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Abstract This work studies an elliptic boundary value problem with diffu-
sive, advective and reactive terms, in a three-dimensional domain composed of
two media separated by a selective interface. For the numerical approximation
of the problem we propose a novel approach that combines, for the first time:
(1) a dual mixed hybrid (DMH) finite element method (FEM) based on the
lowest order Raviart-Thomas space (RT0); (2) a Three-Field (3F) formulation;
and (3) a Streamline Upwind/Petrov-Galerkin (SUPG) stabilization method.
After proving that the weak formulation of the proposed method and its nu-
merical counterpart are both uniquely solvable and that the finite element
scheme enjoys optimal convergence properties with respect to the discretiza-
tion parameter, we present an efficient implementation based on static conden-
sation, which reduces the method to a nonconforming finite element approach
on a grid made by three-dimensional simplices. Extensive computational tests
indicate that: (1) the theoretical convergence properties are verified; (2) the
DMH-RT0 FEM is accurate and stable even in the presence of marked inter-
face jump discontinuities in the solution and its associated normal flux; and
(3) in the case of strongly dominating advective terms, the SUPG stabilization
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resolves accurately steep boundary and/or interior layers without introducing
spurious unphysical oscillations or excessive smearing of the solution front.

Keywords Finite element method · mixed hybrid methods · interfaces ·
transmission problems · stabilization

1 Introduction and motivation

The study of heterogeneous physical systems composed of two or more me-
dia separated by selective interfaces is a topic of utmost relevance in applied
sciences. Indeed, many applications in biology [32,52,48,13], materials sci-
ence [42,43,33], nanoelectronics [4] and geophysics [35,2], to name a few, are
characterized by interface phenomena that play a crucial role in determining
the transmission of physical quantities between different media and/or between
different regions within the same medium.

The present work focuses on a class of mathematical problems directly
motivated by the aforementioned applications. Specifically, we consider a sta-
tionary advection-diffusion-reaction problem in a three-dimensional volume,
denoted by Ω ⊂ R

3, whose physical properties may vary in space, thereby
leading to an elliptic second-order partial differential equation with variable
coefficients. In addition, we account for the presence of a selective internal in-
terface, denote by Γ , which is geometrically represented by a two-dimensional
manifold in Ω and on which we impose suitable transmission conditions to
ensure the balance of flux density across the interface and to model segrega-
tion phenomena that may occur within the interface itself. For example, the
mathematical setting considered in this article may be used to describe super-
ficial chemical processes involved in semiconductor crystal growth [14] or mass
transport and reaction mechanisms occurring at the cellular scale across the
membrane lipid bilayer [53].

The fact that many driving processes actually occur at internal interfaces
poses serious challenges for the numerical solution of the class of problems
described above. In particular, in order to obtain physically-relevant solutions
it is crucial to maintain the main physical features associated with interfacial
phenomena from the continuous to the discrete level, including the continuity
of flux density at the interface. Many numerical approaches have been pro-
posed for the solution of elliptic problems in spatially heterogeneous domains.
In particular, domain decomposition methods have been proven to be very
effective in dealing with partitions in the volume, which may result from phys-
ical heterogeneities in the medium and/or from artificial partitioning aimed
at reducing the computational costs of large-scale problems. Many different
discretization techniques have been utilized within the context of domain de-
composition methods, including finite elements, spectral elements and finite
volumes. We refer to [41] for a complete overview of theoretical and computa-
tional properties of the domain decomposition approach.

Motivated by the need of accurately capturing interface phenomena, in this
work we propose a novel numerical approach that combines, for the first time:
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1. a Dual Mixed Hybrid (DMH) finite element method (FEM) in order to en-
sure that: (i) the solution and its associated flux satisfy the given partial
differential equation within each element (see [45]); (ii) the flux is contin-
uous across elements (see [20,44]); and (iii) both solution variables satisfy
optimal error estimates (see [8,46]);

2. a Three-Field formulation (3F), typical of domain decomposition approaches,
in order to account for interfacial discontinuities within the weak formula-
tion of the problem (see [9,41,10]);

3. a Streamline Upwind/Petrov-Galerkin (SUPG) stabilization method in or-
der to gain the required amount of numerical stability without significantly
spoiling the accuracy of the computed solution due to excessive crosswind
smearing (see [11,30]).

The use of hybrid and/or hybridized finite element methods to numerically
treat advection-diffusion-reaction problems is not a novel idea of this article.
A first example is the high-order hybridizable discontinuous Galerkin (HDG)
finite element method proposed in [31] to solve elliptic interface problems in
which the solution and gradient are nonsmooth because of jump conditions
across the interface. A second example is the robust a posteriori error esti-
mator for the HDG method for convection-diffusion equations with dominant
convection proposed in [16]. A third, very recent, example is the a priori er-
ror analysis of a HDG method on a family of anisotropic triangulations for a
convection-dominated diffusion 2D problem proposed in [12].

While the DMH finite element formulation proposed in this article is cer-
tainly connected with the references mentioned above, we remark that it repre-
sents an original contribution with respect to other methods as it incorporates
in a unified setting the advantages of the mixed-hybrid method, of the 3F
method and of the SUPG stabilization. In particular, the pair of Lagrange
multipliers introduced within the 3F formulation is a natural fit for the DMH
FEM functional framework (see [9,41]), whereas the use of static condensa-
tion allows us to eliminate variables defined in the interior of each element in
favor of the sole hybrid variable, thereby obtaining a final algebraic system
structurally analogous to that of a standard finite element approach (see [6]
and [8, Chapter 5]).

The proposed stabilized DMH-RT0 FEM is analyzed at both the infinite
and finite dimensional levels, and its well-posedness and optimal error esti-
mates are proved under suitable assumptions on the data. A series of sim-
ulations is performed to validate the accuracy and robustness of the novel
method via comparison between numerical and analytical solutions in three-
dimensional test cases. Results show that the proposed stabilized DMH-RT0
FEM scheme (i) satisfies the theoretical findings even in the presence of marked
interface jump discontinuities in the solution and its associated flux; and (ii)
is capable of accurately resolving steep boundary and/or interior layers with-
out introducing spurious unphysical oscillations or excessive smearing of the
solution front.
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An overview of the article is as follows. Section 2 introduces the mathe-
matical model and the physical meaning of interface and boundary conditions,
whereas Section 1 addresses the issue of the well-posedness of the transmission
boundary-value problem. Section 4 presents the weak formulation of the prob-
lem through the novel DMH method proposed in the article and the analysis
of its well-posedness. Section 5 presents the Galerkin approximation of the
DMH weak problem studied in Section 4, the analysis of its well-posedness
and optimal error estimates for its convergence. Section 6 describes how to in-
troduce a mechanism of stabilization into the DMH-RT0 FEM to prevent the
onset of spurious unphysical oscillations when the problem becomes advection-
dominated. Section 7 is devoted to the spectral analysis of the stabilized diffu-
sion tensor. Section 8 provides a thorough discussion of the numerical simula-
tions conducted to validate the accuracy and stability of the novel DMH-RT0
FEM. Section 9 gives a summary of the content of the work and an overview
of future investigations. Appendix A addresses the issue of how to efficiently
implement the proposed DMH-RT0 FEM via static condensation.

2 Mathematical model

Let Ω be an open polyhedral subset of R3 and let ∂Ω ≡ Σ denote the boundary
of Ω on which an outward unit normal vector n is defined (see Figure 1).

Ω

Ω

Γ

1

2

n
1

n
2

n
n

Figure 1 – The domain Ω, its partition into subregions Ω1, Ω2, the internal interface Γ and
the geometrical notation.

The domain Ω is the union of two subregions Ω1 and Ω2, whose boundaries
are denoted by ∂Ω1 and ∂Ω2, respectively. The two subregions are separated
by the interface Γ = ∂Ω1 ∩ ∂Ω2. For any function w : Ω → R, we denote by
w1 and w2 the restrictions of w to Ω1 and Ω2, respectively. We also denote
by w1|Γ and w2|Γ the traces on Γ of w1 and w2, respectively. For each point
y ∈ Γ , we define two unit normal vectors n1(y) and n2(y) outwardly directed
with respect to Ω1 and Ω2, respectively, for which it holds n1(y)+n2(y) = 0.
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Thus, the three-dimensional problem considered in this article reads:

divJ+ ru = g in (Ω \ Γ ) (1a)

J = vu− µ∇u in (Ω \ Γ ) (1b)

J1|Γ · n1 + J2|Γ · n2 = −σ on Γ (1c)

u2|Γ = κu1|Γ on Γ (1d)

γJ · n = αu− β on Σ. (1e)

The dependent variables of the problem are u and the flux density J. Equa-
tion (1a) is a stationary conservation law in which the quantity g−ru represents
a net production rate of the physical quantity modeled by the function u, with
r = r(x) and g = g(x) denoting positive bounded given functions of space.
The given advection field v = v(x) is assumed to be piecewise smooth over Ω,
whereas the diffusivity tensor µ is assumed to be a multiple of the identity,
namely µ(x) = µ(x)I, where I is the identity tensor in R

3 and the function µ
satisfies the following bound

0 < µmin ≤ µ(x) ≤ µmax < +∞ for a.e.x ∈ Ω. (1f)

Equations (1c) and (1d) are the transmission conditions enforced on the
interface Γ . Equation (1c) expresses the balance of flux density across the
interface separating the two subdomains, where the given function σ = σ(x)
represents a superficial source (σ > 0) or sink (σ < 0) over the interface.
Equation (1d) expresses the mechanism of segregation occurring within the
interface, where the positive quantity κ represents a local equilibrium constant
(see [53] for an application of model (1) (without the advective term) to cellular
biology and [15] for an application of model (1) (without the advective term)
to semiconductor device technology). Equation (1e) expresses the boundary
condition on the external surface of Ω, where α, β and γ are given functions
of space such that (1e) corresponds to a Robin boundary condition if γ 6= 0
and α 6= 0, to a Neumann boundary condition if γ 6= 0 and α = 0 and to
a Dirichlet boundary condition if γ = 0 and α 6= 0. In the remainder of the
article, we assume that γ = 1 and α > 0 on Σ, except in the numerical tests
illustrated in Section 8 where γ = 0 on a subset of Σ.

