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Abstract. In this article we conduct an analytical study of a poroviscoelas-
tic mixture model stemming from the classical Biot’s consolidation model for
poroelastic media, comprising a fluid component and a solid component, cou-
pled with a viscoelastic stress-strain relationship for the total stress tensor. The
poroviscoelastic mixture is studied in the one-dimensional case, corresponding

to the experimental conditions of confined compression. Upon assuming (i)
negligible inertial effects in the balance of linear momentum for the mixture,
(ii) a Kelvin-Voigt model for the effective stress tensor and (iii) a constant
hydraulic permeability, we obtain an initial value/boundary value problem of
pseudo-parabolic type for the spatial displacement of the solid component of the
mixture. The dimensionless form of the differential equation is characterized
by the presence of two positive parameters γ and η, representing the contri-
butions of compressibility and structural viscoelasticity, respectively. Explicit
solutions are obtained for different functional forms characterizing the bound-

ary traction. The main result of our analysis is that the compressibility of the
components of a poroviscoelastic mixture does not give rise to unbounded re-

sponses to non-smooth traction data. Interestingly, compressibility allows the
system to store potential energy as its components are elastically compressed,
thereby providing an additional mechanism that limits the maximum of the
discharge velocity when the imposed boundary traction is irregular in time.

1. Introduction. Poroviscoelastic models of multi-component mixtures are often
utilized in biological applications to describe the flow of fluids within the pores of
a deformable solid skeleton, see e.g. [2, 8, 9, 17]. Skeleton viscoelasticity is often5

due to the complex structures including extracellular matrix, collagen and elastin
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that are present in biological tissues. Specifically, our work focuses on the bio-fluid-
mechanical response of poroviscoelastic media to non-smooth data, since this aspect
is crucial in understanding the mechanisms leading to tissue damage in the optic
nerve head, and consequent vision loss, associated with glaucoma [3, 5, 7, 12].

In the absence of viscoelasticity, we have recently shown that time irregularities5

in the volumetric and/or boundary sources of linear momentum lead to a blow-
up in the solution of poroelastic models [2, 17]. Interestingly, the blow-up can be
prevented by including structural viscoelasticity [17]. From the application view-
point, examples of time-irregularities in the data are discontinuities in intraocular
pressure, which acts as a boundary traction for the optic nerve head tissue, or dis-10

continuities in the gravitational force, which acts as a volumetric source of linear
momentum. The intraocular pressure exhibits rapid changes every time we rub our
eyes or we change posture [10], whereas rapid changes in the gravitational accelera-
tion are experienced by jet pilots and astronauts during flights [6, 11]. Since tissue
viscoelasticity has been shown to decrease with age and/or disease conditions, the15

solution blow-up identified by our theoretical work led to hypothesize that rapid
changes in intraocular pressure and gravitational acceleration, even if within phys-
iological ranges, could damage the optic nerve head tissue if its viscoelasticity was
pathologically reduced.

It is important to emphasize that our previous work was built on the assumption20

that the poroviscoelastic medium under consideration was made of incompress-
ible components. The incompressibility assumption is quite common in biological
applications, since tissues are mostly made of water. However, compressibility is
always present in real tissues, and this leads to wonder whether and to what ex-
tent compressibility of the mixture components would affect the tissue response to25

non-smooth data. The present work aims at addressing this question.
Proceeding as in [17], we assume: (i) a one-dimensional (1D) geometry; (ii)

negligible inertial terms in the linear momentum balance equation; (iii) a Kelvin-
Voigt model for the effective stress tensor and (iv) a constant hydraulic permeability
of the porous medium. Then, we express the fluid pressure and the solid stress as30

functions of the sole solid phase displacement, and we obtain an initial-boundary
value problem (IBVP) of pseudo-parabolic type for the solid phase displacement.
For this equivalent formulation we are able to construct an analytical solution and
prove the well-posedness of weak solutions. Moreover, we recover analytical formulas
for fluid pressure and discharge velocity, and discuss their regularity in terms of35

the regularity of the data. Finally, we analyze the behavior of all the solutions
for various continuous and discontinuous boundary loads, which are of particular
interest in understanding how changes in intraocular pressure would impact the
bio-fluid-mechanics of ocular tissues.

The main conclusion of our analysis is that the compressibility of the components40

of a poroviscoelastic mixture does not give rise to unbounded responses to non-
smooth traction data. Interestingly, compressibility provides an additional mecha-
nism that limits the maximum of the discharge velocity when the imposed bound-
ary traction is irregular in time. This mechanism originates from the capability of
the system to store potential energy as its components are elastically compressed,45

thereby delaying the transmission of irregularities in the linear momentum from the
solid to the fluid. As a result, the fluid has the time to accommodate for sudden
changes, resulting in bounded velocities.
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Our results fit well with other poroviscoelastic studies motivated by geomechani-
cal applications, where viscoelasticity was found to play a crucial role in the response
of the medium to impulsive loads. Specifically, the studies focused on evaluating
the consequences that different choices for the viscoelastic models would have on
the medium response to external loads. For example, in [13], Schanz and Cheng5

considered a Kelvin-Voigt viscoelastic model and investigated the consequences of
adopting it for the bulk compression modulus, the shear modulus and the compres-
sion modulus of the solid material. In [8, 9], Huang et al. utilized the quasi-linear
viscoelastic theory to study the response of articular cartilage under compression
and tension experiments. However, these studies did not consider how the mechan-10

ical responses of the poroviscoelastic mixture would change depending on the level
of compressibility of the mixture components, which is the main focus of the present
work.

