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Abstract

Human activity recognition (HAR) from wearable sensor data has
recently gained widespread adoption in a number of fields. How-
ever, recognizing complex human activities, postural and rhythmic
body movements (e.g. dance, sports) is challenging due to the lack
of domain-specific labeling information, the perpetual variability
in human movement kinematics profiles due to age, sex, dexterity
and the level of professional training. In this paper, we propose a
deep activity recognition model to work with limited labeled data,
both for simple and complex human activities. To mitigate the intra
and inter-user spatio-temporal variability of movements, we posit
novel data augmentation and domain normalization techniques.
We depict a semi-supervised technique that learns noise and trans-
formation invariant feature representation from sparsely labeled
data to accommodate intra-personal and inter-user variations of
human movement kinematics. We also postulate a transfer learn-
ing approach to learn domain invariant feature representations by
minimizing the feature distribution distance between the source
and target domains. We showcase the improved performance of our
proposed framework, AugToAct, using a public HAR dataset. We
also design our own data collection, annotation and experimental
setup on complex dance activity recognition steps and kinematics
movements where we achieved higher performance metrics with
limited label data compared to simple activity recognition tasks.
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1 Introduction

The recent proliferation of low-cost wearable sensors and IoT de-
vices have created a plethora of exciting new opportunities for
Human Activity Recognition (HAR) applications embedded with
innovative machine learning approaches. This research effort is
breaking new grounds in various fields such as health-care, sports
analytics, fitness monitoring and entertainment. The inbuilt in-
ertial sensors such as accelerometer, gyroscope, magnetometer
(commonly known as Inertial Measurement Unit or IMU) provide
a wide range of spatio-temporal features in capturing the human
body movements and kinematics than visual/depth sensing which
suffers from user privacy concerns and overlapped/occluded field of
view. This flexibility comes at a price though, as the raw features in
NLP or computer vision domain often carry more contextual infor-
mation, unlike inertial data streams. For example, the co-occurrence
of the words can be utilized to learn the latent language represen-
tation, which can greatly reduce the number of samples required
for downstream supervised learning task; whereas similar aspects
are not always present in inertial data streams. This requirement
on data labeling is exacerbated by the fact that even simple human
activity datasets tend to be highly personal and heterogeneous due
to the variations in age, sex, and physical condition across different
users let alone the specialized activity datasets as observed in dance
and sports.

While simple activities of daily living (ADLs) (e.g., walking, run-
ning, standing, sitting, and many more) are easier to label due to
their longer performance duration, typically ranging in minutes
to hours, the same may not be true for complex human activi-
ties. Therefore, building a reliable classifier model for recognizing,
learning and assessing complex human activities such as the ones
observed in dance and sports in the presence of limited label is
non-trivial. Motivated by this, we take the example of building a
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classifier for recognizing the dance micro-steps of a minute long
dance choreography [9] where each micro-step (label) lasts only
a few seconds. However, due to a wide variety of possible chore-
ography within a single dance genre, each dance session requires
the onerous step of relabeling the micro-steps even though they
are thematically very similar. Also, unlike ADLs, dance moves are
learned over time. Therefore, the labeling recorded for a novice
may not be well justified for redeploying to classify the perfor-
mance of the same performer after a few months of skill learning
and training (which is also true for sports). Same would be true
when a classifier is being trained on a well-defined performance of
the instructor but then deployed to classify the performance of a
beginner. In effect, the ripple of low generalizability of the complex
activities dictates that they cannot be annotated without the help of
the domain experts (e.g., dance/sports instructors/students) which
makes the data annotation process computationally expensive and
physically laborious. As such, there is a profound need for design-
ing adaptable and scalable algorithms that help classify complex
human activities without relying on large amounts of hand-crafted
data and are able to operate with a large number of users without
much supervision.

Over the last few years, deep neural networks (DNN) have be-
come the most adopted methodology for supervised classification.
They are less dependent on clever feature engineering and have
shown strong generalization [58] ability compared to traditional
supervised methods [22, 31]. However, their performance is also
highly dependent on the quality of the datasets [25], without which
they tend to overfit. Such problems arising from the lack of quality
labeled data can be tackled in a number of ways. Data augmentation
in the form of Gaussian noise addition, affine transformation, and
permutation on the spatial domain can be used to synthetically
increase the variations in training samples. This approach works
as properly parameterized augmentation transformations can ap-
proximate the minute variations noticed when humans perform
their activities [49], thus helping to cover unexplored input space
and increase the generalizability [13] of the trained model. Limited
training samples can lead to a constricted feature representation
learning, which can be expanded by exploiting the distributions
of the unlabeled data [8], circumventing the cost of manual label-
ing. However, semi-supervised learning (SSL) assumes the labeled
and unlabeled data come from the same distribution [45] therefore
reducing its effectiveness when domain shift is introduced [54]
for making simple human activity models adaptable in presence
of cross-user, device type and instance diversity [18] etc. Trans-
fer learning and domain adaptation techniques [18, 54] have been
shown to provide respectable performance gains with minimal
training labels in the target domain. But such architectures still
necessitate ample amount of labels in the source domain, which
might not be possible in a lot of use cases. Development of a semi-
supervised transfer learning architecture which can work with
minimal labels in both source and target domain for complex hu-
man activity recognition tasks is therefore of great prospect.

