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Geometry and kinetics determine the
microstructure in arrested coalescence
of Pickering emulsion droplets†

Zhaoyu Xie, a Christopher J. Burke, a Badel Mbanga,a Patrick T. Spicer b and
Timothy J. Atherton *a

Arrested coalescence occurs in Pickering emulsions where colloidal particles adsorbed on the surface of

the droplets become crowded and inhibit both relaxation of the droplet shape and further coalescence.

The resulting droplets have a nonuniform distribution of curvature and, depending on the initial

coverage, may incorporate a region with negative Gaussian curvature around the neck that bridges the

two droplets. Here, we resolve the relative influence of the curvature and the kinetic process of arrest

on the microstructure of the final state. In the quasistatic case, defects are induced and distributed to

screen the Gaussian curvature. Conversely, if the rate of area change per particle exceeds the diffusion

constant of the particles, the evolving surface induces local solidification reminiscent of jamming fronts

observed in other colloidal systems. In this regime, the final structure is shown to be strongly affected

by the compressive history just prior to arrest, which can be predicted from the extrinsic geometry of

the sequence of surfaces in contrast to the intrinsic geometry that governs the static regime.

1 Introduction

Pickering emulsions incorporate micro- or nano-scale colloidal
particles that adsorb onto the fluid–fluid interface of the
constituent droplets. The presence of these particles stabilizes
the emulsion against phase separation by inhibiting processes
like coalescence where droplets combine.1–3 Arrested coales-
cence occurs when two initial droplets with coverage fraction fi

above some critical value fc coalesce. As the doublet relaxes
toward a spherical shape due to surface tension, the particles
become crowded and inhibit further relaxation, producing a
nonspherical droplet with a rigid interfacial shell that prevents
further coalescence of additional droplets. The point of arrest can
be predicted from fi and the relative size of the two droplets: once

f for the combined droplet would exceed fc ¼ p
� ffiffiffiffiffi

12
p

� 0:9, the
value of hexagonal packing in 2D, the coalescence will be arrested.
If fi is increased, coalescence is arrested at an earlier point. Arrest
can also be achieved by other offsetting rheological resistance such
as internal viscoelastic fluids.4

In addition to increased stability, arrested coalescence is a
straightforward method for sculpting non-spherical droplets.

While other studies1–3 have shown how to control the shape
of the arrested droplets, the particle microstructure of the
arrested structures has not been studied. The purpose of this
paper is, therefore, to predict the microstructure from the final
shape and to disentangle the static and kinetic influences.

Where relaxation of the doublet proceeds sufficiently slowly
that the particles are in quasistatic equilibrium with the host
shape, the problem may be approached from the view of
spherical crystallography,5 for which Pickering emulsion droplets–
colloidosomes–have proven an ideal model system.6 On curved
surfaces, dislocations in the crystal-particles with a contact
number ci other than 6-are required to accommodate the curvature.
Moreover, because the shape is a closed surface, the structure is
subject to the topological constraint that

P
i

qi ¼ 6w, where

qi = ci � 6 is the defect charge and w the Euler characteristic
of the surface is 2. Dislocations beyond those required by
topology occur if the cost of forming a dislocation is favorable
relative to distorting the lattice7–15 and form grain boundaries
or scars to help screen the Gaussian curvature.6,9 Nonuniform
curvature leads to localization of the defects.15–18

Kinetic effects remain unexamined in the assembly of
colloidosomes before, but have received extensive attention in
other related systems. The response of solid amorphous materials
under deformation is described by the shear-transformation-zone
(STZ) theory,19–21 whereby localized clusters of molecules (the
eponymous STZs) undergo irreversible non-affine rearrangements
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in response to applied shear stresses. The STZ provides a wealth of
theoretical tools for characterizing such systems. A second source
of inspiration are studies that probe solidification in complex
fluids: under impact, for example, dense suspensions of colloidal
particles rapidly solidify from the point of impact with a
propagating dynamic jamming front.22 Similar processes have
been observed with other kinds of forcing such as shear and
extension.23–25 More generally, arrested coalescence falls into
the interesting class of nonequilibrium systems that develop a
‘‘memory’’ of their evolution.26

Arrested coalescence has some common features with these
other systems, but, importantly, the deformations involved are
spatially varying due to the curvature and not driven by external
influences. To develop our description, the rest of the paper is
structured as follows: in Section 2 we analyze the differential
geometry of the shapes that occur in arrested coalescence and
develop a framework for analyzing the kinetic contribution. We then
separate the influence of geometry and kinetics on the microstruc-
ture by comparing static packings produced with a fixed shape in
Section 3 and kinetic packings produced as the shape relaxes
towards the final spherical ground state in Section 4. Prospects for
exploiting these effects are discussed in the concluding Section 5.

