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Abstract—Graphs are a powerful abstraction for representing
networked data in many real-world applications. The need for
performing large scale graph analytics has led to widespread
adoption of dedicated hardware accelerators such as FPGA for
this purpose. In this work, we develop IP cores for several key
graph Kernels. Our IP cores use graph processing over parti-
tions (GPOP) programming paradigm to perform computations
over graph partitions. Partitioning the input graph into non-
overlapping partitions improves on-chip data reuse. Additional
optimizations to exploit intra- and inter- partition parallelism
and to reduce external memory accesses are also discussed.
We generate FPGA designs for general graph algorithms with
various vertex attributes and update propagation functions, such
as Sparse Matrix Vector Multiplication (SpMYV), PageRank (PR),
Single Source Shortest Path (SSSP), and Weakly Connected
Component (WCC). We target a platform consisting of large
external DDR4 memory to store the graph data and Intel
Stratix FPGA to accelerate the processing. Experimental results
show that our accelerators sustain a high throughput of up
to 2250, 2300, 3378, and 2178 Million Traversed Edges Per
Second (MTEPS) for SpMYV, PR, SSSP and WCC, respectively.
Compared with several highly-optimized multi-core designs, our
FPGA framework achieves up to 20.5x speedup for SpMYV,
16.4x speedup for PR, 3.5x speedup for SSSP, and 35.1x
speedup for WCC, and compared with two state-of-the-art FPGA
frameworks, our designs demonstrate up to 5.3x speedup for
SpMYV, 1.64x speedup for PR, and 1.8x speedup for WCC,
respectively. We develop a performance model for our GPOP
paradigm. We then perform performance predictions of our
designs assuming the graph is stored in HBM2 instead of DRAM.
We further discuss extensions to our optimizations to improve
the throughput.

I. INTRODUCTION

Graphs are a power abstraction for representing real-world
networked data in multiple scientific and engineering domains
such as social networks, network biology, genome analysis,
etc. [1]. Many graph processing frameworks targeting general
purpose processors which provide high-level programming
models for users to easily perform graph processing have been
developed [1], [2], [3], [4], [5], [6], [7], [8], [9]. However,
general purpose processors are not the ideal platform for graph
processing due to their inefficient memory access granularity
(cache line level granularity), and ineffective on-chip memory
usage due to the poor spatial and temporal locality of graph
algorithms [10], [11].
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Therefore, dedicated hardware accelerators for graph pro-
cessing have gained popularity recently [12], [11], [10], [13],
[14], [15], [16], [17], [18]. With the increased interest in
energy-efficient acceleration, Field-Programmable Gate Array
(FPGA) has become an attractive platform to develop acceler-
ators [19], [20]. State-of-the-art FPGA devices, such as Intel
Stratix 10 MX [21], provide dense logic elements (702,720
Adaptive Logic Modules (ALMs)), abundant on-chip memory
resources (2,810,880 ALM registers, 145 Mb of M20K) and 8
GB (2 stacks of 4 GB) of High Bandwidth Memory 2 (HBM?2)
that can provide a memory bandwidth which is as high as
512 GBps. Existing FPGA frameworks [22], [14], [13] for
general graph algorithms are design based on the vertex-centric
paradigm which access the edges of vertices through pointers
or through vertex indices. This can result in massive random
access to memory (HBM2 or external), thereby incurring
significant communication latency and accelerator stalls [23].

In this work, we develop FPGA IP cores for several key
graph kernels. We use our Graph Processing Over Partitions
(GPOP) paradigm [24] to implement FPGA designs. GPOP
performs graph processing over partitions of the graph to
enhance on-chip data reuse and make effective use of the
external memory bandwidth. We develop FPGA IP cores for
four key graph kernels: Sparse Matrix Vector Multiplication
(SpMV), PageRank (PR), Single Source Shortest Path (SSSP),
and Weakly Connected Component (WCC). We also develop a
performance model to estimate the performance improvements
that can be obtained by using the high bandwidth HBM2
memory instead of the DDR4 DRAM as the memory to store
the graph and discuss extensions to our optimizations which
can further improve the throughput.

The contributions of this work are as follows:

« We develop IP cores for four key graph kernels: SpMYV,
PR, SSSP, and WCC using our GPOP paradigm [24] to
perform processing over graph partitions.