Our proposed work, AugToAct, is directly aligned towards such
goals, in which we combine augmentation transformations with
deep semi-supervised learning to infer complex activities with the
minimal labels in both source and target domains. We showcase how
the AugToAct framework offers the highest amount of flexibility
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in activity classification tasks, both in terms of required labeled
samples and the complexity of tasks. In addition to evaluating our
model on simple ADLs, we design an experiment where we collect
data on a complex set of dance moves on four subjects with varying
levels of training and try to recognize the dance moves of the less
experienced subject by training on the partially labeled moves
on the instructor. To our knowledge, this is the first work that
successfully combines data augmentation with semi-supervised
transfer learning in activity recognition literature, particularly for
complex activity such as dance. The key contributions of this paper
are summarized as follows:

o Deep Semi-Supervised Activity Recognition: We propose a semi-
supervised activity recognition technique that retains high clas-
sification accuracy in ADL classification with only a fraction of
the labeled samples. Our model can retain 90% accuracy with
only 25% labeled samples and 80% accuracy with even 6% labeled
samples. We combine affine augmentation transformation on
input data with an end-to-end convolutional autoencoding archi-
tecture to learn noise and transformation invariant features from
the unlabeled data without much of the labeled information.

o Deep Semi-Supervised Domain Adaptation: We extend our SSL
technique with domain adaptation which helps classify activities
of multiple users while training on a single user with limited
labeled information. Our end-to-end solution only assumes that
the source and target domain labels are unchanged and requires
no further feature engineering or parameter optimization.

o Empirical Evaluation on Simple and Complex Human Activity: We
evaluate the effectiveness of AugToAct on public ADL datasets
using a fraction of the labeled data both in the source and target
domain and report superior performance compared to state of
the art. To demonstrate the effectiveness of our approach on a
complex HAR task, we design an experiment around dance micro
activity recognition and collect data with four synchronous IMU
sensor data streams, one on each limb of the dancer. We recognize
complex dance choreography steps of novice students by training
the model on a few labeled samples of the dance performance
of a teacher. We noted higher performance gain of AugToAct
compared to simple HAR benchmarks attesting the promise of
our proposed architecture. We can retain high accuracy (89% in
the target domain) with only 50% labelled data from both the
source and target domain.

2 Related Works

In this section, we review relevant literature on data augmentation,
semi-supervised learning and transfer learning as these three con-
cepts form the core of our proposed methodology. We also try to
pinpoint the key differences between our approach and those in
the literature.

2.1 Data Augmentation

Data augmentation is a very simple and effective technique that
boosts the accuracy of classifiers when very limited data labels
are available. It helps to achieve peak performance in several deep
learning algorithms [14, 21]. Recent works also show that data
augmentation is not only valuable in input space, but also in the
learned feature space [39]. Traditionally a staple in computer vision
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and audio/signal processing domain, data augmentation is having
arenewed attention in time series augmentation tasks [10, 24]. Re-
cent works show that data augmentation can significantly boost
the performance in complex cases of activity recognition such as
monitoring Parkinson’s disease with wearable sensors [49] and
combating domain shift in the form of software and hardware
heterogeneity [30]. However, redundant and overly aggressive aug-
mentation can slow down training and introduce biases into the
data-set [15] and label preserving augmentation for inertial data
can be challenging without domain knowledge. As such, in our
proposed work we set the augmentation parameters sparingly and
instead of performing augmentation on the whole data-set, we
apply them in each batch of sliding windows in an online man-
ner. This not only ensures that different part of the long activity
sequence can achieve different augmentation variations but also
average out any aggressive or bad augmentation at the beginning
of the training stage.

2.2 Semi Supervised Learning

The lack of labeled data and associated cost of labelling has driven
a great deal of research that exploit more easily available unlabeled
data to perform feature learning among which Semi-supervised [45]
and Self-taught [40] Learning has garnered most attention over the
years. Semi-supervised learning assumes that labeled and unlabeled
data come from the same distribution whereas self-taught learn-
ing makes no such assumption. Authors of [3] use sparse coding
(a variant of self-taught learning) to derive over-complete basis
vectors as features from unlabeled inertial streams. The authors of
DeActive [16] have employed K-means clustering to derive code-
words as an alternative to sparse coding for unsupervised feature
extraction. However, they heavily relied on hand crafted feature
engineering in the pre-processing step and their goal was more
aligned with active learning methodology vs semi-supervised set-
ting. Self-learning [41] and graph based [42] approaches have also
garnered interests in unlabeled HAR tasks but these approaches
often treat the feature learning and classification as separate tasks
in which the correlation between the labeled and unlabeled data
might get unexploited. Recent analysis [34] have shown that with
proper setup semi-supervised learning can often match the perfor-
mance of a supervised setup. Authors of [57] have demonstrated
the effectiveness of semi-supervised learning in HAR context where
they employ a set of stacked denoising auto-encoder with short-cut
connections between encoder and decoder network (defined as
Ladder architecture) while sharing the encoder parameters with
the classifier and show that low-level features of the neural net-
work gain the most from using the unlabeled data. Alternatively,
Deep Auto-Set [50] employ a conventional auto-encoder instead
of layer-wise pre-training and they switch to a more flexible set
prediction objective. The work, however, does not employ any
comparative study of using any fraction of the labeled samples.
While our proposed method also employs a shared auto-encoding
pipeline with the classifier, we also apply several affine augmenta-
tion transformation in addition to Gaussian noise with the objective
of reconstructing the original non-transformed signal. We argue
that compared to reconstructing from Gaussian noise-corrupted
state, reconstructing the original signal from the affine-transformed
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state is a much harder objective, which forces our network to do
better unsupervised feature learning.

