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ABSTRACT 42 

Phenotypic plasticity—one individual’s capacity for phenotypic variation under different 43 

environments—is critical for organisms facing fluctuating conditions within their lifetime. North 44 

American red squirrels (Tamiasciurus hudsonicus) experience drastic among-year fluctuations in 45 

conspecific density. This shapes juvenile competition over vacant territories and overwinter 46 

survival. To help young cope with competition at high densities, mothers can increase offspring 47 

growth rates via a glucocorticoid-mediated maternal effect. However, this effect is only adaptive 48 

under high densities, and faster growth often comes at a cost to longevity. While experiments 49 

have demonstrated that red squirrels can adjust hormones in response to fluctuating density, the 50 

degree to which mothers differ in their ability to regulate glucocorticoids across changing 51 

densities remains unknown—little is known about within-individual plasticity in endocrine traits 52 

relative to among-individual variation. Findings from our reaction norm approach revealed 53 

significant individual variation not only in a female red squirrel’s mean endocrine phenotype, but 54 

also in endocrine plasticity in response to changes in local density. Future work on the proximate 55 

and ultimate drivers of variation in the plasticity of endocrine traits and maternal effects is 56 

needed, particularly in free-living animals experiencing fluctuating environments.  57 
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INTRODUCTION 63 

All organisms experience changes in their environment, and the ability to adjust morphology, 64 

physiology or behaviour according to environmental conditions can provide individuals with 65 

important fitness benefits [1]. Phenotypic plasticity—when one individual or genotype can 66 

produce multiple phenotypes across a gradient of environments—is thought to represent an 67 

important mechanism that allows organisms to respond to environmental changes [2]. 68 

Phenotypic plasticity may be particularly important for organisms in fine-grained environments 69 

[1], defined by spatial or temporal fluctuations of key environmental features that occur within 70 

an individual’s lifespan [3,4].  71 

  North American red squirrels (Tamiasciurus hudsonicus, hereafter, ‘red squirrels’) 72 

experience drastic fluctuations in their fine-grained environment, where an important aspect of a 73 

red squirrel’s environment—local conspecific density—can vary up to 4-fold within an 74 

individual’s lifetime [5]. Periods of high density pose a challenge for breeding individuals, where 75 

the availability of vacant territories critical for offspring overwinter survival is low and 76 

competition for these vacancies is high [6–8]. Red squirrel mothers can prepare their young to 77 

cope with high density conditions via an adaptive hormone-mediated maternal effect [5]: under 78 

high densities, mothers with elevated glucocorticoids during pregnancy give birth to faster 79 

growing pups that have a greater probability of surviving their first winter [5]. This maternal 80 

effect is only adaptive under high densities [5,9], however, since faster growth does not improve 81 

juvenile recruitment under low density [5,10]. Offspring born under high densities have shorter 82 

lifespans [10], suggesting an inverse link between growth rate and lifespan [5]—this would be 83 

consistent with fitness costs of compensatory growth in mammals [11–13]. Chronically elevated 84 

glucocorticoids could also have negative impacts on mothers, leading to oxidative stress [14], 85 

immunosuppression [15,16], and reduced parental care [17]. As a result, we would expect the 86 

optimal red squirrel maternal phenotype to include elevated glucocorticoids during periods of 87 

high density, but decreased glucocorticoids during periods of low density. While glucocorticoids 88 

are positively related to naturally and experimentally elevated density in red squirrels [5], the 89 

degree to which individual mothers vary in their endocrine plasticity in response to changes in 90 

density remains unclear [18–20]. 91 

Glucocorticoids are broad mediators of phenotypic plasticity in vertebrates [19,20], 92 

circulating at flexible concentrations [21] and promoting physiological and behavioural 93 
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adjustments following perturbations in an animal’s environment [18,22–24]. This endocrine trait 94 

itself is plastic [25,26], where individuals can regulate concentrations of glucocorticoids in 95 

response to diverse environmental stressors [27,28]. Here, we take a reaction norm approach to 96 

explore within-individual variation in glucocorticoid plasticity in red squirrel mothers 97 

experiencing drastic among-year environmental fluctuations. We measured faecal cortisol 98 

metabolites (FCM)—a non-invasive measure of adrenocortical activity [29]—to determine 99 

whether female red squirrels show (i) individual variation in FCM and/or (ii) individual variation 100 

in plasticity of FCM in response to density changes.  101 

 102 

METHODS 103 

Field data collection 104 

We studied two unmanipulated populations (‘Kloo’ and ‘Sulphur’) that have been monitored 105 

since 1987, as part of the Kluane Red Squirrel Project in the southwestern Yukon in Canada (61° 106 