2 Theory

In this section, we analyze the influence of the evolving shape
on the structure adopted by N spherical particles of radius r
embedded upon it. A central assumption of this work is that the
evolution of the surface is predetermined and not modified by
the presence of the particles, whose centers of mass are con-
strained to the surface but are free to move around it according
to some dynamics to be specified. This assumption agrees with
experimental observations of Pickering emulsions.1,2,27

An analytical ansatz to describe the shape evolution of a pair
of spherical droplets as they relax following coalescence was
proposed by Garabedian et al.28 After initial contact, the surface
is described by the level set,

a2l2 x2 þ y2
� �

þ a2z2

x2 þ y2 þ z2ð Þ2
¼ 1; (1)

where a is the half length of long axis and the aspect ratio
l A [0,1] controls the extent of coalescence as shown in Fig. 1A.
The value l = 0 corresponds to the two droplets just touching
each other and l = 1 represents the final state as one spherical
droplet. The center is located at the origin and the z axis is the
axis of rotational symmetry. The value a is chosen for each l to
hold the total volume of the surface constant. Experimentally
observed arrested structures in ref. 1 and 4 are well described by
eqn (1), justifying the assumption of specified shape evolution.

To understand the influence of the evolving shape on
arrested particle structures, we now study the differential geometry
of the family of surfaces described by eqn (1). The distribution of
dislocations in static packings is known to be controlled by the
distribution of Gaussian curvature, which acts like a nonuniform
background defect charge distribution in addition to the discrete
defect charges for the elastic term in free energy.14 We therefore
display in Fig. 1B the Gaussian curvature along the axis of
rotation z as a function of l where a is also varied to maintain
a fixed volume of p/3.

During the initial stages of relaxation, i.e. l t 0.7, the neck
of the doublet creates a region where the Gaussian curvature K
is negative while at the ends of the droplet the curvature
approaches a constant value because here the surface is almost
spherical. In this regime, the neck region should induce negative
defects, which requires additional compensating positive
defects to meet the overall topological constraint. As l increases,

Fig. 1 Ansatz fluid–fluid interface shape. (A) Simulation of different stages of coalescence parametrized by l. (B–D) Differential geometry of the family of
surfaces: (B) Gaussian curvature; (C) mean curvature; (D) normal velocity and (E) local rate of area change g. All quantities are plotted as a function of l (at
fixed volume) and distance z/a along the rotational symmetry axis of the surface.
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the profile K(z) becomes smoothed over time until it approaches
a uniform constant value for the spherical final state. Beyond
l = 0.7, therefore, we expect to see the defect distribution
skewed towards the cap where the K is largest, reducing to a
uniform distribution as l - 1. These predictions for the static
case will be tested in Section 3.

We now turn to kinetic effects. The process driving arrest is
the shrinking of surface area, quantified by

:
A the rate of change

of the area of the surface. This quantity plays a similar role to
the strain rate for media under deformation, though we
emphasize that here strain is more complicated as it is spatially
varying. We shall also assume some other process that relaxes
the configurations toward their equilibrium state. Here, the
relaxing process will be diffusion with an in-plane diffusion
coefficient D and associated timescale td defined through

2r ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Dtd

p
.

Since
:
A and D have the same dimensions, a natural dimension-

less parameter that quantifies the importance of kinetics emerges,

G ¼
_A

ND
¼ 1

N

dA

dt

td
2r2

¼ 1

2r2N

td
tr

dA

dT
; (2)

where tr is the time of full relaxation which may be used to
nondimensionalize time T = t/tr; this quantity measures the rate
of change of area per particle relative to the diffusion constant.
The ratio,

y = td/tr (3)

also emerges as a measure of the relative influence of diffusion
and relaxation and is in practice the independent variable that
will be varied to construct our ensemble of simulations. For the
surfaces described by eqn (1), the quantity dA/dT is almost
linearly related to l for all but small values of lo 0.1 (Fig. S1, ESI†)
where the ansatz is a poor approximation to the experiment,1 and
so we shall not investigate arrest in this regime.