« We implement the IP cores on Intex Stratix 10 MX 2100
FPGA and achieve upto 35X performance improvement
over optimized state-of-the-art multi-core based designs
and 5.3x over optimized state-of-the-art FPGA based
designs.

e We perform detailed performance modeling and predic-
tion of using HBM2 instead of DDR4 to store the graph.



II. BACKGROUND

We first briefly describe the four graph algorithms that we
consider in this work and that are core kernels and building
blocks in many different application. We then describe our
GPOP paradigm to develop IP cores for the kernels.

A. Graph Kernels

1) Sparse Matrix-Vector Multiplication:  Generalized
Sparse matrix-vector multiplication (SpMV) iteratively
computes x!t! = Ax?, where A is a sparse H x I matrix
with row vectors A;, = is a dense vector of size I, and ¢
denotes the number of iterations that have been completed.
To map SpMV into our processing paradigm, each non-zero
entry of A is represented as a weighted edge, and each
element of z is represented as a vertex.

2) Page Rank: PageRank (PR) is used to rank the impor-
tance of vertices in a graph [25]. It computes a weight for each
vertex of the graph based on the weights on the vertices on
the incoming edges. In other words, it calculates the likelihood
that starting from a random vertex in the graph, we will reach
this vertex. The algorithms starts with assigning same initial
value to each vertex. Then, in each iteration, the PageRank
value of each vertex v is updated based on Equation 1. Here
d is a constant called damping factor, |V| is the total number
of vertices of the graph; v; represents the neighbor of v such
that v has an incoming edge from v;; L; is the number of
outgoing edges of v;.

1-— P )
PageRank(v) = |V|d +d x Z w (1)

3) Single Source Shortest Path: Single Source Shortest Path
(SSSP) finds the shortest paths from a single source vertex
to all the other vertices in a weighted graph. The algorithm
proceeds as follows: the vertex attribute denotes the weight
of the shortest path from the source vertex to itself in each
iteration. It is initialized to co. We say that a vertex is active
if its attribute was updated in the previous iteration. In the
scatter phase of each iteration, all the active vertices send their
updates to their neighbors using the outgoing edges. In the
gather phase, each vertex that receives updates from neighbors
updates its attribute if a shorter path to the source vertex is
found. The algorithm terminates when none of the vertices are
active.

4) Weakly Connected Component: A Weakly Connected
Component (WCC) is a maximal subgraph in which there is
a path between any two vertices. The problem of WCC is to
find all such subgraphs. The algorithm runs as follows,: each
vertex maintains a Connected Component (CC) identifier as
the attribute to record the connected component it belongs
to. The CC identifier of a connected component is the vertex
with the smallest index. In the scatter phase, each active vertex
sends its CC identifier to its neighbors. In the gather phase,
a vertex updates its CC identifier to be the minimum of its
current value and the ones its received. On termination, the
vertices with same attributes form connected components.
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Fig. 1. Graph Processing Over Partitions

B. Graph Processing Over Partitions (GPOP) Paradigm

In graph processing over partitions (GPOP) paradigm [24],
the computations are performed with partition as the center of
computation as opposed to vertex or edge in the conventional
techniques. We assume that the entire graph can fit into the
external memory. The graph is partitioned such that each parti-
tion can fit into the on-chip memory. Each partition is fetched
and one iteration of scatter-gather model of computation is
performed as follows:

1) Scatter: In this phase, all the edges of the partition are
processed to generate updates to the vertices.

2) Gather: In this phase, the updates generated in the scatter
phase are applied to the vertices.

Specifically, the following steps are performed in each
iteration of scatter-gather model:

o Scatter:

— C1: Fetch partitions from the external memory into the
on-chip memory.

— C2: Stream the edges corresponding to the partitions
from the external memory onto the device.

— E1: For each edge, access its source vertex and produce
an update. Update consists of a destination vertex and
the value of update to be applied.

— C3: Store the updates produced back into the external
memory.

o Gather:

— C4: Fetch partitions from the external memory.

— CS: Stream the updates corresponding to the partitions
back into the device.

— E2: For each update, apply it to the destination vertex.

— C6: Write the partitions (which consist of updated
vertices) back into the external memory.