The outline of this article is as follows. In Section 2 we describe the compressible
poro-visco-elastic model under consideration and discuss the finite compressibility of15

the components of the mixture. Section 3 introduces the energy identity associated
with the system. In Section 4 we present an equivalent form of the fluid-solid
mixture system, written solely in terms of the solid phase displacement. To simplify
the theoretical analysis, in Section 5 we reduce the poroviscoelastic model into
dimensionless form. Section 6 studies the well-posedness and regularity of solution20

for the IBVP introduced in Section 4, and provides analytical formulas for the elastic
displacement, fluid pressure and discharge velocity. In Section 7 we compute and
analyze the behavior of the solid displacements, the fluid pressures and the discharge
velocities associated with different continuous and discontinuous boundary sources.
We also display the energies, as well as the dissipation and source terms associated25

with the various cases. We conclude the article with Section 9, where we discuss
our results and draw our final conclusions.

2. The compressible poroviscoelastic model. In this paper, we focus on a vis-
coelastic, compressible Biot model in one spatial dimension. Let x and t denote the
spatial and temporal coordinates, respectively. In the case where inertial terms are
negligible, displacements are infinitesimal and external sources of linear momentum
and mass are absent, the balance equations to be solved in the spatial interval (0, L)
and in the temporal observational interval (0, T ] can be written as:

∂σ

∂x
= 0, (1a)

∂ζ

∂t
+

∂v

∂x
= 0, (1b)

where σ is the total stress, ζ is the fluid content and v is the discharge velocity.
Equations (1) are complemented with the following constitutive laws:

σ = −αp+ σ0, (2a)

σ0 = θ
∂u

∂x
+ η

∂

∂t

(
∂u

∂x

)
, (2b)

ζ = c0p+ α
∂u

∂x
, (2c)

v = −K ∂p

∂x
. (2d)
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Eq. (2a) expresses the fact that the total stress is the sum of a contribution due
to the interstitial fluid pressure (or pore pressure) p and one due to the effective
stress σ0, which is assumed to be characterized by viscoelastic behavior of Kelvin-
Voigt type (see Eq. (2b) where u denotes the solid phase displacement). Eq. (2c)
expresses the fact that the fluid content is altered by changes in fluid pressure and5

solid deformation. Eq. (2d) is Darcy’s law relating the discharge velocity v with the
pressure gradient by means of the hydraulic permeability K. The Biot coefficient
α, the storage coefficient c0, the material parameters θ and η and the permeability
K are assumed to be given positive constants.
In the classical Biot’s theory, the material parameter θ can be expressed as θ =10

K − (4/3)G, where K is the drained bulk compression modulus and G is the shear
modulus. In the following, we will simply refer to θ and η as the elastic and
viscoelastic parameters, respectively [13]. In addition, we will use the notation
K = K0 to emphasize the fact that the permeability is assumed to be a given
constant.15

The problem must be equipped with appropriate boundary conditions. In the fol-
lowing, we will assume that the boundary located at x = 0 is fixed and impermeable,
namely:

u(0, t) = 0, (3a)

v(0, t) = 0, (3b)

and that the boundary located at x = L experiences an external stress P (a com-
pressive stress if P is positive, a tensile stress if P is negative) that is supported
entirely by the solid component of the mixture (condition of exposed pores [14]),
namely:

p(L, t) = 0, (3c)

σ(L, t) = −P (t). (3d)

Finally, we complete the formulation of the problem by prescribing the following
initial conditions:

u(x, 0) = 0, (4a)

p(x, 0) = 0. (4b)

We notice that (4a) and (4b) also imply the following initial conditions for the
dilation of the solid material and the discharge velocity, respectively:

∂u

∂x
(x, 0) = 0, (5a)

v(x, 0) = 0. (5b)

Remark 1. The case of incompressible mixture components can be obtained by
setting c0 = 0 and α = 1 in the model described above, as detailed in [1, 4]. The
study of analytical solutions for the incompressible model was addressed in [2, 17].

3. Energy identity. The mathematical system described in Section 2 satisfies an
energy identity that helps provide a physical interpretation of the solutions, assum-20

ing they exist. To this end, let us multiply (1a) by ∂u/∂t ∈ L2(0, L); integrating



COMPRESSIBLE MODELS IN POROVISCOELASTICITY 5

over (0, L) and using the constitutive laws (2a) and (2b) and the boundary condi-
tions (3a), (3c) and (3d),we obtain

−θ

2

d

dt

∥∥∥∥
∂u

∂x

∥∥∥∥
2

L2(0,L)

− η

∥∥∥∥
∂2u

∂t∂x

∥∥∥∥
2

L2(0,L)

+ α

∫ L

0

p
∂2u

∂t∂x
dx = P (t)

∂u

∂t
(L, t). (6)

Multiplying (1b) by p ∈ L2(0, L), integrating over (0, L) and using the constitutive
laws (2c) and (2d) and the boundary conditions (3b) and (3c), we obtain

c0
2

d

dt
‖p‖2L2(0,L) +K0

∥∥∥∥
∂p

∂x

∥∥∥∥
2

L2(0,L)

+ α

∫ L

0

p
∂2u

∂t∂x
dx = 0. (7)

Subtracting (6) from (7) we get the following evolution equation for the total energy5

stored in the poroviscoelastic system

d

dt
Etot(t) +D(t) = F(t), t ∈ (0, T ], (8)

where the energy functional Etot = Etot(t), the dissipation functional D = D(t) and
the force term F = F(t) are defined as:

Etot (t) :=
c0
2
‖p (·, t)‖2L2(0,L) +

θ

2

∥∥∥∥
∂u

∂x
(·, t)

∥∥∥∥
2

L2(0,L)

, (9a)

D (t) := K0

∥∥∥∥
∂p

∂x
(·, t)

∥∥∥∥
2

L2(0,L)

+ η

∥∥∥∥
∂2u

∂t∂x
(·, t)

∥∥∥∥
2

L2(0,L)

, (9b)

F (t) := −P (t)
∂u

∂t
(L, t). (9c)

Remark 2. The physical units of Etot are Joules per unit area, namely J m−2.
This is due to the fact that we are considering a one-dimensional problem in space
and, as a consequence, all the problem variables are assumed to be constant on every
plane perpendicular to the chosen direction x. Mathematically, Etot is obtained by
integrating in x between 0 and L the energy density εtot defined as

εtot(x, t) :=
c0
2
p(x, t)2 +

θ

2

∣∣∣∣
∂u

∂x
(x, t)

∣∣∣∣
2

.