We shall also construct a local version of (2),

g ¼ _a

nD
; (4)

where a is the area of some region of interest O on the surface
and n is the number of particles in that region. The quantity g
captures the local rate of expansion or contraction per particle
measured relative to their diffusion, and therefore predicts
regions where the particles may become crowded. Note that
(4) captures only one form of deformation, scaling, imparted on
the particles by the evolving surface. As shown in Fig. S2 (ESI†),
the local deformation in the neck also involves stretching in the
azimuthal direction.

The quantity
:
A can be computed from more fundamental

objects as follows. Consider a one-parameter family of surfaces
X(l)—eqn (1) is an example—that describes the shape evolution
of the surface. The rate of change of area can then be written,

_A ¼
ð
r �N dX

dl
�N

� �
dl
dt
dA; (5)

where N is the local outward surface normal and the integral is
over the surface. The first factor is the divergence of the normal

and can be rewritten in terms of the mean curvature H, while
the second factor in (5) is the normal component of the velocity
(with sign measured with respect to the outward normal) as
the surface evolves according to l(t). The integrand of (5) is
identified as :

a and hence an explicit formula for g can be
constructed,

g ¼ 1

nD

dl
dt

ð
O
2H

dX

dl
�N

� �
dA (6)

where the integral is taken over a region of interest on the
surface containing n particles.

The three factors in (6) each contain different information:

the first,
dl
dt

supplies the overall time dependence and is strictly

positive. The second, H, can be directly calculated from instan-
taneous configurations of the surface. It is famously related to
the capillary pressure difference across the surface Dp through
the Young–Laplace equation,

Dp = 2sH (7)

where s is the surface tension and therefore measures the local
generalized force acting to minimize the surface area. The final

factor in (6)
dX

dl
�N captures the velocity induced by evolution of

the surface and necessarily incorporates the effect of the
volume constraint.

We note that (6) reveals an elegant distinction: the micro-
structure of the static packings is determined by the Gaussian
curvature, an intrinsic quantity, while the role of kinetics is
determined by extrinsic quantities—those that depend on how
the surface is embedded—such as the mean curvature. Previous
literature has focussed on the role played by the Gaussian
curvature on packing7–15,29 as well as crystallization and
nucleation,30–33 while little attention has been paid to the role
of extrinsic geometry.

We now examine the ramifications of (6) for the kinetics of
arrest on the present surface (1). First, the time dependence l(t)
is chosen such that the radius of the neck scales pt1/2. This
form was proposed for the inertial regime where Reynolds number
is large by Eggers et al.34 and confirmed experimentally35,36 to hold
in the early stages of coalescence. We use this power law for the
whole process for simplicity.

Next, the mean curvature H is displayed in Fig. 1C and like
the Gaussian curvature exhibits a negative region at the neck
for early stages of the relaxation. The normal velocity is shown
for different l in Fig. 1D and the product of these terms in
Fig. 1E.

To help interpret these quantities, consider a single free
particle at rest on the initial surface that moves only subject to
constraint forces as the surface evolves and neglect the inertia of
the particles which is assumed to be damped by the surrounding
fluid. The constraint forces must act in the direction locally
normal to the surface and hence the particles follow trajectories
such as those in Fig. 2A shown for different starting positions
around the doublet.
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In some locations, for example the caps, the trajectories in

Fig. 2A are strictly convergent and the product H
dX

dl
�N

� �
is

negative for all l, indicating that particles here tend to be
compressed as the doublet relaxes. By contrast, in the neck a
region of strong compression exists for l o 0.6 which becomes
expansive as the surface approaches the final spherical state.
These features arise because the discriminant g arises both
from the sign of the mean curvature and whether the motion is
locally inward or outward. At the caps, H is positive but the
motion is inward; conversely at the neck H is negative, at least
for low values of l, but the motion is outward.

A second interpretation for :a is as the generator of a
conformal mapping between nearby surfaces X(t) - X(t + dt).
A packing on any surface in the family can be conformally
mapped onto any other surface by transporting the particles
along the normal trajectories and scaling them at each step

according to r ! r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _a=að Þdt

p
. In Fig. 2B and C, we use this

property to map an arrested packing at l = 0.6 onto a spherical
surface l = 1.

Considering coalescence scenarios with varying G, we expect
for G{ 1 to recover the static results as diffusion can fully relax
the structure. Conversely, as GZ 1, we expect that the history of
compression and expansion will become imprinted upon the
structure. To test this, we employ two different algorithms fully

described in Section 6 below. Static packings are produced on
shapes of fixed l using a Monte Carlo inflation algorithm
inspired by the Lubachevsky–Stillinger algorithm;37 we supplement
this algorithm to ensure rigidity of the final packings and
analyze the packings in Section 3. A second algorithm, which
reproduces the scenario described above with particles diffusing
on the evolving surface, is used to create arrested structures as a
function of G which are analyzed in Section 4.