3 Well-posedness of the transmission problem

The well-posedness of the transmission boundary-value problem (1) depends
strongly on the values of κ and σ. In the case where κ = 1 and σ = 0, the
well-posedness analysis can be conducted using standard techniques based on
the weak formulation of (1), and the subsequent adoption of the Lax-Milgram
Lemma, to determine the conditions on model coefficients under which the
transmission problem admits a unique solution u depending continously on the
data (see [34], [27] and [40, Chapter 5]). In the case where κ 6= 1 and σ 6= 0,
the well-posedness analysis becomes a nontrivial issue because the transmission
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conditions (1c) and (1d) do not allow to deal only with the dependent variable
u but necessarily require the introduction of other dependent variables defined
on the interface Γ . An example of weak formulation of problem (1) that ideally
fits the case κ 6= 1 and σ 6= 0 is represented by the Three-Field approach (3F),
which was originally proposed and studied in [9] in the context of domain-
decomposition methods and subsequently analyzed in [41] and [10].

Since a theoretical analysis of well-posedness of the weak formulation of a
boundary-value problem in the form of (1) is, to the best of our knowledge, still
lacking, and the focus of this work is to introduce, analyze and validate a novel
numerical scheme, we leave to a future research the proof of well-posedness of
(1) and make the following assumption.

Assumption 1 (Well-posedness of the transmission problem (1)) We
assume that there exists a unique function u satisfying the equations, transmis-
sion and boundary conditions in (1) and depending continously on the data.

4 Dual mixed hybrid weak formulation

The weak formulation of problem (1) is obtained by extending the DMH
method (see [50,44,22,23,25]) to include Lagrange multipliers for the inter-
face conditions (1c) and (1d), in the spirit of the 3F formulation (see [9,41,
10]). For the sake of clarity, we begin by describing the functional setting in
Section 4.1, followed by the geometrical discretization of the domain in Sec-
tion 4.2, the derivation of the weak formulation in Section 4.3 and the study
of its well-posedeness in Section 4.4.

4.1 Functional setting

Let us denote by S an open bounded subset of R3 having a boundary ∂S.
Throughout the article, we will utilize the functional spaces L2(S), H1(S) and
H(div;S), endowed with the usual L2−, H1− and H(div)− norms denoted by
‖ · ‖0,S , ‖ · ‖1,S and ‖ · ‖H(div;S), respectively, with div denoting the divergence
operator. We refer to [50,46,8] and references cited therein for definitions and
mathematical properties of the above mentioned functional spaces. In addition,
we will denote by (·, ·)S the scalar product in L2 over S and, for simplicity, we
will use the shortened notation (·, ·)i for the scalar product in L2 over Ωi.

4.2 Geometrical discretization

Let {Th}h>0 denote a family of regular triangulations of the computational
domain Ω made of closed tetrahedral elements K (cf. Definition 3.4.1 of [40]),
where the positive quantity h represents the discretization parameter. We as-
sume that each partition of the family satisfies the admissibility criteria of [40],
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Section 3.1. We also assume that each subdomain Ωi, i = 1, 2, is exactly cov-
ered by the elements of Th and we denote by Th,1 and Th,2 the restrictions of
Th to Ω1 and Ω2, in such a way that Ω = Th,1 ∪Th,2 and Γ = Th,1 ∩Th,2. This
latter property amounts to assuming that the two partitions connect in a con-
forming manner at the interface. For more general geometrical approaches and
related numerical schemes, we refer to [41] in the context of domain decompo-
sition methods, to [18] in the context of Hybridizable Discontinuous Galerkin
finite elements and to [26] in the context of Extended finite element methods.

For every K ∈ Th, we denote by hK the diameter of K and we let h :=
max
K∈Th

hK . We denote by ∂K the boundary of K and by n∂K the outward unit

normal vector on ∂K. An interior face of Th is a planar set F of 2-dimensional
positive measure defined as F := ∂K1 ∩ ∂K2 for some two elements K1 and
K2 belonging to Th. We say that F is a boundary face of Th if there exists an
element K ∈ Th such that F = ∂K ∩ Σ and the 2-dimensional measure of F
is positive. We introduce the following sets of faces:

– Fh,int: the set of faces belonging to the interior of Ω but not to Γ ;
– Fh,Γ : the set of faces belonging to Γ ;
– Fh,Σ : the set of faces belonging to the domain boundary Σ;
– Fh: the union of all the faces in Fh,int, Fh,Γ and Fh,Σ .

The set Fh,int can be divided into the sum of the two disjoint sets Fh,int,1 (faces
in the interior of Ω1) and Fh,int,2 (faces in the interior of Ω2). Analogously,
Fh,Σ can be divided into the sum of the two disjoint sets Fh,Σ1

(faces on Σ1)
and Fh,Σ2

(faces on Σ2). According to these definitions we have:

Fh,int = Fh,int,1 ∪ Fh,int,2, (2a)

Fh,Σ = Fh,Σ1
∪ Fh,Σ2

, (2b)

Fh = Fh,int ∪ Fh,Γ ∪ Fh,Σ . (2c)

We also define the sets:

Fh,1 = Fh,int,1 ∪ Fh,Σ1
∪ Fh,Γ , (3a)

Fh,2 = Fh,int,2 ∪ Fh,Σ2
∪ Fh,Γ . (3b)

4.3 The DMH weak formulation

For every set S ∈ R
3, let us introduce the following subspace of H(div;S)

H(div;S) :=
{
q ∈ H(div;S) |q · n∂S ∈ L2(∂S)

}
⊂ H(div;S). (4)

Then, for i = 1, 2, we introduce the following spaces:

Vi =
{
v ∈ (L2(Ωi))

3, vK ∈ H(div;K) ∀K ∈ Th,i
}
, (5a)

Vi = L2(Ωi), (5b)

Mi = L2(Fh,i), (5c)

MJ,i = L2(Fh,Γ ), (5d)

Mλ = L2(Fh,Γ ). (5e)
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Remark 1 Functions in M1 and M2 are single-valued on each face belonging to
the interior of Th,1 and Th,2 and on each face belonging to Σ1 and Σ2. On the
contrary, on each face F belonging to Fh,Γ we have, in general, µ1|F 6= µ2|F ,
µ1 ∈ M1, µ2 ∈ M2. This property allows us to represent a jump discontinuity
of the trace of a function across the interface Γ and is the reason why the faces
on Γ are attributed to both sets Fh,1 and Fh,2 in the definitions (3a)- (3b).
The same argument holds for functions belonging to the spaces MJ,1 and MJ,2.

We set V := V1 × V1 × V2 × V2, Q := M1 × M2 × MJ,1 × MJ,2 × Mλ,
and we define u := (J1, u1,J2, u2) ∈ V , p := (û1, û2,J1,J2, λ) ∈ Q, v :=
(τ 1, φ1, τ 2, φ2) ∈ V and q := (µ1, µ2, ρ1, ρ2, ϕ) ∈ Q. We endow V and Q with
the following norms:

‖u‖V =
( ∑

K∈Th,1

‖J1‖
2
H(div;K) +

∑

K∈Th,2

‖J2‖
2
H(div;K) + ‖u1‖

2
0,Ω1

+ ‖u2‖
2
0,Ω2

)1/2

,

(6a)

