with just a single
matrix, but with Polynomial codes we have two matrices to encode,
and both coding strategies use different encoding as described
earlier. At the start of each iteration of our applications master
node distributes the vector (−→x ) to all worker nodes. At the end
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Algorithm 1 General S2C2 algorithm
Lines with # are comments
Input: List (U ) of Speeds (ui ) of worker nodes, n,k of coding,
Number of rows per Node (numRowsPerNode)
Output: Computation assignment per node i alloci
#over decompose each partition into chunks of rows
maxChunksPerNode =

∑
ui

#minimum total chunks needed for correct decoding
totalChunks = k ×maxChunksPerNode
#Sort the workers as per their speed U in descending
#order and assign number of chunks to be computed
for each node i in sorted U do

#Allocate number of chunks to node i proportional to its
speed

chunksForNode[i] = ( ui
n∑
j=i

uj
× totalChunks)

#Update total chunks left to be computed
totalChunks=totalChunks − chunksForNode[i]

#Assign the exact chunks that will be computed
chunkBeдin = 0
for each node i in sorted U do

chunkEnd = chunkBeдin + chunksForNode[i]
chunks_nodei ← [chunkBeдin, chunkEnd]
chunkBeдin = chunkEnd%maxChunksPerNode

#Convert chunks to exact row indices
alloci = convert(chunks_nodei )

of each iteration, master node receives the sub-product from the
worker nodes, decodes them and constructs the result vector.

Each worker node has two separate running processes, one for
computation and one for communication. The computation pro-
cess on the worker node performs the appropriate computation on
encoded data, either a matrix-vector operation in MDS setting or a
Hessian matrix computation in polynomial setting. The communi-
cation process is in charge of receiving input data from the master
node, work assignment information, and sending the partial prod-
uct, and controlling the start and stop of the computation process
at the worker node.

6.1 LSTM based speed prediction Model
We used the speed data measured from our experiments in motiva-
tion section as the dataset for evaluating several prediction models.
The train/test dataset split is 80:20. We evaluated several LSTM
(Long Short-Term Memory [16]) and Auto Regressive Integrated
Moving Average (ARIMA) models to predict the speeds. Among
ARIMA models, we evaluated using ARIMA(1,0,0), ARIMA(2,0,0)
and ARIMA(1,1,1) models. We found that the ARIMA(1,0,0) model,
which uses just the speed from past iteration, provided the highest
prediction accuracy among all ARIMA models. Since this indicates
that using the speed from the past iteration is enough, the evaluated
LSTM models have 1 dimensional input. The dimension of hidden
state is a hyper parameter and we experimented with different val-
ues. The best performing LSTM model consists of one single-layer
LSTM with a hidden state being 4 dimensional with tanh activation,
1 dimensional input and output. The prediction accuracy of this

LSTM model is better than the ARIMA(1,0,0) model. The LSTM
model predicts the speeds of the nodes within 83.3% of their actual
values. In statistical terms, the Mean Absolute Percentage error of
the model on the test set is 16.7%. This prediction error is better
than ARIMA(1,0,0) by 5%. This LSTMmodel is used to predict speed
of nodes once every iteration. Input to the model is the speed of
node from previous iteration and its output is the speed prediction
for the next iteration. The LSTM model computation takes 200
microseconds for each node.

6.2 S2C2 specifics
Basic S2C2 strategy needs information on which nodes are strag-
glers. General S2C2 strategy needs information on the relative exe-
cution speeds of all nodes and it adjusts the work assignment to the
worker nodes according to their speed. To obtain this information
we rely on the iterative nature of our algorithms. Initially master
node starts with the assumption that all the worker nodes have the
same speed and this is provided as input to the current S2C2 strat-
egy. The master then distributes the work assignment calculated
by S2C2 to each worker node. Upon receiving the partial products
from the worker nodes, master node also records the response time
ti (iter ) for each worker node i corresponding to iteration iter . If
the number of rows computed at worker i is ℓi (iter ), then the speed
si (iter ) of each worker node for the current iteration is computed
as ℓi (iter )

ti (iter ) . These values from all nodes are provided as a batch
input to the trained LSTM model which predicts speeds for the
next iteration. The predicted speeds are fed into the General S2C2

strategy to generate the computational work assignment at each
worker node for iteration (iter +1). Thus S2C2 automatically adapts
to speed changes at the granularity of an iteration.