2.3 Transfer Learning

Transfer learning and domain adaptation techniques have been
traditionally applied in NLP [4] and computer vision [7] fields with
great success. Recently, these techniques have garnered much inter-
ests in activity recognition domain [6] as well. Based on the primary
mode of knowledge transfer, such techniques can be categorized
into three types [37]: (i) instance-based methods use instance re-
weighting techniques to perform knowledge transfer [5, 44], (ii)
parameter-based methods use clustering on the target domain after
training source model on labeled data [56, 59], and (iii) feature-
based methods learn a feature transformation between domains
when the distance can be minimized [12, 36, 52]. Our proposed
semi-supervised transfer learning work falls under the final cate-
gory. Most of the recent feature transformation based domain adap-
tation uses deep learning architectures. Deep Domain Confusion
(DDC) [47], Joint Adaptation Network (JAN) [28], Joint Distribution
Adaptation (JDA) [27] are popular domain adaptation architectures
in computer vision domain that tries to minimize maximum mean
discrepancy (MMD) distance between the final deep layers. Domain
Adversarial Neural Network (DANN) [11], Adversarial Discrimi-
native Domain Adaptation (ADDA) [46], on the other hand, try to
find domain invariant features from the source and target data-set
with adversarial training. Although fewer in number, there have
been several important domain adaptations works in HAR domain.
Authors of [32] analyzed CNN based transfer learning approaches
for wearable human activity recognition and showed that lower
layer features are more transferable. Works of [53] suggested a
transfer learning method to exploit the intra-affinity of classes to
perform intra-class knowledge transfer. Alternatively, [1] follow
a generative approach where they use variational auto-encoders
to capture a stochastic feature space to transfer between sensors
without any new labeled information and argue that stochastic
features are more robust against additive noise than deterministic
features of CNN. Almost all of the methods have an assumption
that the source domain model is trained with adequate labeled data
which might not be ideal for a real-world use case; our proposed
architecture is specially designed to work in such situations.

There have been only a few works that examine SSL and transfer
learning together where both the source and target domain have few
labeled samples. Authors of [38] present a flexible semi-supervised
transfer learning framework with the primary goal of protecting
sensitive data samples against adversarial attack, and as a result,
optimizing raw target domain classification performance is not
the primary concern. More recently, authors of [60] systematically
explore the use cases where SSL can provide tangible benefits over
transfer learning and concludes that SSL based algorithms work
best when the source domain is quite different from the target
domain. However, they consider transfer learning in the context
of only fine-tuning the weights of the model. Again, none of the
models set any constraint on the labeled samples in the source
domain which we are trying to address in our work.
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3 Methodology

Figure 1 shows a general overview of our proposed AugToAct frame-
work. Our semi-supervised learning idea is rooted in the working
principle of denoising auto-encoders [51], in which reconstruction
of the clean signal from Gaussian noise-corrupted input can lead
to a much better unsupervised feature learning. During our data
collection and analysis process of the complex activity recognition
task (dance, detailed in a later section) we made a few interesting
observations. The intra-class variability of the ADL tasks is caused
by a few factors. In addition to the sensor noise, such variability can
be introduced by the local vibrations of the sensors, placement of
the sensors around the wrong axis or ideal point on the body across
sessions. Moreover, the same ADL can be performed with a differ-
ent state of body and mind by the same person (e.g. normal walking
vs slower walking due to fatigue). We observed that such variation
can manifest as a non-linear affine transformation on the original
signal on the temporal domain and can be approximated with such
augmentation transformation. As such, we introduce such augmen-
tations on the input stream of the auto-encoder on the fly during
training and force the autoencoder to reconstruct the original signal.
As a result, the unsupervised feature extracted during the process
is not only random noise invariant but also transformation (rota-
tion, scaling, magnitude warp) invariant. The extracted features are
shared with the classifier at training time which leads to a much
simpler architecture, unlike layer-wise pre-training approaches of
stacked denoising auto-encoders [51]. The modifications needed to
adapt our SSL architecture into a transfer learning setup is shown in
Figure 2. In that case, we first train this semi-supervised module on
the source domain with limited labeled data. We then train another
copy of the module with the unlabeled target data while enforc-
ing another constraint in training which dictates that the feature
weights on the corresponding source and target module need to
have a similar distribution. We ensure such constraint by trying to
minimize the Jensen-Shannon Divergence between the distribution
of activation of the corresponding features in the source and target
domain which in turn through back-propagation forces the weights
of the layers to become similar as training goes on. Such network
architecture is flexible enough that it can accommodate between
an unsupervised, semi-supervised or full-supervised mode for both
the source and target domain. We have the option to fine-tune pa-
rameters to put more or less emphasis on supervised, unsupervised
or transfer learning component during training if required. In the
following sections, we specify the details of each of the building
blocks of our architecture with greater detail.