N, 138° W).  Each individual red squirrel defends an exclusive territory containing a hoard of 107 

white spruce (Picea glauca) cones (called a ‘midden’) over their lifespan. Seeds from cached 108 

cones sustain squirrels through winter, making territory-ownership crucial for survival [6–8]. 109 

Individuals were uniquely marked with numbered ear tags threaded with a unique combination 110 

of coloured wires. Territory ownership was assessed reliably each spring via a population-wide 111 

census, described in detail elsewhere [30]. Briefly, populations were completely enumerated 112 

each year and territory ownership was confirmed via a combination of observations of territorial 113 

vocalizations and live-trapping (by placing food-baited Tomahawk Live Traps on middens, 114 

Tomahawk, WI, USA). We calculated each individual’s local population density in the spring as 115 

the number of neighbours owning a midden within the acoustic environment of the focal 116 

individual (i.e. within a 130 meter radius) [31].  117 

 Between 2006 and 2014, we collected faecal samples opportunistically when trapping 118 

individuals (from February to September, mean time of day at capture ± S.D. = 11:30 a.m. ± 3 119 

hours). We checked below traps for fresh faeces, which we kept on ice until they could be frozen 120 

(within five hours of collection) [32]. At trapping, we assessed each female’s breeding status 121 

(pregnant, lactating, or non-breeding) by palpating the abdomen for foetuses and checking nipple 122 

condition [33]. Faecal cortisol metabolites were assayed in one of two facilities (Michigan and 123 

Toronto), following identical protocols which have been validated previously [32,34]. A subset 124 
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of samples (N = 128) analysed in both labs showed a strong positive correlation (Pearson 125 

correlation = 0.88), suggesting variation among labs had minimal effects on our results. Samples 126 

were thawed, lyophilized, flash-frozen, and pulverized by mortar and pestle. Steroids were 127 

extracted using methanol (1 mL of 80% methanol for 0.05 grams of dry faeces) [32,35], and the 128 

supernatant was used in an enzyme immunoassay to quantify glucocorticoid metabolites with a 129 

5α-3β,11β-diol structure [32]. Using a sample quality control run on all assay plates (N = 115), 130 

we found that estimates of optical density for these were highly repeatable (R = 0.85, 95% 131 

confidence intervals = 0.54 - 0.93). Faecal cortisol metabolites are expressed as ng/g of dry 132 

faeces, and ln-transformed to meet the assumptions of parametric statistical tests. 133 

 134 

Statistical analyses 135 

Our dataset included 1,729 FCM measurements, collected from 153 females, where 57 136 

individuals had repeated FCM measurements across a range of densities (i.e. two or more years). 137 

We did not censor individuals sampled in only one year, which reduces statistical power [36]—138 

including females sampled in a single year in our models helps to parameterize fixed effects and 139 

does not bias estimates for variation in plasticity (i.e. random slopes).  140 

To determine if female red squirrels differed in their endocrine plasticity we used a 141 

random regression modelling approach [36,37], fitting four general linear mixed models (LMMs) 142 

by maximum likelihood, and identifying the best supported model(s) using Akaike’s information 143 

criterion [38,39]. We performed LMMs in R [40] using the package ‘lme4’ (version 1.1-17). 144 

Diagnostic plots revealed that model residuals were normally distributed and were not 145 

heteroscedastic. We identified model(s) most strongly supported given our dataset using the 146 

‘bbmle’ package (version 1.0.20) to calculate model AICC scores and model weights. Lower 147 

AICC scores indicate stronger support, and models within two AICC values of one another fit a 148 

dataset similarly well [39]. 149 

We first built a null model including the following variables known to influence FCM in 150 

red squirrels [5,32]: breeding status, linear and quadratic effects of Julian date, the lab where 151 

samples were analysed (i.e. assay ID), and a linear effect of local spring density as fixed effects. 152 