6.3 Computing Applications
We evaluated S2C2 on MDS using the following linear algebraic al-
gorithms: Logistic Regression, Support Vector Machine, Page Rank
and Graph Filtering. Graph ranking algorithms like Page Rank and
Graph signal processing algorithms employ repeated matrix-vector
multiplication. Calculating page rank involves computing the eigen-
vector corresponding to the largest eigenvalue which is done using
power iteration algorithm; Graph filtering operations such as the
n-hop fitering operations employ n iterations of matrix-vector mul-
tiplication over the combinatorial Laplacian matrix. We evaluate
S2C2 on both these algorithms.We further evaluate S2C2 on polyno-
mial coding for computing the Hessian matrix as described in [14].
The Hessian computation is of the form ATdiaдonal(x)A, where
diaдonal(x) refers to a matrix composed of elements of vector x on
its diagonal.

6.4 System Setup
We evaluated the above computing applications in a datacenter
scale cloud setting in the Digital ocean cloud. On Digital ocean
cloud we employ 11 shared compute instances each with 1 virtual
CPU and 2 GB of memory. We use Kubernetes to bootstrap a cluster
using these 11 nodes, with one being the master and the other 10
nodes being the worker nodes. We then dockerize the computing
applications and deploy them on the cloud.



SC ’19, November 17–22, 2019, Denver, CO, USA K. Narra, Z. Lin, M. Kiamari, S. Avestimehr, and M. Annavaram

6.5 Verification in a controlled cluster
For theoretical verification purposes we also evaluated all the ap-
plications and results on our local cluster where we had the ability
to precisely control the straggler behavior. Our local cluster is com-
posed of 13 identical servers. Each server consists of two Intel Xeon
CPU E5-2630 v3 each with 8 cores (8 threads, 2.40 GHz), 20 MB of
L3 cache, running Centos linux version 7.2.1511. Each machine has
64GB of DRAM. All the servers have access to a shared storage node
of size 1 TB. All the servers are connected to one another through
Mellanox SX6036 FDR14 InfiniBand switch with a bandwidth of 56
Gbps. We use one of the nodes as master node and other 12 nodes
as worker nodes.

7 EVALUATION
7.1 Results from controlled cluster
Baseline strategies: We implemented and evaluated two baseline
strategies in our controlled cluster environment: Our first baseline
is an enhanced Hadoop-like uncoded approach that is similar to
LATE [45]. In this baseline we used a 3-repetition strategy with up
to six tasks that are speculatively launched. The strategy provides
3 copies of data at 3 randomly selected nodes in the distributed
system. This enhanced Hadoop strategy does not enforce strict
data locality during speculation, unlike traditional Hadoop, and
allows data to be moved at runtime if a task needs to relaunched
on a node that does not have a copy of the data. We allow up to six
tasks to be speculatively launched. Furthermore, the speculative
task assignment strategy always tries to find a node that already
has a copy of the data before moving the data, thereby allowing
data communication only when absolutely needed.

The second baseline is the MDS-coded computation proposed
in prior work [22] and described previously in section 2. The two
MDS-coding schemes we evaluated in the controlled cluster are:
(12, 6)-MDS as the conservative scheme, and (12, 10)-MDS as the
optimistic scheme. No data movement is allowed in these schemes
during computation. The purpose of showing results for (12, 6)-
MDS coding is simply to show the robustness of our scheme in the
presence of such high redundancy. We do not expect that system
designers will provision 2x computation redundancy in practice.
Hence, we will highlight (12, 10)-MDS results in our discussion in
the next section.
Results:We evaluated the performance of S2C2 against the base-
line strategies for varying straggler counts in our 12-worker-node
cluster and these different cases correspond to the X-axis in the
figures 6 and 7. Each bar in the plots captures the average relative
execution time spent by the application for 15 iterations, normal-
ized by the execution time of the uncoded strategy when there
is 0 straggler in the cluster. The execution time includes the time
worker nodes spend computing on their data partitions, the time
spent in communication between master and worker nodes, time
spent by the master node in decoding the results from workers.
The encoding and distribution of matrix data are not shown in the
figures as it is a one-time cost.