3 Statics

We first establish the role of the nonuniform geometry on the
final states observed in arrested coalescence in the purely static
case, where the particles are packed onto the surface so as to
maximise the packing fraction f. Using the protocol described
in Methods, we generate N = 100 rigid packings each for
surfaces with l A [0.3, 1] and determine the neighbour graphs
from the Delaunay triangulation. Representative packings are
shown in Fig. 3A, where the particles are colored by coordination
number ci computed from the neighbour graph. Visually, and
also from inspection of the density–density pair correlation
function g(s)38 (Fig. S3, ESI†), these packings appear largely
crystalline with the expected scars distributed over the whole
surface.

The changing morphology is expected to have a number of
effects from prior work. As the surface evolves from a bisphere
at l = 0 to a single sphere at l = 1 at constant volume, the ratio
r/R, where r is the particle radius and R the local radius of
curvature at the cap, should decrease by a factor of 21/3. The
reduced influence of curvature is known to produce longer
scars.6 To verify this, scars are individually identified following39

by deleting all vertices with six-fold coordination from the
neighbour graph, leaving a disjoint defect subgraph visualized
below the corresponding packings in Fig. 3B. The majority of
scars exhibit a linear morphology independent of l, but the
average length increases up to around l = 0.6 as shown in
Fig. 3C while the fraction of singletons decreases (Fig. 3C inset).

Additionally, strong negative Gaussian curvature at the neck
for low l is expected to induce dislocations in excess of those
topologically required. We follow40 in defining the excess
number of dislocations,

nd ¼ 1

2

P
i

qij j

12
� 1

0
@

1
A; (8)

where the sum is over particles and qi = ci � 6 is the dislocation
charge of the ith particle, and display nd(l) in Fig. 3D. As
l increases, the neck region becomes flatter and nd decreases
with a minimum at l = 0.6. Above this value, more dislocations
emerge to accommodate the positive curvature. Variation in the
packing fraction f(l), also shown in Fig. 3D, is due to the
dislocations since f and nd closely follow inverted trends.

Since the shape away from the neck is spherical, changes in
nd with l are due to the curvature distribution around the neck.
To test this, spatially resolved plots of the bond orientational
order parameter c6 = hexp(i6y)i41 are calculated as described in

Fig. 2 (A) Trajectories followed by particles at different starting locations
that move only under constraint forces as the surface evolves. (B) An
arrested configuration at l = 0.6 with equal size particles of radius r0 can
be conformally mapped onto (C) a configuration with different sized
particles on final spherical state l = 1 by transporting the particles
along the normal trajectories shown in (A) and scaling them according
to a local r/r0.
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Methods and shown in Fig. 3E for several l. As the neck evolves,
these distributions exhibit a transition: for l = 0.3, the region
near the neck has lower c6 than the region at the cap, with a
local maximum at around z/a = 0.2, while for l = 0.6 the neck
has enhanced c6, and a less ordered region away from the neck.
As l increases further, the amplitude of this variation is
reduced and becomes spatially uniform for the spherical case
l = 1. Consistent with the relation between f and nd, plots of
the defect number density (Fig. S4, ESI†) closely resemble the
inverted form of c6. The mean value of c6 around the neck is
shown as a function of l in the inset of Fig. 3E and mirrors the
trend exhibited by the packing fraction.

As shown in Fig. 3F and its inset, the defect charge density
r(z) (solid lines) can be well predicted from the integrated
Gaussian curvature together with the topological constraint
(dashed lines). These results explain the transition in the shape
of c6(z) observed in Fig. 3E: for l = 0.3, strongly negative
Gaussian curvature at the neck tends to induce negative
defects. Hence, additional positive charges must be generated
at the ends to satisfy the topological constraint. Conversely, for
l = 0.6, fewer negative defects are induced and the neck region
has almost zero Gaussian curvature leading to an overall
enhancement of the order. Defects are needed outside the neck
area to satisfy the charge constraint and also to match the
positive curvature.

These results show that the role played by static geometry on
the structures produced by arrested coalescence is generally
consistent with the picture developed in the spherical crystallography
literature.5 Nonetheless, the family of surfaces studied here is
unusual in that it incorporates regions of negative Gaussian
curvature for some parameters but is also subject to the
topological constraint imposed by constant Euler characteristic.