3.1 Supervised Activity Recognition

The supervised part of the architecture consists of 3 convolutional
layers with increasing number of filters and decreasing kernel and
receptive field shape in each successive layer. This is followed by
two fully connected layers, the final layer being a soft-max layer.
It is trained to minimize a Categorical Cross Entropy Loss (Lcce, ),
with the labeled training data. The architecture is very similar to
our previous works in [9] which has proved to be a very strong
and stable classifier complex HAR classification task. Dropout and
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batch-normalization (BN) are frequently used in convolutional neu-
ral network (CNN) architectures, to prevent over-fitting and en-
sure stable convergence of the optimizer by preventing internal
co-variate shift [17], respectively. However, we have chosen to not
use the Dropout in this architecture as the introduction of online
augmentation already have a strong regularization effect and only
apply L2 regularization on the weight and bias parameters. In our
experience, the augmentation and batch-normalization operations
also seem to interfere with each other during the training process
making it unstable and harder to converge. As such we remove
batch-normalization altogether. To keep the layers normalized we
opt to use self normalizing activation functions (SELU) [20] instead
of conventional RELU activations.

3.2 Augmentation Techniques for Activity
Recognition

Before we do any feature extraction during either of the unsuper-
vised or supervised learning process, the input data stream first
goes through the data augmentation module. We apply the follow-
ing primary type of augmentation in IMU data streams.

Jittering: Random noise is added to the accelerometer data-stream
to simulate local vibrations. We pick random noise values from a
normal distribution with a very small standard deviation.

Scaling: We randomly scale the magnitude of the data to simulate
the increased/reduced intensity the activity can be performed by
the subjects, for example, higher magnitude of movement while
walking faster compared to a normal walk.

Rotation: Applying random rotation to the data stream can help
simulate several cases. Smaller values can account for the minute
intra-class variations in angular velocity while larger rotation
values can account for the occasional large local angular vibrations
and misaligned sensor placement.

Time Warping: To account for the change in pace while perform-
ing an activity, we apply time warping by smoothly varying the
distance between the samples by using linear interpolation.

To simplify scaling and rotation operation, we generate a random
affine transformation matrix. Given a point p = (px, py, pz) and a
unit vector u = (uy, uy, uz), where u)zc + uz + ug = 1, the matrix,
R(p, ) for a rotation by an angle of 0 about an axis in the direction
of u can be calculated by Rodrigues’ rotation formula [33]. The final

rotation transformation can be calculated as follows:

Rio,upp = (1)

cos 0 + u)Z( (1—cos )
uyux (1-cos 0) + uz sin

uxuy (1-cos0) - uzsin &

2

cosS+uy (1-cos ) uyuz (1-cos0)—uxsind | [py

uxuz (1-cos @)+ uy sin @ Px
0059+u§(1—c059) Pz

uzux (1-cos @) - uy sin @ uzuy (1-cos 0) + ux sin &

Similarly, to scale p by a vector v = (vx, vy, v;) we use the following
formula which gets us the final scaled output:

Uy O 01 [px
Sop=1|0 vy 0| |[py (2)
0 0 v |pz

|
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Figure 1: Primary semi-supervised learning setup in AugToAct.
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Figure 2: Full semi-supervised transfer learning setup in AugToAct.

We empirically discovered the following order of transforma-
tions to be the most stable one: rotation = time-warp = scaling =
jitters. Doing the rotations, scaling and magnitude warping earlier
and jitters later in the pipeline helps avoid extreme variations. Sep-
arating out the affine transformations between rotation and scaling
ensures that we are able to maintain fine control over the param-
eters of the transformation while also able to simulate complex
rotation, scale/shear operation at the same time. These transforma-
tions are applied online on each incoming batch of input sliding
window samples and the parameters are chosen from random dis-
tributions (detailed in Section 4.2). Augmentation parameters are
kept same across single sensor channels in a batch, but in case
of multi-sensor setup, we chose to have differential augmentation
which is more realistic as variations are most of the time local to
the sensors.