7.1.1 Logistic Regression and SVM. We evaluated gradient descent
for logistic regression (LR) and SVM. The results for both of them
are very similar and hence we focus the discussion on evaluations
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Figure 6: LR execution time comparison

of LR. For our experiments we use publicly available gisette dataset
from UC Irvine machine learning repository [30]. The data in this
dataset is duplicated to create a larger dataset. The final size of data
partition in each node is 760 MB. All the worker nodes pre-load
the assigned data partitions into memory before beginning the
computation. Only one processor thread in each worker node is
used for computation.

In our controlled cluster environment, we define a straggler as a
node that is at least 5x slower than the fastest performing node. And
even non-straggler nodes may have up to 20% variation between
their processing speeds. We compare the three baselines with the
two versions of S2C2: basic S2C2 that does not consider this 20%
variation in speeds of the non-straggler workers and treats all the
non-straggler workers as having equal speed, and general S2C2

algorithm takes the 20% speed variation into account and allocates
different computational work to non-straggler workers accordingly.
The results are shown in Figure 6.

As shown in the figure 6, when there are no stragglers, all strate-
gies have low execution times with S2C2 having the lowest. The
generalized S2C2 algorithm has the lowest execution time even
with zero stragglers because it takes advantage of the 20% speed
variations to assign different amounts of work to different nodes.
As the number of stragglers increases, the execution time of un-
coded strategy increases since the slower job needs to be detected
and re-executed. Whereas in coding based strategies there is no
need for re-execution. Once the number of stragglers exceeds 2, the
uncoded strategy’s performance starts to degrade and it is 3x of the
execution time compared to no straggler scenario. The super linear
degradation is because data partition will need to be moved across
worker nodes prior to the re-execution and communication costs
start to play a role in the overall performance loss. Note that when
the number of stragglers gets closer to the replication count then
there is a higher probability that the node where the re-execution
happens does not have a replica. Hence, data movement is in the
critical path of execution.

For the (12, 10)-MDS coded computation, the execution time
remains steadywith one and two stragglers but grows super linearly
once the straggler count exceeds two, since it is designed to protect
against a maximum of only two stragglers. A more redundant MDS
coding strategy is the primary option to deal with higher number of
stragglers. Hence, ideally the programmers should not be burdened
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Figure 7: PR execution time comparison

with choosing an aggressive code with less redundancy and then
have to pay significant penalty if the selected redundant code is not
enough. S2C2 solves this problem by allowing the programmers
to select a more aggressive redundancy in their codes and yet not
pay the penalty when there are fewer stragglers as shown in the
(12, 6)-MDS code result.

Both versions of (12,6)-MDS coded S2C2 not only are able to
provide robustness against up to two stragglers in the cluster, but
also are able to reduce the computation overhead due to the use
of coding when there are fewer or no stragglers in the cluster. By
taking the various speeds of the non-straggler worker nodes into
account, the general version of the S2C2 strategy is able to outper-
form the conservative (12,6)-MDS coded computation strategy even
more than the basic version of S2C2. This result indicates that even
if we can’t take into account the precise variation in the processing
speeds of various non-straggler nodes, the basic S2C2 algorithm
provides excellent performance and robustness. However, if the
processing speed information is more accurately gathered, the gen-
eralized S2C2 can squeeze the hidden compute slack in the 20%
speed variation and provide further performance improvements
without compromising robustness.

7.1.2 Page Rank and Graph Filtering. We evaluated page rank (PR)
and graph filtering. The results for both of them are very similar
and hence we focus the discussion on Page Rank. We used the
ranking dataset available from [1]. This dataset is duplicated to
create a larger dataset that is used in evaluation.

The execution time for page rank is plotted in Figure 7. Similar to
logistic regression results, S2C2 algorithms significantly outperform
the baseline strategies. The general S2C2 algorithm reduces the
execution time compared to basic S2C2 in all scenarios.

7.2 Results from industrial cloud deployment
In this section we discuss results from our experiments on Digital
Ocean cloud. Note that in this setup we no longer can control the
speed variations or the presence or absence of a straggler. Insteadwe
simply rely on the inherent speed variations of the 10 worker nodes
we used in the cloud environment to quantify the benefits of S2C2.
In our experiments we evaluate and compare the performances of
general S2C2 strategy against MDS coded computation and an over
decomposition strategy based on Charm++ [4, 21]. We evaluated
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S2C2 and MDS coded computation under (10,7), (9,7) and (8,7)-MDS
codes.

