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Abstract—Matrix Factorization (MF) based on Stochastic Gradient Descent (SGD) is a powerful machine learning technique to derive
hidden features of objects from observations. In this paper, we design a highly parallel architecture based on Field-Programmable Gate
Array (FPGA) to accelerate the training process of the SGD-based MF algorithm. We identify the challenges for the acceleration and
propose novel algorithmic optimizations to overcome them. By transforming the SGD-based MF algorithm into a bipartite graph
processing problem, we propose a 3-level hierarchical partitioning scheme that enables conflict-minimizing scheduling and processing
of edges to achieve significant speedup. First, we develop a fast heuristic graph partitioning approach to partition the bipartite graph
into induced subgraphs; this enables to efficiently use the on-chip memory resources of FPGA for data reuse and completely hide the
data communication between FPGA and external memory. Second, we partition all the edges of each subgraph into non-overlapping
matchings to extract the maximum parallelism. Third, we propose a batching algorithm to schedule the execution of the edges inside
each matching to reduce the memory access conflicts to the on-chip RAMs of FPGA. Compared with non-optimized FPGA-based
baseline designs, the proposed optimizations result in up to 60x data dependency reduction, 4.2x bank conflict reduction, and 15.4 x
speedup. We evaluate the performance of our design using a state-of-the-art FPGA device. Experimental results show that our FPGA
accelerator sustains a high computing throughput of up to 217 billion floating-point operations per second (GFLOPS) for training very
large real-life sparse matrices. Compared with highly-optimized GPU-based accelerators, our FPGA accelerator achieves up to 12.7 x
speedup. Based on our optimization methodology, we also implement a software-based design on a multi-core platform, which
demonstrates 1.3x speedup compared with the state-of-the-art multi-core implementation.

Index Terms—Machine learning, sparse matrix factorization, training acceleration, bipartite graph representation, FPGA accelerator
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INTRODUCTION

ATRIX Factorization (MF), which factors a sparse ma-
Mtrix into two low-rank matrices, is a widely used
machine learning technique for many applications such
as collaborative filtering [1], topic modeling [10], and text
mining [11]. This technique can achieve high prediction
accuracy because it is able to derive latent features from
observations [1]. Therefore, the model trained by the ma-
trix factorization techique is also called latent factor model
[1]. Stochastic Gradient Descent (SGD) is gradient descent
optimization technique used to minimize certain objective
functions [47]. It is a popular learning algorithm to train
the MF model. However, the training process of the SGD-
based MF algorithm is very computation-intensive. This is
because the MF model needs to be iteratively updated based
on the training data for thousands of iterations [1]. When
the volume of training data is huge, the training time can
become excessively long. Therefore, it is essential to design
hardware accelerators to accelerate the training process.
However, existing accelerators suffer from the expensive
synchronization overhead and the limited parallelism of
this algorithm [22]. Accelerating SGD-based MF is still a
challenging problem.
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Field-Programmable Gate Array (FPGA) is an attractive
platform to accelerate computation-intensive applications.
FPGA has been widely used to accelerate the inference
process of machine learning applications [3], [4], [5], [6],
[7], but using FPGA to accelerate the training process re-
mains a challenging research area [8], [9]. In this paper,
we design a parallel architecture based on state-of-the-
art FPGA to accelerate the training process of the SGD-
based MF algorithm. Our design methodology is holistic
and generalized: It is motivated by a thorough analysis of
the challenges involved in accelerating SGD on FPGAs and
designed to be adaptable to accelerating SGD-based MF on
a variety of computing platforms. We identify three prin-
cipal acceleration challenges (1) limited on-chip memory
which can limit throughput if the long latencies of external
memory accesses are not managed, (2) data dependencies
that can prevent concurrent processing within the FPGA
pipeline, and (3) access conflicts between different pipelines
when accessing dual-port on-chip RAMs. Based on our
analysis of these design challenges, we develop a bipartite
graph processing approach in which the input training data
is first transformed into a bipartite graph representation
and followed by a novel 3-level hierarchical partitioning,
scheduling and processing of on-chip feature vector data
that significantly accelerates the processing of this bipartite
graph. In addition, we note that our holistic design approach
is general enough to be adapted to accelerating multi-core
implementations. Thus we also observe that our optimized
multi-core implementation outperforms the state-of-the-art
multi-core design by 1.3x due to our optimizations.

We summarize the main contributions of this paper
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below.

e We develop a highly parallel architecture to accel-
erate the training process of SGF-based MFE. The
accelerator consists of parallel processing units con-
currently working on distinct input data to sustain
high processing throughput. It also has an on-chip
buffer to store the feature data to achieve efficient
data reuse.

o By using a bipartite graph representation of MF, we
propose three novel optimizations to overcome the
challenges in acceleration.

—  We first partition the input bipartite graph into
induced subgraphs. In lieu of more sophisti-
cated partitioning algorithms with higher pre-
processing costs, we develop a simple and fast
partitioning heuristic that satisfies a necessary
condition for storing the feature vectors of ver-
tices in the on-chip buffer. By overlapping the
communication overhead with computation,
the accelerator can absorb the long latencies
of external memory accesses.

— To overcome the data dependency challenge,
we maximize the available parallelism by par-
titioning the edges of each induced subgraph
into matchings. This reduces the data depen-
dencies among the edges by up to 60x.

- To overcome the bank-conflict challenge, we
develop a batching algorithm to partition each
matching into batches and schedule the ex-
ecution of the batches to reduce the conflict
accesses to the shared on-chip buffer (i.e., bank
conflicts). This optimization results in up to
4.2x bank conflict reduction.

o Experimental results show that the proposed FPGA
accelerator sustains a high throughput of up to 217
GFLOPS for training large real-life sparse datasets.
Compared with state-of-the-art GPU implementa-
tions, our FPGA accelerator achieves up to 12.7x
speedup and 24.8x throughput improvement.

o Our proposed optimizations are generic to general
purpose processors as well. We adapt our techniques
to mutli-core platform and implement a software-
based design. The optimized software-based design
achieves 1.3x speedup compared with state-of-the-
art multi-core implementation with 1.5x fewer cores.

The rest of the paper is organized as follows. Section 2
covers the background and defines the problem; Section 3
introduces the challenges in accelerating the SGD-based MF
algorithm; Section 4 presents our proposed optimizations;
Section 5 describes the architecture of the accelerator; Sec-
tion 7 summaries the related work; Section 8 discusses the
generality of our design; Section 9 concludes the paper.

2 BACKGROUND
2.1 Matrix Factorization in Machine Learning

MF is a technique to factor a sparse matrix into the prod-
uct of two low-rank dense matrices. In machine learning
applications, MF is used to predict unknown data based

on a collection of existing observations that are represented
in the matrix format. For example, MF is used to predict
customer ratings on products in collaborative filtering [1].
This technique is powerful because it is able to discover
some latent features from the observations. An example
latent feature of a customer might be his/her income level,
which has an impact on his/her interest in products but
cannot be directly derived from the observed data (e.g.,
ratings on products). Hence, the output model of MF is
called latent factor model. It consists of two dense matrices
that are called (latent) feature matrices. There are three
primary approaches used for training the model, including
Alternating Least Square (ALS), Stochastic Gradient Descent
(SGD), and Gradient Descent (GD) [12], [13], [43].