The units of εtot are J m−3. Analogously, the units of D and F are J m−2 s−1.

Since Etot ≥ 0 and D ≥ 0, in absence of forcing terms (i.e., P = 0) the energy
decreases in time. It is important to emphasize that the terms proportional to the
storage coefficient c0 and the elastic parameter θ contribute to the total energy in
the form of potential energy, so that we can write

Ec0 (t) :=
c0
2
‖p (·, t)‖2L2(0,L) , Eθ (t) :=

θ

2

∥∥∥∥
∂u

∂x
(·, t)

∥∥∥∥
2

L2(0,L)

with Etot = Ec0+Eθ .

Conversely, the terms proportional to K0 and η contribute to dissipate energy via
viscous effects within the fluid and solid components. We notice that F does not
have a definite sign since it depends on the boundary terms. The energy identity (8)10

will be very useful in interpreting the results presented in Section 7.
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4. The 1D poroviscoelastic model in displacement form. Now we express
problem (1)-(4) solely in terms of the solid displacement. Combining (1a) and (3d),
we obtain that the total stress is given by

σ(x, t) = −P (t), for all x ∈ (0, L] and for all t ∈ (0, T ] ,

and, moreover, the fluid pressure p and the discharge velocity v can be written in
terms of the solid displacement u as:

p (x, t) =
1

α
P (t) +

1

α
σ0 (u (x, t)) , (10a)

v (x, t) = −K0

α

∂

∂x
σ0 (u (x, t)) , (10b)

where σ0 = σ0 (u (x, t)) is given by (2b). Let us now derive the problem satisfied
by u. Integrating Eq. (1b), where ζ is given by (2c), over the space interval [0, x]
and taking the boundary conditions (3) into account, yields

c0

∫ x

0

∂p

∂t
dy + α

∂u

∂t
+ v = 0

Now we substitute p and v by expressions (10) and note that

∫ x

0

σ0dy = θu+ η
∂u

∂t

by virtue of (3a). Then we obtain

c0xP
′ (t) + c0

(
θ
∂u

∂t
+ η

∂2u

∂t2

)
+ α2 ∂u

∂t
−K0

(
θ
∂2u

∂x2
+ η

∂3u

∂t∂x2

)
= 0.

The boundary conditions are (3a) and σ0|x=L = −P (t) (coming from (3c) and (10a)).
The initial conditions are (4a) and, on using (4b), (10a), (2b) and (5a),

η
∂2u

∂t∂x
(x, 0) = −P (0)

or equivalently

∂u

∂t
(x, 0) = −1

η
xP (0) + u1

u1 being an arbitrary constant. Note that u1 = 0 if and only if the compatibility
condition with (3a)

∂u

∂t
(0, 0) = 0 (11)

is satisfied. Summing up:
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Find u = u (x, t) such that:

c0η
∂2u

∂t2
+
(
α2 + c0θ

) ∂u
∂t

−K0θ
∂2u

∂x2
−K0η

∂3u

∂t∂x2
= −c0xP

′ (t) in (0, L)× (0, T ],

(12a)

u(0, t) = 0 in (0, T ],
(12b)

θ
∂u

∂x
(L, t) + η

∂2u

∂t∂x
(L, t) = −P (t) in (0, T ],

(12c)

u(x, 0) = 0 in (0, L),
(12d)

∂u

∂t
(x, 0) = −1

η
xP (0) + u1 in (0, L).

(12e)

Remark 3. The solution u (x, t) of the problem (12) is the sum u1 (x, t) + u0 (x, t)
of the solution u1 (x, t) of (12) where P = 0, and of the solution u0 (x, t) of (12)
where u1 = 0. In the first case, a perturbation is generated at time zero, with a
certain initial velocity of propagation (u1 6= 0): then u1 (x, t) measures how the
solid displacement changes through the medium when no disturbance is created at5

the boundary (P = 0). On the other hand, if there is no “initial impulse” (i.e.,
u1 = 0) and a disturbance is generated at the boundary (P 6= 0), then the corre-
sponding change of the solid displacement is represented by u0 (x, t). Therefore, the
compatibility condition (11) simply means to consider the response of the system to
the sole external stress P .10

Remark 4. We assume throughout the article that c0 > 0 and η > 0, i.e. the
system is characterized by finite compressibility and structural viscoelasticity.

Remark 5. The IBVP (12) has a markedly different character compared to the
linear poroviscoelastic system studied in [17] because of the second-order time deriv-
ative on the left-hand side of (12a).15

Remark 6. If we define the following quantities:

ρ̃ :=
1

K0

c0η

α2 + c0θ
,

σ̃ :=
1

α2 + c0θ
σ0 −

1

K0

∫ x

0

∂u

∂t
(y, t)dy,

f̃ := − 1

K0

c0
α2 + c0θ

xP ′ (t) ,

then the partial differential equation (12a) that describes the dynamics of the solid
phase displacement can be written as

ρ̃
∂2u

∂t2
=

∂σ̃

∂x
+ f̃ .