There did not appear to be any nonlinear effects of any predictor beyond the quadratic effect of 153 

sampling date.  We standardized continuous fixed effects (i.e. with mean = 0, S.D. = 1), and 154 

checked for multicollinearity (all variance inflation factors were below 2). The null model did 155 
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not include random effects. The second model we tested was a random intercept model which 156 

added a random intercept for each individual squirrel to the null model. The last two models we 157 

tested added a random slope for density to the random intercept model, which allowed us to test 158 

for individual variation in endocrine plasticity as local density changed across years [36]. The 159 

third model assumed there was no correlation between random intercepts and slopes, whereas the 160 

fourth model allowed for random intercepts and slopes to be correlated. This tested whether an 161 

individual’s endocrine phenotype affected the likelihood that it would exhibit weaker or stronger 162 

plasticity. 163 

 164 

RESULTS 165 

We identified two equivalent top models that had a combined weight of 99%, and both included 166 

random intercepts and slopes (models 3 and 4; Table 1). Model 4 also included a negative 167 

correlation between individual estimates for intercepts and slopes, though this correlation was 168 

not statistically significant (the 95% confidence intervals overlapped with 0; Table 2). The other 169 

two models had a ΔAIC of 8 or more, indicating they were not supported by the data (Table 1). 170 

The top models support that female red squirrels show individual variation in FCM, as 171 

well as individual variation in endocrine plasticity across changes in density (Figure 1). We did 172 

not find support for a correlation between random intercepts and slopes (Table 2). Thus, an 173 

individual’s tendency to have elevated FCM was independent of the degree to which they 174 

exhibited endocrine plasticity. The fixed effects in both models supported previous findings in 175 

this system, where FCM increased with local density and declined non-linearly with Julian date 176 

(Table 2) [5,32].  177 

 178 

DISCUSSION 179 

This study highlights three key results about endocrine variation in a free-living population of 180 

red squirrels. First, individuals differed consistently in FCM.  Second, females differed in their 181 

endocrine plasticity in response to changes in local population density. Over half of females had 182 

elevated FCM as population density increased (56% of females), whereas 9% of females showed 183 

little change and 35% of females showed a decline in FCM with increasing density. Finally, our 184 

results suggest that an individual’s mean FCM phenotype does not covary with their plasticity in 185 

FCM in response to changes in their social environment.  186 
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 Our results add to a growing body of literature that show significant individual variation 187 

in glucocorticoid plasticity. House sparrows (Passer domesticus) showed individual variation in 188 

the degree to which glucocorticoids declined with age [41], or with food availability [25]. In both 189 

cases, some individuals responded strongly to changes in age or food availability, whereas others 190 

showed little endocrine response. Similarly, free-living male chimpanzees (Pan troglodytes) 191 

showed repeatable individual variation in urinary glucocorticoid responses to circadian changes 192 

[42]. Our study is the first to examine variation in endocrine plasticity along a natural gradient of 193 

ecological conditions, which provides important insight into how organisms differ in their ability 194 

to track changes in their environments. Future studies characterizing endocrine plasticity in free-195 

living animals will be critical to better predict how individuals, populations, or species may cope 196 

with changing environments. 197 

The prevalence of individual variation in glucocorticoid plasticity across studies suggests 198 

that individuals frequently differ in their abilities to respond to changes in environmental 199 

conditions, though the proximate mechanism underlying these differences remains unknown. In 200 

red squirrels, individuals that do not increase glucocorticoids under elevated densities could have 201 

responded plastically in downstream targets of glucocorticoids (e.g. changing receptor densities 202 

or corticosteroid-binding globulins [43]). A second possibility is that individuals showing little 203 

change in glucocorticoids across densities may simply be constrained in their ability to regulate 204 

glucocorticoid secretion [18]. For example, animals with elevated glucocorticoids may already 205 

be operating at their physiological maximum and may not be able to increase circulating 206 

concentrations further; if this were the case, however, we would expect to find a negative 207 

correlation between intercepts and slopes (which was not supported). A third possibility is that 208 

individuals differ in their ability to perceive local density—individuals underestimating density 209 

could fail to upregulate glucocorticoids under high-density conditions.  210 

More broadly, it is unclear whether individual differences in endocrine plasticity arise 211 

from genetic, early-life, or environmental effects. Circulating glucocorticoids are shaped in part 212 

by additive genetic effects [44–47], though the heritability of plasticity in glucocorticoids has not 213 

been examined [18]. Early life exposure to fluctuating environments [48], maternal 214 

glucocorticoids [49], and reduced parental care [50] all shape the glucocorticoid phenotype of 215 

offspring [51–53], and could similarly shape variation in endocrine plasticity. Future research on 216 

endocrine plasticity is needed to understand (i) the proximate mechanism that generates variation 217 
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in glucocorticoid plasticity, and (ii) the evolutionary causes and consequences of variation in 218 