ALS-based MF alternately fixes one of the two feature
matrices. When one feature matrix is fixed, the other feature
matrix is recomputed by solving a least-squares problem.
ALS-based MF algorithm is inherently parallelizable and
requires fewer iterations to converge than the SGD-based
MF algorithm. However, it is not scalable to large-scale
datasets due to its cubic algorithmic complexity in each
iteration [43]. SGD-based MF randomly initializes both the
feature matrices and then iteratively improves them. In
each iteration, SGD-based MF sequentially processes all the
training data. Based on each training data, it updates the
feature matrices in the opposite direction of the gradient.
GD-based MF also iteratively updates the feature matrices.
But it accumulates the intermediate updates and applies the
update only after all the training data have been processed
in an iteration. Hence, the key difference between SGD-
based MF and GD-based MF is that SGD-based MF updates
the features matrices once per training data, while GD-based
MF updates the features matrices once per iteration. As a
result, GD-based MF requires more iterations to converge as
well as more training time than SGD-based MF [36], [44]. In
this paper, we focus on accelerating SGD-based MF.

2.2 Problem Definition

Without loss of generality, we define the problem based
on the context of collaborative filtering for recommender
systems [1]. Let U and V' denote a set of users and items, |U|
and |V| denote the number of users and items, respectively.
As shown in Figure 1, the input training dataset is a partially
observed rating matrix R = {r; }|u|x|v|, in which 7;; rep-
resents the rating of item v; given by user u; (0 < ¢ < |U|,
0 < j < |V]). The output of the training process contains
two low-rank matrices, P (a |U|x H matrix) and Q (a |V |x H
matrix), which are refereed as user feature matrix and item
feature matrix, respectively. A typical value of the rank of
P and Q (i.e, H) is 32 [15], [16], [17]. The i-th row of P
(denoted as p;) constitutes a feature vector of user u; and
the j-th row of ) (denoted as g;) constitutes a feature vector
of item v;, respectively. The prediction of the rating of item
v; given by user u; is the dot product of p; and ¢;:

H-1

a4 = Z Dih * djh @

h=0

Tij = DPi *

Given an observed rating r;;, the prediction error is com-
puted as err;; = r;; — 73;. The objective of the training
process is to obtain such P and () that minimize the overall
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Fig. 1: Input and output of training process

regularized squared error based on all the observed ratings:
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In the objective function, A is a constant used to introduce
regularization to prevent overfitting. In order to minimize
the objective function, SGD is used to update the feature
vectors. As shown in Algorithm 1, SGD randomly initializes
all the feature vectors and then updates them by iteratively
traversing all the observed ratings. The training process
terminates when the overall squared error (i.e., Zerrfj)
converges. By taking an observed rating 7;;, p; and g;
are updated by a magnitude proportional to a constant «
(i.e., learning rate) in the opposite direction of the gradient,
yielding the following updating equations:

ppe =B pf terryy o g ®)

4 =8¢+ erry; - a - pd )

In Eq. (3) and (4), S is a constant whose value is equal to
(1 —a\). The algorithm requires to incrementally update the
feature vectors once per rating. As a result, the ratings of the
same item or given by the same user cannot be concurrently
processed because they will result in concurrent updates to
the same p; or ¢;. Additional details of this algorithm can be
found in [1], [2].

Algorithm 1 SGD-based MF
Train (R)
1: Randomly initialize P and @)
2: while Termination_condition = false do
3:  Overall_squared_error= 0
for each observed rating r;; € R do
Compute #;; based on p; and g;
Compute err;; based on r;; and 7
Update p; and g; based on Eq. (3) and (4)
Overall_squared_error+ = errfj
9:  end for
10: end while
11: Return P and @

3 CHALLENGES IN ACCELERATION

To achieve efficient acceleration of the SGD-based MF al-

gorithm using FPGA, three challenges need to be carefully
addressed.

3.1 Large Data Volume but Limited On-chip Memory
Resources

Since the feature vectors of users and items are repeatedly
accessed and updated during the processing, it is desirable
to store them in the on-chip memory of FPGA for data
reuse. However, for large training dataset that involves a
large number of users and items, the feature vectors cannot
fit in the on-chip memory. In this scenario, external memory
such as DRAM is required to store them. However, accessing
feature vectors from external memory can incur long access
latencies, which result in massive accelerator pipeline stalls
and significant performance deterioration [19], [21]. There-
fore, the first challenge is how to use the limited on-chip
memory resources to achieve efficient data reuse.

3.2 Limited Parallelism due to Data Dependencies

SGD is inherently a serial algorithm because it requires to
incrementally update the training model once per training
data. As a result, the ratings of the same item or given by the
same user have data dependencies and cannot be processed
in parallel. This is because concurrent processing of such
ratings leads to Read-After-Write (RAW) data hazard. We
define such data dependency among ratings as feature
vector dependency. Hence, the second challenge is how to
reduce the feature vector dependencies so that the massive
parallelism offered by FPGA can be efficiently exploited.

3.3 Concurrent Accesses to Dual-port On-chip RAMs

FPGA accelerators usually employ parallel processing units
to increase processing throughput [3], [19], [20]. However,
the native on-chip RAMs (e.g., block RAM and UltraRAM)
of FPGA support only dual-port accesses (one read port
and/or one write port) [26], [27], [29]. When multiple pro-
cessing units concurrently access the same RAM based on
distinct memory addresses, these memory accesses have to
be serially served. This leads to additional latency to resolve
the access conflicts as well as performance deterioration.
Therefore, the third challenge is how to schedule the exe-
cution to reduce such access conflicts.

4 GRAPH REPRESENTATION AND ALGORITHMIC
OPTIMIZATIONS

In order to overcome the three challenges described in
Section 3, we represent the MF problem using a bipartite
graph representation (Section 4.1) and propose three novel
algorithmic optimizations (Section 4.2).

4.1 Graph Representation

We transform SGD-based MF into a bipartite graph-
processing problem so that graph theories can be leveraged
to optimize the performance. The input matrix is converted
into a weighted bipartite graph G, whose vertices can be
divided into two disjoint sets, U (user vertices) and V' (item
vertices). Each observed rating in R is represented as an
edge connecting a user vertex and an item vertex in G.
G is represented using the coordinate (COO) format [22],
which is a commonly used graph representation [16], [17],
[18], [22], [23], [24]. In this format, each edge (i.e., edge;;) is
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represented as a <u;, v;,7;;> tuple, in which u; and v; refer
to the user and item vertices connected by the edge, and
;5 (i.e., edge weight) corresponds to the rating value of v;
given by u;; all the edges are stored in an edge list ; each
user/item vertex maintains a feature vector whose length is
H. Table 1 summaries the frequently used graph notations
in this paper. Algorithm 2 illustrates the SGD-based MF
algorithm based on the bipartite graph representation. All
the edges in I are iteratively processed to update the feature
vectors of vertices until the overall squared error converges.
When the training process terminates, the feature vectors of
all the user vertices and item vertices constitute the output
feature matrices P and (), respectively.