Figure 1 shows a high level overview of the processing
paradigm. The graph partitions, consisting of vertices, are
fetched one by one onto the on-chip memory. After a partition
is fetched, the edges are fetched into the FPGA in a streaming
manner and processed. The updates produced are written back
to the external memory. Then, the updates are fetched back
into the FPGA in a streaming manner and the corresponding
vertices residing in the on-chip memory are updated. Finally,
the partition is written back into the external memory.
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A. Architecture Design

Figure 2 shows a high level architecture of the FPGA
design. The external memory stores all the graph partitions.
There are p processing engines (PEs) on the FPGA, which
can be customized based on the target graph algorithm. These
PEs process p distinct partitions in parallel. Each PE has an
individual partition buffer constructed by on-chip memory and
used to store the partition being processed by the PE. Each PE
has ¢ pipelines. In the scatter phase, the PEs read edges from
the external memory and write back the updates produced into
the external memory. In the gather phase, the PEs read updates
from the external memory and write back the updated vertices.

B. IP Core Implementation

Given an algorithm in graph processing over partitions
paradigm, our IP core implementation is essentially a map-
ping of the algorithm to the target FPGA architecture by
customizing the parallel pipelines. We assume PEs to be
homogeneous and capable of performing both the scatter and
gather phase. The PEs are customized to implement the edge
processing (scatter phase) and vertex attribute update (gather
phase) pertinent to the algorithm being implemented.

C. Optimizations

1) Graph Partitioning: In each iteration, vertex data (at-
tribute) need to be accessed repeatedly. To offer fine-grained
single-cycle accesses to the data, we buffer the vertices in the
on-chip RAMs. For large graphs, whose vertex array cannot
fit in the on-chip RAMs, the graph is partitioned using a
simple vertex-index-based partitioning approach [26]. As per
this approach, assuming the partition buffers of a PE can store
the data of m vertices, the input graph is partitioned into
k= (‘mﬂ} partitions, where |V| denotes the total number
of vertices in the graph. Thus, any at given time p partitions
reside in the on-chip memory and are processed using the PEs
in parallel.

2) Parallelization: Inter-partition Parallelism: Assuming
the processing logic consists of p (p > 1) Processing Engines
(PEs), we can independently process p partitions in parallel.
The inter-partition parallelism of the design is denoted as

p. When a PE completes the processing of a partition, it
is automatically assigned another partition to process. Intra-
partition Parallelism: Each processing engine employs par-
allel pipelines to concurrently process distinct edge (updates)
during the scatter (gather) phase. Assuming each processing
engine has ¢ (¢ > 1) parallel pipelines, ¢ distinct edges
(updates) of the same partition can be concurrently processed
by the processing engine during the scatter (gather) phase per
clock cycle. The intra-partition parallelism of the design is
denoted as q.

3) Update Combination: In the scatter phase, the total
number of produced updates, which need to be written into
the external memory, in the worst case is equal to the number
of edges |E|. In order to reduce the data communication
for writing the updates to the external memory, we combine
the updates that have the same destination vertex. To enable
this, the edges of each partition are sorted based on the
destination vertices. Due to this optimization, in the scatter
phase, the updates with same destination vertex are produced
consecutively. We then combine the consecutive updates that
have the same destination vertex as a single update. This also
reduces the number of updates to be processed in the gather
phase, thereby reducing the data communication of the gather
phase as well.

IV. IP CORE EVALUATION

A. Experimental Setup

We implemented the graph kernel IP cores using our GPOP
paradigm (Section II-B) on Stratix 10 MX 2100 FPGA.
This device has 702,720 Adaptive Logic Modules (ALMs),
2,810,880 ALM registers, 145 Mb of M20K. Four DDR4 chips
are used as external DRAM, each chip having a bandwidth of
25 GB/s. Post-place-and-route simulations were performed us-
ing Inter Quartus Prime Pro 18.1. Experiments were conducted
on the real life graphs mentioned in Table I.

TABLE I
REAL LIFE GRAPH DATASETS

H Dataset [ # Edges [[E]| [ #Vertices [[V]] [ Description H

WK [27] M 2.4M Wikipedia Network
LJ [28] 6OM 4.8M Social Network
TW [29] 1468.4M 41.6M Twitter Network
CA 5.5M 2.0M Road Network
RMat24 263.0M 16.8M Synthetic Network

B. Performance Metrics

The following metrics were used for evaluation:

« Resource utilization: Percentage of FPGA resources uti-
lized by the design. Resources include M20K utilization,
logic utilization and DSP utilization.

o Power consumption (Watt): Power consumption of the
design.

o Execution time (ms): Total execution time required for
each iteration.

o Throughput (MTEPS): Number (in Millions) of edges
traversed per second.



