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ABSTRACT
Machine learning models are bounded by the credibility of ground
truth data used for both training and testing. Regardless of the prob-
lem domain, this ground truth annotation is objectively manual
and tedious as it needs considerable amount of human intervention.
With the advent of Active Learning with multiple annotators, the
burden can be somewhat mitigated by actively acquiring labels
of most informative data instances. However, multiple annotators
with varying degrees of expertise poses new set of challenges in
terms of quality of the label received and availability of the annota-
tor. Due to limited amount of ground truth information addressing
the variabilities of Activity of Daily Living (ADLs), activity recogni-
tion models using wearable and mobile devices are still not robust
enough for real-world deployment. In this paper, we �rst propose
an active learning combined deep model which updates its network
parameters based on the optimization of a joint loss function. We
then propose a novel annotator selection model by exploiting the
relationships among the users while considering their heterogene-
ity with respect to their expertise, physical and spatial context. Our
proposed model leverages model-free deep reinforcement learning
in a partially observable environment setting to capture the action-
reward interaction among multiple annotators. Our experiments in
real-world settings exhibit that our active deep model converges to
optimal accuracy with fewer labeled instances and achieves ≈8%
improvement in accuracy in fewer iterations.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning;Multi-agent planning; • Information systems
→ Personalization.
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1 INTRODUCTION
Mobile and wearable technologies are exhibiting manifestation of
sustained markets and new industries ranging from healthcare,
sports analytics to entertainment [24]. These ubiquitous devices
armed with plethora of sensing capabilities can capture longitu-
dinal physiological, behavioral and environmental data spurring
fundamental understanding of Activities of Daily Living (ADLs).
Most of the prior works involving ADL recognition are heavily
enlightened based on supervised learning [4]. In order to train a
robust predictive model for ADL, multitude of data with possible
variations are indispensible. It is important to capture the di�erent
variations of a certain activity with respect to di�erent constraints.
For example, if we were to build a generalized predictive model
for detecting “cooking”, several constraints like cultural diversity,
living condition, food preferences etc. need to be considered. Noise
and variations in the data drive the convergence properties of model
parameters. As a result the accuracy of these models are bounded
by the inherent quality of the labeled data provided during train-
ing phase. In order to tackle this problem, large amount of labeled
data originating from diverse environment with context driven con-
straints are fundamental. Deep learning algorithms have recently
become popular because of their intrinsic nature of learning good
feature representations given input data with complex patterns [23]
[21]. Nevertheless, deep models still require large labeled dataset
to tune their parameters and adapt to the instances with distinctive
scenarios.

Collecting labeled data information in disparate situations is
time-consuming and demands considerable amount of manual la-
bor. In activity recognition domain, researchers have attempted to
collect ground-truth information using modalities like video cam-
era, object sensors and visual observations. This data annotation
process is usually carried out by domain experts. It is di�cult to
manage enough domain experts to label large amount of data. Us-
ing crowdsourcing, we can manage a large number of annotators
but the lack of their domain knowledge in�uences the quality of
the labels. Active learning algorithms have also exploited to collect
labels from the users themselves [10] [2]. The key property of active
learning is that it enables us to focus only on the data instances
which will have signi�cant impact on the model parameters if la-
bels are provided [28]. Traditional active learning is based on single
annotator and assumes any number queries can be posed to the
annotator at any time. Moreover, the algorithm expects accurate
annotation all time which is inappropriate in a real-world settings.

In this paper we propose a novel activity recognition algorithm
which harnesses the underlying e�cient feature learning capa-
bility of deep models and the competency of active learning to
collect ground truth information. In most of the existing works[5]
[29] informative instance selection process using active learning
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is administered independently from the principal inference model.
Depending on the methodology of the active sampling algorithm,
the selection process can become over con�dent and vulnerable to
outliers over time. Thus it is necessary to propagate the learned
knowledge of active learning to the base model. In our model, we
propose to blend active learning with the deep model by jointly
optimizing their respective loss function. By doing this our model
can also take advantage of the unlabeled data instances during the
training phase. Our model can then endure outliers and adapt to
diverse data distributions of the same activity. Our model applies
active learning in a multiple annotator setting. The potential anno-
tators for a certain user are accumulated based on the similarity of
their context information. The key insight here is that the potential
annotators are those with whom we interact with mostly in our
day to day life. As we tend to follow a cognitive routine everyday
(having meals, going to work, playing, sleeping etc., at speci�c
times of the day), the people with whom we are connected with
may have a general understanding of our habits and timing or can
be direct activity witnesses. For this reason, we encompass these
people as potential annotators for an user in our model. We then
attempt to select the appropriate annotator given the context of
the user and the annotators. Hence we propose a novel annotator
selection model using deep reinforcement learning algorithm. The
main contributions of the paper are summarized below:

• We propose an active learning integrated deep activity recog-
nition model which shows near optimal accuracy in presence
of fewer labeled instances.
• We propose a joint loss function which helps us to opti-
mize the parameters of the deep model according to the data
distribution of the unlabeled data instances. This enables
our model to adapt to outliers and be more sensitive to true
informative instances.
• We propose a novel annotator selection model using deep
reinforcement learning. We acclimate an actor-critic net-
work based approach to learn the reward distribution of the
annotators in a continuous state space.
• We develop a smartphone app (SocialAnnotator) to collect
a variety of labeled data from 20 users over a month. We
evaluate our proposed active-deep reinforcement learning
based contextual annotator selection framework using these
datasets which attest faster convergence to optimal reward.

2 RELATED WORK
Human activity recognition (HAR) using variety of sensing entities
(wearables, mobile, RFID, WiFi, camera etc.) have been investigated
extensively in recent years [4][24]. Earlier HAR models based on
shallow learning classi�ers fail to scale for larger population and
diverse environment, as they need handcrafted feature extracted
from the experts. Also they require large number of labeled data
which is time consuming and most of the time manual process.
With the recent advancements of deep models, these limitations
have been somewhat mitigated [21]. The authors of [27] proposed
a personalized HAR system based on matching networks which
can recognize a new class from a few samples of that class. Using
matching networks they perform nearest-neighbor classi�cation by
reusing the class label of the most similar instances in a provided

support set. K-means clustering inspired deep encoding method
for feature extraction has been proposed in [11]. A hierarchical
deep multi-task learning model to detect simple and complex ac-
tivities , AROMA [22] utilizes convolutional neural network(CNN)
to extract features and then applies LSTM to learn the temporal
properties of the activities. Various researchers [20][23][17][23]
have also addressed the problem of sensor fusion and heterogeneity
in presence of multimodal sensors using deep learning methods.
Guan et al. proposed an ensemble model based on LSTM to address
the problem of imbalanced dataset and data quality [8]. The authors
of [15] proposed a novel model which can infer activities given a
sequence of past activities and durations.

Several works have proposed to tackle the problem of data insuf-
�ciency by applying transfer learning algorithms for deep models
[14][25][13]. Khan et al. have demonstrated a CNN inspired trans-
ductive transfer learning model, HDCNN [14] which can attain
high accuracy in absence of any labeled information in the tar-
get domain. The authors of [32] proposed a framework called STL
which transfers intra-class knowledge iteratively to transform both
target and source domains into the same subspace. A personalized
inference model which reuses the lower layers of CNN network
from the source domain in the target domain and trains the upper
layer of the target domain has been proposed in [26].

Although deep learning and transfer learning models can handle
and endure the labeled data scarcity, still they require signi�cant
amount of labeled instances. Active learning algorithms has been
investigated in online settings to opportunistically collect labels
from the users [5][10][29][2][1][11][9]. Gabriele et al. [5] proposed
a collaborative active learning method to extract the correlations
among sensor events and activity types. However, the e�ectiveness
of active learning algorithms largely depends on the annotators
and the quality of label received. [7] [6] [33] [34] have proposed
annotator selection models in multi annotator active learning set-
tings. In our earlier work [12], we employed contextual multi armed
bandit to model the reward dynamics. However the rewards for
individual annotators were sampled from a pre-de�ned distribution
using Monte Carlo simulation. In this paper, we want to make the
reward calculation process as functional approximation so that the
system becomes dynamic to di�erent context. Existing proposed
HAR models based on active learning, treats the active learning
process as a separate pipeline. In this paper, we propose an active
learning infused deep model which ensures convergence to optimal
accuracy with fewer labeled examples. We also propose an annota-
tor selection model based on reinforcement learning to ensure that
active learning remains e�ective.