TABLE 1: Bipartite graph notations for MF

Notation Description ‘
U; the user vertex with index i (0 < i < |U|)
vj the item vertex with index j (0 < j < |V])
i the feature vector of u;

q; the feature vector of v;

H the length of each feature vector
edge;; | the edge connecting u; and v;

Tij the weight of edge;;

Algorithm 2 SGD-based MF using graph representation
MF_Train (G(U,V, E))

1: for each user/item vertex do

2:  Randomly initialize its feature vector
3: end for

4: while Termination_condition = false do
5:  for each edge;; € E do

6 Read feature vectors p; and g;

7 Compute 7;; based on Eq. (1)

8 Compute err;; based on r;; and 7
9: Update p; and g; based on Eq. (3) and (4)
10:  end for

11: end while

12: Return all the feature vectors of vertices

4.2 Algorithmic Optimizations

4.2.1 Optimization 1: Graph Partitioning and Communica-
tion Hiding

In order to address the challenge described in Section 3.1,
we partition G into induced subgraphs (IS) to achieve
two goals: (1) the feature vectors of the vertices in each
induced subgraph can fit in the on-chip memory of FPGA;
(2) the computation for processing each induced subgraph
can completely hide the communication cost.

Let L (N) denote the on-chip storage capacity in terms
of the number of feature vectors for user (item) vertices.
We partition U into [ disjoint vertex subsets {Up, ..., Ui_1},
each of size at most L, where [ = {%1 Similarly, V' is
partitioned into {Vp,...,V,_1}, each of size at most N,
where n = (%1 . We will introduce our proposed algorithm
to perform the partitioning of U and V' in details later in this

section. Let I/;,, denote a subset of F that consists of all the
edges connecting the vertices belonging to U, and V,, in G
0<Lz<,0<Ly<n).U,,V,, and E,, form an Induced
Subgraph (I5) of G [30]. The necessary condition for the
on-chip buffering of all the feature vectors of each 1. is:

Uzl < L,V e[0,l) & |Vy|<N,Vyel0,n) (5

Since we ensure that each user (item) vertex subset has
no more than L (N) vertices during the partitioning, the
necessary condition for the on-chip buffering of the feature
vectors is satisfied.

Because there are [ user vertex subsets and n item vertex
subsets, the total number of induced subgraphs after the
partitioning is [ x n. Then, in each iteration of the training
process, the induced subgraphs are sequentially processed
by our FPGA accelerator based on Algorithm 3. Note that
during the processing of the edges in E,, all the feature
vectors of the vertices in U, and V,, have been prefetched
and buffered into an on-chip buffer of FPGA; therefore, the
processing units of the accelerator can directly access the
feature vectors from the on-chip buffer, rather than from the
external memory.

Algorithm 3 Scheduling of induced subgraph processing
ME_Train (Induced Subgraphs)
1: while Termination_condition = false do
for x fromOto! —1 do
Load feature vectors of U, into on-chip buffer
for y from0ton — 1 do
Load feature vectors of V,, into on-chip buffer
Process all the edges € F,,
Write feature vectors of V}, into external memory
end for
Write feature vectors of U, into external memory
10:  end for
11: end while

Using double buffering [3], [31], we pipeline the process-
ing of induced subgraphs to hide the communication cost
for data transferring between FPGA and external memory.
To illustrate our idea, we define the following terms.

o |IS;|: the number of edges in an induced subgraph
1S;,7€10,l xn)

e (2 the number of edges that can be processed per
unit of time

e P(IS;): the computation time to process all the
edges of IS, (ie., P(IS,) = 3]

e Tr? the communication time due to reading the
feature vectors of 1.5, from external memory

e T¥": the communication time due to writing the
feature vectors of 1.5, into external memory

e T,: the intra-subgraph communication time (i.e., the
total time for data transfers, including both reads and
writes, occurred during the processing of 1.5;)

As shown in Figure 2, we pipeline the processing of induced
subgraphs by overlapping the computation time P(I5;)
of IS, with the writing of feature vectors from I.S;_;
and the reading of feature vectors from IS;;,. Therefore,
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T, = T¥", + Tr¢,. Here, T; in general may include reads
or writes of both user and item feature vectors. We can
derive the sufficient condition for a complete overlap of
communication and computation:

P(IS;) > T +TrY,,vr €[0,1 x n) (6)

vertex) and sort all the vertices based on the vertex degree in
descending order. Then, we greedily assign each vertex into
the vertex subset which has the minimum subset degree,
until all the vertices are assigned, subject to the subset size
condition.

Algorithm 4 Partition U into ! subsets Uy, - -+ ,U;_1

By replacing the P(IS;) in Inequality (6) with |Ié*|, we
obtain:

|1S;| > Q x T:,Vr € [0,l x n) @)
o
r | pasy || s Time
| Trrd | P(S,) | Ttwr IS,
[ nd ] pusao | i | isen

Fig. 2: Pipelined induced subgraph processing

Therefore, besides satisfying the necessary condition for on-
chip buffering of feature vectors, a desirable graph parti-
tioning approach should also ensure that each obtained 1.5
has sufficient amount of edges for the computation to com-
pletely hide the communication. Note that as parallelism
(i.e., ) increases, it becomes more challenging to satisfy the
sufficient condition, especially when the bipartite graph is
sparse. Graph partitioning is a classic problem and many so-
phisticated graph partitioning algorithms have been devel-
oped [33]. However, these sophisticated approaches usually
introduce significant preprocessing overhead. Our intuition
is that it is not necessary to invest significantly in developing
complex partitioning algorithms (in terms of preprocessing
time), rather any reasonably fast algorithm that satisfies
Inequality (5) and (7) is acceptable. A vertex-index-based
partitioning approach [32] has been widely used to perform
graph partitioning for hardware accelerators [17], [20]. This
approach simply assigns a group of vertices with contiguous
indices to each vertex subset subject to the subset size
condition (i.e., Inequality (5)). Although this approach is
fast, it can lead to significant data imbalance such that
some induced subgraphs may have very few edges; in
this scenario, the communication cost cannot be completely
hidden by the computation. Therefore, we propose a new
heuristic graph partitioning approach, which is also simple
and fast, but leads to a balanced partitioning effect such that
each obtained .S has sufficient edges to satisfy Inequality
(6) for a sparse bipartite graph.