Such an equation can be formally interpreted as a linear momentum balance equation
for a single phase solid material whose dynamics is equivalent to that of the fluid-
solid mixture under the assumptions of Section 2. In particular, we see that the
finite compressibility of the mixture components, corresponding to c0 > 0, provides:
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(i) an inertia-like term for the equivalent solid, even though inertial terms were
neglected for the original solid phase within the mixture;

(ii) an additional term in the stress tensor introducing nonlocal effects in space;
(iii) a volumetric forcing term that results from the load applied as a boundary

condition.5

5. The linear 1D model in dimensionless form. In order to simplify the theo-
retical analysis, in this section we reduce the 1D model (12) into dimensionless form.
With this aim, for any variable Y , we define the corresponding non-dimensional
variable by

Ŷ :=
Y

[Y ]
,

where [Y ] is a suitably chosen scaling factor that has the same units as Y . The
selection of the scaling factor is not unique and, in general, not trivial. In this
article we generalize the choice made in [17], by introducing the following scaling
factors:

[x] = L, (13a)

[t] =
L2
(
α2 + c0θ

)

θK0
, (13b)

[η] = θ[t], (13c)

[σ] = [σ0] = [P ] = Pref , (13d)

[u] =
LPref

θ
, (13e)

[u1] =
[u]

[t]
, (13f)

[v] =
K0Pref

αL
, (13g)

[p] =
Pref

α
, (13h)

[D] = [F ] =
K0P

2
ref

L (α2 + c0θ)
, (13i)

[Etot] = [Ec0 ] = [Eθ] = [D][t] =
LP 2

ref

θ
. (13j)

We also define the non-dimensional quantity

γ :=
c0θ

α2 + c0θ
. (14)

Note that 0 < γ < 1. We recover the same definitions of the scaling factors as in
[17] by setting α = 1 and c0 = 0 in (13).

Remark 7. For notational simplicity we will drop the ‘ ·̂ ’ notation for the dimen-
sionless variables and instead use the same symbols adopted for the dimensional10

variables.
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The linear 1D model for a poroviscoelastic mixture in dimensionless form reads:

γη
∂2u

∂t2
+

∂u

∂t
− ∂2u

∂x2
− η

∂3u

∂t∂x2
= −γxP ′ (t) in (0, 1)× (0, T ], (15a)

u(0, t) = 0 in (0, T ], (15b)

∂u

∂x
(1, t) + η

∂2u

∂t∂x
(1, t) = −P (t) in (0, T ], (15c)

u(x, 0) = 0 in (0, 1), (15d)

∂u

∂t
(x, 0) = −1

η
xP (0) + u1 in (0, 1). (15e)

Once u (x, t) is known, the functions σ, p and v can be computed as follows:

σ (x, t) = −P (t) , (16a)

p (x, t) = P (t) +
∂u

∂x
+ η

∂2u

∂t∂x
, (16b)

v (x, t) = −
(
∂2u

∂x2
+ η

∂3u

∂t∂x2

)
= −

(
γη

∂2u

∂t2
+

∂u

∂t
+ γxP ′ (t)

)
. (16c)

Lastly, the dimensionless energy equation is written again in the form (8) where

Etot (t) = Ec0 (t) + Eθ (t) , (17a)

Ec0 (t) =
1

2

γ

1− γ
‖p (·, t)‖2L2(0,1) , Eθ (t) =

1

2

∥∥∥∥
∂u

∂x
(·, t)

∥∥∥∥
2

L2(0,1)

, (17b)

D (t) =
1

1− γ

∥∥∥∥
∂p

∂x
(·, t)

∥∥∥∥
2

L2(0,1)

+ η

∥∥∥∥
∂2u

∂t∂x
(·, t)

∥∥∥∥
2

L2(0,1)

, (17c)

F (t) = −P (t)
∂u

∂t
(1, t). (17d)

6. Well-posedness and Regularity of Solution. We make the following as-
sumption on the boundary traction in (15).

Assumption 8. P (t) is a piecewise smooth function on [0, T ].

We recall that a function P (t) is piecewise smooth on [0, T ] if both P and its
derivative P ′ are continuous on [0, T ], except possibly at a finite number of points5

in (0, T ), where they have simple jump discontinuities.

6.1. Auxiliary Problem. Define

U (t) =
1

η
e−t/η ∗ P (t) =

1

η

∫ t

0

exp

(
− t− s

η

)
P (s) ds. (18)

Using Assumption 8 we have that U (t) is absolutely continuous on [0, T ] and

ηU ′ (t) = P (t)− U (t) , U (0) = 0, U ′ (0) =
P (0)

η
. (19)

Now we introduce the change of variable

w (x, t) = u (x, t) + xU (t) , (20)
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and note that w solves the following auxiliary IBVP with homogeneous boundary
data:

γη
∂2w

∂t2
+

∂w

∂t
− ∂2w

∂x2
− η

∂3w

∂t∂x2
= f (x, t) in (0, 1)× (0, T ], (21a)

w(0, t) = 0 in (0, T ], (21b)

∂w

∂x
(1, t) + η

∂2w

∂t∂x
(1, t) = 0 in (0, T ], (21c)

w(x, 0) = 0 in (0, 1), (21d)

∂w

∂t
(x, 0) = ϕ (x) in (0, 1). (21e)

where the volumetric source and initial datum are given by:

f (x, t) = (1− γ)xU ′ (t) , (22a)

ϕ (x) = u1. (22b)

We shall prove the existence and uniqueness of the solution w (x, t) for a very
general class of data f (x, t) and ϕ (x). For sake of exposition we writeH = L2 (0, 1),
and define the real Hilbert space

V =
{
v ∈ W 1,2 (0, 1) : v (0) = 0

}
(23)

endowed with the equivalent norm ‖v‖V = ‖∂v/∂x‖L2(0,1), due to Poincaré’s in-

equality.5

Remark 9. Sobolev’s Embedding Theorem gives W 1,2 (0, 1) ⊂ C0 [0, 1] so that
v (0) = 0 holds in a strong sense for every v ∈ V .