3.3

We employ a convolutional auto-encoding pipeline for the unsuper-
vised feature learning part of our design. Similar to the supervised
counterpart, the network consists of 3 convolutional layers with
increasing number of filters and decreasing filter size and recep-
tive field. They are now followed by 3 deconvolutional layers that
mirrors the dimensions of the convolutional layers. As such the
input and the output has the same size. The region between the 3rd
convolution layer and 1st deconvolutional layer is called bottleneck.

Unsupervised Feature Learning
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We use the augmented samples as the input to this network with
the expectation of reconstructing the original samples in the output
of the final deconvolution layer with a Logcosh Loss (Ljogcosh, )-
We choose Logcosh Loss over Mean Squared Loss (L2) for its easier
optimization characteristics [2]. By passing the augmented data
through such layer arrangement and bottleneck and forcing to re-
construct the un-augmented input samples we allow the layer to
learn the noise and transformation invariant feature representation
from the unlabeled data, which is a more robust feature represen-
tation than what is normally learned by using a simple denoising
auto-encoder. It is to be noted that the features extracted by such
process are generally very domain-specific which is very helpful
when the classification task is in the same domain but falls short
when a domain shift is encountered. To handle those cases, we in-
troduce the transfer learning pipeline described in the next section.
During the main training phase, the first 3 convolutional layers are
shared between auto-encoder and classifier and the auto-encoder
and classifiers are trained simultaneously. We employ an alternate
training policy where we switch between supervised and unsuper-
vised data batches and optimize each sub-network. Compared to
joint training, where supervised and unsupervised batches need to
be properly aligned, such policy offers more flexibility in terms tun-
ing the relative importance between unsupervised and supervised
loss by looking on the ratio between the number of unsupervised
and supervised data samples.
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3.4 Transfer Learning

We bring transfer learning pipeline to handle domain shift in the
data streams. In our experiments we have primarily focused on han-
dling cross-user diversity where we train on partially labeled ADL
data of one/few users and then adapt the model to work with ADL
data streams of a larger number of users with minimal/no labels.
For controlled comparison we assume the same type (model) of de-
vice being used to collect the all data. Our transfer learning module
consists of two instances of the augmented semi-supervised module
(source and target network) described in the previous section. Before
training starts, we normalize both source and target data by their
domain-specific mean and variance calculated from the unlabeled
data pool of the respective domains. Performing domain-specific
normalization on the input feature space ensures partial domain
alignment [26] which helps the transfer learning algorithm achieve
better convergence. The learning process assumes two discrete
training phases. We first train the source network with partially
labeled data from the source domain. On the second phase, target
network is instantiated under the following conditions:

o The weight of the target softmax layer is initialized with the
values from the source softmax layer

e In addition to the Logcosh Loss (Logcosh, ) and Categorical Cross-
entropy Loss (Lcce,), we also add a new loss to minimize the
Jensen-Shannon Divergence (Ljs,,i = 1...3) between the acti-
vations of source and target convolutional outputs

For discrete probability distributions P and Q, Jensen-Shannon diver-

gene (Djg) is a symmetrized and smoothed version of the Kullback-

Leibler Divergence, Dk (P || Q). The Kullback-Leibler divergence

from P to Q is defined to be:

%0)

Dx(P || Q) = = Y P(i) log ol (3)
and thus Djg is defined by:
Dys(PI1Q)= > Dxr(P I M)+ 2 D@ M) @)

where M = %(P + Q). We then pass the unlabeled/partially labeled
data instances of the target domain through the newly instantiated
network and evaluate the performance of our transfer model. In
all cases of loss minimization, we use Adam optimizer [19]. The
objective function for the source network is defined as,

Lsource = achces + ﬁs-clogcoshs (5)
and for the target network

LTarget = athce, +ﬁt~£logcosht + YL]Sl "'5-5]52 +K~£]S3 (6)

where as, fs, at, B¢, v, § and k are relative weight hyper-parameters
between the losses that we also optimize with cross validation. If
we need to transfer again to a new domain only the target network
will require re-training with the incoming data stream.

4 Experiments

In the following sections we discuss the details of the datasets
including the specifics of the dance choreography data collection
and subsequent pre-processing steps. We then articulate the details
of the implementation, discuss the experimentation results and
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perform evaluations in both semi-supervised and transfer learning
settings.

4.1 Datasets

We showcase the effectiveness of our proposed framework on two
data-sets:

(1) We use Heterogeneous Activity Recognition Data-set (HHAR) [43]
as a representative of simple ADL recognition tasks contain-
ing a single sensor stream with 3 inertial channels.

(2) We conduct our own experiment to create a Dance Activity
Recognition Data-set, which represents a complex HAR task,
with 4 inertial sensors, 3 inertial channel per sensor.

We discuss the details of the two data-sets in the following sections.