We define the subset degree of a vertex subset as the
total number of edges that connect to the vertices in the
subset. When we partition U and V into vertex subsets, we
attempt to pack vertices into each disjoint vertex subset such
that the subset degrees are close to each other. However,
the most important criteria is to ensure that the number
of vertices in each vertex subset is bound by L and N
as defined earlier. Algorithm 4 illustrates our approach to
partition U into Uy, --,U;—1; V is partitioned based on
the same methodology. We first identify the vertex degree
of each vertex (i.e., the number of edges connected to the

Let ;.qegreec denote the number of edges connected to u;
0<i<|U)
Let U,.s;.e denote the number of vertices in U, (0 < z <)
Let Ug.qegree denote the subset degree of U, (ie,
Uz-degree = Zui~degree7vui € Uz)
Partition (U, L, I)

1: forx from0tol — 1 do

2: U, I

3 Ux-deg’ree +0

4: Usz.size < 0

5. end for

6: Sort U based on vertex degree in descending order
7: for each u; € U do

8:  subset_id < —1

9:  min_degree « |E)|

10: forx fromOtol—1do

11: if min_degree > Uy.gegree and Uy .size < L then
12: subset_id <+ x

13: min_degree < Ug.degree

14: end if

15:  end for

16: Usubset_id — Usubset_id U u;

17: Usubset_id-degree — Usubset_id-degree + Uj-degree
18: Ui -new_user_id — SUbset_ld x L + Usubset_id-size
19: Usubset_id-size — Usubset_id-size +1

20: end for

21: Return Uy, --- ,U;_1

When each vertex is assigned to a vertex subset, we
assign a new vertex index to it (Algorithm 4, Line 18), which
indicates the vertex subset that it belongs to and its index
in the vertex subset. After U and V are partitioned, we
reorder the vertices based on the new indices such that the
feature vectors of the vertices belonging to the same vertex
subset are stored contiguously in external memory. Since
user and item vertices are reordered, we also re-index the
user and item indices of each edge and partition the edges
into induced subgraphs based on the new indices.

4.2.2 Optimization 2: Parallelism Extraction

To address the challenge described in Section 3.2, we further
partition the edges in each .S into a list of non-overlapping
matchings, such that each matching consists of a set of in-
dependent edges without any common vertices. Therefore,
the edges in the same matching do not have any feature
vector dependencies and can be independently processed in
parallel.

We partition the edges in each .S into matchings based
on the graph theory of edge-coloring [30], which assigns
“colors” to the edges of a bipartite graph such that any
two adjacent edges do not have the same color. After all
the edges have been colored, the edges having the same
color form a matching. A classic edge-coloring algorithm
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has been introduced in [30]. However, this algorithm can
result in small matchings, in which there are very few edges
(e.g., only 1 edge). When processing such small matchings,
the parallelism provided by the hardware accelerator (i.e.,
parallel processing units) cannot be fully utilized. Therefore,
we propose a new edge-coloring algorithm which avoids
small matchings. As shown in Algorithm 5, we maintain
all the matchings using a singly linked list (i.e., M_List).
During the edge-coloring process, the linked list keeps track
of the size of each matching (i.e., the number of edges in
the matching), and arranges the matchings based on their
sizes in a non-descending order. When coloring an edge,
we traverse the linked list and assign the edge to the first
matching whose color is appropriate. Therefore, when an
edge has multiple color options, the color of the matching
that has the minimum number of edges is selected.

edges have to be serially served. Hence, the latency (in terms
of clock cycles) to resolve the bank conflict(s) within a batch
is equal to the maximum number of accesses to the same
bank within the batch. In order to reduce the bank conflicts,
we develop a batching algorithm to schedule the processing
of edges. As shown in Algorithm 6, the algorithm aims to
partition the edges of a matching into batches, with each
batch having K edges. We define a threshold value, A, to
restrict the upper bound of bank conflicts allowed within a
batch. A is initially set to 0. Then we sequentially traverse
the edges and assign an edge into a batch if its addition
does not violate the threshold condition or the batch size
condition. If there are still unassigned edges after all the
edges have been traversed, we increase A by 1 and traverse
the unassigned edges again. The same procedures repeat
until all the edges have been signed into a batch.

Algorithm 5 Partition edges of an 1.5 into matchings

Algorithm 6 Partition edges of a matching into batches

Let M_List denote a linked list of matchings
Let M denote the matching being examined
Let M.size denote the number of edges in the matching M
Let M.color denote the color of the matching M
Let M,e,+ denote the next matching in M_List linked by
M
Partition (1.5)
1: Create empty matching M with M.color
2: M_List.addFirst(M)
3: for each edge e;; € IS do

4: M + M _List.head

5:  while M # Null do

6: if u; or v; has an edge colored by M.color then
7: M — Mnea:t

8: else

9: Color e;; using M.color
10: M+ MU €ij
11: M.size < M.size + 1
12: while Mo and M,,eq.Size < M.size do
13: Swap M and Myt in M_List
14: end while
15: Go to Line 3
16: end if

17:  end while

18:  Create empty matching M with M.color
19: M+ MU €ij

20:  M.size <1

21:  M_List.addFirst(M)

22: end for

23: Return M _Lust

4.2.3 Optimization 3: Edge Scheduling

The architecture of our accelerator has K parallel processing
units sharing an on-chip buffer, which is organized in 2K*
(K* > K) memory banks with separate banks for users and
items (see Section 5.3); therefore, a batch of K edges are fed
into the processing units and processed at a time. However,
due to the dual-port nature of on-chip RAMs [26], [27], [29],
each bank can serve only 1 read access and 1 write access per
clock cycle. If there is a bank conflict between two or more
accesses within a batch, the memory requests to process the

Let K denote the maximum number of edges that can be
assigned in a batch
Let Count_BC(B, e) denote a function to count the number
of edges in batch B that have bank conflict with edge e
Partition (M)
1: Create b = (%] empty batches, By, -- , Bp—1
22 A+0
3: while M # & do
4:  foreachedgee € M do
5 for i from Oto b — 1 do
6 if B;.size < K and Count_BC(B;,e) < A then
7: B, + B;Ue
8 M + M\e
9: Break
10: end if
11: end for
122 end for
132 A+ A+1
14: end while
15: Return By, -+, By_1

5 FPGA ACCELERATOR DESIGN
5.1 Overall Architecture

The overall architecture of our FPGA accelerator is depicted
in Figure 3. The external memory connected to the FPGA
accelerator stores all the edges and the feature vectors of
all the user and item vertices. Before an IS is processed,
the feature vectors of all the vertices belonging to the .S
have been stored in the Feature Vector Buffer (FVB), which
is organized as memory banks of UltraRAMs (see Section
5.3). When processing an .S, FPGA fetches the edges from
the external memory and stores them into a first-in-first-out
Edge Queue (EQ). Whenever the EQ is not full, FPGA pre-
fetches edges from the external memory. A batch of edges
are fed into the Bank Conflict Resolver (BCR) (see Section
5.3) at a time and output in one or multiple clock cycles, such
that the edges output in the same clock cycle do not result
in any bank conflict accesses to the FVB. Then, the edges
output by the BCR are checked by the Hazard Detection
Unit (HDU) to determine whether they are data-hazard free
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to be processed. If an edge has no feature vector dependency
with any edge being processed in the Processing Engine
(PE), it is sent into the PE; otherwise, accelerator stalls
occur until the dependency is resolved. The PE consists of
K processing units that process distinct edges in parallel.
These processing units access the feature vectors of user and
item vertices from the FVB.

External User Item
Edges M Feature Feature
Eory Vectors Vectors
] + +
E 2 r 2 E 2
| Memory Controller
1 ?
Edge Queue
%l Feature Vector Buffer
FPGA ¥ ;
v
:l Processing o0
* Unit, 2
Bank Hazard 2 =
Conflict [ Detection H + §:§°
Resolver Unit Proc?ssmg =
Unitg_q =

T 1]

Fig. 3: Overall architecture

5.2 Processing Engine

The processing engine (PE) consists of K parallel processing
units that concurrently process distinct edges. We show the
architecture of each processing unit in Figure 4. Each input
edge is processed based on the follow steps.