Now we make the following assumptions on the functions f (x, t) and ϕ (x):

f ∈ L2 (0, T ;H) , ϕ ∈ H (24)

and write w (t) = w (·, t), w′ (t) = ∂w (·, t) /∂t, etc. We then define weak solutions
of (21) as follows.10

Definition 10. [Weak solution of problem (21)] A function w : [0, T ] → V is
a weak solution of the auxiliary problem (21) if:

D1: w ∈ W 1,2 (0, T ;V ) and w′′ ∈ L2 (0, T ;V ′);
D2: for every v ∈ V and for t pointwise a.e. in (0, T )

γη 〈w′′ (t) , v〉V ′×V + (w′ (t) , v)H + (ηw′ (t) + w (t) , v)V = (f (t) , v)H (25)

or, equivalently,15

d

dt
(γηw′ (t) + w (t) , v)H + (ηw′ (t) + w (t) , v)V = (f (t) , v)H ∀v ∈ V ; (26)

D3: w (0) = 0 and w′ (0) = ϕ.

Remark 11. Condition [D1] implies that w ∈ C0 ([0, T ] ;V ) and w′ ∈ C0 ([0, T ] ;H),
and thus condition [D3] is well defined. The Dirichlet boundary condition in (21) at
x = 0 is included in the regularity requirement that w (t) ∈ V , whereas the boundary
condition at x = 1 is satisfied in a weak sense.20
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6.2. A-priori Estimates.

Lemma 12. Let w be a weak solution of (21). Then there are constants Ci’s,
depending only on γ, η and T , such that the following estimates hold for t pointwise
in [0, T ]:

‖γηw′ (t) + w (t)‖2H ≤ C1

(
‖ϕ‖2H + ‖f‖2L2(0,T ;H)

)
, (27a)

‖w (t)‖2V ≤ C2

(
‖ϕ‖2H + ‖f‖2L2(0,T ;H)

)
, (27b)

‖w′ (t)‖2H ≤ C3

(
‖ϕ‖2H + ‖f‖2L2(0,T ;H)

)
. (27c)

Proof. Using (γηw′ + w) ∈ L2 (0, T ;V ) as multiplier in (26), we get

d

dt
‖γηw′ + w‖2H + (ηw′ + w, γηw′ + w)V = (f, γηw′ + w)H .

Integrating in time over (0, t) and using the given initial conditions, we obtain

‖γηw′ + w‖2H +
η(γ + 1)

2
‖w‖2V +

∫ t

0

(
‖w‖2V + γη2 ‖w′‖2V

)
ds

= γ2η2‖ϕ‖2H +

∫ t

0

(f, γηw′ + w)H ds.

Using Cauchy-Schwarz and Young’s Inequalities for the last term on the right-hand
side, we obtain the following estimate:

‖γηw′ + w‖2H +
η(γ + 1)

2
‖w‖2V +

∫ t

0

(
‖w‖2V + γη2 ‖w′‖2V

)
ds

≤ γ2η2‖ϕ‖2H +
1

2
‖f‖2L2(0,T ;H) +

1

2

∫ t

0

‖γηw′ + w‖2H ds. (28)

Now, dropping the second and third terms on the left-hand side of (28) and using5

Gronwall’s Inequality, estimate (27a) follows. Similarly, by dropping the first and
third terms on the left-hand side and using (27a), we get (27b).
Lastly, we use triangle inequality and the embedding V ↪→ H to write

γη ‖w′‖H ≤ ‖γηw′ + w‖H + ‖w‖H
≤ ‖γηw′ (t) + w (t)‖H +

1√
2
‖w (t)‖V .

Then, estimate (27c) follows from (27a) and (27b).

Lemma 13. Let w be a weak solution of (21). Then there is a constant C, de-10

pending only on γ, η and T , such that

‖w‖L∞(0,T ;V ) + ‖w′‖L2(0,T ;V ) + ‖w′′‖L2(0,T ;V ′) ≤ C
(
‖ϕ‖H + ‖f‖L2(0,T ;H)

)
. (29)

Proof. From (27b) it immediately follows

‖w‖L∞(0,T ;V ) ≤
√

C2

(
‖ϕ‖H + ‖f‖L2(0,T ;H)

)
.

In addition, Eqs. (28) and (27a) give

γη2
∫ T

0

‖w′‖2V ds ≤ γ2η2‖ϕ‖2H +
1

2
‖f‖2L2(0,T ;H) +

1

2

∫ T

0

‖γηw′ + w‖2H ds

≤
(
γ2η2 +

T

2
C1

)
‖ϕ‖2H +

1

2
(1 + TC1) ‖f‖2L2(0,T ;H)
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so that

‖w′‖L2(0,T ;V ) ≤ C
(
‖ϕ‖H + ‖f‖L2(0,T ;H)

)
(30)

for a suitable C = C (γ, η, T ).
Lastly, using the definition of a weak solution, we have that for v ∈ V

γη
∣∣〈w′′, v〉V ′×V

∣∣ ≤ ‖w′‖H ‖v‖H + ‖ηw′ + w‖V ‖v‖V + ‖f‖H ‖v‖H
≤ 1√

2
(‖w′‖V + ‖ηw′ + w‖V + ‖f‖H) ‖v‖V .