Charm++ based over-decomposition baseline: In the cloud
setting, we evaluated an over-decomposition baseline strategy in-
spired by charm++ [4, 21]. In our implementation we combine over
decomposition and speed prediction. We over-decompose each data
partition by a factor of 4. The data is divided into 40 partitions
with each of the 10 workers receiving 4 partitions. The data is also
replicated by a factor of 1.42, similar to replication in (10,7)-MDS
coding. The additional partitions are distributed in a round-robin
fashion across the 10 workers. Master node uses predictions from
the speed model to do load balancing and transfer of partitions
between workers during computations. This is better than the un-
coded baseline strategy used in our controlled cluster environment
since it allows for finer grained data transfer.

During the course of our experiments we observed different
mis-prediction rates from the LSTM speed prediction model. We
show and discuss the performance gains from the experimental
conditions where we observe the best and worst case mis-prediction
rates. The performance results obtained across various applications
are similar (as has been shown also in the local cluster setting). We
focus on the SVM results in this section.

7.2.1 Results in low mis-prediction rate environment. The average
relative execution times for 15 iterations of SVM are shown in fig-
ure 8 when we observe a 0% mis-prediction rate for worker speeds.
Generally this happens when there are no significant variations
in speeds between the nodes. The execution times of all strate-
gies are normalized by the execution time of (10, 7)-S2C2. First
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we can observe that over decomposition approach performs bet-
ter than MDS coded computation. This result is expected since
over-decomposition strategy utilizes all the 10 worker nodes to
compute the result and each worker processes 1/10 of the data.
But each worker in the (10,7), (9,7) and (8,7) MDS-coded computa-
tion scenarios process 1/7th of the data. Next, we observe that all
three variations of MDS-coded computation show similar execution
times. In all cases the work performed by a single worker remains
same and only the results from fastest 7 workers are used by the
master. Over decomposition performs similar to (10,7)-S2C2 in this
environment since there is no additional data movement during
computations.

For all 3 data coding variations S2C2 outperforms regular MDS
coded computation. Further, performance of S2C2 increases as the
redundancy is increased. This is because work done in a single
worker decreases as redundancy is increased. (10,7)-S2C2 outper-
forms the (10,7)-MDS coded computation by 39.3%. (10,7)-S2C2

performs best over (10,7)-MDS coded computation when all 10
workers are always fast during execution; in this scenario S2C2

uses all 10 worker nodes while MDS still relies only on 7 worker
nodes. The exact reduction would be 10−7

7 = 42.8%. S2C2 with 0%
mis-prediction rate captures this best possible reduction in execu-
tion time.

Figure 9 plots the wasted computation measured in each of the
worker node during execution of the conservative (10,7)-MDS coded
computation and (10,7)-S2C2. Since the mis-prediction rate is 0%
there is no wasted computation effort in S2C2. In this execution,
workers 1, 3, 7 and 8 have highwasted computationwith (10,7)-MDS
coded computation. Worker 1 has close to 90% of its computation
wasted. Further analysis showed that in this experiment worker 1 is
only slightly slower than the fastest 7 workers but the MDS-coded
computation ignores the execution of the 3 remaining workers after
it receives results from the fastest 7 workers.

7.2.2 Results in high mis-prediction rate environment. During our
experiments with shared VM instances on DigitalOcean, we observe
the highest mis-prediction rate is 18%. Generally these mispredic-
tions happens when there are significant and sudden variations
in speeds over time. Under this condition, the average execution
times for 15 iterations of SVM are shown in figure 10. (10,7)-MDS
coded computation performs better than (9,7) and (8,7)-MDS coded
computation because the probability of any 7 out of 10 nodes being
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fast is higher than any 7 out of 9 nodes or 7 out of 8 nodes being
fast. (8,7)-S2C2 outperforms (8,7)-MDS coded computing by 13%,
whereas (9,7)-S2C2 outperforms (9,7)-MDS coded computing by 11%
and (10,7)-S2C2 outperforms the (10,7) MDS-coded computation
approach by 17%. As expected, (10,7)-S2C2 outperforms both (9,7)
and (8,7)-S2C2 variants since the opportunities to do load balancing
increase as the redundancy increases. The observed performance
of the over-decomposition approach is lower than the performance
of (10,7)-S2C2 owing to the extra data movement costs for load
balancing during computations. Whereas in (10,7)-S2C2 there are
no extra data movement costs during computations.