1) Based on the user and item vertex indices of the
edge, the processing unit reads the feature vectors
(i.e., p; and g;) from the FVB

2) The prediction 7;; is computed based on p; and
¢j; meanwhile, p; and ¢; are multiplied with the
constants (i.e., a and /3) to obtain ap;, aq;, Sp;, and
Ba;

3) Once the prediction error err;; is obtained, pj*** and
q;¢"" are computed based on Eq. (3) and (4)

4) The updated feature vectors (i.e., p;'** and ¢;“*) are
written into the FVB

The dot product of p; and ¢; is computed in a binary-
reduction-tree fashion, requiring H (i.e., the length of each
feature vector) multipliers and (H — 1) adders in total.
Hence, the processing unit depicted in Figure 4 contains 7
multipliers, (3H — 1) adders, 1 subtractor, 1 squarer, and 1
accumulator. This results in a peak computing throughput
of (10H + 2) floating point operations per clock cycle. The
processing unit is fully pipelined to be able to process
one edge per clock cycle. We use three pipeline stages to
compute each floating point operation. Hence, the pipeline
depth of the processing unit is 3(log H + 4).

5.3 Feature Vector Buffer

Since the K processing units of the PE need to concurrently
access the Feature Vector Buffer (FVB) to read and write

Feature Vector Buffer

q] pi E’lBW p}ww
Bpi
—’(X B }
Ba;
errj - ap; . /l\
_"_’( ffJ "

T,:j )

Pio

djo

Pi1 .

4j1 7 @--} f'l]

Fig. 4: Architecture of processing unit

distinct feature vectors, there can be up to 2K read re-
quests! and 2K write requests in each clock cycle. However,
the native on-chip RAMs of FPGA, such as BRAMs and
UltraRAMs, provide only two ports for reading and/or
writing [26], [27], [29]. There are three major approaches
to build multiport memory using dual-port on-chip RAMs,
including multi-pumping [34], replication [26], and banking
[35]. Multi-pumping gains additional ports by running the
processing units with K x lower frequency than the mem-
ory. Consequently, this significantly deteriorates the clock
rate of the processing units for a large K (e.g., K = 8)
[25], [26], [27]. Replication-based approaches, such as LVT
[25] and XOR [26], create replicas of all the stored data to
provide additional ports and keep track of which replica
has the most recently updated value for each data element.
However, the amount of the RAMs needed in implementing
this approach grows quadratically with the number of ports,
such that K x K replicas are required to support K read
ports and K write ports. Additionally, the clock rate can
degrade below 100 MHz when the width and depth of the
memory are large (e.g., 1Kbit x 16K) [27], [28].

In order to support large buffer capacity and sustain
high clock rate, we adopt the banking approach [35] to build
the multiport FVB. This approach divides the memory into
equal sized banks and interleaves these banks to provide
higher access bandwidth (i.e., more read and write ports).
As shown in Figure 5, the FVB contains two parts of equal
size, one for storing user feature vectors and the other for
storing item feature vectors. Each part is divided into K*
banks (K* > K) and each bank is implemented using a
dual-port UltraRAM [29]. Therefore, the FVB provides 2K*
read ports and 2K™ write ports in total. Feature vectors

1. K for user feature vectors and K for item feature vectors
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of vertices are stored into the FVB in a modular fashion
based on the vertex indices, such that p; is stored in the
(i%K*)!" user bank and g; is stored in the (j%K*)!" item
bank. Hence, the feature vector of any user (item) can be
accessed from the FVB based on the user (item) vertex index
without complex index-to-address translation.

Feature Vector Buffer
User Banks Item Banks
HEEEE N IEEEEN
HEEEN I IEEEEN
— Po P> |
- || z
74 User Bank,
3 iy =
% | P1 [Pk*+1 Hi . %
- - W»n
[a'd L : "8
= 5 il =
= |4 | 8
—Pk*-1 |P2Kk*-1
~ User Bankg+_4

Fig. 5: Multiport FVB based on banking

However, the banked FVB cannot handle concurrent
accesses to the same bank for distinct feature vectors. Such
memory accesses are defined as bank conflict accesses, and
may occur for both user and item feature vectors. To address
this issue, we develop a Bank Conlflict Resolver (BCR) to
avoid any bank conflict accesses. As illustrated in Figure 6,
the BCR fetches a batch of K edges from the Edge Queue
(EQ) at a time and employs parallel detectors to detect the
potential bank conflicts among the edges. Then, it outputs
the edges to the Hazard Detection Unit (HDU) in one or
mutliple clock cycles, such that the edges output in the same
clock cycle have the feature vectors stored in distinct banks
of the FVB. Therefore, concurrent accesses to the same bank
will not occur. However, this also leads to additional clock
cycles to resolve the bank conflicts within a batch; in the
worst case, when all the edges in a batch have conflict with
each other, the BCR takes K clock cycles to output all the K
edges in the batch.

5.4 Hazard Detection Unit

Since the edges of distinct matchings can have common
vertices, feature vector dependencies exist among the edges
of distinct matchings. Therefore, when the edges output
from the Bank Conlflict Resolver (BCR) and the edges being
processed in the Processing Engine (PE) belong to distinct
matchings, read-after-write data hazards may occur. The

Bank Conflict Resolver
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2 £ > > ag
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o
j
— E »( >
Edge buffers

@ Output the edge and clear the buffer
@ Detect bank conflict

Fig. 6: Architecture of Bank Conflict Resolver for K = 4

Hazard Detection Unit (HDU) is responsible for detecting
feature vector dependencies and preventing read-after-write
data hazards. We design the HDU using BRAMs based on a
fine-grained locking mechanism. As shown in Figure 7, the
HDU maintains a 1-bit lock for each vertex of the 1.5 being
processed. A lock with value 1 means the feature vector of
the corresponding vertex is being computed by the PE, and
thus cannot be accessed at this time. For each input edge, the
HDU checks the locks of both the user and item vertices; if
both the locks are 0 (i.e., unlocked), the edge is fed into the
PE and the locks are set to 1 (i.e., locked); otherwise, the
HDU generates a pipeline stall signal to stall the accelerator
until both the locks become 0. Note that when the PE writes
an updated feature vector into the FVB, it also sends unlock
signals to the HDU to set the lock of the corresponding
vertex back to 0. Therefore, deadlock will not occur.

Hazard Detection Unit

Fig. 7: Architecture of Hazard Detection Unit
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6 EXPERIMENTAL RESULTS
6.1 Experimental Setup
6.1.1 Platforms

We conduct experiments based on a state-of-the-art Virtex
UltraScale+ xcvu9pflgb2104 FPGA [38]. This FPGA device
has 1,182,240 slice LUTs, 2,364,480 slice registers, 6,840 DSPs,
and up to 43.3 MB of on-chip RAMs. Two DDR4 chips are
connected to the FPGA as the external memory. Each DRAM
has 16 GB capacity and a peak access bandwidth of 19.2
GB/s. Our FPGA designs are implemented in RTL using
Verilog (available at http://www-scf.usc.edu/~shijiezh/
FPGA18); no high-level synthesis tool is used.