Heterogeneous Activity Recognition Data-set (HHAR): This is a pub-
licly available data-set that contains six different locomotive activ-
ities, with accelerometer data from 8 smart-phones and 4 smart-
watches collected at 200Hz. The data was collected from 9 users,
with the smart-phones placed in a waist pouch, and smart-watches
mounted on each arm. HHAR data consists of 6 in-the-wild lo-
comotive activities (biking, sitting, standing, walking, stair-sup,
stairs-down), collected by 15 users, with phones mounted on 6 dif-
ferent body positions (chest, head, shin, thigh, upper arm waist)
and a forearm-mounted smart-watch. For our study, we only use the
smart-phone data-set with 3 inertial channels. For semi-supervised
learning task, we individually calculate the accuracy score for each
user. For transfer learning task, perform leave-all-but-one-user-out
cross-validation, where we train on only one user and then test on
the rest of the user and finally take the average of the results.

Dance Activity Recognition (DAR) Data-set: Recognizing dance ac-
tivity is fundamentally different from recognizing and learning the
traditional ADLs. Dancing requires grace and finesse, and involves
repetitive movements of the fingers, hands, forearm, elbow, arm,
legs, toes, waist, heads, etc., in a rhythmic fashion. It also reflects
the delicacy and rhythm of different postures along with the cogni-
tive ability and physical fitness of an individual. This makes DAR a
perfect proxy for a complex human activity recognition task. In our
experiment, we chose to study a classical Indian dance style: Lasya
which is a subcategory of Manipuri [55] dance form; the dance is
noted for its gentle, smooth and subtle limb movements. We de-
signed a specific dance script for Lasya which a beginner would
learn during the first few dance sessions which contain ten micro-
steps, as described by their primary limb movements in Table 2.
The transition between the dance steps can create complications as
it introduces ambiguity in the label boundaries. Depending on the
arrangements between the micro-steps, the transition can also vary.
We made a simple assumption and considered the transition to be a
part of the dance steps and labeled accordingly (after appending the
transition parts to the micro-steps). Since dance involves different
movements of limbs to perform distinct steps, it warrants more than
one sensor to capture the user’s actions with required accuracy [9],
in this case, we used actigraph (model wGT3X-BT)! sensors placed
in each of the limbs. We collected data for 20 trials out of which the
first 10 trials were conducted as such that the participants danced
only the specific micro-steps repetitively. The remaining 10 trials

Uhttps://www.actigraphcorp.com/
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Table 1: Percentage of samples per class in the DAR dataset

Class Label Percentage Class Label Percentage

Step 1 7.96% Step 6 5.16%
Step 2 3.55% Step 7 12.19%
Step 3 11.79% Step 8 13.02%
Step 4 12.74% Step 9 12.65%
Step 5 9.11% Step 10 11.77%

Table 2: Description of the dance labels in the DAR dataset

Class Label Description

Step1 Waving both hands from left to right
Step 2 Stepping left leg forward
Step3 Clockwise rapid rotational Movement
Step 4 Taking two forward steps with extended arms
Step 5 Anti-clockwise rotational movement
Step 6 Move both wrists to left side
Step 7 Clockwise step-by-step slow rotation
Step 8 Anti-clockwise step-by-step slow rotation
Step 9  Clockwise rapid tiptoe rotation
Step 10  Anti-clockwise rapid tiptoe rotation

were recorded as a sequence of all micro-steps, e.g. the way they
would naturally dance in a full routine. Such redundant ordering
ensures that the classifier can learn each micro-steps without asso-
ciating the transitions patterns with the class labels. We followed
the same method for both the instructor and the learners. To gather
realistic data we tried to emulate a classroom environment as much
as possible. The learners’ data were collected when the teacher was
primarily performing the moves and the learners were following
the instructor. This motivated the learners to try to match the speed
of the instructor but at the same time introducing more mistakes
than what they would normally do when they would perform the
same moves in a much slower pace.

ActiGraph wGT3X-BT has a tri-axis accelerometer sensor, that
gives us acceleration data for x, y and z axis at the desired sampling
frequency (in this case 100 Hz) along with the UNIX time-stamp
of each of the readings. The dance routines lasted for roughly one
minute and each of the dance steps taking up between six to four-
teen seconds (they are not of equal lengths). We recorded each
dance session using a video camera and annotated each micro-step
of the dance session by synchronizing the video with the accelerom-
eter data stream. We synchronized the signals from each sensor,
the video and the timestamps associated with them using ELAN
software [23]. Because of the initial clock synchronization, all sen-
sor samples are also properly aligned with each other in the end.
The raw sample size of the training and testing data-set for both
the instructor and the students is shown in Table 3. Due to the
variable lengths between dance steps, we ended up with a little bit
imbalanced distribution of the class labels, the average distribution
of the class labels are shown in Table 1.
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Table 3: Training and test set size in the DAR dataset

Training Testing  Validation
Instructor  56352x144 19560x144 19560x144
Student 112136x144 37632x144 37632x144