‖p‖Q =
( ∑

F∈Fh,1

‖û1‖
2
0,F +

∑

F∈Fh,2

‖û2‖
2
0,F +

∑

F∈Fh,Γ

‖J1‖
2
0,F

+
∑

F∈Fh,Γ

‖J2‖
2
0,F +

∑

F∈Fh,Γ

‖λ‖20,F

)1/2

. (6b)
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For all u ∈ V , v ∈ V , and for all p ∈ Q, q ∈ Q, we introduce the following
bilinear forms and linear functionals:

a(u, v) :=(µ−1J1, τ 1)1 − (µ−1vu1, τ 1)1 + (ru1, φ1)1

−
∑

K∈Th,1

(u1, divτ 1)K +
∑

K∈Th,1

(φ1, divJ1)K

+ (µ−1J2, τ 2)2 − (µ−1vu2, τ 2)2 + (ru2, φ2)2

−
∑

K∈Th,2

(u2, divτ 2)K +
∑

K∈Th,2

(φ2, divJ2)2, (7a)

b(u, q) :=
∑

K∈Th,1

(J1 · n∂K , µ1)∂K +
∑

K∈Th,2

(J2 · n∂K , µ2)∂K , (7b)

c(p, q) :=
∑

F∈Fh,Σ1

(αû1, µ1)F +
∑

F∈Fh,Σ2

(αû2, µ2)F

−
∑

F∈Fh,Γ

(ρ1, û1)F −
∑

F∈Fh,Γ

(ρ2, û2)F

+
∑

F∈Fh,Γ

(ρ1, λ)F +
∑

F∈Fh,Γ

(ρ2, κλ)F

+
∑

F∈Fh,Γ

(J1, µ1)F +
∑

F∈Fh,Γ

(J2, µ2)F

−
∑

F∈Fh,Γ

(J1, ϕ)F −
∑

F∈Fh,Γ

(J2, ϕ)F , (7c)

L(v) :=(g, φ1)1 + (g, φ2)2, (7d)

G(q) :=−
∑

F∈Fh,Σ1

(β, µ1)F −
∑

F∈Fh,Σ2

(β, µ2)F −
∑

F∈Fh,Γ

(σ, ϕ)F . (7e)

The DMH weak formulation of problem (1) then reads:

Given the linear functionals L : V → R and G : Q → R, find u =
(J1, u1,J2, u2) ∈ V and p = (û1, û2,J1,J2, λ) ∈ Q such that:

a(u, v) + b(v, p) = L(v) ∀v = (τ 1, φ1, τ 2, φ2) ∈ V, (8a)

b(u, q)− c(p, q) = G(q) ∀q = (µ1, µ2, ρ1, ρ2, ϕ) ∈ Q, (8b)

where V := V1 × V1 ×V2 × V2, Q := M1 ×M2 ×MJ,1 ×MJ,1 ×Mλ and the
bilinear forms a, b and c are defined in (7).

Remark 2 System (8) is in the form of a generalized saddle-point problem as
considered in [8, Sect. II.1.2] and [46, Remark 10.8]. We notice that a(·, ·) and
b(·, ·) are the standard bilinear forms in a dual mixed hybrid formulation of a
second-order boundary value problem with an advection-diffusion-reaction op-
erator (see [21,5]). On the contrary, the bilinear form c(·, ·) and the right-hand
side G(·) contain the contributions of the Lagrange multipliers, borrowed from
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the 3F formulation, which allow us to enforce the transmission conditions (1c)
and (1d). These contributions represent a novel aspect of the DMH method
proposed in this article.

4.4 Unique solvability of the DMH weak formulation

The following theorem is the main result of this section.

Theorem 1 (Uniqueness of the solution of (8)) Let v ∈ (L∞(Ω))3, r ∈
L∞(Ω), g ∈ L2(Ω), and α ∈ L∞(Σ). Assume that:

0 < rmin ≤ r(x) ≤ rmax < +∞ for a.e.x ∈ Ω, (9a)

0 < αmin ≤ α(x) ≤ αmax < +∞ for a.e.x ∈ Σ. (9b)

‖v‖∞,Ω

2µmin
< min

{
µ−1
max, rmin

}
. (9c)

Then, the DMH weak formulation (8) of problem (1) is uniquely solvable.

Proof The proof proceeds as in the proof of Proposition 1.7.1 of [41]. It is
straightforward to see that if the pair ui, i = 1, 2, is the solution of (1)
(which exists and is unique in virtue of Assumption 1, then the pair (u, p) =
((J1, u1,J2, u2) , (û1, û2,J1,J2, λ)) is a solution of (8). Uniqueness follows by
inspecting the homogeneous problem, i.e., we set g = σ = β = 0 in (8). Let us

consider Equation (8b) and take q = [µ1|Γ , 0, 0, 0, 0]
T
. This yields J1 = J1 ·n1

on Γ . Similarly, taking q = [0, µ2|Γ , 0, 0, 0]
T
we get J2 = J2 ·n2 on Γ . Finally,

taking q = [0, 0, 0, 0, ϕ]
T
yields J1 + J2 = 0 on Γ which in turn gives

J1 · n1 + J2 · n2 = 0 on Γ. (10a)

Taking q = [0, 0, ρ1, 0, 0]
T
yields λ = û1 on Γ whereas taking q = [0, 0, 0, ρ2, 0, ]

T

yields û2 = κλ from which we conclude that

û2 = κû1 on Γ. (10b)

Taking q =
[
µ1|Fh,int,1∪Fh,Σ1

, 0, 0, 0, 0
]T

yields:

J1 ∈ H(div;Ω1), (10c)

J1 · n = αû1 on Σ1. (10d)

whereas taking q =
[
0, µ2|Fh,int,2∪Fh,Σ2

, 0, 0, 0
]T

yields:

J2 ∈ H(div;Ω2), (10e)

J2 · n = αû2 on Σ2. (10f)

Let us now consider Equation (8a) and take v = [J1, u1, 0, 0]
T
. This yields

(µ−1J1,J1)
2
1 − (µ−1vu1,J1)1 + (ru1, u1)

2
1 +

∑

K∈Th,1

(û1,J1 · n∂K)∂K = 0.
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Using (10c) and (10d) in the last term of the previous relation yields

(µ−1J1,J1)
2
1 − (µ−1vu1,J1)1 + (ru1, u1)

2
1 + (û1,J1 · n1)Γ + (αû1, û1)Σ1

= 0.
(10g)

Taking v = [0, 0,J2, u2]
T
and proceeding similarly as above, we get

(µ−1J2,J2)
2
2 − (µ−1vu2,J2)2 + (ru2, u2)

2
2 +

∑

K∈Th,2

(û2,J2 · n∂K)∂K = 0.

Using (10e), (10f) and (10b) in the last term of the previous relation yields

(µ−1J2,J2)
2
2 − (µ−1vu2,J2)2 + (ru2, u2)

2
1 − κ(û1,J1 · n1)Γ + (αû2, û2)Σ2

= 0.
(10h)

Let us elaborate Equation (10g). Using (1f), (9a), (9b) and Cauchy-Schwarz
inequality we obtain

(µ−1J1,J1)
2
1 − (µ−1vu1,J1)1 + (ru1, u1)

2
1 + (αû1, û1)Σ1

≥ µ−1
max‖J1‖

2
L2(Ω1)

− µ−1
min‖v‖L∞(Ω)‖u1‖L2(Ω1)‖J1‖L2(Ω1)

+ rmin‖u1‖
2
L2(Ω1)

+ αmin‖û1‖
2
L2(Σ1)

.

Using Young’s inequality in the second term of the previous relation and as-
sumption (9c), we finally get

H1 := (µ−1J1,J1)
2
1 − (µ−1vu1,J1)1 + (ru1, u1)

2
1 + (αû1, û1)Σ1

≥ C
(
‖J1‖

2
L2(Ω1)

+ ‖u1‖
2
L2(Ω1)

+ ‖û1‖
2
L2(Σ1)

)
≥ 0, (10i)

where

C = min

{
µ−1
max −

‖v‖L∞(Ω)

2µmin
, rmin −

‖v‖L∞(Ω)

2µmin
, αmin

}
.

Proceeding similarly with Equation (10h), we get

H2 := (µ−1J2,J2)
2
2 − (µ−1vu2,J2)2 + (ru2, u2)

2
2 + (αû2, û2)Σ2

≥ C
(
‖J2‖

2
L2(Ω2)

+ ‖u2‖
2
L2(Ω2)

+ ‖û2‖
2
L2(Σ2)

)
≥ 0. (10j)

Using inequality (10i) into (10g) yields

(û1,J1 · n1)Γ = −H1 ≤ 0,

whereas using inequality (10j) into (10h) yields

(û1,J1 · n1)Γ =
1

κ
H2 ≥ 0,

which obviously yields H1 = H2 = 0, implying

J1 = J2 = 0, u1 = u2 = 0, û|Σ = 0.
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Taking now v =
[
τ ∗
1,K , 0, 0, 0

]T
in Equation (8a), with τ ∗

1,K ·n∂K = û1|∂K for
all K ∈ Th,1, yields

(û1, û1)∂K = 0 ∀K ∈ Th,1

which implies û1 = 0 on Fh,int,1∪Γ . Proceeding similarly with Equation (8b),
we obtain û2 = 0 on Fh,int,2 ∪ Γ . This concludes the proof. ut.

Let ξ = ξ(q) be a given linear functional defined on Q and define the affine
manifold

Vξ := {v ∈ V, b(v, q) = ξ(q) ∀q ∈ Q} . (11a)

Setting ξ = 0 we obtain the characterization the kernel of the abstract operator
associated with the form b

V0 := {v ∈ V, b(v, q) = 0 ∀q ∈ Q} . (11b)

Remark 3 Having proved that (8) is uniquely solvable, given p ∈ Q, we set

H(q) := G(q) + c(p, q) ∀q ∈ Q, (12)

and we see that (8) can be written in the equivalent form:
Given L ∈ V ′, find u ∈ VH such that

a(u, v) = L(v) ∀v ∈ V0. (13)

This formula is the counterpart of Eq. (7.4.8) of [40].