C. Resource Utilization and Power Consumption

To saturate the external memory bandwidth the number of
PEs was set to 4 (p = 4), the number of pipelines in each PE
was set to 8 (¢ = 8), the interval size to 128K (m = 128K). The
clock speed of 200 MHz, 185 MHz, 183 MHz and 140 MHz
was achieved for SpMV, PR, WCC and SSSP respectively.
The junction temperature was set to 5S0C. Table II shows the
resource utilization (in%) and power consumption (Watt).

TABLE II
RESOURCE UTILIZATION

H Algorithm l ALM l Register l DSP l M20K l Power ‘

SpMV 23 26 5 41 12.7

PR 19 20 5 42 12.4
WCC 20 19 0 39 12.2
SSSP 20 18 0 38 12.5

D. Throughput and Execution Time

Table III mentions the throughput and execution time ob-
served in our experiments. High throughput of 2250 MTEPS,
2300 MTEPS, 3106 MTEPS and 2178 MTEPS was observed
for SpMV, PR, WCC and SSSP respectively.

E. Effect of Update Combination

The effectiveness of update combining and filtering opti-
mization to reduce the data communication between external
memory and FPGA is shown by comparison with a baseline
design which has the partition and data layout optimization but
does not have the update combining and filtering optimization.
The number of write updates are reduced by a factor of up
to 11X, 12X, 18X and 22X for SpMV, PR, SSSP and WCC
respectively.

FE. Comparison with state-of-the-art designs

1) Comparison with multi-core designs: We compare our
design against multiple state of the art multi-core designs such
as X-Stream [3], GraphMat [4], NXgraph [5], GraphX [30]

TABLE III
THROUGHPUT AND EXECUTION TIME

Algorithms Dataset Texec per it- | Throughput
eration (ms) (MTEPS)
WK 5.0 1004
LJ 36.2 1906
SpMV T™W 652.5 2250
CA 2.8 1964
RMat24 | 143.5 1832
WK 4.9 1032
LJ 354 1951
PR ™ 638.3 2300
CA 2.9 1885
RMat24 | 151.7 1735
WK 50.5 1523
LJ 451.3 3039
WCC ™ 7231.8 3106
CA 1600.1 3378
RMat24 | 1196.8 2422
WK 36.4 1509
LJ 845.9 2178
SSSP ™ 7966.9 2008
CA 1590.4 1708
RMat24 | 1316.1 1693

TABLE IV
COMPARISON WITH STATE OF THE ART MULTI-CORE DESIGN

Algorithms | Dataset Approach | Throughput| Improvement
(MTEPS)

[3] 93 1.0X
SpMV Y TS Paper [ 1906 305X
[3] 119 1.0X
LJ [4] 1530 12.9X
This Paper | 1951 16.4X

PR [6] 408 1.0X
[5] 716 1.8X

™ [4] 815 2.0X

This Paper | 2300 5.8X

LI [3] 187.6 1.0X

wee This Paper | 3039 16.2X
™w [30] 88.5 1.0X

This Paper | 3106 35.1X

CA [4] 488 1.0X

This Paper | 1708 3.5X

SSSP

RMat24 _ [4] 1151 1.0X

This Paper | 1693 1.47X

TABLE V

COMPARISON WITH STATE-OF-THE-ART FPGA BASED DESIGNS

Algorithms | Dataset | Approach | Throughput| Improvement
(MTEPS)
SPMV WK Thiglglper i384 33X
WK Thiglﬁlper ?82 1 107X
PR | U paper oSt Lo
™ Thigllziper 52(5)(6) 124X
WEC | TV i aper | 3106 Lex

and PowerGraph [6]. 32-core AMD Opteron 6272 processor
with 25 GB/s DRAM bandwidth was used in X-Stream
[3]. A system with hexa-core Intel i7 processor with 160
GB/s DRAM bandwidth was used in NXgraph [5]. A cluster
with 16 computing nodes where each node has 8 cores was
used in GraphX [30]. A system with 24-core Intel Xeon
E5-2697 processor with 80 GB/s DRAM bandwidth was used
in GraphMat [4]. PowerGraph [6] uses 64 node cluster of
Amazon EC2 where each instance has two quad core Intel
Xeon X5570 processor with 23GB RAM. The comparison
results are summarized in Table IV. Our FPGA based design
compared to state-of-the-art multi-core based designs achieve
up to 3.5X, 16.4X, 20.5X and 35.1X improvement for SSSP,
PR, SpMV and WCC respectively. The power consumption
of multi-core designs (usually > 80 Watt) is also much more
that the power consumption of our FPGA based design (<
20 Watt). Hence, from energy efficiency point of view our
design achieves even larger improvements.