This implies that

‖w′′ (t)‖V ′ ≤
η + 1√

2
(‖w′‖V + ‖w‖V + ‖f‖H)

from which, using estimates (27b) and (27a), we obtain

‖w′′‖L2(0,T ;V ′) ≤ C
(
‖ϕ‖H + ‖f‖L2(0,T ;H)

)

for a suitable C = C (γ, η, T ).

The following corollary is an immediate consequence of Lemma 13.5

Corollary 14. (Uniqueness and continuous dependence on data) The weak
solution to problem (21) is unique and depends continuously on the data.

6.3. Existence of Solution. The IBVP (21) can be solved formally using separa-
tion of variables. If we look for solutions of the form w(x, t) = T (t)X(x), then the
associated regular Sturm-Liouville Problem is10

{
X ′′ + λX = 0, 0 < x < 1

X(0) = 0, X ′(1) = 0,
(31)

with eigenvalues and eigenfunctions given by

λn =
(
nπ +

π

2

)2
, n ≥ 0, (32)

Xn (x) = sin
((

nπ +
π

2

)
x
)
, n ≥ 0. (33)

Remark 15. The sequence of functions
{√

2Xn (x)
}

forms a Hilbert space basis

for H, whereas the sequence of functions
{√

2
λn

Xn (x)
}
forms a Hilbert space basis

for V (see [16]).

The solution w of (21) has the expansion

w (x, t) =

∞∑

n=0

Tn (t)Xn (x) , (34)

where Tn(t) can be recovered using the data. Similarly, we use the basis {Xn (x)}
to represent ϕ and f as follows:

ϕ (x) =

∞∑

n=0

ϕnXn (x) , (35a)

f (x, t) =

∞∑

n=0

fn (t)Xn (x) , (35b)
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where ϕn and fn(t) are the Fourier coefficients of ϕ and f(·, t) with respect to
Xn(x), respectively. Parseval’s identity (consequence of Remark 15) provides the
following relations:

‖ϕ‖2H =
1

2

∞∑

n=0

ϕ2
n, (36)

‖f (·, t)‖2H =
1

2

∞∑

n=0

|fn (t)|2 , (37)

‖f‖2L2(0,T ;H) =
1

2

∫ T

0

∞∑

n=0

|fn (t)|2 dt. (38)

Note that Tn(t) satisfies the following ordinary differential equation (ODE) for all
n ≥ 0:

γηT ′′

n (t) + (1 + ηλn)T
′

n(t) + λnT (t) = fn(t), (39)

and initial conditions

Tn(0) = 0 and T ′

n(0) = ϕn. (40)

The characteristic equation for the homogeneous counterpart of (39) is given by

γηΛ2 + (1 + ηλn) Λ + λn = 0.

Since the discriminant of the equation is

(1 + ηλn)
2 − 4γηλn = (1− ηλn)

2
+ 4 (1− γ) ηλn > 0,

then for each n ≥ 0 the characteristic equation has two real, negative, distinct roots
r1n = −Λ1n and r2n = −Λ2n, where

Λ1n =
1

2γη

(
1 + ηλn −

√
(1 + ηλn)

2 − 4γηλn

)
, and (41a)

Λ2n =
1

2γη

(
1 + ηλn +

√
(1 + ηλn)

2 − 4γηλn

)
. (41b)

Remark 16. Λ1n and Λ2n satisfy the following relations:

0 < Λ1n < Λ2n

Λ1n + Λ2n =
1 + ηλn

γη
, Λ1nΛ2n =

λn

γη
, 1− γ = −γ (ηΛ1n − 1) (ηΛ2n − 1)

Λ1n =
1

η
−
(
1− γ

η2

)
1

λn
+O

(
1

λ2
n

)
, Λ2n =

λn

γ
+

1− γ

γη
+O

(
1

λn

)
(as n → ∞)

Λ1n =
λn

1 + ηλn
+O (γ) , Λ2n =

1 + ηλn

γη
− λn

1 + ηλn
+O (γ) (as γ → 0)

Therefore the solution for the homogeneous ODE (39) is given by T 0
n(t) = ane

−Λ1nt+5

bne
−Λ2nt. The particular solution is obtained from variation of parameters formula.

The Wronskian is given by W (t) = (Λ2n−Λ1n)e
−Λ1nte−Λ2nt, so that the particular

solution has the following form

T p
n(t) =

1

γη

∫ t

0

e−Λ1n(t−s) − e−Λ2n(t−s)

Λ2n − Λ1n
f(s) ds. (42)

We introduce the following notation

Gn (t) :=
exp (−Λ1nt)− exp (−Λ2nt)

Λ2n − Λ1n
(43)
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and then write the solution to (39) as

Tn(t) = ane
−Λ1nt + bne

−Λ2nt +
1

γη
(Gn ∗ fn) (t) (44)

where we used the following formula for convolution

(Gn ∗ fn) (t) =
∫ t

0

Gn (t− s) fn (s) ds.

Now we use (44) back into (34) and impose the initial conditions. We have

w(x, 0) = an + bn = 0, and

wt(x, 0) = −Λ1nan − Λ2nbn = ϕn

which yields an = −bn = ϕn/ (Λ2n − Λ1n). In conclusion, we obtain

Tn(t) = Gn (t)ϕn +
1

γη
(Gn ∗ fn) (t) , and (45a)

w (x, t) =

∞∑

n=0

[
Gn (t)ϕn +

1

γη
(Gn ∗ fn) (t)

]
Xn (x) . (45b)

We note that the terms Gn(t) given in (43) satisfy the following estimates.