5 The DMH Galerkin finite element approximation

In this section we illustrate the Galerkin finite element approximation of the
weak DMH formulation of problem (1). To this end, in Section 5.1 we intro-
duce the local and global finite element spaces. Then, in Section 5.2 we prove
that the DMH formulation admits a unique solution and exhibits optimal con-
vergence with respect to the discretization parameter h.

5.1 Finite element spaces

For any set S (in one, two or three spatial dimensions), we indicate by Pr(S),
r ≥ 0, the space of polynomials of degree ≤ r defined on S. Moreover, we define
RT0(K) := (P0(K))3 ⊕ P0(K)x and we define the following local polynomial
spaces associated with the triangulation Th:

V(K) := {v ∈ RT0(K) ∀K ∈ Th} , (14a)

V (K) := {v ∈ P0(K) ∀K ∈ Th} , (14b)

M(F ) := {µ ∈ P0(F ) ∀F ∈ Fh} . (14c)
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In order to construct the finite dimensional spaces associated with (14) to be
used for the internal approximation of the functional spaces (5), we distinguish
between the spaces of functions defined inside each element of Th and the
spaces of functions defined on each face of Fh. For i = 1, 2, we have:

Vi,h = {τ ∈ Vi, τ |K ∈ V(K) ∀K ∈ Th,i} , i = 1, 2, (15a)

Vi,h = {φ ∈ Vi, φ|K ∈ V (K) ∀K ∈ Th,i} , i = 1, 2, (15b)

Mi,h = {µ ∈ Mi, µ|F ∈ M(F ) ∀F ∈ Fh,i} , i = 1, 2, (15c)

MJ,i,h = {µ ∈ MJ,i, µ|F ∈ M(F ) ∀F ∈ Fh,Γ,i} , i = 1, 2, (15d)

Mλ,h = {µ ∈ MΛ, µ|F ∈ M(F ) ∀F ∈ Fh,Γ } . (15e)

Having defined the global finite element spaces on the partitioned triangula-
tion, we can define the global spaces on Th as:

Vh := V1,h × V1,h ×V2,h × V2,h, (16a)

Qh := M1,h ×M2,h ×MJ,1,h ×MJ,2,h ×Mλ,h. (16b)

5.2 The DMH numerical method

The DMH-RT0 FE approximation of problem (1) reads:
Given Lh = L(vh) and Gh = G(qh), find uh = (J1,h, u1,h,J2,h, u2,h) ∈ Vh and
ph = (û1,h, û2,h,J1,h,J2,h, λh) ∈ Qh such that:

a(uh, vh) + b(vh, ph) = Lh ∀vh = (τ 1,h, φ1,h, τ 2,h, φ2,h) ∈ Vh, (17a)

b(uh, qh)− c(ph, qh) = Gh ∀qh = (µ1,h, µ2,h, ρ1,h, ρ2,h, ϕh) ∈ Qh, (17b)

where the bilinear forms a(·, ·), b(·, ·) and c(·, ·), and the linear functionals L(·),
G(·) are defined in (7), whereas the spaces Vh and Qh are defined in (16).

5.3 Unique solvability, error estimates and convergence of the DMH-RT0 FE
approximation

In this section we first prove that the DMH-RT0 FE approximation of prob-
lem (1) admits a unique solution. Then, we establish error estimates for the
approximate formulation using the Babuska-Brezzi theory for the analysis of
saddle-point problems (see [40, Chapter 7]). Finally, we use the approxima-
tion theory for hybrid methods developed in [46] and [6] to prove the optimal
convergence of the DMH-RT0 FE method with respect to the discretization
parameter h.

Theorem 2 (Unique solvability of (17)) Under the same assumptions as
in Theorem 1, the DMH-RT0 FE approximation (17) of problem (1) has a
unique solution.
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Proof The proof of the uniqueness of the solution of (17) is the copy of that of
Theorem 1 provided to replace u, v, p and q with the corresponding discrete
versions, with the only following differences:

J1,h · n|F = P0,Fα û1,h ∀F ∈ Σ1. (18)

instead of (10d), and

J2,h · n|F = P0,Fα û2,h ∀F ∈ Σ2. (19)

instead of (10f), having denoted by P0,F the L2-projection over the space
P0(F ), F being a face of Th. ut.

As in the infinite dimensional case, let ξh = ξ(qh) be a given linear func-
tional defined on Qh and define the affine manifold

Vξ
h := {vh ∈ Vh, b(vh, qh) = ξ(qh) ∀qh ∈ Qh} . (20a)

Setting ξh = 0 we obtain the characterization the kernel of the operator asso-
ciated with the discretization of the form b

V0
h := {vh ∈ Vh, b(vh, qh) = 0 ∀qh ∈ Qh} . (20b)

Remark 4 In analogy with Remark 3, having proved that (17) is uniquely
solvable, given ph ∈ Qh, we set

Hh(qh) := G(qh) + c(ph, qh) ∀qh ∈ Qh, (21)

and we see that (17) can be written in the equivalent form:
Given L ∈ V ′, find uh ∈ VHh such that

a(uh, vh) = L(vh) ∀vh ∈ V0
h. (22)

This formula is the counterpart of Eq. (7.4.21) of [40].

The next theorem provides a priori bounds for the discretization error in terms
of the approximation error. Essential ingredients to prove this result are Theo-
rems 1 and 2 which allow us to reformulate the generalized saddle-point prob-
lems (8) and (17) into the standard setting (13) and (22), as stated in Remarks
3 and 4. This, in turn, allows us to apply the classical Babuska-Brezzi theory
for saddle-point problems (see [40, Chapter 7]) and conclude our theoretical
analysis of the DMH approximation of problem (1).

Theorem 3 (Error estimates) There exist positive constants Ci, 1 = 1, . . . , 4,
independent of h such that the following optimal error estimates hold:

‖u− uh‖V ≤ C1 inf
vh∈Vh

‖u− vh‖V + C2 inf
qh∈Qh

‖p− qh‖Q (23a)

‖p− ph‖Q ≤ C3 inf
vh∈Vh

‖u− vh‖V + C4 inf
qh∈Qh

‖p− qh‖Q. (23b)

Proof To prove the error estimates (23) we apply Theorem 7.4.3 of [40]. The
proof essentially consists in two steps that are repeated for the continuous
formulation (8) and the approximate formulation (17). The first step requires
to prove that the bilinear form a is coercive on V0 (resp., V0

h) whereas the
second step requires to prove the inf-sup condition for the bilinear form b on
V ×Q (resp., Vh ×Qh).



Stabilized Dual Mixed Hybrid Finite Element Method 15

Coercivity of a over V0. We need to show that there exists a positive constant
Ca such that

a(U, U) ≥ Ca‖U‖
2
V ∀U ∈ V0, (24)

where V0, the kernel space of V, is given by

V0 = {(q1,q2) ∈ (H(div;Ω1)×H(div;Ω2)),

with divqi = 0, and qi · n|∂Ωi
= 0, i = 1, 2} . (25)

Using the proof of Theorem 1 it is easy to see that under the assumptions
(9c), inequality (24) is satisfied by taking

Ca = min

{
µ−1
max −

‖v‖L∞(Ω)

2µmin
, rmin −

‖v‖L∞(Ω)

2µmin

}
.

Inf-sup condition for b over V ×Q. We need to show that the bilinear form b
satisfies the following inf-sup condition

∃kb > 0 such that ∀q = [µ1, µ2, 0, 0, 0, ]
T
∈ Q, ∃vq ∈ V such that

b(vq, q) ≥ kb‖vq‖V‖q‖L2(Σ). (26)

To prove (26) we consider for each K ∈ Th the auxiliary boundary value
problem

−4wi + wi = 0 inK ∈ Th,i i = 1, 2, (27a)

wi = µi on ∂K i = 1, 2, (27b)

where the function µ : Fh → R is the trace of the function w : Ω → R whose
restriction wi = w|Ωi

belongs to the broken space

H1
Th,i

(Ωi) =
∏

K∈Th,i

H1(K) i = 1, 2.

Let us set Ji = ∇wi and vq|K = [Ji, 0]
T
for all K ∈ Th,i, i = 1, 2, Using (27a)

we see that divJi = wi for all K ∈ Th,i, i = 1, 2. Then, a straightforward
application of the Lax-Milgram Lemma to (27) and of the trace inequality
over Ω1 and Ω2 yields

b(vq, q) = ‖w1‖
2
H1

Th,1
(Ω1)

+ ‖w2‖
2
H1

Th,2
(Ω2)

≥ ‖vq‖V

(
C∗

1‖µ1‖
2
L2(∂Ω1)

+ C∗
2‖µ2‖

2
L2(∂Ω2)

)1/2

≥ (C∗)1/2‖vq‖V‖q‖L2(Σ), (28)

where C∗
1 and C∗

2 are the trace constants associated with the domains Ω1 and
Ω2 whereas C∗ = min {C∗

1 , C
∗
2}. From (28) we see that (26) is satisfied taking

kb = (C∗)1/2.
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Coercivity of a over V0
h. We need to show that there exists a positive constant

Ca,h such that

a(Uh, Uh) ≥ Ca,h‖Uh‖
2
V ∀Uh ∈ V0

h, (29)

where V0
h, the kernel space of Vh, is given by

V0
h = {(q1,q2) ∈ (V1,h ×V2,h) ∩ (H(div;Ω1)×H(div;Ω2)),

with divqi = 0, and qi · n|∂Ωi
= 0, i = 1, 2} .