3 OVERALL
Our model has two major components - an active-deep classi�er
and an annotator selection model to make active learning more
e�ective. In Figure 1 we show a high level architecture of our pro-
posed model. Existing algorithms consider active learning separate
from the principal deep learning process. Traditionally,a deepmodel
is trained �rst using the labeled data instances and occasionally
unlabeled instances are used to pre-train and initialize the model
parameters. The posterior probabilities of the class labels are then
collected from the �nal softmax layer. An active learning sampling
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Figure 1: A High level architecture of our proposed model. The left side of the �gure illustrates our active learning enabled
deep model and in the right side of the �gure our annotator selection pipeline is shown.

strategy is then applied on the posterior probabilities to measure
the informativeness of the current instance. Here informativeness
is considered in terms of the e�ect on the base learning algorithm
if the label is known for an instance. The e�ect can be a shift in
the decision boundary which eventually helps in reducing overall
error of the model. Uncertainty based informativeness measure-
ment methods are highly acclaimed in such cases because of their
simplicity and reduced complexity compared to other sampling
strategies like searching through hypothesis space or expected er-
ror reduction. In our model we measure the level of uncertainty by
calculating the entropy of the data instance. The more uncertain an
instance is, higher its entropy will be. This situation arises when
posterior probabilities of the output class labels are close. This indi-
cates that the classi�er was unable to predict the actual label of the
provided data instance. However, deciding the informativeness by
just measuring the entropy of the incoming data instance makes
the process myopic and becomes overcon�dent as time progresses.
Thus it is necessary to properly determine which instances are truly
informative. For example, an outlier instance which does not belong
to any class will have high entropy which makes it an informative
instance accordingly. Therefore, the learning model needs to be
able to properly di�erentiate which instances it should focus on. In
order to accomplish this we fuse the deep model with the active
learning algorithm by applying a joint optimization of the indi-
vidual objective functions. We present a joint loss function which
consists of cross-entropy loss of the neural network and the entropy
function. We train our model with both labeled and unlabeled data
instances. Labeled instances help in optimizing the cross-entropy
part and the unlabeled instances help in optimizing the network
parameters to learn the informative instances.

We collect data from the smartphones carried by the users. We
exploit four sensors entities - accelerometer, gyroscope, magnetome-
ter and the location sensor. The �rst three sensors provide three axis
data and the location sensor provides 2D data. The streaming data
are cached and form a pool of instances. We calculate the entropy
of these instances and select the instances with maximum entropy.
After selecting the informative instances, we pose the queries to

the annotators. We select appropriate annotator for a certain query
from a set of annotators who are connected to the user. The key in-
tuition here is that in our day to day life some activities have direct
witnesses. These witnesses are usually the people who we mostly
know and are connected or related with. In our annotator selection
module we take advantage of these connections and consider them
as the potential activity annotators. We employ deep reinforcement
learning approach in order to determine the best annotator among
the connected users given an instance. Our annotator selection
model is comprised of two interlinked networks - actor/action and
critic/policy network. The goal of the actor network is to predict
the optimum annotator given the current context of the user. Given
the current context and the candidate annotator selected from the
actor network, the critic network tries to reach the optimum policy
and approximates the reward gained by choosing the candidate
annotator. The reason we adapt an actor-critic model is because of
our continuous state space. In traditional Q-learning approach, we
have a �nite set of actions and states for which we calculate the
reward received for every possible combinations. However, if one
of them among action and state space is continuous then the tradi-
tional reward calculation becomes intractable. As a result we model
our annotator selection component as a functional approximation
problem. After receiving the feedback from the selected annotator
we add the newly received label to our labeled data set. We re-train
our model after a certain interval with the expanded labeled dataset.
If an annotator refuses to answer the query and discards it, then it
is added back to the unlabeled data instance pool.

4 DEFINITIONS & PRELIMINARIES
Majority of the real-world problems involving reinforcement learn-
ing are modeled in accordance to Markov decision processes (MDP)
[31]. By modeling through MDPs, we can formalize the decision-
making process by considering not only the reward of the imme-
diate action but also the outcome of the consecutive actions. We
consider an agent interacting with the environment E in discrete
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timesteps t . At each time step t , the agent observes a representa-
tion of the environment st ∈ S and takes an action ai from a set
of actions A namely selects an annotator and receives a reward
rt+1 ∈ R ⊂ R. In our context, the set of actions or annotators and
rewards are �nite as we have a countable number of annotators
who are connected with a speci�c user. The discrete probability
distributions of random variables ai and rt depend only on the
prior state and action. The process of choosing action given the
state of the environment and receiving reward continues until we
reach a terminal state. However, in our problem domain there is no
terminal state as the process of annotation will never �nish. A state
st is de�ned by the data we are receiving from the sensor modali-
ties. As the sources of our data stream provide continuous value,
hence our state space is also continuous meaning the probability
density of the next state is continuous in the action taken at the
current state. The state-transition probability function is de�ned as∫
s ′ T (s,a, s