This contrasts to studies on tori,14 where negative Gaussian
curvature is always present, or on capillary bridges15,29,42 where
the Euler characteristic is not constant. The tension between the
Gaussian curvature distribution and the topological constraint
leads to interesting effects: for instance, the extremum in c6(l),
f(l) and nd(l) occurs at l = 0.6, where the neck is slightly
negatively curved and not at l = 0.7 where the Gaussian
curvature at the neck becomes zero. Moreover, the fact that
the neck can both diminish and enhance order depending on
the particular distribution of K is surprising and could be
further exploited as a means of controlling the local order in
future work.

4 Kinetics

Having established the purely static role of the shapes, we are
now equipped to untease the more subtle role of kinetics. To do
so, a set of arrested states is generated using the protocol
described in Methods, with N = 800 particles and suitable
particle radius to promote a point of arrest la for two different
scenarios: an early arrest case with la E 0.3, where the
curvature of the neck is extremely negative and, as per Section
2 a strong compressive region exists close to the neck prior to
arrest. The second case is where arrest occurs later at la E 0.6,
the point at which extrema in the packing fraction, defect
density and bond orientational order were found to occur in
the previous section; for this scenario particles at the neck are
being pushed apart by the constraint forces. In both cases,
compressive regions exist in both scenarios around the caps.

The ratio of diffusion time scale to the total relaxation time
y = td/tr is varied from 2�8 to 24 to control the relaxation speed,

Fig. 3 Influence of static geometry on the microstructure. (A) Representative packing configurations for l = 0.3, 0.6, 0.8, 1.0 and (B) their defect
subgraphs. (C) Average scar length as a function of l computed from defect subgraphs. Inset: Fraction of singletons as a function of l. (D) Packing fraction
f (black) and excess dislocations nd (grey) as a function of l. (E) Bond orientational order parameter c6 distribution along the rotational symmetry axis of
the surface z/a. Inset shows the order parameter of the neck region for different stages of coalescence. (F) Charge distribution along the rotational
symmetry axis of the surface z/a from packing (solid lines) and integrated Gaussian curvature (dashed lines) for l = 0.3 and 0.6 and (inset) l = 0.8, 1.0.
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with 50 samples for each value. The corresponding values of
G = |

:
A|/(ND) at the point of arrest, linearly related to y as

discussed in Section (2), is calculated for each simulation.
Faster relaxation, as expected, generically leads to less ordered
structures for both early and late arrest scenarios as shown in
Fig. 4A where hc6i is displayed as a function of G. Overall the
order is higher for late arrest which is consistent with the static
results of Fig. 3E and is therefore geometric in origin. Faster
relaxation also halts the arrest at a earlier point. For early
arrest, la decreases from 0.34 to 0.32 as y increases from 2�8

to 24, with la from 0.63 to 0.59 for late arrest.
A significant difference in the two scenarios emerges,

however, when the spatially resolved order of the arrested states
is examined. Shown in Fig. 4B and C is c6(z) for la E 0.6 and
la E 0.3 respectively. Different traces correspond to different
values of G and, as before, the left and right portions of the
doublet are combined into one plot. In both cases, the static
order parameter distribution, shown by the red dashed line, is
recovered for sufficiently slow relaxation.

For late arrest, the quasistatic limit includes an enhancement
of c6 in the flatter central area and reduced order closer to the
cap. As G increases, the distributions remain similar in shape but
are reduced in amplitude and as G 4 1, the orientational order
converges on a uniform constant value of E0.83. In contrast, for
late arrest the distribution of c6 remains similar in form as a
function of G: there is a strong reduction in the order parameter
around the neck and a uniform distribution near the cap.
Increasing G reduces the order globally, shifting the curves down
by as much as 0.1 but does not change their overall form.

To characterize this transition more carefully, a new ensemble
of simulations with different arrest points la is run in the
kinetically dominated regime G E 10 and the resulting dis-
tributions of c6 are shown in Fig. 4D. Comparing these with
equivalent plots for static packings in Fig. 3E, we see that for
arrest earlier than l B 0.5, the static and dynamic order
distributions appear similar, although the overall values of c6

are reduced, shown as purple curves. The signature of the
geometry therefore remains imprinted on the microstructure
independently of G. For arrest after lB 0.5, the distributions no
longer resemble the static distributions, having approximately
uniform c6 E 0.83, shown as yellow curves. Rapid relaxation
therefore appears more readily able to wash out variations
caused by the nonuniform curvature for late arrest. The boundary
of the two regimes at la = 0.55 is displayed as the red curve and is
entirely different from the static distribution, incorporating two
minima. The transition coincides with the point at which the
neck ceases to promote compression as shown in the inset of
Fig. 4D where g at the point of arrest is plotted as a function of l.