The wasted computation efforts measured in each of the worker
node under (10,7)-coding are shown in figure 11. Due to a relatively
high mis-prediction rate, S2C2 also incurs wasted computation
among the worker nodes when the compute tasks of slow nodes
are cancelled and reassigned to other worker nodes. However, the
conservative (10, 7)-MDS approach incurs higher wasted computa-
tion since it also ignores the slowest 3 nodes’ computation efforts.
On average, the conservative MDS scheme incurs 47% more wasted
computation effort.

7.2.3 Results with S2C2 on polynomial coding. We evaluate S2C2

applied on polynomial coding while performing Hessian matrix
computation of the form ATdiaдonal(x)A, as described in section
6.3. The dimensions of matrix A are 6000 x 6000. The results col-
lected under low and high mis-prediction rates are shown in figure
12. In these experiments, the cluster consists of 12 nodes. The matri-
cesA,AT are partitioned each into 3 sub-matrices, encoded, and the
encoded partitions are distributed to the 12 nodes. Each node would
compute on 2 encoded partitions. Results from any 9 nodes would
be enough to compute the Hessian. In this setup, S2C2 reduces the
overall computation time by 19% in low mis-prediction rate envi-
ronment. The maximum possible reduction is 12−9

9 = 33.3%. The
part of Hessian computation where each node has to first compute
diaдonal(x)Ãi is not influenced by S2C2. As a result, the gains from
using S2C2 are lower than expected. Under high mis-prediction
rate environment, S2C2 reduces the overall computation time by
14%.

7.2.4 Scalability studies on a larger cluster. We performed exper-
iments on a larger cluster with 50 worker nodes and one master
node. Due to resource constraints we limit this scalability experi-
ment to S2C2 and MDS coded computing approaches running SVM.
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Figure 13: S2C2 performance on a 51 node cluster

We compared S2C2 and MDS coded computations under (50,40)-
MDS codes while performing gradient descent for SVM. The results
collected under low and high mis-prediction rates are shown in
figure 13. For S2C2 the maximum reduction in execution time over
(50,40)-MDS coded computation would occur when all 10 workers
are always fast during execution. The exact reduction would be
50−40
40 = 25%. S2C2 reduces overall computation time by 25% in a low

speed mis-prediction rate environment. In a high mis-prediction
rate environment, S2C2 reduces overall computation time by 12%.

The evaluation results presented in this section demonstrate the
effectiveness of S2C2 across different coded computation schemes
and across different scales.

8 RELATEDWORK
Straggler Mitigation: There are several straggler mitigation tech-
niques in literature which are reactive i.e., they wait until many
tasks finish their execution before detecting and mitigating strag-
glers. The authors in work [6] utilize real time progress reports to
detect and cancel the stragglers early. Authors in [45] use LATE
algorithm to improve the straggler detection and speculative exe-
cution in Hadoop framework. Adrenaline [17] identifies and selec-
tively speeds up long queries by quick voltage boosting. Authors
of [8] use software techniques such as selective replication of strag-
gling requests. S2C2 differs from these techniques because it is a
pro-active approach to straggler mitigation. In works [18, 25, 46]
the authors explore system sources of tail latency from system
and implement mechanisms to eliminate these causes. In another
set of works, [9, 24, 31, 48], authors focus on improving resource

efficiency while providing low latency. Both these works are com-
plementary to S2C2 and can be used along with S2C2. Using repli-
cated tasks to improve the response times has been explored in
[5, 7, 12, 23, 36, 39]. This approach involves launching multiple
copies of each task across workers, using results from the fastest
copy and canceling the slower copies. This approach is pro-active
like S2C2 but it needs multiple replicas of all the data resulting
in large compute and storage overheads. S2C2, on the other hand,
uses efficient coded replication and has significantly low overheads.
Another strategy used for straggler mitigation is arriving at an
approximate result without waiting on the stragglers [13, 32]. S2C2

does not do approximation and computes the precise result.
Coded Computation: Coded computation is a recently pro-

posed framework with two concepts to deal with the communi-
cation and straggler bottlenecks in distributed computing. The
first coded computing concept [26, 28] enables an inverse-linear
tradeoff between computation load and communication load in dis-
tributed computing. This can be leveraged to speed up large-scale
data analytics applications [29]. The second coded computation, the
focus of this paper, concept [22] provides resiliency to stragglers
and can be utilized to mitigate tail latency in distributed comput-
ing [11, 22, 27, 34, 38, 42]. In particular, several of these works target
distributed machine learning.There have been few recent works in
the coded computing literature to exploit the computations of slow
nodes [41, 47], however the key ingredient of our proposed strategy
is that it dynamically adapts the computation load of each node to
its estimated speed from the previous rounds of computations.