2) Comparison with FPGA design: We compare our de-
sign against two state-of-the-art FPGA frameworks, GraphOps
[14] and ForeGraph [12]. GraphOps is a hardware library
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for creating FPGA accelerator for graph analytics targeting
Xilinx Virtex-6 (FPGA) and Intel Xeon X5650 (CPU) based
heterogeneous architecture. ForeGraph is a graph processing
framework which uses multiple interconnected FPGAs. Our
design achieves upto 5.3X, 1.64X and 1.8X for SpMV, PR,
WCC, respectively.

V. MODELING PERFORMANCE BENEFITS OF USING HBM?2
FOR IP CORES

In this section, we develop a performance model for GPOP
on FPGA connected to an external memory. We also model
the HBM2 memory. We then use our performance model to
estimate the benefits that can be achieved by using HBM2 to
store the graph instead of DDR (Figure 4).

A. Architecture Parameters

We assume word granularity for processing and storage (64
bits in our implementations) and define the following archi-
tecture parameters: p: Number of Processing Elements (PE),
q: Number of parallel pipelines in each PE, p;: partition
latency i.e. latency to read first vertex of partition plus latency
of processing first edge (fetching plus exiting the pipeline)
B: Size (words) of local on-chip memory, Hj;: Bandwidth
(words/cycle) of external memory, ¢: time period of one cycle,
F: reduction factor of bandwidth for sequential update, F;.:
reduction factor of bandwidth for random update.

B. Algorithmic Parameters

We define the following algorithmic parameters: P,,: num-
ber of partitions of the graph, Ps: size of each partition
(words), I: number of iterations of scatter gather.

C. HBM?2 Model

HBM?2 is a 3D stacked DRAM with much higher perfor-
mance compared to DRAM memory. We assume that there are
s stacks of HBM2 where each stack has ¢ tiles (DRAM Die).
Each tile, supports ¢ channels or pc = 2 * ¢ pseudo-channels.
Each pseudo channel has a width of a word - 64 bit. With ¢t = 4
tiles, ¢ = 2 channels, and data rates of 2 Gbps per signal, the
total bandwidth that can be achieved from a stack is 256GBps.
An FPGA can support upto s = 2 stacks thus providing an
aggregate bandwidth of 512 GBps. For random accesses, a
bandwidth of around 50% of the peak can be sustained [31].
A high level overview of a single stack of the HBM2 memory

| Memory Controller |
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Fig. 4. FPGA connected to HBM2 with s stacks, t tiles/stack and c
channels/tile. Total (64 bit wide) channels s X ¢ X c.

is shown in Figure 3. Additionally, we assume the read/write
latency to be 20 ns (worst case: computed using Table 64
in [32]).

Data Layout: The vertices and edges are accessed sequen-
tially. Therefore, an optimal data layout will simply distribute
the data across s stacks and across the ¢ tiles of each stack
such that in each cycle ¢ words can be accessed using the
available ¢ channels from each tile.

D. Performance Estimation

We estimate the benefits of replacing one or four (used in
our implementation) DDR4 chips with one or two HBM2 (a
chip can support two HBM2 - Section V-C) as the external
memory using our performance model. One DDR4 has a
maximum bandwidth of 21.32 GBps while one HBM2 has a
maximum bandwidth of 256 GBps. Assuming each edge takes
8 bytes, the maximum bandwidth values of these devices in
terms of number of edges comes out to be 2.665 and 32 Giga
edges, respectively. We assume that the entire graph can fit
into the external memory. We also assume that both vertices
and edges are laid out optimally in the external memory to
achieve the peak bandwidth via preprocessing. Further, we
assume random access is needed for writing the updates. We
also assume that update combination reduces the write update
messages by p = 0.2 (20%) (Section IV-E). Thus, The total
time required by our algorithm to perform each iteration of
scatter-gather is given as:

Fs|v|+Fr|V|+2t Pn+IIla {(2—2[))FAE‘+FS|E| t|E
— X —
Hy, Hy, b D H, Hy W
(17p)F9|E‘ t‘E|
+ max{———, —
¢ H, Pq J
Here F}}Z/‘ + F;I‘:/l corresponds to reading/writing the

partitions assuming sequential read and random writes, 2tp; %

is the sum of partition latencies incurred at scatter and gather
(2—2p)F.|E| | Fi|E| t|E|

phase, max{*~—7- + =3, pg } corresponds to com-

putation/communication time in scatter phase with sequen-

tial edge reads and random optimized update combination
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Fig. 5. Speedup obtained by using HBM2 to store graph instead of DDR