4.2 Implementation Details

We conducted our experiments on a Linux Server running Ubuntu
18.04 running on Intel Core i7-6850K CPU and 64GB DDR4 RAM
and 4 Nvidia 1080Ti Graphics cards with 44GB of total VRAM.
Python was used for all coding tasks. For the signal processing,
filtering and shallow learning tasks we used libraries such as scikit-
learn and scipy. For deep learning tasks we used Tensorflow with
Keras frontend and the codes were written to run in parallel in all 4
GPUs. After the extraction (also synchronization, annotation in case
of DAR data-set) of the data, we split the data between train and test
set before applying any kind of pre-processing to ensures absolute
zero overlappings between training and test samples. We followed
standard 60/20/20 train/test/validation split. Then we divide the
accelerometer data into 128 sample window with a sliding window
offset of 16 which results in 87.5% overlap between the windows.
A sample window of 128 or smaller is preferred as during the
training phase, the augmentation operations are performed online
on each incoming samples. Having a smaller window ensures more
varied augmentation on the input data stream because of the ran-
dom nature of the augmentations. For a similar reason, a smaller
batch size while training is preferred and we set out the batch size
to 32. In order to perform Jitter augmentation, we apply Gauss-
ian noise to the batch, with a standard deviation of 0.05. To apply
Magnitude Warping and Time Warping on the batch, we first create
random cubic spline curves with a standard deviation of 0.2 and
a maximum frequency of 2. We then use this carves to shift the
magnitude or temporal values in the samples. Rotation is done by
randomly generating a rotation matrix for the axes. The rotation
value is picked from a von Mises distribution [29] with 0 mean and
kappa value of 0.5 which helps keep the majority of the values
within a sensible range of [-7/2, r/2]. All these parameters were
chosen to not introduce any extreme changes in the augmented
batches compared to the original batches and we found these val-
ues worked similarly well for both data-set, suggesting that these
parameters might be generalizable for most HAR use cases. We
optimized the deep learning model hyper-parameters with Random-
ized Search search on the validation sets and performed the final
evaluation on the held-out test data using precision, accuracy and
recall metrics. Our optimal model parameters are listed in Table 4.

5 Results

Since our proposed framework AugToAct contains a number of
modules performing augmentation, semi-supervised and transfer
learning tasks, in order to evaluate their individual contribution we
perform an ablation study. In the following section, we separately
evaluate the semi-supervised learning module with and without
the effect of augmentation. We then take the best performing com-
bination of the operations and we use that for the transfer learning
pipeline evaluation.
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Table 4: Hyper-parameters of AugToAct model Table 5: Accuracy comparison of SSL and augmentation
module with different ratio of labeled and unlabeled sam-
ples on DAR and HHAR dataset

Hyper-parameters HHAR Data-set DAR Data-set
Convolution layers 3 3 N N
Convolution filters 64, 128, 256 64, 128, 256 ccuracy ccuracy
Convolution filter shapes 15x1, 7x1, 5x1 15x1, 7x1, 5x1 Labeled  Unlabeled Aug. (DAR) (HHAR)
Deconvolution layers 4 4 063%  9938% Yes 02308  0.6638
Deconvolution filters 256, 128, 64, 3 256, 128, 64, 12
Deconvolution filter shapes  5x1, 7x1, 15x1, 1x1 ~ 5x1, 7x1, 15x1, 1x1 0.63% 99.38% No 0.1407 0.6462
Fully-connected (FC) layers 2 2 0.63% 0% Yes 0.2233 0.6538
FC neurons 64, 6 64, 10 0.63% 0% No 0.1618 0.6343
Batch size 32 32 1.25% 98.75%  Yes  0.3673  0.7154
1.25% 98.75% No 0.2561 0.7037
1.25% 0% Yes 0.3412 0.6912
1.25% 0% No 0.2435 0.6827
5.1 Evaluation of Semi-Supervised Learning 6.25% 93.75% Yes  0.8088  0.7621
Module 6.25% 93.75% No 0.7565 0.7578
o 6.25% 0% Yes 0.7885 0.7501
We evaluate our SSL module by varying the ratio of labeled and 6.25% 0% No 0.7237 0.7436
unlabeled data. We start by using 0.63% labeled data and 99.38%
unlabeled data and gradually increase the labeled data usage to 12.50% 87.50%  Yes 0.8812 0.8046
100%. At the same time, we also train the network with and with- 12.50% 87.50%  No 0.7978 0.8013
. . 12.50% 0% Yes 0.8804 0.7913
out augmentation. We also have a baseline where we only use the
labeled fraction. The resulting evaluation on HHAR and Dance 12.50% 0% No 0.8012 0.7851
Activity dataset is shown in Table 5. As we can see, using unlabeled 25.00% 75%  Yes 0.9056 0.8634
data with augmentation always provide an accuracy boost. The 25.00% 75%  No 0.8332 0.8589
results are more prominent in DAR data-set where it is possible to 25.00% 0%  Yes 0.8964 0.8578
retain 90% accuracy with only 25% labeled data if augmentation 25.00% 0% No 0.8484 0.8552
an.d SSL are .also used together. This is aI‘OL.II’l(Z.l 6% more accuracy 37 50% 62.50%  Yes 0.9070 0.9175
gain over using only the labeled samples. Similarly, 80% accuracy 37.50% 62.50% No 0.8416 0.9113
can be retained with just 6.25% l'abeled samples (8.6% gain). On 37 50% 0%  Yes 0.8922 0.9054
the HHAR data-set though, .the gains are much more modest. H(?re 3750% 0%  No 0.8500 0.8921
66.38% accuracy can be retained with only 0.63% labeled data with
augmentation and semi-supervised learning, which is still around 50.00% 50%  Yes 0.9056 0.9221
3% accuracy boost over baseline. In addition to showing the effec- 50.00% 50%  No 0.8576 0.9189
tiveness the interplay between such augmentation schemes in a 50.00% 0%  Yes 0.8964 0.9178
semi-supervised setup, this benchmark also showcases the stark 50.00% 0%  No 0.8551 0.9156
contrast between the classification challenges of complex activities 62.50% 37.50%  Yes 0.909 0.9371
(e.g. dance) and simple activities of daily living (ADL). With DAR 62.50% 3750%  No 0.8559 0.9365
data-set we consider 12 channel (4 sensors) input data stream vs 62.50% 0%  Yes 0.9040 0.9344
3 channel in HHAR, which gives us more features to make the 62.50% 0% No 0.8602 0.9325
classification. But as we observed, dance activities are still harder
to classify than the ADL even with more feature involved and the 75.00% 25.00%  Yes 0.9183 0.9439
accuracy falls more sharply compared to ADL data when few la- 75.00% 25.00%  No 0.9056 0.9415
bels are available, providing more justification for the usage of the 75.00% 0% Yes 0.9183 0.9379
semi-supervised framework. Furthermore, such a result also show- 75.00% 0% No 0.8888 0.9377
cases the opportunity to exploit partially labeled data in a domain 87.50% 12.50%  Yes 0.9259 0.9507
adaptation scenario, which we discuss in the next section. 87.50% 12.50% No 0.9259 0.9476
87.50% 0% Yes 0.9242 0.9457
5.2 Evaluation of Transfer Learning Module 87.50% 0% No 09183 0-9445
To evaluate our transfer learning module, while at the same time 100.00% 0% Yes 0.9343 0.9589
100.00% 0% No 0.9301 0.9527