Performance Prediction: Dinda et al. [10] described and eval-
uated, Running Time Advisor (RTA), a system that can predict the
running time of compute-bound tasks. For predicting running time,
linear time series analysis predictions of host loads are used. Wolksi
et al. [40] developed Network Weather Service (NWS) to provide
forecasts for network performance, and available cpu percentage
at each compute node. NWS uses time series models, like ARIMA
models, for forecasting. It maintains and updates multiple models,
and dynamically selects the best performing model to provide fore-
casts. Speed prediction algorithm in S2C2 takes a similar approach
to these prediction algorithms but uses the LSTM model to predict
running times.

9 CONCLUSION
In this paper we proposed and evaluated S2C2 that efficiently toler-
ates speed variance and uncertainty about the number of stragglers
in the system. S2C2 distributes coded data to nodes and during run-
time adaptively adjusts the computation work per node. Thereby it
significantly reduces the total execution time of several applications.
Through our evaluations using machine learning and graph pro-
cessing applications, we demonstrate ~39.3% reduction in execution
time in the best case. We conclude that speed adaptive workload
scheduling as done by S2C2 effectively reduce the overhead in
coded computation frameworks and make them more effective in
real deployments.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
As described in the paper, we evaluated the proposed algorithms
using Docker containers on Digital Ocean cloud instances. Each
instance has 2GB memory and 2 CPUs.

ARTIFACT AVAILABILITY
Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: None of the associated artifacts, author-
created or otherwise, are proprietary.

List of URLs and/or DOIs where artifacts are available:

Zenodo DOI: 10.5281/zenodo.3381082
URL: https://doi.org/10.5281/zenodo.3381082

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Intel(R) Xeon(R) Gold 6140 CPU @
2.30GHz

Operating systems and versions: "Ubuntu 16.04.3 LTS running
kernel 4.4.0-121-generic"

Compilers and versions: python2.7

Key algorithms: "SVM", "Logistic Regression", "Page Rank"

Input datasets and versions: "UC Irvine ML Repository: Gisette
Dataset"

Output from scripts that gathers execution environment informa-
tion.

SHELL=/bin/bash
TERM=xterm-256color
USER=USER

LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=0 ⌋

1;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;0 ⌋

1:mi=00:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=3 ⌋

4;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:* ⌋

.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:* ⌋

.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31: ⌋

*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31: ⌋

*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz= ⌋

01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01 ⌋

;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01; ⌋

31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01; ⌋

31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01; ⌋

31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01; ⌋

31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01; ⌋

35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01; ⌋

35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01; ⌋

35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01 ⌋

;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=0 ⌋

1;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv= ⌋

01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v ⌋

=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv ⌋

=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb ⌋

=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv ⌋

=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=0 ⌋

1;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.ogv=0 ⌋

1;35:*.ogx=01;35:*.aac=00;36:*.au=00;36:*.flac=0 ⌋

0;36:*.m4a=00;36:*.mid=00;36:*.midi=00;36:*.mka= ⌋

00;36:*.mp3=00;36:*.mpc=00;36:*.ogg=00;36:*.ra=0 ⌋

0;36:*.wav=00;36:*.oga=00;36:*.opus=00;36:*.spx= ⌋

00;36:*.xspf=00;36:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

SUDO_USER=XXXX
SUDO_UID=1000
USERNAME=USER
MAIL=/var/mail/USER
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/b ⌋

in:/sbin:/bin:/snap/bin↪→

PWD=/home/XXXX
LANG=en_US.UTF-8
SHLVL=1
SUDO_COMMAND=/bin/bash collect_enviornment.sh
HOME=/home/XXXX
LOGNAME=USER
SUDO_GID=1000
_=/usr/bin/env
+ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 16.04.3 LTS
Release: 16.04
Codename: xenial
+ uname -a
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Linux ubuntu-2gb-sgp1-01-lon1 4.4.0-121-generic
#145-Ubuntu SMP Fri Apr 13 13:47:23 UTC 2018
x86_64 x86_64 x86_64 GNU/Linux

↪→

↪→

+ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 2
On-line CPU(s) list: 0,1
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 2
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 6140 CPU