glucocorticoid plasticity. 219 
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Table 1: We compared four candidate LMMs fit with maximum likelihood differing in their 402 

random effect structure in order to test for individual differences in endocrine plasticity. Fixed 403 

effects were identical in all models (i.e. breeding status, assay ID, linear & quadratic Julian date 404 

of sample collection, and density).  405 

 406 
Model Random Effects Covariance 

(intercepts & slopes) df AICC ΔAIC Model 
Weight 

Model 1: Null n/a n/a 8 3670.4 142.3 <0.001 

Model 2: With ID Intercept (ID) n/a 9 3536.3 8.1 0.009 

Model 3: With ID x 
density, no covariance 

Intercept (ID) 
Slopes (ID x density) No 10 3528.4 0.2 0.469 

Model 4: With ID x 
density, with covariance 

Intercept (ID) 
Slopes (ID x density) Yes 11 3528.2 0.0 0.522 

 407 

408 
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Table 2: We identified two top models, for which we present the estimates and t-values of fixed 409 

effects, variances and standard deviations of random effects, and the correlation coefficient for 410 

the covariance between individual intercepts and slopes (model 4 only). We estimated 95% 411 

confidence intervals (CI) by parametric bootstrap using the ‘lme4’ package. While we do not 412 

report P-values, parameters with 95% CI not overlapping with 0 can be considered as 413 

significantly different from 0 (indicated with an asterisk)—this is consistent with P-values 414 

calculated using the Satterthwaite approximation in ‘lmerTest’ (version 3.1-0). 415 

 Model 3 
(ID x density, no covariance) 

Model 4 
(ID x density, with covariance) 

Fixed Effects Estimate ± 
SE t-value 95% CI 

(Estimate) 
Estimate ± 

SE t-value 95% CI 
(Estimate) 

Intercept 
(lactating, 
Toronto) 

7.90 ± 0.05 161.3 7.08 – 8.00 * 7.90 ± 0.05 159.8 7.80 – 8.00 * 

Assay ID 
(Michigan) -0.01 ± 0.04 -0.394 -0.09 – 0.06 -0.02 ± 0.04 -0.405 -0.10 – 0.07 

Breeding Status 
(non-breeding) 0.12 ± 0.05 2.327 0.02 – 0.20 * 0.10 ± 0.05 2.273 0.01 – 0.20 * 

Breeding Status 
(pregnant) 0.09 ± 0.05 1.880 0.002 – 0.18 * 0.09 ± 0.05 1.909 -0.007 – 0.19 

Julian Date -0.04 ± 0.02 -2.489 -0.08 – -0.01 * -0.04 ± 0.02 -2.404 -0.07 – -0.004 * 

Julian Date 2 -0.06 ± 0.02 -3.937 -0.09 – -0.03 * -0.06 ± 0.02 -3.926 -0.10 – -0.03 * 

Density 0.15 ± 0.03 5.011 0.09 – 0.21 * 0.13 ± 0.03 4.297 0.07 – 0.19 * 

Random 
Effects Variance Standard 

Deviation 

95% CI  
(Standard 
Deviation) 

Variance Standard 
Deviation 

95% CI  
(Standard 
Deviation) 

ID (intercept) 0.079 0.281 0.22 – 0.33 * 0.079 0.281 0.21 – 0.35 * 
ID x Density 

(slope) 0.028 0.168 0.07 – 0.22 * 0.038 0.195 0.11 – 0.26 * 

Residual 0.397 0.630 0.60 – 0.65 * 0.395 0.629 0.61 – 0.65 * 
Covariance of 

Random Effects 
Correlation 
Coefficient 

95% CI  
(Correlation)  Correlation 

Coefficient 
95% CI  

(Correlation)  

Intercept (ID) &  
Slope (ID x 

Density) 
NA NA  -0.37 -0.74 – 0.02  

 416 

417 

.CC-BY 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/600825doi: bioRxiv preprint 

https://doi.org/10.1101/600825
http://creativecommons.org/licenses/by/4.0/


 

 16 

Figure 1: Reaction norms for all repeatedly-sampled female North American red squirrels (N = 418 

57). Each black line indicates one individual’s reaction norm, connecting mean annual endocrine 419 

phenotype across years (i.e. changes in population density). The blue line indicates the 420 

population-wide relationship between faecal glucocorticoid metabolite concentrations and local 421 

density. 422 

 423 
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