Since V0
h ⊂ V0 we see that (29) is satisfied by taking Ca,h = Ca.

Inf-sup condition for b over Vh ×Qh. We need to show that the bilinear form
b satisfies the following discrete inf-sup condition

∃kb,h > 0 such that ∀qh = [µ1,h, µ2,h, 0, 0, 0, ]
T
∈ Qh, ∃vq,h ∈ Vh such that

b(vq,h, qh) ≥ kb,h‖vq,h‖V‖qh‖L2(Σ). (30)

The discrete inf-sup condition can be proved by using the following abstract
result (see [40, Lemma 7.4.1]).

Lemma 1 (Fortin’s Lemma) Assume that there exists an operator Th :
V → Vh and a positive constant k∗ independent of h such that:

b(v− Th(v), q) = 0 ∀v ∈ V, q = [µ1, µ2, 0, 0, 0, ]
T
∈ Q. (31a)

‖Th(v)‖V ≤ k∗‖v‖V ∀v ∈ V. (31b)

Then, the discrete inf-sup condition (30) is satisfied by taking kb,h = kb/k
∗.

Choosing Th as the interpolation operator onto the space V1,h×V2,h allows us
to verify (31a) by exploting the definition of degrees of freedom of a function
in V1,h×V2,h and to prove (31b) proceeding as in the proof of Lemma 7.2.1 of
[40]. Since all the assumptions of Theorem 7.4.3 of [40] are satisfied, we obtain
the error estimates (23). ut.

Using in (23) the approximation theory for hybrid methods developed
in [46] yields the following convergence estimates for the DMH-RT0 FEM.

Theorem 4 (Convergence of the DMH-RT0 FEM) There exist positive
constants Cu and Cp, independent of h, such that:

‖u− uh‖V ≤ Cu h, (32a)

‖p− ph‖Q ≤ Cp h. (32b)

Moreover, using the techniques of [6] and [46, Section 21], we can prove the
following post-processing error estimates.
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Theorem 5 (Convergence of post-processed quantities) There exist

positive constants C̃1 and C̃2, independent of h, such that:

‖P0u− uh‖0,Ω ≤ C̃1 h
2, (33a)

‖u− u∗
h‖0,Ω ≤ C̃2 h

2, (33b)

where P0u is the L2 projection of u on Vi,h and u∗
h is the piecewise linear

nonconforming interpolant of ûh over Th [19].

Remark 5 The error estimates (33) are superconvergence results for the DMH-
RT0 FEM. In particular, error estimate (33a) tells us that uh is a very good
approximation of u at the barycenter of each element K ∈ Th, whereas error
estimate (33b) tells us that the piecewise linear nonconforming interpolant of
ûh over the mesh approximates the exact solution u with the same accuracy as
that of the piecewise linear solution computed by the standard finite element
method applied to problem (1).

6 Artificial diffusion stabilization

In this section we describe one of the novel contributions of this article to
the theory and development of dual mixed hybrid methods, namely, the in-
troduction of a stabilization mechanism that ensures numerical robustness to
the scheme in the case of advection-dominated regimes, a situation that is
particularly relevant in the application of problem (1) to realistic problems of
mass transport in heterogeneous domains. To quantitatively characterize the
weight of advection with respect to the diffusion, for each element K ∈ Th,
we set vK := v(xB,K), where xB,K is the barycenter of K, and we define the
local Pèclet number as

PeK := max
i=1,...,6

|vK · ei|

2µ
, (34)

where ei, i = 1, . . . , 6, is the vector connecting two vertices of K. Relation (34)
extends to the case of tetrahedral elements the definition given in [1] in the case
of triangular elements. If PeK < 1 the problem is locally diffusion-dominated
whereas if PeK > 1 the problem is locally advection-dominated. In this lat-
ter case, an effective approach to prevent the onset of numerical instabilities
consists of introducing an artificial diffusion tensor µ∗

K constructed in such
a way to locally increase the diffusion mechanism. Following [7,39] and [40,
Chapter 6], the modified diffusion tensor to be used in the artificial diffusion
method is defined as

(µh)K = µK + µ∗
K = µI+ µ∗

K . (35)

The effect of numerical dissipation is minimized if artificial diffusion is added
only in the streamline direction, as done in the Streamline Upwind Petrov-
Galerkin method introduced in [11]. To follow this approach, if |vK | 6= 0, we
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define the streamline unit vector

βK :=
vK

|vK |
(36a)

and set

µ∗
K := µΦ(PeK)βKβT

K . (36b)

The amount of artificial diffusion depends on the stabilization function Φ that
is required to satisfy the following properties:

Φ(X) > 0 ∀X > 0, (36c)

lim
X→0+

Φ(X) = 0+. (36d)

We refer to [47] for the illustration and analysis of several choices for Φ. In
the numerical examples reported in Section 8 we use the following form of the
stabilization function

Φ(X) := X − 1 + Be(2X), (36e)

where Be(t) := t/(et−1) is the inverse of the Bernoulli function. The choice (36e)
satisfies properties (36c)- (36d), and in particular it can be seen that

lim
hK→0

Φ(PeK) = O(h2
K). (36f)

The above relation shows that the artificial diffusion based on (36e) decreases
quadratically as the mesh size becomes small, and because of this asymptotic
behavior the choice (36e) is referred to as optimal artificial diffusion (see [11]
and [39]). Another popular choice of Φ, that is also implemented in the nu-
merical examples reported in Section 8, is the so-called Upwind method for
which

Φ(X) := X. (36g)

The upwind stabilization based on (36g) introduces an artificial diffusion that
decreases only linearly as the mesh size becomes small, therefore worsening the
accuracy of the computed solution. On the other hand, when PeK becomes
large, the optimal artificial diffusion and upwind stabilizations practically co-
incide, thereby supporting the use of (36e) in all regimes instead of (36g) (see
also [7] for further discussion of this issue).
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7 Spectral analysis of the stabilized diffusion tensor

In this section we study the spectrum of the stabilized diffusion tensor (35) as
a function of the transport parameters that characterize the problem at hand.
The analysis is carried out for the stabilization function (36e) but similar
considerations apply to the stabilization function (36g). Denoting by Λi and
Xi, i = 1, 2, 3, the eigenvalues and the corresponding eigenvectors of (µh)K ,
an explicit computation yields

Λ1 = Λ2 = µ, Λ3 = µ(1 + Φ(PeK)), (37a)

X1 =

[
−
βK,y

βK,x
, 1, 0

]T
, (37b)

X2 =

[
−
βK,z

βK,x
, 0, 1

]T
, (37c)

X3 =

[
βK,x

βK,z
,
βK,y

βK,z
, 1

]T
. (37d)

The stabilized diffusion tensor is a symmetric positive definite 3 × 3 matrix.
Replacing (36e) into the expression of Λ3 we obtain

Λ3 = µ(PeK + Be(2PeK)). (37e)

If the local Pèclet number is very small, a Taylor expansion of Be(2PeK) in
the neighbourhood of 0 yields Λ3 = µ, so that (µh)K coincides with µK = µI,
as expected, because the problem is not advection-dominated and thus no
stabilization is actually needed. Conversely, if the local Pèclet number is much
larger than 1 the quantity Be(2PeK) can be neglected in (37e), yielding

Λ3 ' µPeK � {Λ1, Λ2} . (37f)

Therefore, in the case where problem (1) is locally advection-dominated the
three-dimensional surface representing the spectrum of the stabilized diffusion
tensor in the euclidean space R

3 is an ellipsoid centered in the origin, with
the x1 and x2 principal axes of equal length and with a strongly elongated
principal axis x3.

Example 1 Consider the reference tetrahedron with vertices [0, 0, 0]T , [1, 0, 0]T ,
[0, 1, 0]T and [0, 0, 1]T . Assume that vK = [0, 0, 1]T and that µ = 10−2. Us-
ing (34) we get PeK = 50, which means that the model is in the advection-
dominated regime. The artificial diffusion tensor is

µ∗
K =



0 0 0
0 0 0
0 0 µΦ(2PeK) ' 0.49


 ,

which shows that the stabilization introduces a contribution only along the z
axis that is the streamline direction.
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8 Numerical results

In this section we perform a thorough validation of the performance of the pro-
posed method. To this end, we have implemented problem (1) and the DMH-
RT0 FEM within the computational software MP-FEMOS (Multi-Physics Fi-
nite Element Modeling Oriented Simulator) that has been developed by one of
the authors [37,36,3,38,49]. MP-FEMOS is a general-purpose modular code
based on the Galerkin Finite Element Method that is programmed in a fully 3D
framework through shared libraries using an object-oriented language (C++).
Several situations are addressed. In Section 8.1 the accuracy of the scheme is
studied in two different cases, corresponding to non active and active interface.
In Section 8.2 the stability of the scheme is studied in different regimes, corre-
sponding to low and high local Pèclet numbers. In all test cases, the simulation
domain is the unit cube (0, 1) × (0, 1) × (0, 1) with the interface at z = 0.5.
Dirichlet boundary conditions are applied at the bottom and top faces of the
cube, with u = 0 at the bottom and u = 1 at the top, whereas homogeneous
Neumann conditions are imposed for J on the lateral surface.