show the interaction between transfer learning and semi-supervised
learning module, we train the source model with 50% labeled data
and 50% unlabeled data with augmentation transformation enabled.
We then vary the amount of labeled target data from 0% to 100%
and show accuracy. A 3 layer CNN is treated as the baseline which
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Table 6: Accuracy comparison of AugToAct and other transfer learning approaches on the DAR dataset.

labeled Data% 0% 2% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Base CNN N/A 0.6026  0.6410  0.7438  0.7641  0.7803  0.8128  0.8205 0.8359  0.8359  0.8385 0.8513  0.8538
AugToAct 0.6279 0.6648 0.7167 0.7953 0.8325 0.8523 0.8842 0.8887 0.8948 0.8978 0.9004 0.9106 0.9138
HDCNN 0.5761  0.6197 0.6781  0.7487  0.7592  0.7949  0.7976 ~ 0.8326  0.8230  0.8333  0.8428  0.8536  0.8685
DDC 0.5623  0.6180  0.6749  0.7277  0.7205  0.7641  0.7949  0.8205 0.8285  0.8354  0.8385  0.8487  0.8667

can only utilize the labeled fraction of the target domain. We com-
pare the results with two other transfer learning approaches, HD-
CNN [18] and DDC [48], the results of which are shown in Table 6.
We did not include any comparison with a few other transfer learn-
ing algorithms such as JDA [27] and TCA [35], as HDCNN [18] has
been shown to provide superior performance to those and therefore
we directly compare AugToAct’s performance against HDCNN. We
can see that our AugToAct model can produce better results than
all other approaches in most cases. Interestingly, with 100% labeled
data in the target domain, AugToAct can achieve 6% higher accu-
racy than the baseline CNN network, proving that our architecture
can provide an improvement over classical deep architectures even
if there is redundant labeling information available.

6 Conclusion and Future Works

In this paper we investigated the effectiveness of our AugToAct
framework, a novel and flexible augmented, semi-supervised trans-
fer learning framework. The modular architecture can be adapted
to work in a variety of classification and domain adaptation tasks.
We experimentally showcased that our architecture is especially
suitable in classifying complex human activity recognition tasks.
In the future, we want to keep investigating the further improve-
ment of the network parameter optimization process. The data
augmentation methodology described is still somewhat unguided,
as we enumerated the optimal values of the parameters through
experimentation. Although these values seemed generalizable for a
number of simple and complex HAR tasks, in future, we wish to
automate the process of finding the optimal parameter for the aug-
mentation operation. In this paper, we only validated methodology
work on two HAR datasets. In the future, we wish to further test the
generalizability of the model on a few more data-sets which offer
more variety of human activities. We intend to include more users
with varying training and dexterity level into our study to further
test the scalability issues of complex human activity recognition.
Our experiment is also not designed around to work with unseen
labels in the target domain, a weakness we plan to address in future
work.
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