Lemma 17. There exists a constant C > 0 such that for all n ≥ 0 and for all
t ∈ [0, T ] we have

0 ≤ Gn (t) ≤
C

λn
, (46a)

|G′

n (t)| ≤ C. (46b)

Proof. Since 0 < Λ1n < Λ2n, then 0 < exp (−Λ2nt) ≤ exp (−Λ1nt) ≤ 1 and thus for
all t ∈ [0, T ] we have

0 ≤ Gn (t) <
1

Λ2n − Λ1n

and we get (46a) since the sequence λn

Λ2n−Λ1n
= γηλn√

(ηλn+1)2−4γηλn

→ γ as n → ∞.

Moreover, we have that for all t ∈ [0, T ]

|G′

n (t)| =
Λ2n exp (−Λ2nt)− Λ1n exp (−Λ1nt)

Λ2n − Λ1n
≤ 2Λ2n

Λ2n − Λ1n

and (46b) follows since Λ2n

Λ2n−Λ1n
→ 1 as n → ∞.

Now we can state and prove our well-posedness result.5

Theorem 18. (Well-posedness of problem (21)) For every f ∈ L2(0, T ;H)
and ϕ ∈ H there is a unique weak solution of (21), in the sense of Definition 10.
Moreover, the solution depends continuously on the data.

Proof. Uniqueness and continuous dependence of weak solution have already been
proved, see Corollary 14, so that it remains to prove existence, i.e. that w(x, t)10

given in (45b) satisfies conditions (D1)-(D3) of Definition 10.

(D1) (A) First we show that w ∈ L2 (0, T ;V ). For all t ∈ [0, T ], we have

‖w(t)‖2V =
1

2

∞∑

n=0

λnT
2
n(t) ≤

∞∑

n=0

λn |Gn (t)ϕn|2+
∞∑

n=0

λn

∣∣∣∣
1

γη

∫ t

0

Gn (t− s) fn (s) ds

∣∣∣∣
2

.
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Using Lemma 17, we obtain1

‖w(t)‖2V ≤ C

∞∑

n=0

|ϕn|2
λn

+ C

∞∑

n=0

1

λn

(∫ t

0

|fn (s)| ds
)2

≤ C

∞∑

n=0

|ϕn|2 + C

∞∑

n=0

∫ T

0

|fn (s)|2 ds ≤ C
(
‖ϕ‖2H + ‖f‖2L2(0,T ;H)

)
.(47)

Therefore w ∈ L∞ (0, T ;V ) ⊂ L2 (0, T ;V ).
(B) The weak derivative of w with respect to time is given by

w′ (t) =

∞∑

n=0

T ′

n(t)Xn (x) =

∞∑

n=0

[
G′

n (t)ϕn +
1

γη
(G′

n ∗ fn) (t)
]
Xn (x) ,

and we obtain the following estimate

‖w′ (t)‖2H =
1

2

∞∑

n=0

(T ′

n(t))
2 ≤

∞∑

n=0

|G′

n (t)ϕn|2 +
∞∑

n=0

∣∣∣∣
∫ t

0

G′

n (t− s) fn (s) ds

∣∣∣∣
2

.

Again by Lemma 17, we obtain

‖w′ (t)‖2H ≤ C
∞∑

n=0

|ϕn|2 + C
∞∑

n=0

(∫ t

0

|fn (s)| ds
)2

≤ C
∞∑

n=0

|ϕn|2 + C
∞∑

n=0

∫ T

0

|fn (s)|2 ds

≤ C
(
‖ϕ‖2H + ‖f‖2L2(0,T ;H)

)
. (48)

Thus w′ ∈ L∞ (0, T ;H) ⊂ L2 (0, T ;H). In order to show that w′ ∈ L2 (0, T ;V ), we
first use the Monotone Convergence Theorem to write5

‖w′‖2L2(0,T ;V ) =
1

2

∫ T

0

∞∑

n=0

λn |T ′

n (s)|
2
ds =

1

2

∞∑

n=0

∫ T

0

λn |T ′

n (s)|
2
ds . (49)

We use multiplier T ′

n in (39) and the initial conditions (40) and obtain the following
estimate:

γηT ′

nT
′′

n + (1 + ηλn)T
′2
n + λnTnT

′

n = fnT
′

n ⇒
γη

2

d

dt
(T ′

n)
2 + (T ′

n)
2 + ηλn(T

′

n)
2 +

λn

2

d

dt
(Tn)

2 = fnT
′

n ⇒
γη

2
(T ′

n(t))
2 − γη

2
ϕ2
n +

∫ t

0

(T ′

n)
2 ds+

∫ t

0

ηλn(T
′

n)
2 ds+

λn

2
(Tn)

2 =

∫ t

0

fnT
′

n ds ⇒
∫ t

0

ηλn(T
′

n)
2 ds ≤ γη

2
ϕ2
n ++

1

2

∫ T

0

|fn (s)|2 ds+
1

2

∫ T

0

|T ′

n (s)|
2
ds. (50)

Now we use (50) back into (49), and take advantage of estimate (48) to obtain

‖w′‖2L2(0,T ;V ) ≤ C

∞∑

n=0

ϕ2
n + C

∞∑

n=0

∫ T

0

|fn (s)|2 ds+ C

∞∑

n=0

∫ T

0

|T ′

n (s)|
2
ds

= C
{
‖ϕ‖2H + ‖f‖2L2(0,T ;H) + ‖w′‖2L2(0,T ;H)

}

≤ C
{
‖ϕ‖2H + ‖f‖2L2(0,T ;H)

}
. (51)

and this gives the desired conclusion that w′ ∈ L2 (0, T ;V ).