In order to show that our proposed optimizations are
applicable to general purpose processors as well, we also
implement a software-based design on a multi-core platform
(see Section 6.6). The multi-core platform has a 16-core Intel
Xeon E5-2650 processor running at 2.6 GHz. Each core has a
32 KB L1 cache and a 256 KB L2 cache. All the cores share a
20 MB L3 cache. The multi-core platform is equipped with
128 GB main memory with a peak access bandwidth of 38.4
GB/s.

6.1.2 Datasets and Machine Learning Parameters

We use several large real-life sparse matrices to evaluate
our designs. They have been widely used in related works
[12], [16], [22], [36]. Table 2 summaries the characteristics of
the datasets. In our experiments, the length of each feature
vector is 32 (i.e., H = 32) with each element represented
using IEEE 754 single precision format. We adopt standard
learning rate « = 0.0001 and regularization parameter A\ =
0.02 [2]. Note that our focus is accelerating the computations
of SGD-based MF; tuning the machine learning parameters
to improve the prediction accuracy is out of the scope of this

paper.

TABLE 2: Large real-life matrices used for experiments

#users | #items | #ratings | Density

Dataset |E|
wh | avh | (B |
Libim [23] | 135K 168K | 17,359K | 7.6x107*
Netflix [2] | 480 K 17K | 100,480 K | 1.2x1072
Yahoo [24] | 1,200K | 137K | 460,380 K | 2.8x1073

6.1.3 Performance Metrics

We evaluate the performance of our designs based on the
following metrics.

e Resource utilization: the percentages of basic FPGA
resources utilized by the accelerator, including slice
LUT, register, BRAM, UltraRAM, and DSP.

o Power: the power consumption of the FPGA accel-
erator, including both the static power and dynamic
power.

e Execution time: the elapsed time to complete one
iteration of the SGD-based MF algorithm; note that
this is independent with the values of « and A.

o Throughput: the number of floating point operations
performed per second (GFLOPS).

6.2 Resource Utilization, Clock Rate, and Power Con-
sumption

Table 3 and Table 4 show the resource utilization, clock
rate, and power consumption of our FPGA accelerator for
various number of processing units. The reported results are
obtained through post-place-and-route simulations using
Xilinx Vivado Design Suite 2018.1 [41]. For K = 8, the
accelerator uses up to 63.9% slice LUTs in the FPGA device.
Therefore, we could not increase K further to 16 due to
the resource limitations. The feature vector buffer (FVB)
is organized in 32 banks and the capacity of the FVB is
empirically set to 64K feature vectors (32K for user vertices
and 32K for item vertices). We did not increase the capacity
of the FVB to 128K because we observed that the clock
rate degraded below 100 MHz when 75% UltraRAMs of the
FPGA device were used.

TABLE 3: Resource utilization for various number of pro-
cessing units

. On-chip RAM
f ] LUT | Register | DSP 500 RAM. [ UlraRAM
1] 70% [ 46% | 38% | 12% 375 %
2 [143% | 82% | 75% | 12% 375 %
4 [307% | 172% | 151% | 12% 375 %
8 | 639% | 334% |302% | 12% 375 %

TABLE 4: Clock rate and power consumption for various
number of processing units

’ K ‘ Clock Rate (MHz) ‘ Power (Watt) ‘

1 171 5.8
2 167 7.3
4 161 12.1
8 150 20.1

6.3 Pre-processing Time and Training Time

Table 5 and Table 6 report the pre-processing time and
training time, respectively. The pre-processing includes the
three proposed optimizations in Section 4, and is performed
by the multi-core platform introduced in Section 6.1.1. The
training is performed by our FPGA accelerator. Note that the
pre-processing is performed only once, while the training is
an iterative process. Therefore, the pre-processing time can
be amortized and is negligible compared with the training
time (< 3% of the training time). In Table 6, we also report
the total number of iterations, the execution time for each
iteration, and the Root-Mean-Squared-Error (RMSE) (ie.,

\/ Z‘g"lrz) after the training process is completed.

TABLE 5: Pre-processing time

’ Dataset ‘ Opt. 1 ‘ Opt.2 | Opt.3 Total
Libim | O.4sec | 44sec | l.6sec | 6.4sec
Netflix | 1.0sec | 10.7 sec | 5.4sec | 17.1 sec
Yahoo | 5.5sec | 42.3sec | 18.9 sec | 66.7 sec
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TABLE 6: Training time

Dataset | Total training time | # iterations to converge | Ty per iteration | Root-Mean-Square-Error
Libim 360.8 sec 11,568 0.03 sec 1.05
Netflix 876.4 sec 5,766 0.15 sec 0.72
Yahoo 2536.5 sec 3,714 0.68 sec 0.94

6.4 Performance vs. Parallelism

In this section, we vary the number of processing units (K)
from 1 to 8 to explore its impact on pipeline stalls, bank
conflicts, and throughput performance.

6.4.1 Pipeline Stalls

Figure 8 shows the number of pipeline stalls per edge for
various K. We compute the number of pipeline stalls per
edge as the total number of pipeline stalls incurred due to
feature vector dependencies divided by the total number of
traversed edges; therefore a smaller value corresponds to
better performance. We observe that the number of pipeline
stalls per edge slightly increases as K increases. This is
because when a new matching is to be processed, there
can be up to K x D edges of other matching(s) remaining
in the processing units, where D is the pipeline depth of
each processing unit. Since the edges belonging to different
matchings can have feature vector dependencies, a larger
K increases the chances of pipeline stalls. We also observe
that the Libim dataset has more pipeline stalls than the
other two datasets. The reason is that the Libim dataset is
much sparser than the other two datasets (see Table 2), thus
resulting in more small matchings that cannot fill up the
processing units. When multiple such small matchings are
consecutively processed, the pipeline stalls due to feature
vector dependencies are more likely to occur.
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Fig. 8: Number of pipeline stalls per edge for various K

6.4.2 Bank Conflicts

Figure 9 shows the number of bank conflicts per edge for various
K, which is computed as the total number of bank conflicts
incurred during the processing divided by the total num-
ber of traversed edges. This metric indicates the average

number of bank conflicts that an edge can result in; thus a
smaller value is more desirable. It can be observed that the
number of bank conflicts per edge significantly increases
as K increases. This is because it becomes more likely
that different processing units concurrently access the same
bank of the feature vector buffer as K increases. Note that
when K = 1 (i.e, there is only one processing unit), bank
conflict never occurs. Another observation is that the Libim
dataset has more bank conflicts per edge than the other two
datasets. This is also due to the sparseness of the Libim
dataset that leads to a lot of small matchings. When we
perform the edge scheduling optimization (i.e., Algorithm 6)
for these small matchings, it is very challenging to separate
the edges that have bank conflict into distinct batches due
to a small number of batches.
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Fig. 9: Number of bank conflicts per edge for various K

6.4.3 Throughput

Figure 10 shows the throughput performance for various K.
We observe that the throughput performance significantly
improves as K increases for all the three datasets. For
K = 8, our FPGA accelerator sustains a high throughput
of 165 GFLOPS for Libim, 213 GFLOPS for Netflix, and
217 GFLOPS for Yahoo, respectively. We also observe that
the sustained throughput for Libim is lower than Netflix
and Yahoo. As explained in Sections 6.4.1 and 6.4.2, this is
because the Libim dataset is much sparser than the other
two datasets, resulting in more pipeline stalls and bank
conflicts per edge.