′)ds ′ = P (st+1 = s ′ |st = s,ai = a)
A policy π de�nes the behavior of an agent which outlines states

to a probability distribution over the annotators π : S → P (A). The
primary goal of any RL agent is to maximize discounted cumulative

future reward or return, Gt =
∞∑
t=0

γ tRt+1 from a state at given any

given time t where γ is the discount rate and 0 ≤ γ ≤ 1. The value
function vπ (s ) of a state s under policy π is the expected return
starting from that state which provides insight about how good
a state is. The formal de�nition of this state − value function is
de�ned by

vπ (s ) = Eπ [Gt |st = s] = Eπ [
∞∑
k=0

γkRt+k+1 |st = s] (1)

Similarly the action-value qπ (s,a) function for policy π taking
action a while being in state s provides insight about how good a
state-action pair is. It is de�ned by the following:

qπ (s, a) = Eπ [Gt |st = s, at = a]

= Eπ [
∞∑
k=0

γ kRt+k+1 |st = s, at = a] (2)

The optimal Bellman equation for both these value functions are
then de�ned as

v∗ (st ) = max
π

vπ (s )

= max
ai

∑
st+1,r

p (st+1, r |st , ai )[r + γv∗ (st+1)] (3)

q∗ (s, a) = E[rt+1 + γ max
a′

q∗ (st+1, a′) |st = s, at = a]

=
∑

st+1,r |st ,a

[r + γ max
a′

q∗ (st+1, a′)] (4)

We can solve these value functions using value iteration algorithm
by bootstrapping the feedback received to attain optimum policy
and action at each step iteratively. As our state space is continuous,
it is impossible to calculate the value function for every state-action
pair. Therefore, it is di�cult to evaluate the value functions in Eqn
4 and 3. Our goal is then to �nd a good approximate solution given
the circumstantial prior encounters.

4.1 Deep Reinforcement Learning
The deep deterministic policy gradient (DDPG) [16] method based
on deterministic policy gradient (DPG) [30] can adapt to domains

with stochastic continuous state transitions. Instead of learning
the value functions directly DDPG aims to approximate and im-
prove both the policy and action value functions. The policy π is
parameterized by θπ that directly models the action probabilities
by tweaking the parameters θ at each time step t . The action-value
function q(s,a;θq ) is parameterized by θq . We train two separate
neural network for these value functions where the policy update
network is called the actor network and the action-value update
network is called the critic network. The critic network evaluates
the action-value function by minimizing the following loss function

L(θq ) = Es,a∼ρ (.)[(yi − q (st , at ; θ iq )
2] +wθ iq

θ iq
2 (5)

yi = E[rt+1 + γ max
a′

q (st+1, a′; θ i−1q |st , a)] (6)

The parameters θq are then updated using the batch stochastic
gradient descent method in Eqn. 7 where ∇θqL(θq ) is the derivative
of the loss function with respect to θq and αq is the learning rate
for the critic network.

θq → θq − αq∇θqL(θq ) (7)

We de�ne the quality of our policy π as the average rate of reward.
So we need to update the actor network by calculating the policy
gradient of the rate of reward. The average reward received is
de�ned as:

J (θπ ) = lim
h→∞

1
h

h∑
t=1
E[rt |s0, a0:t−1 ∼ π ]

= lim
t→∞
E[rt |s0, a0:t−1 ∼ π ]

=
∑
s

µπ (s )
∑
a

π (a |st , θπ )
∑

p (st+1, r |st , a)r (8)

In Eqn 8 s0 is our initial state and µπ is the steady-state distribution
under policy π , µπ (s ) = limt→∞ Pr (st = s |a0:t ∼ π ). The actor network
is updated using batch gradient descent as well using the gradient of the
policy gradient function J (θπ ) with the step size parameter αq .

θπ → θπ − απ∇θπ L(θπ ) (9)

5 METHODOLOGY
In this section we describe our proposed methodology in details. As men-
tioned in the Section 3, our algorithm has two fundamental modules, Deep
Active Learner and Annotator Selection. First we will describe our activity
classi�cation and instance selection using active learning pipeline.

5.1 Deep Active Learner
Our model fuses active learning with deep model instead of just consider-
ing the resultant posterior probabilities from the �nal layer of the neural
network to measure the informativeness of an instance. Our deep model
uses the standard cross-entropy loss (Eqn. 10) to optimize the network pa-
rameters. In Eqn. 10 N denotes the number of class, c is the target vector
and y is the output vector which is calculated using the softmax function
yi = epi∑N

k epk
. Here, pi =

∑
j=1 hjwi j is the weighted sums of the hidden

layer activations.