Time-resolved analysis

Time resolved analysis of the microstructure in the kinetically
dominated regime G c 1 allows us to probe the transition
further. The particle number density is plotted at several time
points t/tf in Fig. 5A for the late arrest scenario la E 0.6,
together with plots of the c6 distribution calculated as described
inMethods in Fig. 5B and snapshots of the configuration in Fig. 5E.
Here tf is defined to be the time at which arrest occurs.
Corresponding plots and visualizations for early arrest la E 0.3
are displayed in Fig. 5C, D and F respectively. Movies corresponding
to Fig. 5E and F are supplied as ESI.†

These plots reveal how the history of expansion and com-
pression predicted in Section (2) causes the evolution in order.
Fig. 1E shows the area change profiles across the surfaces with
different aspect ratios. The cap area is compressed during the
evolution of surfaces while the neck area initially is compressed
and then expanded.

For the late arrest scenario, particles are initially uniformly
ordered, except close to the neck. As relaxation proceeds,
compression at the cap produces a denser region that converges
to c6 B 0.83, reminiscent of the jamming fronts observed in
ref. 22. This value is similar to the order at the cap in static
packings. At the neck, the particles are initially less ordered
because of the strong concentration of negative Gaussian curvature,
and the initial compressive region that increases the local density
begins to widen the disordered region. As l passes 0.4, however, the
widening stops, and as l increases further the ordered region
growing in from the caps completely overcomes the disordered
neck region, yielding the final state uniform in density and c6.

For the early arrest scenario, order at the cap changes very
little through the course of the simulation, remaining similar to
the static value. The initially disordered region at the neck begins
to widen, as it does for the late arrest scenario, and reaches a
maximum width at around l = 0.25. After this, the neck region
begins to uniformize but does not completely do so, freezing in the
disordered region that is also seen in the static case.

Fig. 4 Influence of kinetics on themicrostructure. (A) Mean bond orientational
order parameter c6 of all particles as a function of G. Brown is for system
arrested at laE 0.3 and blue at laE 0.6. (B) Bond orientational order parameter
c6 distribution along the surface for late arrest laE 0.6 at different values of the
kinetic parameter G = (0.0028, 0.012, 0.048, 0.20, 0.39, 1.58 and 6.36). The red
dashed line is the distribution for static packing. (B) Corresponding plot for
la E 0.3 with G = (0.0023, 0.0091, 0.037, 0.15, 0.59, 2.38 and 9.5). (D) c6

distribution as a function of the aspect ratio of the arrest point for fast
relaxation G B 10. Inset: Local rate of area change per particle at the neck
as a function of l for fast relaxation.
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The influence of kinetics on the microstructure therefore
depends critically on the arrest point: the history of com-
pression and expansion of the surface, quantified by g, can
freeze in disordered regions caused by the underlying curvature
even where kinetics might be expected to wash out the effect of
geometry. For early arrest, the strong initial compression leads
to a disordered region that is frozen in at all relaxation speeds
tested, while for late arrest fast relaxation fully blurs out
the nonuniform distribution of order promoted by geometry. The
evidence of this section suggests that, at least crudely, it is the
form of g immediately prior to arrest that is most important for
determining the microstructure: for example, the late arrest
scenario la B 0.6, the compressive regions that exist early in the
relaxation appear to have little influence on the final state.

Non-affine response

The picture developed thus far is of the response of the particles
to local expansion or compression induced by the evolving sur-
face, but this neglects other kinds of deformation that may be
present. Consider a group of particles with initial coordinates
xi(l) that all lie in some probe ball |xi � x0| o r and are
transported from xi(l) - xi0(l + dl) consistent with eqn (1). Their
final location is determined both by the moving surface con-
straints, which locally induce scale and shear deformations as
illustrated in Fig. 2, as well as interaction with other particles.
This very complex environment can potentially induce non-affine
deformations of the local particle configuration. To resolve these,
we use the quantity Dmin

2 as constructed by Falk and Langer,19

Dmin
2 ¼ min

X
j

DxjðlÞ � E � Dxj lþ dlð Þ
� 	2

; (9)

where Dxj (l) = xj (l) � x0(l) is the displacement of the jth particle
from a reference particle on the surface l, E is a strain tensor, and
Dmin

2 is to be minimized with respect to the components of E.
Hence, Dmin

2 is a measure of the residual motion of the particles
that cannot be explained by the affine deformation E closest in a
least-squares sense.