6.5 Impact of the Optimizations

To show the effectiveness of our proposed three optimiza-
tions, we compare our optimized design with several non-
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TABLE 7: Bank conflict reduction due to Optimization 3

11

Dataset # I?ar}k conflicts per edge Reduction T.me.C per iteration (se<f) Speedup
Optimized Baseline Optimized ‘ Baseline
Libim 0.067 0.161 2.4x 0.03 0.04 1.3x
Netflix 0.039 0.166 4.2x 0.15 0.23 1.5x%
Yahoo 0.042 0.164 3.9x 0.68 1.03 1.5x
TABLE 8: Pipeline stall reduction due to Optimization 2
Dataset # Plpellne stalls per edge Reduction T.wejc per iteration (sec.) Speedup
Optimized Baseline Optimized ‘ Baseline
Libim 0.115 3.313 28.8x 0.03 0.40 13.3x
Netflix 0.061 3.133 51.3x 0.15 2.19 14.6
Yahoo 0.054 3.259 60.3x 0.68 10.45 15.4x
300 6.5.3 Communication Cost Reduction
Libim BNetflix B Yahoo Lastly, we study the impact. of Optimization. 1 (Section 4.?.1)
to reduce the communication cost. We define communica-
_ tion cost as the data transfer time between the FPGA and the
5 ~ 200 | external memory. The baseline design for the comparison
2" 5 :: also performs Optimization 2 and Optimization 3; however,
%0 8 T % :: when partitioning the input graph into induced subgraphs,
o é - :: :: the baseline design adopts the widely used vertex-index-
=< 100 I I% based partitioning approach [32] (described in Section 4.2.1)
= Q H i rather than our proposed approach (Algorithm 4). We first
§ F ¥ compare the partitioning effect of these two approaches.
N :: :: Table 9 lists the maximum size, minimum size, and average
s r ¥ size of induced subgraphs with respect to number of edges
0 T after the input graph is partitioned. It can be observed that
1 2 4 8 the induced subgraphs obtained by our approach have sim-

Number of processing units (K)

Fig. 10: Throughput for various K

optimized FPGA-based baseline designs. All the compar-
isons are based on K = 8.

6.5.1 Bank Conflict Reduction

We first explore the effectiveness of Optimization 3 (Section
4.2.3) in reducing the number of bank conflicts. Here, the
baseline design used for the comparison only performs Op-
timization 1 and Optimization 2 during the pre-processing.
Table 7 summarizes the results of the comparison. We
observe that Optimization 3 reduces the number of bank
conflicts by 2.4 x to 4.2x. As a result, the execution time per
iteration is improved by 1.3x to 1.5x.

6.5.2 Data Dependency Reduction

We further explore the impact of Optimization 2 (Section
4.2.2) which aims to reduce the number of pipeline stalls due
to feature vector dependencies. For comparison purpose, the
baseline design performs Optimization 1 and Optimization
3 only. Table 8 summarizes the effectiveness of this optimiza-
tion. We observe that the optimized design dramatically
reduces the number of bank conflicts by 28.8x to 60.3x and
thus achieves 13.3x to 15.4x speedup.

ilar amount of edges, while the induced subgraphs obtained
by [32] can vary significantly in size.

TABLE 9: Comparison of partitioning effect

’ Dataset ‘ Approach ‘ |15 |maz ‘ |15 |min ‘ |15 avg ‘

Libim This paper | 591 K 524 K 579 K
[32] 703 K 175K

Netflix This paper | 6,699 K | 6,699 K 6,699 K
[32] 6,929 K | 4501 K

Yahoo This paper | 2,487 K | 2,288 K 2465 K
[32] 3,086 K | 288K

Table 10 summarizes the results of the comparison with
respect to communication cost. For all the three datasets,
the optimized design is able to completely hide the commu-
nication cost; while the baseline design can not completely
hide the communication cost for Libim and Yahoo datasets.
Based on the sufficient condition derived in Section 4.2.1,
the required number of edges in each induced subgraph for
a complete overlap of computation and communication is
438 K for Libim, 574 K for Netflix, and 574 K for Yahoo,
respectively. Since the baseline design has small induced
subgraphs which do not satisfy the requirement, the com-
munication cost cannot be completely hidden.
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TABLE 10: Communication cost reduction

Unhidden communication Tezee per
Dataset cost per iteration (sec) iteration (sec)
Opt. \ Base. Opt. \ Base.
Libim 0 0.005 0.031 0.036
Netflix 0 0 0.15 0.15
Yahoo 0 0.04 0.68 0.72

6.6 Performance of Multi-core Implementation

Based on our design methodology, we also implement a
software-based design on the multi-core platform intro-
duced in 6.1.1. To optimize the software-based design, we
first partition the input graph into induced subgraphs based
on the capacity of the last level cache (i.e., L3 cache); then,
each induced subgraph is partitioned into non-overlapping
matchings based on Algorithm 5. During the training pro-
cess, since there is no feature vector dependency among the
edges within a matching, each matching can be processed
by the 8 cores of the multi-core platform in parallel without
any atomic operations. The software-based design is imple-
mented using C language and has been parallelized with
16 threads using multi-threading technique [45]. Table 11
reports the performance of our multi-core implementation
for various datasets. We observe that our FPGA accelerator
achieves an average speedup of 10x compared with our
multi-core implementation.

TABLE 11: Performance of our multi-core implementation

’ Dataset ‘ Tezec per iteration (sec) ‘ Throughput (GFLOPS) ‘

Libim 0.35 16.0
Netflix 1.51 21.4
Yahoo 6.55 22.6

We further compare the performance of our multi-core
implementation with a highly-optimized multi-core imple-
mentation, Native [36], which has shown the fastest train-
ing speed among existing multi-core implementations [15],
[37]. Native implements SGD-based MF on a 24-core Intel
E5-2697 processor. It partitions the input training matrix
into submatrices, and exploits submatrix-level parallelism
to concurrently process the submatrices that do not have
feature vector dependencies using distinct CPU cores. How-
ever, the submatrices can vary significantly in size, thus
resulting in load imbalance among the CPU cores and
increasing the synchronization overhead. Table 12 shows
the comparison results based on the same dataset (ie.,
Netflix). It can be observed that our optimized multi-core
implementation achieves 1.3x speedup with 1.5x fewer
CPU cores and 2.2 x lower memory bandwidth.