Lc = −
1
nl

N∑
i=1

[ci log(yi )] (10)

We exploit the entropy of an instance as the measure of informativeness
or uncertainty. The entropy of an instance xi ∈ U from the unlabeled data
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instance pool U is de�ned as,

H (yi ) = −
N∑
j=1

y ji logy
j
i (11)

Here y ji denotes the probability of assigning instance xi to class j . We
get this assignment probability from the �nal layer of our neural network.
In traditional active learning settings, unlabeled data are not used in the
training process. Queries are posed based on themeasurement of uncertainty
only which is myopic and become overcon�dent about wrong predictions
overtime. In order to fuse deep model and active learning together we
propose a joint loss function which is de�ned as following

L =
1
nl

nl∑
i=1

L(ci , yi ) +
λ
nu

n∑
i=nl +1

H (yi )

= −
1
nl

nl∑
i=1

N∑
i=1

[ci log(yi )] −
λ
nu

n∑
i=nl +1

N∑
j=1

yi logy
j
i (12)

In Eqn. 12, nl denotes the number of labeled data, nu is the number of
unlabeled instances and the parameter λ regulates the e�ect of entropy loss.
We can derive the gradient of our loss function 12 by evaluating the partial
derivative of the cross-entropy loss and the entropy. The gradient of the
cross-entropy loss is

∂Lc
∂hqr

= −
∂

∂hqr

(
1
nl

nl∑
i=1

N∑
i=1

[ci log(yi )]
)

=
∂

∂hqr

(
1
nl

nl∑
i=1

N∑
i=1

[ci log(
epi∑N
k epk

)]
)
=

1
nl

(pqr − yq ) (13)

The partial derivative ∂H
∂hi j

is the gradient of entropy H with respect to
hidden layer unit hi j . The gradient of the entropy is

∂H
∂hqr

= −
∂

∂hqr

(
λ
nu

n∑
i=nl +1

N∑
j=1

xi logy
j
i

)

= −
∂

∂hqr

(
λ
nu

n∑
i=nl +1

N∑
j=1

epi∑N
k epk

log
ep

j
i∑N

k epk

)

= −
λ
nu

∑∑
(pi j log

∑
j′

ehi j′ + pi jpir − pi j log
∑
j′

ehi j′pir )

=
λ
nu

[
− pqrhqr − pqr + pqr

C∑
j=1

pqjhqj + pqr log
∑
j′

ehqj′

+ pqjpqr − log
∑
j′

ehqj′pqr
C∑
j=1

pqj

]

=
λ
nu

pqr

[ C∑
j=1

pqjhqj − hqr

]
(14)

The overall gradient then for our back-propagation update is the sum of
the cross-entropy gradient and the entropy gradient.

∂L
∂hqr

=
1
nl

(pqr − yq ) +
λ
nu

pqr
C∑
j=1

pqjhqj − hqr (15)

By assimilating the entropy in our loss function, the model becomes
more sensitive to highly informative instances. Also we can use all the un-
labeled data instances to train our model. Our deep active learning model is

Environment

Actor
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R
ew
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State

Values
Action

Figure 2: Actor critic network �ow

summarized in Algorithm 1. We employ a convolutional neural network for
our deep model. The cross-entropy loss is computed using the labeled data
instances and entropy loss is computed using the unlabeled data instances.
In each step, a batch is formed using both labeled and unlabeled data in-
stance. Our proposed joint optimization ensures the network to reduce
entropy along with the classi�er loss. This enables the classi�er to �lter out
highly informative instances more e�ciently and not focus on outliers.

Algorithm 1 Deep Active Learning

1: Input: U = a pool of unlabeled instances {(x )u }Uu=1,
2: Input: L = a pool of labeled instances {(x )l }Ll=1,
3: Input: learning rate ϵ
4: Input: batch size k , number of epoch t
5: Output: Trained Active Deep Model
6: initialize network parameters, weights w and bias b
7: for t = 1, 2, . . .T do
8: Create mini batches of size k from U and L
9: for each X l

i :i+k ∈ L and Xu
i :i+k ∈ U do

10: Calculate the gradient of cross-entropy loss Lc using X l
i :i+k

11: Calculate the gradient of entropy H
12: Gradient of loss ∂L

∂hq r
←

∂Lc
∂hq r

+ ∂H
∂hq r

13: Update network weights
14: end for
15: end for

5.2 Annotator Selection
Our annotator selection model is inspired by the actor-critic based reinforce-
ment learning method. The �ow of information and the training process is
shown in �gure 2. Taking an action is analogous to selecting an annotator
from a �nite set of annotators A. At any given time t a state is de�ned
as a tuple , st = {dt ,mt , дt , lt } where dt ,mt and дt represents three
dimensional accelerometer, magnetometer and gyroscope data and lt is the
two dimensional location information of the user. The actor network is
updated using the gradient of the policy gradient function de�ned in Eqn.
8. The gradient is de�ned as following:

∇π J (θπ ) = ∇π

[∑
s

µπ (s )
∑
a

π (a |st , θπ )
∑

p (st+1, r |st , a)r
]

=
∑
s

µ (s )
∑
a
∇π (a |s )qπ (s, a) (16)

While training the actor − cr it ic networks, the loss function de�ned
Eqn. 6 and the gradient calculation in 16 is calculated over a minibatch size
of 32 samples. Also we use Adam optimizer to ensure e�cient learning over
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directly applying gradient update using Eqn. 7 and 9. We exploit the method
proposed by [16] to �x the problem of divergence when directly setting the
parameters of the target function in Eqn. 6 at every step. We record the
update of θq and θπ by calculating moving average θ̂ ← (1 − η)θ̂ + ηθ̂
where θ̂ represents θq and θπ and η = 0.001 is the decay factor.

Algorithm 2 Annotator Selection Policy using DDPG
1: Input: activity fragments Fk , k = 1 . . . K with associated annotator

fragments (st , ati )
2: Input: parameterized policy π (ati |st , θπ )
3: Input: parameterized state-value function v (st , θq )
4: initialize state-value parameter θq and policy parameter θπ to 0
5: initialize target function θ̂q ← θq and θ̂π ← θπ
6: initialize starting state s0
7: for each time step t do
8: Select annotator atj using current policy π
9: Evaluate state-value function q (st , atj , θq )
10: Evaluate expected state-value yi using optimum annotator ati
11: Calculate the loss of cr it ic network L(θq )
12: Calculate the average reward rate J (θπ ) for state st
13: Evaluate the gradients ∇L(θq ) and ∇J (θπ )
14: Update θq and θπ
15: θ̂q ← (1 − η)θ̂q + ηθ̂q
16: ˆθπ ← (1 − η) ˆθπ + η ˆθπ
17: Update state st ← st+1
18: end for

6 EXPERIMENTAL EVALUATION
In this section we evaluate our proposed model in details by discussing our
experimental setup, data collection process, network architecture and our
evaluation methodologies. We focus on addressing the following questions:

• What is the e�ect of joint optimization while fusing deep learning
and active learning methods?

• Is the system able to generalize for the other users for both activity
classi�cation and active learning method?

• How does the performance vary with the unlabeled dataset used in
the training phase?

• What is the performance of the system in terms of calculating most
informative data instances? How e�ective the model is while han-
dling outliers?

• How many queries are generated on average for a user in a day?
How hard were the queries for the users?

• What are the performance scores of the respective annotators?
• Is the feedback received from the annotators improving the perfor-
mance of the model?

6.1 System Implementation
We have implemented an app in both android and iOS platform (http://
mpsc.umbc.edu/sajjad/socialannotator/) to collect mobile sensor data and
pose query to the users . A picture of our system running on both the
platforms are shown in Figure 3. Our app exploits the three dimensional
accelerometer, gyroscope, magnetometer and two dimensional location
sensors. The users can control which sensor to turn on and o� based on
their preference of the battery status. Individual users can create account
and add potential annotators who are referred as “Friend" in the application.
While adding a friend to the annotator list, we also prompt the user to
mention the relationship with the annotator from a list of pre-de�ned
relationships - {Parent, Child, Sibling, Friend, Colleague, Neighbor, Spouse}.
The users can also tag locations with a semantic name like -“work", “home”

4215

Figure 3: SocialAnnotator application interface.

etc. so that the location information can be displayed in the query. Instead of
providing noti�cation to the users whenever a new query arrives, we queue
the new query in the Query tab. A user can then view the queries at his
suitable time and provide feedback to the queries or discard them if he/she is
unsure about the potential activity information. The back-end is developed
using MongoDB and python-�ask based web service which handles all
the requests. The deep active learner classi�er and the annotator selection
model are implemented using tensor�ow. A web-service is deployed using
the trained model which interacts with the request handler service.

6.2 Data Collection & Preprocessing
We collected data from 20 (14 male and 6 female) participants over the
course of a month in a real-world settings by installing our app in the
respective platform. Before the data collection, the participants were given
instructions to manually log their daily activity routine as much as possible
which can help us evaluate the performance of the annotators. The set of
activities our system monitors include {walking, eating, running, working,
sitting, standing}. The participants were instructed to keep the phone in their
front pant pocket if possible. The 3D sensors were sampled at 60Hz and the
location information were extracted every 10 mins. To train our classi�er
and the annotator selection model, we collected training data from 10 out
of these 20 participants in a controlled environment where the participants
followed a script and performed the 6 activities. Each subject participated
in 5 sessions (30 mins per session) and performed each activity multiple
times. We recorded the sessions using video camera in order to collect the
ground truth information. In order to train our annotator selection model,
we created a dataset empirically from the experts.