Figure 2 – Regular triangulations with h = [0.4330, 0.2165, 0.1083, 0.0541].

In the computational examples illustrated in Section 8.1, the four tetra-
hedral meshes shown in Figure 2 are used. Partitions are made of regular
elements, with h = [0.4330, 0.2165, 0.1083, 0.0541]. For any piecewise smooth
function ηh : Th → R, we set

‖ηh‖∞,h := max
K∈Th

|ηh(xB,K)|.



Stabilized Dual Mixed Hybrid Finite Element Method 21

8.1 Convergence analysis

In Section 8.1.1 we study the accuracy of the DMH-RT0 FEM in the case
where both u and J · n are continuous at Γ . In Section 8.1.2 we consider the
case where both u and J · n are discontinuous at Γ . All test cases considered
in Section 8.1 are conducted in a regime where the Pèclet number is less
than 1 and so the scheme is implemented without stabilization. The effect of
stabilization will be assessed in Section 8.2.

8.1.1 Non active interface

Let us set µ = 1, r = 1, g = 1, v = vze3, vz = 1, κ = 1 and σ = 0, where e3
denotes the unit vector of the z-axis shown in Figure 3. The exact solution of
system (1) is the pair:

u(z) =
g

r
+ C1e

λ1z + C2e
λ2z z ∈ [0, 1] (38a)

J(z) =
vzg

r
+ C1e

λ1z (vz − µλ1) + C2e
λ2z (vz − µλ2) z ∈ [0, 1] (38b)

J(z) = J(z)e3 z ∈ [0, 1], (38c)

where λ1,2 = (vz ±
√
v2z + 4rµ)/(2µ) and

C1 =
−1 +

g

r
(1− eλ2)

eλ2 − eλ1
, C2 =

1−
g

r
(1− eλ1)

eλ2 − eλ1
.

Figure 3 (left panel) illustrates the errors associated with the scalar variable
u whereas Figure 3 (right panel) shows the errors associated with the vector
variable J. Results indicate that: (i) the DMH formulation is linearly converg-
ing with respect to (w.r.t.) the graph norm in the L2 ×H(div)-topology; (ii)
uh quadratically converges to the value of u at the barycenters of Th; and (iii)
ûh quadratically converges to the value of u w.r.t. the discrete maximum norm
and the L2 norm. These outcomes are in complete agreement with the theo-
retical estimates of Section 5.2 and with existing theoretical estimates for the
DMH formulation applied to the solution of elliptic boundary value problems
on a single domain (see [6,21,8,5]).

8.1.2 Active interface

Let us set µ = 1, r = 1, g = 1, v = vze3, vz = 1, as in the previous section, and
let us set κ = 2 and σ = 1 to model the active interface. The exact solution of
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Figure 3 – Error curves for the DMH-RT0 FEM. The values of model coefficients are: µ = 1,
r = 1, g = 1, v = vze3, vz = 1, κ = 1 and σ = 0. Left panel: ‖u − uh‖0,Ω (red curve);
‖u− uh‖∞,h (blue curve); ‖P0u− uh‖0,Ω (green curve); ‖u− u∗

h
‖0,Ω (black curve). Right

panel: ‖J− Jh‖∞,h (blue curve); ‖J− Jh‖0,Ω (red curve); ‖J− Jh‖H(div;Ω) (black curve).

system (1) is the pair:

u(z) =
g

r
+ C1e

λ1z + C2e
λ2z z ∈ [0, 0.5) (39a)

J(z) =
vzg

r
+ C1e

λ1z (vz − µλ1) + C2e
λ2z (vz − µλ2) z ∈ [0, 0.5), (39b)

u(z) =
g

r
+ C3e

λ1z + C4e
λ2z z ∈ [0.5, 1] (39c)

J(z) =
vzg

r
+ C3e

λ1z (vz − µλ1) + C4e
λ2z (vz − µλ2) z ∈ [0.5, 1], (39d)

where λ1,2 = (vz ±
√
v2z + 4rµ)/(2µ) and the four constants Ck, k = 1, 2, 3, 4

are the solutions of the following linear system

Cc = g,

where c = [C1, C2, C3, C4]
T ,

C =




1 1 0 0
eλ1/2(vz − µλ1) e

λ2/2(vz − µλ2) −eλ1/2(vz − µλ1) −eλ2/2(vz − µλ2)
−κeλ1/2 −κeλ2/2 eλ1/2 eλ2/2

0 0 eλ1 eλ2


 ,

and

g =




−
g

r
−σ

(κ− 1)
g

r
1−

g

r



.
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The error curves obtained for this problem are shown in Figure 4. Results are
very similar to those obtained in the case of a nonactive interface.

Figure 4 – Error curves for the DMH-RT0 FEM. The values of model coefficients are: µ = 1,
r = 1, g = 1, v = vze3, vz = 1, κ = 2 and σ = 1. Left panel: ‖u − uh‖0,Ω (red curve);
‖u− uh‖∞,h (blue curve); ‖P0u− uh‖0,Ω (green curve); ‖u− u∗

h
‖0,Ω (black curve). Right

panel: ‖J− Jh‖∞,h (blue curve); ‖J− Jh‖0,Ω (red curve); ‖J− Jh‖H(div;Ω) (black curve).

A three-dimensional view of the solutions uh and Jh,z computed by the
DMH-RT0 FEM is reported in Figure 5 whereas Figure 6 shows a a cross-
sectional view of the along the z-axis of the same computed quantities. Results
indicate that the method is able to accurately capture the jump discontinuity
even with a rather coarse partition of the domain.

8.2 The effect of stabilization

In this section we carry out a verification of the effect of the streamline artificial
diffusion on the stability properties of the DMH method in the presence of a
dominating advective term. The tetrahedral mesh is the same in all the tested
cases with h = 0.108253.

8.2.1 Non active interface

Here we treat the case where the interface is not active and so we consider the
same parameters as in Section 8.1.1 where, in particular, κ = 1 and σ = 0.
Figure 7 shows a cross-sectional view of the reconstructed solution u∗

h along
the z-axis in correspondance of six increasing values of the local Pèclet number
obtained with the following data: value nr. 1: µ = 0.5, vz = 1; value nr. 2:
µ = 0.0125, vz = 0.625; values from nr. 3 to nr. 6: vz = 0.625 and µ ={
6.25 · 10−3, 3.125 · 10−3, 1.5625 · 10−3, 7.8125 · 10−4

}
.
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Figure 5 – 3D color plots of the solutions computed by the DMH-RT0 FEM. Left panel:
values of uh at the barycenter of each element. Right panel: values of Jz,h at the barycenter
of each element.

Figure 6 – 1D plots of the solutions computed by the DMH-RT0 FEM along the z-axis. Left
panel: values of uh at the barycenter of each element. Right panel: values of Jz,h at the
barycenter of each element.

Results show that as PeK increases, the non stabilized method starts to dis-
play spurious unphysical oscillations in the boundary layer region, which tend
to propagate backwards throughout the computational domain because of the
markedly hyperbolic behavior of the problem. On the contrary, the stabilized
method is characterized by a robust behavior with respect to the increase of
the local Pèclet number, showing in particular that the SG stabilized DMH
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Figure 7 – 1D plot of the computed solution u∗

h
along the z-axis. Blue circles: unstabilized

solution. Green squares: SG stabilization. Red triangles: Upwind stabilization. Top row. left
panel: PeK = 0.1083; middle panel: PeK = 2.7063; right panel: PeK = 5.4127. Bottom row.
left panel: PeK = 10.8253; middle panel: PeK = 21.6506; right panel: PeK = 42.3012.

method computes a solution that is much more accurate than that computed
by the Upwind stabilized in the boundary layer region.