TABLE 12: Comparison with state-of-the-art multi-core im-
plementation for training Netflix dataset

Platform Tezec per

A h Speed
pproac # cores \ Mem. BW | iteration peedtp
[36] 24 86.5 GB/s 2.0 sec 13x
This paper 16 384 GB/s | 15sec )

6.7 Performance Comparison with State-of-the-art GPU
Implementations

In this section, we compare the performance of our FPGA
accelerator with two state-of-the-art GPU implementations
[22], [43]. In [22], several scheduling schemes for parallel
thread execution on GPU are developed and compared.
However, the lock-free static scheduling schemes are not
able to efficiently exploit the thousands of cores on the
GPU, and the dynamic scheduling schemes require memory
locks to handle feature vector dependencies and thus result
in significant synchronization overhead. In [43], the GPU
design focuses on optimizing the memory performance of
GPU by exploiting warp shuffling, memory coalescing, and
half-precision (i.e., using 16 bits to represent a floating point
number) techniques. Table 13 summaries the comparison
results of our FPGA design with [22], [43] for training the
same dataset (Netflix). Our design achieves 12.7x and 2.5x
speedup compared with [22] and [43], respectively. Note
that the speedup is achieved with fewer cores (i.e., process-
ing units), lower clock frequency, and lower memory band-
width. In addition, the power consumption of our FPGA
accelerator is over 10x lower than the thermal design power
of the GPU platforms. Therefore, from energy-efficiency
perspective (i.e., performance per Watt), our FPGA design
achieves even larger improvement.

7 RELATED WORK
7.1 Multi-core-based Acceleration

Multi-core-based designs for SGD-based MF usually parti-
tion the input matrix into submatrices and use a global table
shared by all the CPU threads to schedule the execution
of each submatrix [40]. When a thread is idle, it locks the
global table and finds an unprocessed submatrix from the
table, such that the submatirx has no feature vector depen-
dencies with the submatrices being processed by the other
threads; then, the thread updates and unlocks the global
table, and sequentially processes all the training data in the
submatrix. There are also several multi-core-based graph-
processing frameworks that support GD-based MF which
can be expressed as a vertex-centric program. Representa-
tive examples include GraphLab [15] and GraphMat [16].
However, GD is less efficient than SGD when the volume
of training data is large [44]. The reason is that GD needs
to generate an update based on the entire training dataset,
while SGD generates an update based on a single training
data. Nadathur et al. observe that GD-based MF runs 40x
slower than SGD-based MF for training the Netflix dataset
given the same convergence criterion [36].

7.2 GPU-based Acceleration

GPUs are widely used to accelerate machine learning appli-
cations [39]. In [43], ALS-based MF and SGD-based MF are
compared based on the GPU platform. The observation is
that SGD-based MF results in 4X less training time than
ALS-based MFE. However, it has been shown that GPUs
are not suitable for accelerating SGD-based MF [22], [39],
[42]. The main reasons include (1) the fine-grained syn-
chronization of updated feature vectors is very expensive
on GPU platforms [39], and (2) the SIMD execution of
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TABLE 13: Comparison with GPU implementations for training Netflix dataset

Approach T cores ‘ Freque:i;tfrlgdnem. BW ‘ Power Tezec per iteration | Speedup | Throughput | Improvement
[22] 2880 745 MHz | 288 GB/s | 235 W 1.90 sec 1.0x 8.6 GFLOPS 1.0x
[43] 3072 | 1000 MHz | 360 GB/s | 250 W 0.38 sec 5.0x 171.4 GFLOPS 19.9x
This paper 8 150 MHz | 38GB/s | 20W 0.15 sec 12.7x 213.3 GFLOPS 24.8x

GPU further inflates the cost of thread divergence when
synchronization conflicts occur [22]. In [22], Rashid et al.
compare several scheduling schemes for parallel execution
of SGD on GPU, including lock-based dynamic scheduling
schemes and lock-free static scheduling schemes. However,
none of these schemes is able to efficiently exploit the GPU
acceleration; as a result, the achieved speedup compared
with a CPU implementation is very small (< 1.1x). Siede et.
al [42] investigate the theoretical efficiency of SGD on GPUs,
and conclude that fundamental changes in the algorithm are
necessary to achieve significant speedup. In [46], a variation
of SGD-based MF algorithm called MSGD is proposed. In
order to reduce feature vector dependencies and exploit
more GPU acceleration, MSGD updates only the feature
vector of either user or item per input rating (SGD updates
both the feature vectors); the work [46] mathematically
proves that such modification does not significantly impact
the prediction accuracy.

7.3 FPGA-based Acceleration

There have not been many efforts to exploit FPGA to accel-
erate SGD-based MF. In [47], an FPGA accelerator for SGD-
based deep learning algorithms is developed. In order to im-
prove hardware efficiency, the accelerator is designed based
on a model which allows asynchronous updates (i.e., read-
after-write data hazard is acceptable) and uses low-precision
computations (i.e., floating-point numbers are represented
using low-precision fixed-point data type). However, it is
highly likely that applying such model to SGD-based MF
will negatively impact the quality of the training output. To
the best of our knowledge, our proposed accelerator is the
first FPGA-based design to accelerate the training process of
SGD-based MF for large input matrices.

8 GENERALITY OF OUR DESIGN

Our holistic design approach is general enough to be
adapted to various machine learning and parallel comput-
ing problems. The generality of our design is in four aspects.
Firstly, the accelerator can be easily modified to train matrix
factorization models that require tuning parameters; for
example, the learning rate and regularization parameter can
serve as inputs to the accelerator and be adjusted in each
iteration based on the achieved accuracy improvement [2].
Secondly, the on-chip shared memory of GPU platform is
also organized as memory banks and suffers bank conflict
issue; our approach to reduce bank conflicts is applicable
to GPU platform as well, which can enable a more efficient
batching of input data and thus improve memory perfor-
mance. Thirdly, our bipartite graph partitioning approach
can be used to partition sparse matrices in such a way that
the obtained submatrices have sufficient computations; this

enables efficient load balancing when mapping the compu-
tations of submatrices to distinct parallel computing units.
Lastly, the implementation of our locking mechanism can
be directly used to design architecture for many applications
that require to incrementally update data during processing;
examples include other SGD-based training problems [47]
and networking applications [48].

9 CONCLUSION AND FUTURE WORK

In this paper, we presented an FPGA-based accelerator to
speedup the training process of SGD-based MF. The accel-
erator consisted of parallel processing units with a shared
on-chip feature vector buffer. To optimize the performance,
we proposed three novel optimizations by using a bipartite
graph representation of MF. Our focus was to obtain simple
and fast heuristics based on identifying sufficient conditions
for significant acceleration of the SGD-based MF on FPGA.
By holistically considering the architectural characteristics
of the FPGA platform, the proposed optimizations resulted
in a complete overlap of communication and computation,
up to 60.3x data dependency reduction, and 4.2 x bank con-
flict reduction. As a result, our FPGA accelerator sustained
a high throughput of up to 217 GFLOPS for training large
real-life sparse datasets. Compared with the state-of-the-art
GPU implementations, our FPGA accelerator achieved up
to 12.7x speedup and 24.8x throughput improvement. We
also demonstrated that the proposed optimizations were
applicable to general purpose processors. Our optimized
software-based design achieved 1.3x speedup compared
with the state-of-the-art multi-core implementation.

In the future, we will explore multi-FPGA architectures,
in which each FPGA device employs our FPGA accelerator,
to further reduce the training time and handle even larger
input matrices. We are also interested in exploring high-
level synthesis tools to generate the architecture of our
design and comparing the performance.
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