The accelerometer data are divided into �xed sized frames using sliding
window with 50% overlap with a window size of 64. The activity label for
each frame are selected by the majority class label in that frame.

6.3 Network Architecture
6.3.1 Deep Active Learner. We have employed Convolutional Neural Net-
work (CNN) as our deep model. In a frame we have 64 instances generated
from 4 sensors (accelerometer, gyroscope, magnetometer, location), so our
input size is 64 × 11 (9 from 3D sensors and 2 output from the location
sensor). Our network has 3 convolution layers with �lter size of 5 followed
by a max pooling layer with �lter size 2 and a fully connected layer. A
softmax classi�er is used at the �nal layer for the classi�cation task. We
applied batch normalization after each convolution layer to handle internal
covariate shift. We also used dropout as our regularization method at the
dense layer. Number of �lters in the convolution layers are 32, 64, 128 re-
spectively and network uses ReLU activation function. We set the model
parameters α = 0.005 and β = 0.00002. We use adam optimizer with batch
size of 32.
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Figure 4: (a) shows precision, recall and F1-score of our classi�er for di�erent activities. (b) the trend of loss function during
training and testing. (c) illustrates average reward received with respect to number of epochs while training. (d) shows the
progression of normalized reward with respect to number of posed queries.
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Figure 5: Architecture of actor-critic network.

6.3.2 Actor-Critic Netowrk. Two separate neural networks are trained to
approximate the actor and critic functions. In �gure 5 we show the architec-
ture of our actor and critic network. The critic network consists of two fully
connected layers with 300 and 500 units respectively. The action component
a is provided in the second layer of the network. The actor network has
one fully connected layer with 500 units. Leaky recti�ed linear units (ReLU)
are used as the activation function for both of these network.

The actor and critic network are interlinked which facilitates the ac-
tivations of the neurons to �ow from actor to critic network. Therefore,
the gradient of the critic network in�uences the actor network as well
during back propagation. By connecting the networks together, the critic
network control the directions of improvement in the action space without
explicit targets. We incrementally decrease the learning rate of the critic
network when the critic value increases. The learning rate is updated to
αq = 0.0001 × 10α Q̃ after every hundred steps where α < 0 and Q̃ is
the mean of critic value in the last hundred steps. This helps the model in
generalization and be autonomous from the convergence speed. For the
actor network, we use a constant learning rate απ = 0.0001.

6.4 Classi�er Performance
At �rst we utilize the whole dataset to train our model to evaluate the
performance of our classi�er. We split the entire dataset into training (60%),
validation(20%) and testing(20%) dataset. We achieved an overall accuracy of
92.05%. The confusion matrix is shown in Table 1. We see that we achieved
comparatively low accuracy for eating and sitting activity. Upon further
investigation we found that this is due to the nature of these two activities.
Most of the time the users were eating while sitting and some of the time
the users were eating while walking and standing as well. Thats majority
of the instances of misclassi�ed are labeled as sitting, while some were

predicted to be standing and walking. The same problem persists for the
sitting activity as well. Majority of the mislabeled instances are labeled as
eating. However, we have received better accuracy for sitting in compared
to eating activity. After looking at the pattern of both of these activities,
we noticed that when the users were idly sitting they used their phone
quite often and while eating the phone remained idle most of the time. This
deviation was captured by the model and hence it achieved better accuracy
for sitting activity. The precision, recall and F1-score of our classi�er are
exhibited in Figure 4a. In Figure 4b we demonstrate the trend of our loss
function during training and testing.

Table 1: Confusion Matrix

Walking Eating Running Sitting Standing
Walking 98.19% 0% 1.12% 0.19% 0.50%
Eating 2% 79% 0% 16.10% 3.9%

Running 0.72% 0% 99.17% 0% 0.11
Sitting 1.01% 11% 0.38% 87.56% 0.05%

Standing 0.02% 2.38% 0.21% 1.03% 96.36%

Figure 8:Weight distribution
in log scale of di�erent lay-
ers using cross-entropy loss.

Figure 9:Weight distribution
in log scale of di�erent lay-
ers using our joint loss func-
tion.