8.2.2 Active interface

In this section, we assume that the interface located at z = 0.5 is active
and set κ = 2 and σ = 1. Moreover, the values of model coefficients are
selected in such a way that the problem is diffusion-dominated in one subregion
and advection-dominated in the other region. Specifically, in the first case of
study we set µ = 1, v = vze3, vz = 1, in Ω1 and µ = 0.0325, v = vze3
in Ω2, so that PeK |Ω1

= 0.0541 and PeK |Ω2
= 1.6654. In the second case

of study we set µ = 1, vz = 1 in Ω1 and µ = 0.008125, vz = 1 in Ω2, so
that PeK |Ω1

= 0.0541 and PeK |Ω2
= 6.6618. Thus, in both cases of study the

problem is diffusion-dominated in Ω1 and advection-dominated in Ω2. Figure 8
shows a cross-sectional view of the reconstructed solution u∗

h along the z-
axis. In both cases we see that: (a) the non stabilized and stabilized solutions
correctly capture the sharp discontinuity at z = 0.5; (b) the non stabilized
solution displays increasing instabilities in the boundary layer region at z = 1
as PeK increases; (c) the two stabilized solutions capture the boundary layer
without any unphysical oscillations.
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Figure 8 – 1D plot of the computed solution u∗

h
along the z-axis. Blue circles: unstabilized

solution. Green squares: SG stabilization. Red triangles: Upwind stabilization. u∗

h
along the

z-axis. Left panel: µ = 1, vz = 1 in Ω1, PeK |Ω1
= 0.0541; µ = 0.0325, vz = 1 in Ω2,

PeK |Ω2
= 1.6654. Right panel: µ = 1, vz = 1 in Ω1, PeK |Ω1

= 0.0541; µ = 0.008125,
vz = 1 in Ω2, PeK |Ω2

= 6.6618.

9 Conclusions and perspectives

In this work we have proposed, analyzed and numerically validated a novel
dual mixed hybrid (DMH) finite element method (FEM), based on the Raviart-
Thomas finite element space of lowest order (RT0), for the numerical approx-
imation of a boundary value problem with diffusive, advective and reactive
terms to be solved in a three-dimensional domain with transmission condi-
tions across a selective interface.

The novel DMH-RT0 FEM belongs to the family of hybridizable discontin-
uous Galerkin (HDG) finite element methods for advection-diffusion-reaction
problems (see [31], [16] and [12] for recent examples in the treatment of ellip-
tic problems with interfaces and dominating convection). The new formulation
combines in a unified framework a pair of Lagrange multipliers to account for
the interface conditions, with the dual mixed hybrid method for the weak
formulation and discretization of the problem. To stabilize the computation
against advection dominance, an artificial diffusion is introduced along the
streamline direction, as in the SUPG method.

The resulting scheme is a flexible and robust numerical approach for the
treatment of heterogeneous problems where model coefficients may be subject
to wide variations over the partitioned computational domain and sharp dis-
continuities of the primal variable and of the associated flux density may occur
at the interface.

The unique solvability of the scheme is analyzed and optimal error esti-
mates are proved with respect to the finite element discretization parameter
using the abstract theory of saddle-point problems. An efficient implementa-
tion of the method within the computational platform MP-FEMOS is made
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possible by the use of static condensation to eliminate the internal variables
and the Lagrange multipliers for the dual variable at the interface in favor of
the hybrid variable and of the Lagrange multiplier for the primal variable at
the interface.

Extensive numerical tests demonstrate the theoretical conclusions and indi-
cate that the proposed DMH-RT0 FEM is accurate and stable in the presence
of marked interface jump discontinuities of both solution and associated nor-
mal flux. In the case of strongly dominating advective terms, the proposed
method is capable to accurately resolve steep boundary and/or interior layers
without introducing spurious unphysical oscillations or excessive smearing of
the solution front.

Next objectives of the ongoing research activity on the proposed method
include:

– performing simulations with a non-planar interface. This will allow us to
better validate the performance of the method on a more complicated ge-
ometry than considered in Section 8, including corners and/or internal
layers (see [47]);

– extending the implementation to domains with multiple interfaces. This
will allow us to study more realistic physical situations such as the case
of the interaction between two cellular compartments separated by an ex-
tracellular fluid [28] or the case of the design of advanced memories in
nanoelectronics in which materials are characterized by the presence of
localized defects [51];

– extending the mathematical model to nonlinear transmission conditions at
the interface. This will allow us to study more realistic physical problems
such as the case of semipermeable membranes [29] or biochemical reactions
in cellular biology [54];

– extending the numerical approach and its application to transmission mod-
els to HDG methods (cf. [31]). This will allow us to benefit from the high
flexibility of the HDG computational framework, in particular the possi-
bility of adopting standard polynomial basis functions for both primal and
dual variables, including the case of equal-order interpolation [17];

– extending the DMH numerical scheme to the case where the geometrical
discretization of the domain Ω is not fitted with the interface Γ . This
will allow us to combine the discontinuous features of the DMH method
with the flexible and efficient computational framework of Extended Finite
Elements (XFEM), as recently analyzed in [24] in the study of XFEM-based
approximation of flow in fractured porous media;

– extending the theoretical analysis of the convergence of the scheme to in-
clude the artificial diffusion stabilization of Section 6. This will allow us to
characterize the effect of the perturbation term µ∗

K in (35) on the accu-
racy of the method as h is sufficiently small by estimating the introduced
consistency error with the Strang Lemma [40, Chapter 5].
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A Efficient implementation of the DMH method

In this appendix, we illustrate how to implement the DMH-RT0 FEM (17) in a computa-
tionally efficient manner. To this end, we first discuss the properties of the linear algebraic
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system and then describe in detail the static condensation procedure that allows us to elim-
inate the internal variables ui,Ji and the Lagrange multipliers Ji in favor of ûi and λ,
i = 1, 2.

A.1 System reduction through static condensation

Functions belonging to the finite dimensional space Vh are completely discontinuous over
Th. Similarly, functions belonging to the finite dimensional space Qh are completely discon-
tinuous over Fh. These properties can be profitably exploited to implement the DMH-RT0
FEM in a very efficient manner through the use of static condensation. This procedure is
basically a Gauss elimination algorithm that allows us to express all the variables of the
numerical method as a function of a sole unknown, thereby reducing considerably the size
of the linear algebraic system and enhancing the computational efficiency of the method.
Static condensation, however, is not a feature specific of the DMH-RT0 FEM proposed in
the present article, but is widely adopted in finite element formulations. We refer to [6,
8] for an introduction to static condensation in mixed and hybrid finite element methods,
to [18,55] for an advanced use of static condensation in the context of Continuous and Hy-
bridizable Discontinuous Galerkin methods and to [41] for a description of the use of static
condensation as an algorithm to implement the method of Schur complement system. To
apply static condensation to the DMH FEM it is convenient to write the linear algebraic
system associated with problem (17) in full block form, which reads:





A1 N1 0 0 DT1 0 0 0 0
P1 R1 0 0 0 0 0 0 0
0 0 A2 N2 0 DT2 0 0 0
0 0 P2 R2 0 0 0 0 0
D1 0 0 0 −MΣ1

0 −ET1 0 0
0 0 D2 0 0 −MΣ2

0 −ET2 0
0 0 0 0 E1 0 0 0 −UT1
0 0 0 0 0 E2 0 0 −κUT2
0 0 0 0 0 0 U1 U2 0









J1

u1

J2

u2

û1

û2

j1
j2
λ





=





0

b1

0

b2

bΣ1

bΣ2

0

0

bσ





. (40)

In the equation system (40), Ji, ui, i = 1, 2, denote the vectors of the degrees of freedom
for the internal variables Jh and uh inside the partitioned triangulations Th,i, i = 1, 2. In
particular, denoting by NE1 the number of tetrahedra in Th,1 and by NE2 the number of
tetrahedra in Th,2, we notice that J1 is subdivided into a collection of NE1 vectors of size
equal to 4 and u1 has size equal to NE1; analogously, J2 is subdivided into a collection
of NE2 vectors of size equal to 4 and u2 has size equal to NE2. In the same spirit, matrix
A1 has a block diagonal structure of size NE1, where each block is the 4 × 4 flux matrix
corresponding to an element of Th,1, whereas matrix A2 has a block diagonal structure of
size NE2, where each block is the 4×4 flux matrix corresponding to an element of Th,2. Similar

considerations apply to the rectangular block matrices Pi and Ni := Hi − PTi , i = 1, 2, and
to the block matrices Ri, i = 1, 2, that have a diagonal structure, each entry corresponding
to an element of Th,1 and Th,2, respectively. The unknown vectors ûi, instead, contain
the degrees of freedom of the hybrid variables ûh,i, i = 1, 2, associated with each face of
Fh,i, i = 1, 2, and for this reason the size of û1 is equal to NF1 and the size of û2 is
equal to NF2, where NF1 and NF2 denote the number of faces in Fh,1 and Fh,2, the faces
belonging to the interface Γ being counted twice. The unknown vectors ji, i = 1, 2, contain
the degrees of freedom of the flux Lagrange multipliers Jh,i, i = 1, 2, associated with each
face of Fh,Γ,1 and Fh,Γ,2, respectively, and therefore their sizes are both equal to NFΓ ,
where NFΓ denotes the number of faces in Fh,Γ . Finally, the unknown vector λ contains
the degrees of freedom of the segregation condition Lagrange multiplier λh associated with
each face of Fh,Γ , and therefore has size equal to NFΓ . The matrices Di, i = 1, 2, enforce the
continuity of Jh,i ·ni across interelement boundaries in each triangulation Th,i. The matrices
MΣi

, i = 1, 2, enforce the continuity of the Robin boundary boundary conditions (1e) on
each face of Σi. The matrices Ei, i = 1, 2, enforce the identity between Jh,i · ni and the
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Lagrange multiplier Jh,i across each face belonging to Fh,Γ,i, i = 1, 2. The matrices U1 and
U2 enforce the transmission condition (1c) across each face of Fh,Γ whereas the matrices

−UT1 and −κUT2 enforce the segregation condition (1d) across each face of Fh,Γ . In analogy
to what happens for the matrices associated with the internal degrees of freedom in each
partitioned triangulation, also the matrices Di, MΣi

, Ei and Ui have a block structure, each
block corresponding to a face of Fh,i, i = 1, 2. To conclude, the right-hand side vectors bi,
bΣi

and bσ , contain the contributions due to the source term g in (1a), of the boundary
terms βi in (1e) and of the interface flux term −σ in (1c), respectively.