In Fig. 6B, we show the mean Dmin
2 per particle as a function

of simulation time for a late arrest la E 0.6 simulation;
spatially resolved plots at different time points are shown in
Fig. 6A. Non-affine deformation is significant both early in the
evolution and as the arrest point is approached; it is always
localized to varying degrees in the neck. For early times, large
Dmin

2 is due to the strong curvature of the neck where transport
of the particles along the normal by the surface constraint
induces non-affine motion. Conversely, approaching the arrest
point the solidification fronts growing from either end as
identified above (Fig. 5) must meet in the middle. Here, inter-
particle interactions are primarily responsible for the non-affine
motion as the curvature at the neck is rather weak.

Spatially resolved analysis of Dmin
2 reveals a complex picture

and considerable caution must be used in interpreting these
events. Tantalizingly, however, we do see spatially localized
plastic deformations reminiscent of the shear transition zones
that govern the plastic response of amorphous metallic glasses
and were the original reason Dmin

2 was introduced.19–21 In
Fig. 6C–F we show two events, each with a sequence of snap-
shots of particle configurations close to the arrest point dis-
playing particle configurations colored by Dmin

2 and c6. The
first event, depicted in Fig. 6C and D, more closely resembles an
STZ in that it is a spatially localized and evanescent region with
large Dmin

2 and little visible nearby rearrangement. The second,

Fig. 5 Time resolved evolution of the microstructure for the kinetically dominated regime. Distributions of (A) particle number density and (B) bond
orientational order parameter c6 as a function of time for late arrest la E 0.6 and fast relaxation G = 9.5. (C and D) Corresponding plots for early arrest
la E 0.3. (E and F) Representative visualizations for la E 0.6 and la E 0.3 respectively; particles are colored by c6.
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shown in Fig. 6E and F, is a plastic rearrangement that leads to
the formation of a dislocation. It is accompanied by spatially
extended lineslips revealed in c6 and hence is not an STZ.
We see many similar events of both types, and events with
large Dmin

2 occur for all local values of c6 defying a simple
categorization. A systematic analysis of the non-affine response
and its interaction with the spatially evolving manifold there-
fore remains for future work.

5 Conclusion

This work has demonstrated a rich interplay between geometry
and kinetics in determining the structure of arrested coalescence
droplets. In contrast to other kinds of colloidosomes, such as
spheres, the dramatic shape changes and strong curvatures that
occur here lead to interesting effects. While the static influence
on the structure was found to be well predicted by the integrated
Gaussian curvature together with the topological requirement on
the defect charge, the shapes produced by arrested coalescence
form an unusual example of a system both with variable amounts
of negative Gaussian curvature and a topological constraint. The
role of kinetics is quantified by the parameter G =

:
A/(ND) the ratio

of the rate of change of area per particle to its diffusion constant.
As G- 0, the microstructure closely resembles the static packing
scenario where the system distributes defects to match the
Gaussian curvature.

At finite G, kinetics tends to blur out variation in the order as
the structure can no longer be fully relaxed. Disordered regions
can nonetheless remain because, as the surface relaxes, local
regions of compression induce solidification that can trap
them, hence retaining a memory of the evolution. The growing
solid regions resemble dynamic jamming fronts observed
under impact and shear of dense suspensions of colloidal
particles, but here are induced by the locally changing metric
of the surface rather than by an external influence. Prediction
of the local compression rate from differential geometry of the
surface, eqn (6), shows that kinetic influences depend on
geometric quantities such as the mean curvature that are
extrinsic in origin, i.e. depending on the embedding. Moreover,
significant non-affine deformations occur both due to the
complex geometry of these systems and the solidification fronts
growing from the caps. Some of these resemble shear transition
zones observed in amorphous materials,19–21 but many others do
not and a complete understanding of the non-affine response
remains to be developed.

Arrested colloidosomes, which possess a natural parameter
G that quantifies the degree of nonequilibrium behavior and
‘‘remember’’ the evolution of the shapes that produced them,
may serve as a model system for exploring memory formation
in matter.26 The remarkably rich influence of kinetics also
suggests the possibility of exploiting it as a means to control
the microstructure of colloidosomes. One can imagine designing
a shape using eqn (6) that incorporates compressive regions prior
to arrest and selectively locks in disordered regions that become
targets for further coalescence events inmultistage assembly. The
extent of the design space for this remains unknown, however:
the Young–Laplace equation eqn (7) implies that the mean
curvature and the local normal velocity are not independent,
but that they differ here is because of the overall volume
constraint.