We analyze the performance of our model while employing active learn-
ing. For this we train our model with only 30% labeled instances from our
dataset. In order to train our joint optimization function we also fed same
number of unlabeled instances to be consistent with batch size during train-
ing. We have used 15% of our unlabeled dataset for this purpose. Initially
we have achieved 83.26% accuracy with the provided labeled and unlabeled
instances. In order to see the e�ect of our joint optimization we examined
the weight distribution in di�erent layers of our network. In Figure 8 and 9
we plot the value of the weight distribution in log scale while optimizing
only cross-entropy loss and our joint loss. It is evident from the �gure
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Figure 7: The �gure illustrates the labeling time distribution of 20 users.

that our joint loss function enabled lower values for the individual layer
weights compared to traditional cross-entropy loss function. When the
weights are large, the layers are more sensitive to small noises in the input
data. This had signi�cant e�ect when we were doing entropy calculation
for the unlabeled data instances. The network produced much di�erent
value in the output layer due to the larger weight which eventually enabled
higher number of queries that included outliers. We randomly sampled
100 unlabeled instances from the holdout unlabeled data instance pool and
calculated entropy for both network. We applied this over 10,000 iterations
and calculated the average number of queries received for both these loss
functions. We received on average 29 and 8 queries from the network with
cross-entropy loss and the network with our joint loss respectively. The
di�erence in number of informative data instances selected is signi�cant for
both these networks. This poses a problem as the queries begin to pile up
drastically for individual annotators. By doing joint optimization we were
able to mitigate the e�ect of noisy instances.

6.5 Annotator Selection
To demonstrate the e�ectiveness of our annotator selection algorithm, we
compared our algorithm with other popular deep reinforcement learning
algorithm - Deep Q-Network (DQN) [18]. In Figure 4c we show the evolution
of the average total reward during training for both our model and DQN.
Both averaged reward plots are quite noisy, pointing that the learning
algorithms are not making steady progress. However for our model, we
achieve higher reward on average than DQN. In Figure 4d we show the
normalized reward with the progression of number of queries posed. We see
that our model, approximates better reward than DQN and converges faster
to the optimum reward received. The reward distribution for individual
users are shown in Figure 6. We received comparatively high reward from
User12, User14, User19 and User9 than other users. Upon investigation, we
noticed most of the queries posed to these users were of themselves, which
they were able to label with high e�ciency. Their annotator list or number
of connected users were below average. The average number of connection
each user had in our experiments were 6. For the aforementioned users,
they had fewer than 3 connections which made the algorithm to pose the
queries to them more often. In Figure 7 the distributions of annotation time
for individual users are presented.

6.6 Impact of Active Learning
After training ourmodel with 30% labeled instances only, we achieved 83.26%
prediction accuracy. We then calculate most informative instances from
a pool of unlabeled instances at each iteration. After each 100 queries we
retrain our model and adjust the model parameters with the received label
information. We then validate our model accuracy using our test dataset. We
compare our model with other existing deep models in Table 2. In Table 2 we
report the progression of model accuracy after each 100 queries. We see that
using active learning all the models are exhibiting gradual improvement.
The model proposed in [35] exhibits highest increment in accuracy (≈ 9%)
after 400 iterations. Our model shows better initial accuracy and converges
faster to optimum accuracy which is (92.05%).

Table 2: Comparison of our algorithm with other existing
approaches with varying number of queries.

AR System Number of Queries

0 100 200 300 400
Francisco [19] 81.2 84.14 87.87 88.57 89.47

Ming Zeng et al. [35] 80.39 82.47 86.33 87.59 89.25
Mohammad et al. [3] 81.01 83.17 84.11 87.89 88.32

Our model 83.26 85.65 88.39 90.48 91.64

7 CONCLUSION AND FUTUREWORK
In this paper we have proposed a deep model for activity recognition which
integrates active learning in its hyperparameter tuning while prior works
have only focused on calculating the most informative instance using active
learning. We proposed to optimize the network parameters using a joint loss
function consisting of cross-entropy loss of the deep model and the entropy
function of the active learning pipeline. We have validated the performance
of our trained classi�er with data collected in real-world settings using our
own mobile application. The results show that the joint loss function helps
the deep model to have lower weight value and generalize well. Our model
demonstrated better performance by selecting true informative instances
in presence of outliers. We have also proposed a novel annotator selection
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model using the contextual similarity between the annotators and the users.
Our annotator selection model ensures faster convergence to the optimal
award compared to other algorithm. Our experimental results show that our
model converges faster to the optimal accuracy and after only 400 queries,
the model exhibited ≈ 8% improvement in accuracy. In our current work,
we have not considered any budget on the number of queries the system
can pose to the users. In future we want to investigate more constraints like
query budget and availability of the annotators in our annotator selection
model.
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