A.1.1 Elimination of the internal variables Jh and uh

The first and second equations in the block linear system (40) read:

A1J1 + N1u1 + DT1 û1 = 0 (41a)

P1J1 + R1u1 = g1, (41b)

whereas the third and fourth equations in the block linear system (40) read:

A2J2 + N2u2 + DT2 û2 = 0 (42a)

P2J2 + R2u2 = g2. (42b)

The two systems (41) and (42) have a local nature, that is, the unknown vector pairs (Ji,ui),
i = 1, 2, are associated with each tetrahedron K belonging to Th,1 and Th,2, respectively.
In particular, we see that the 4 × 4 flux matrices Ai, i = 1, 2, are symmetric and positive
definite, so that (41a) and (42a) can be solved to obtain:

J1 = −A−1
1

[
N1u1 + DT1 û1

]
, (43a)

J2 = −A−1
2

[
N2u2 + DT2 û2

]
. (43b)

Then, we can substitute the above expressions in (41b) and (42b) to get:

− P1A
−1
1

[
N1u1 + DT1 û1

]
+ R1u1 = g1, (44a)

− P2A
−1
2

[
N2u2 + DT2 û2

]
+ R2u2 = g2. (44b)

Letting
Mi := Ri − PiA

−1
i Ni = Ri + PiA

−1
i PTi − PiA

−1
i Hi, i = 1, 2,

equations (44) become:

M1u1 − P1A
−1
1 DT1 û1 = g1, (45a)

M2u2 − P2A
−1
2 DT2 û2 = g2. (45b)

Matrices Mi have size 1×1 and are invertible because of assumption (9c). Thus, equations (45)
can be solved to obtain:

u1 = M−1
1

[
P1A

−1
1 DT1 û1 + g1

]
, (46a)

u2 = M−1
2

[
P2A

−1
2 DT2 û2 + g2

]
. (46b)

We can plug expressions (46) back into (43) to obtain the following affine equations for the
degrees of freedom of the dual variable associated with each element K ∈ Th,i, i = 1, 2:

J1 = L1û1 + b1, (47a)

J2 = L2û2 + b2, (47b)
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where:

L1 := −A−1
1

[
N1M

−1
1 P1A

−1
1 DT1 + DT1

]
, (47c)

b1 := −A−1
1 N1M

−1
1 g1, (47d)

L2 := −A−1
2

[
N2M

−1
2 P2A

−1
2 DT2 + DT2

]
, (47e)

b2 := −A−1
2 N2M

−1
2 g2. (47f)

A.1.2 Elimination of the interface Lagrange multipliers Ji,h, i = 1, 2

Restricting the fifth equation in the block linear system (40) to the faces belonging to Fh,Γ,1

yields

D1J1 − ET1 j1 = 0, (48a)

whereas the restriction of the sixth equation in the block linear system (40) to the faces that
belong to Fh,Γ,2 yields

D2J2 − ET2 j2 = 0. (48b)

Since test functions µh and approximate multipliers Jh belong to the same discrete space
M(F ) defined in (14c), equations (48a) and (48b) are uniquely solvable for each face F

belonging to the interface Γ , and give:

j1 = (ET1 )−1D1J1, (48c)

j2 = (ET2 )−1D2J2, (48d)

where J1 and J2 are given by (47). Also, since functions in the RT0 space (14a) satisfy the
property

V(K) · n∂K |F∈∂K = M(F ) ∀K ∈ Th F ∈ ∂K,

equations (48c) and (48d) assume the particularly simple form:

J1,h|F = J1,h · n1|F ∀F ∈ Fh,Γ,1, (48e)

J2,h|F = J2,h · n2|F ∀F ∈ Fh,Γ,2. (48f)

A.1.3 Elimination of the hybrid variables on the interface Γ

The seventh equation in the block linear system (40) yields

E1û1 − UT1 λ = 0, (49a)

whereas the eigth equation in the block linear system (40) yields

E2û2 − κUT2 λ = 0. (49b)

Using the same argument as for the variable Jh, we see that equations (49) are uniquely
solvable for each face F belonging to the interface Γ , and give:

û1 = E−1
1 UT1 λ, (50a)

û2 = κE−1
2 UT2 λ. (50b)

We notice that equations (50) allow to express the segregation condition (1d) in the DMH
formulation in the same manner as in the 3F method.
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A.1.4 Construction of the linear algebraic system

Having expressed the internal variable Jh in favor of the hybrid variable ûh, the Lagrange
multiplier Jh in favor of Jh on Γ and the hybrid variable ûh in favor of the Lagrange
multiplier λh on Γ , we proceed as follows:

(step a) we use the fifth equation in the block linear system (40) to enforce the interelement
continuity of J1,h · n1|F at each F ∈ Fh,int,1 and the boundary condition (1e) at each
F ∈ Fh,Σ,1.

(step b) we use the sixth equation in the block linear system (40) to enforce the interelement
continuity of J2,h · n2|F at each F ∈ Fh,int,2 and the boundary condition (1e) at each
F ∈ Fh,Σ,2;

(step c) we use the ninth equation in the block linear system (40) to enforce the transmission
condition (1c) at each F ∈ Fh,Γ .

A graphical representation of each of the above three steps is shown in Figure 9.

Figure 9 – Interelement continuity of Jh · n|F . Left panel: F = ∂K1 ∩ ∂K2 (internal face).
Right panel: F = ∂K1 ∩Σ (boundary face). The arrows represent the degree of freedom of
Jh|Ki

associated with face F of element Ki, i = 1, 2 (left panel) and i = 1 (right panel). In
the case where F is a boundary face the role of Jh|K2

· n is played by the Robin boundary
condition αu− β.

The application of the sequence of steps (a), (b) and (c) leads to the construction of the
following linear reduced system for the DMH-RT0 FEM

KU = t, (51)

where U ∈ R
NF is the vector of degrees of freedom represented by the values of ûh on each

face of Fh, excluding those belonging to Γ , and the values of λh on each face belonging to
Γ , K ∈ R

NF×NF is the stiffness matrix and t ∈ R
NF is the load vector, with NF denoting the
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number of faces of Fh. Each equation in (51) can be written in explicit form as

KF,FUF +
∑

G∈Adj(F )

KF,GUG = tF F = 1, . . . , NF, (52)

where Adj(F ) denotes the set of faces G ∈ Fh that have a vertex in common with the
closure of F . We notice that each row of system (51) corresponding to an internal face F

has 7 nonzero entries (cf. Figure 9, left panel) whereas each row of system (51) corresponding
to a boundary face F has 4 nonzero entries (cf. Figure 9, right panel).

Remark 6 The unique solvability of (51) is a consequence of Theorem 2.

Remark 7 The assembly of the stiffness matrix K and of the load vector t in (51) can
be conducted as in a standard displacement-based computer code using piecewise linear
finite elements for the approximation of the primal variable u. In particular, a for loop is
performed over the elements K ∈ Th and for each element the local 4 × 4 stiffness matrix
LKi and the local 4× 1 load vector tKi = −bK

i , i = 1, 2, are computed using (47). Then, the
assembly phase consists of the following Matlab coding:

for Iloc=1:4,

I = Lel(K,Iloc);

for Jloc=1:4

J = Lel(K,Jloc);

if (Iloc==Jloc)

GlobStiffMat(I,I) = GlobStiffMat(I,I) + ...

LocStiffMat(Iloc,Iloc);

else

GlobStiffMat(I,J) = LocStiffMat(Iloc,Jloc);

end

end

GlobLoadVec(I) = GlobLoadVec(I) + LocLoadVec(Iloc);

end

In the above code, K indicates the global index of element K in the mesh structure, Lel is
the connectivity matrix such that Lel(K,i), i=1,2,3,4 contains the global index of the face of
K locally numbered by i. In addition, GlobStiffMat and GlobLoadVec are the global stiffness
matrix and global load vector, respectively, whereas LocStiffMat and LocLoadVec are their
local counterparts. We notice that the assembly in the DMH-RT0 FEM is performed on a
face-oriented basis, whereas in the standard FEM the assembly is performed on a vertex-
oriented basis.

A.1.5 Post-processing

Once the reduced system (51) is solved, the values of ûh on each face of Fh,Γ,i, i = 1, 2,
can be computed by means of (50). Then, the internal variables Jh and uh are recovered
using (47) and (46) over each K ∈ Th.