A final direction to be pursued is the connection of these
arrested shapes to jamming, a transition to rigidity as a function
of density that occurs in particulate media.43,44 While the
kinetically arrested structures observed here are not jammed, in
that they may possess unconstrained collective motions of particles,

Fig. 6 Non-affine motion of the particles. Dmin
2, the deviation from affine

deformation, of late arrest la E 0.6 for kinetically dominated regime.
(A) Dmin

2 distribution along the rotational symmetry axis of the surface z/a
at different time t/tf. (B) Average Dmin

2 as a function of time t/tf. (C and D)
and (E and F) Two events with large spatially localized Dmin

2. For each
event, a time resolved sequence of configurations is shown with particles
colored by Dmin

2, scaled to the maximum value occurring in the sequence
(C&E) and, separately the bond orientational order parameter c6 (D&F).
Red boxes indicate the region of interest discussed in the main text.
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the static packings we use as a comparison are because this is
explicitly enforced. Two of the present authors recently proposed
that rigid structures formed as a result of shape evolution form a
new class called ‘‘metric jamming’’18 where the final state is rigid
both with respect to perturbations of the particles and the manifold
on which they are embedded. Analysis of the arrested coalescence
problem along these lines may help determine the longevity of the
undoubtedly metastable arrested structures, as well as provide tools
to determine their mechanical properties.

6 Methods
Static packings

Particles are initially dispersed with their center of mass on the
surface at zero radius, diffused by Brownian motion according
to the Langevin equation,

xi
0
tþ Dtp
� �

¼ xiðtÞ þ Zi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DDtp

p
; (10)

where Zi is a random step drawn from Gaussian distribution
along the tangent plane, and D is the diffusion constant such
that the variance of stepsize for Brownian motion in time t is
2Dt. We may therefore define a characteristic diffusion time
scale td that gives a standard deviation of stepsize equal to the
particle diameter,

2r ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Dtd

p
: (11)

As the particles diffuse, their radii r are increased (inflation

moves) very slowly, with
drffiffiffiffiffiffiffiffi
2Dt

p � 10�4 in unit time. Collective

motions that undo overlap are found at each stage by gradient
descent on an artificial potential,

Voverlap ¼
r2 � rx xo r

0 x � r
;

(
(12)

that penalizes overlap. The simulation is halted when no
further move is possible without inducing overlaps.

Generically, packings produced by this algorithm need not
be rigid, i.e. there may exist collective motions of particles that
can unjam the system and allow further relaxation of the surface.
We therefore adapt18 a linear programming approach45 to identify
these collective motions, execute them, and restart the packing
simulation. Before applying the linear program, the configuration
is conditioned by minimizing an artificial soft repulsive potential
imposed between all pairs of particles; this tends to push the
particles away from one another. This process is repeated until a
rigid final state is achieved.

Dynamic simulations

A second algorithm was used to understand how the relaxation
process affects the final structure. For these simulations, particles
are initially dispersed by random sequential deposition with a
fixed particle radius r on the surface of l = 0. During the simulation,
diffusion moves are made as before in eqn (10). During relaxation
moves, the particles are constrained to the surface with overlaps
prevented to first order using Lagrange multipliers.46 After each

relaxation step, eqn (12) is minimized to remove overlaps. If not all
overlaps could be undone, the timestep is reduced. The algorithm
halts when the timestep of relaxation is smaller than a threshold dt.

Order parameter calculation

Spatially resolved plots of the bond orientational order para-
meter c6 = hexp(i6y)i41 (the average is taken from neighbor
particles) are calculated by first, projecting each particle and its
neighbors to the tangent plane of the center particle to calculate
the order ci

6 for that particle. The surface is then divided into
24 equal-area axially symmetric regions and the symmetry of the
shape is exploited by collapsing corresponding regions for
positive and negative z; the mean c6 is computed for all
particles in each region.

For kinetic simulations, neighbors of particles are not deter-
mined from Delaunay triangulation since the particles are
generally not densely packed during the coalescence. Instead,
we define neighbors as particles within the center-to-center
distance of 1.5 times diameter. In practice, this definition
changes the numerical values of c6 very little and doesn’t
change the trend of evolution.
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