@ 2.30GHz↪→

Stepping: 4
CPU MHz: 2294.608
BogoMIPS: 4589.21
Virtualization: VT-x
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 25344K
NUMA node0 CPU(s): 0,1
Flags: fpu vme de pse tsc msr pae mce

cx8 apic sep mtrr pge mca cmov pat pse36 clflush
mmx fxsr sse sse2 ss syscall nx pdpe1gb rdtscp lm
constant_tsc arch_perfmon rep_good nopl eagerfpu
pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1
sse4_2 x2apic movbe popcnt tsc_deadline_timer aes
xsave avx f16c rdrand hypervisor lahf_lm abm
3dnowprefetch invpcid_single rsb_ctxsw retpoline
kaiser tpr_shadow vnmi flexpriority ept vpid
fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms
invpcid rtm mpx avx512f rdseed adx smap
clflushopt clwb avx512cd xsaveopt xsavec xgetbv1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

+ cat /proc/meminfo
MemTotal: 2048096 kB
MemFree: 161804 kB
MemAvailable: 1629464 kB
Buffers: 162124 kB
Cached: 1296324 kB
SwapCached: 0 kB
Active: 1056824 kB
Inactive: 529728 kB
Active(anon): 132004 kB
Inactive(anon): 20100 kB
Active(file): 924820 kB
Inactive(file): 509628 kB
Unevictable: 3652 kB
Mlocked: 3652 kB

SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 44 kB
Writeback: 0 kB
AnonPages: 131744 kB
Mapped: 157892 kB
Shmem: 21576 kB
Slab: 266004 kB
SReclaimable: 221276 kB
SUnreclaim: 44728 kB
KernelStack: 4208 kB
PageTables: 5468 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 1024048 kB
Committed_AS: 1283092 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 0 kB
VmallocChunk: 0 kB
HardwareCorrupted: 0 kB
AnonHugePages: 0 kB
CmaTotal: 0 kB
CmaFree: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 63468 kB
DirectMap2M: 2033664 kB
DirectMap1G: 0 kB
+ inxi -F -c0
collect_enviornment.sh: line 14: inxi: command not

found↪→

+ lsblk -a
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 253:0 0 40G 0 disk

vda1 253:1 0 39.9G 0 part /

vda14 253:14 0 4M 0 part

vda15 253:15 0 106M 0 part /boot/efi
loop0 7:0 0 0 loop
loop1 7:1 0 0 loop
loop2 7:2 0 0 loop
loop3 7:3 0 0 loop
loop4 7:4 0 0 loop
loop5 7:5 0 0 loop
loop6 7:6 0 0 loop
loop7 7:7 0 0 loop
+ lsscsi -s
collect_enviornment.sh: line 16: lsscsi: command not

found↪→

+ module list
collect_enviornment.sh: line 17: module: command not

found↪→

+ nvidia-smi
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collect_enviornment.sh: line 18: nvidia-smi: command

not found↪→

+ lshw -short -quiet -sanitize
+ cat
H/W path Device Class Description
===============================================

system Droplet
/0 bus Motherboard
/0/0 memory 96KiB BIOS
/0/401 processor Intel(R) Xeon(R)

Gold 6140 CPU @ 2.30GHz↪→

/0/402 processor Intel(R) Xeon(R)

Gold 6140 CPU @ 2.30GHz↪→

/0/1000 memory 2GiB System Memory
/0/1000/0 memory 2GiB DIMM RAM
/0/100 bridge 440FX - 82441FX PMC

[Natoma]↪→

/0/100/1 bridge 82371SB PIIX3 ISA

[Natoma/Triton II]↪→

/0/100/1.1 storage 82371SB PIIX3 IDE

[Natoma/Triton II]↪→

/0/100/1.2 bus 82371SB PIIX3 USB

[Natoma/Triton II]↪→

/0/100/1.2/1 usb1 bus UHCI Host

Controller↪→

/0/100/1.3 bridge 82371AB/EB/MB

PIIX4 ACPI↪→

/0/100/2 display QXL paravirtual

graphic card↪→

/0/100/3 eth0 network Virtio network

device↪→

/0/100/4 eth1 network Virtio network

device↪→

/0/100/5 storage Virtio SCSI
/0/100/6 storage Virtio block device
/0/100/7 generic Virtio memory

balloon↪→

/1 flannel.1 network Ethernet interface
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