: 1—p)F.|E| t|E
writes and max{%{)'“, %} corresponds to computa-

tion/communication time in gather phase. Note that Fj is
always used for reads as we assumed sequential reads and
F,. is always used with writes as we assumes the writes to
be random. The values of F and F, are around 1.1 and 2
respectively, signifying that in sequential reads the effective
bandwidth is usually 90% while is random writes the effective
bandwidth is usually 50%.

We vary the frequency of FPGA and determine minimum
number of parallel pipelines (p x ¢) required to saturate the
bandwidth (Table VI). Thus, performance speedup can be
obtained if the designs running at 300 MHz (600 MHz) with 1
or 4 DDR4 have more than 8 (4) or 33 (17) PEs, respectively.

TABLE VI
MINIMUM # OF PIPELINES TO SATURATE MEMORY BANDWIDTH
Frequency | DDR4 | 4 DDR4s | HBM2 | 2 HBM2
300 MHz 8 33 95 193
600 MHz 4 17 48 96

Figure 5 shows the speedup (ratio of Equation V-D) one
can achieve by replacing 1 or 4 DDR4s with 1 or 2 HBM2
for varying number of pg for L] graph dataset and varying
the device frequency. We observe four performance speed
up flattening points: 2 HBM replacing 1 DDR (2 HBM - 1
DDR): 24.01x, 1 HBM - 1 DDR: 12.01x, 2 HBM - 4 DDR:
6.0x, and 1 HBM - 4 DDR: 3.0x. These flattening points are
essentially the ratio of the bandwidths of HBM and DDR.

E. Improving Performance with HBM?2

Our IP cores utilize around 25% logic and 50% on-chip
memory resources to implement 48 parallel pipelines at 200
MHz (Section IV-C). Our implementations were customized
to fully utilize the bandwidth provided by 4 DDRs. Hence,
it is to be expected that as per our performance model, no
speed up will be obtained by replacing 4 DDRs with HBM2.
However, if increasing design frequency to 300 MHz will lead
to a speedup of 1.67x (against a design running at 300 MHz
with 4 DDR4s). Similarly, if our current IPs used only 1 DDR
(instead of 4), at 300 MHz frequency, a speedup of 6.71x is
expected.

Increasing the number of pipelines will increase the speedup
further. As evident from Table VI, 48-95 pipelines are needed
to fully saturate the HBM2 bandwidth. The bottleneck in
increasing the number of pipelines is the on-chip memory
utilization. This can be addressed by reducing the size of
partitions, thereby, increasing their number P,, by some con-
stant . This will lead to an increase of 2cq; (o — 1)% in
processing time while simultaneously reducing the processing
time by %pzchl. Setting @ = 2 to reduce the on-chip
memory utilization to 25%, this will not increase the overall
execution time as long as P, = plV] < 2'%'. For pq = 32,
partition latency ¢; = 15 (5 pipeline states, 10 fpga cycles for
HBM2 read/write access latency), |[V| < ‘ET| (as per datasets),
B = 2M vertices, the execution time will not increase. Thus,
assuming linear scaling, we can obtain 193 (48 x 4) pipelines
which will allow us to saturate bandwidth of 2 HBM2 modules
and achieve upto 24.01x speedup.

In conclusion, HBM2 will lead to increased speedup with
as low as 8 pipelines running at 300 MHz or 4 pipelines at 600
MHz. For 2 HBM2 modules, the speedup will flatten after 193

pipelines running at 300 MHz or 96 pipelines at 600 MHz.
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VII. CONCLUSION

In this paper we implemented 4 key graph kernels using
GPOP paradigm on Stratix 10 MX FPGA device. Graph
partitioning was used to increase the parallelism and to allow
efficient on-chip buffering. Data communication was reduced
using an efficient update method. Compared to state-of-the-art
multi-core designs a speedup of 20.5x, 16.4x and 35.1x was
observed while compared with state-of-the-art FPGA designs
a speedup of 5.3x, 1.64x and 1.8x was observed for SpMYV,
PR and WCC respectively. We also developed a performance
model and estimated the performance benefits our designs can
achieve by using HBM2 as external memory.
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