1In what follows, for notational convenience, C will denote possibly different constants depend-

ing only on γ, η, T .
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(C) Left to show that w′′ ∈ L2 (0, T ;V ′). For any v (x) =
∑

∞

n=0 cnXn (x) ∈ V and
for t ∈ [0, T ], we use (39) to define the linear functional w′′ (t) as follows

〈w′′ (t) , v〉V ′×V =
1

2

∞∑

n=0

cnT
′′

n (t)

= − 1

2γη

∞∑

n=0

T ′

n (t) cn − 1

2γη

∞∑

n=0

λn (ηT
′

n (t) + Tn (t)) cn +
1

2γη

∞∑

n=0

fn (t) cn

= − 1

γη
(w′ (t) , v)H − 1

γη
(ηw′ (t) + w (t) , v)V +

1

γη
(f (t) , v)H .

Hence, by virtue of the embedding V ↪→ H, we obtain that
∣∣〈γηw′′ (t) , v〉V ′×V

∣∣ ≤ ‖w′ (t)‖H ‖v‖H + ‖ηw′ (t) + w (t)‖V ‖v‖V + ‖f (t)‖H ‖v‖H
≤ C {‖w′ (t)‖V + ‖w (t)‖V + ‖f (t)‖H} ‖v‖V .

This shows that w′′(t) ∈ V ′ and

‖w′′ (t)‖V ′ ≤ C (‖w′ (t)‖V + ‖w (t)‖V + ‖f (t)‖H)

or, equivalently,

‖w′′ (t)‖2V ′ ≤ C
(
‖w′ (t)‖2V + ‖w (t)‖2V + ‖f (t)‖2H

)
.

In conclusion, using the estimates in part (A) and part (B), we obtain that w′′ ∈
L2 (0, T ;V ′).5

(D2) Now we show that w satisfies condition (D2). Since the
{√

2
λn

Xn

}
is a

basis in V , it suffices to consider the test function v = Xn. For t pointwise almost
everywhere in (0, T ), we use (39) and obtain

γη 〈w′′ (t) , v〉V ′×V + (w′ (t) , v)H + (ηw′ (t) + w (t) , v)V

=
γη

2
T ′′

n (t) +
1

2
T ′

n (t) +
ηλn

2
T ′

n (t) +
λn

2
Tn (t) =

1

2
fn(t) = (f (t) , v)H .

(D3)-(D4)As stated in Remark 11, condition (D1) implies that w ∈ C0 ([0, T ] ;V )
and w′ ∈ C0 ([0, T ] ;H). Moreover, solution w(x, t) satisfies the initial conditions10

(D3)-(D4) by virtue of (40). This concludes the proof of our well-posedness theo-
rem.

6.4. Regularity of the Solution. We have established the existence and unique-
ness of the weak solution w to the auxiliary problem (21). Now we examine its
regularity.15

Proposition 19. (Regularity of w and wxx) Under the hypotheses in Theorem
18, the following is true:

w(x, t) ∈ C0(Q), where Q = [0, 1]× [0, T ], (52a)

wxx ∈ L∞ (0, T ;H) . (52b)

Proof. (A) The result follows from Lemma 17, the fact that |Xn(x)| ≤ 1 and Weier-
strass Test. Indeed, for all x ∈ [0, 1] and t ∈ [0, T ], and every n ≥ 0, we have

|Tn(t)Xn| ≤ |Gn (t)ϕnXn (x)|+
1

γη
|(Gn ∗ fn) (t)Xn (x)| .
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Now, due to Lemma 17, we have

∞∑

n=0

|Gn (t)ϕnXn (x)| ≤
∞∑

n=0

|Gn (t)ϕn| ≤ C
∞∑

n=0

1

λn
|ϕn| ≤ C

∞∑

n=0

(
1

λ2
n

+ ϕ2
n

)

= C

(
∞∑

n=0

1

λ2
n

+ ‖ϕ‖2H

)
< ∞,

and
∞∑

n=0

|(Gn ∗ fn) (t)Xn (x)| ≤
∞∑

n=0

|(Gn ∗ fn) (t)| ≤
∞∑

n=0

∫ t

0

|Gn (t− s) fn (s)| ds

≤ C

∞∑

n=0

∫ T

0

1

λn
|fn (s)| ds ≤ C

∞∑

n=0

∫ T

0

(
1

λ2
n

+ |fn (s)|2
)
ds

≤ C

(
∞∑

n=0

1

λ2
n

+ ‖f‖2L2(0,T ;H)

)
< ∞.

Applying Weierstrass Test, we obtain that the series
∑

∞

n=0 Tn(t)Xn (x) converges
absolutely and uniformly inQ = [0, 1]×[0, T ]. Moreover, we note thatGn (t)ϕnXn(x)+
1
γη (Gn ∗ fn) (t)Xn(x) ∈ C0(Q), for every n ≥ 0, and thus w(x, t) ∈ C0(Q).5

(B) The second order weak derivative in space of w is given by

∂2w

∂x2
= −

∞∑

n=0

Gn (t)ϕnλnXn (x)−
∞∑

n=0

(Gn ∗ fn) (t)λnXn (x) .

Then we use estimate (46a) in Lemma 17 and obtain

∥∥∥∥
∂2w

∂x2
(·, t)

∥∥∥∥
2

H

≤
∞∑

n=0

|Gn (t)ϕnλn|2 +
∞∑

n=0

|(Gn ∗ fn) (t)λn|2

≤ C
∞∑

n=0

ϕ2
n + C

∞∑

n=0

∣∣∣∣
∫ t

0

|fn (s)| ds
∣∣∣∣
2

≤ C
∞∑

n=0

ϕ2
n + C

∞∑

n=0

∫ t

0

|fn (s)|2 ds

= C
(
‖ϕ‖2H + ‖f‖2L2(0,T ;H)

)

so that wxx ∈ L∞ (0, T ;H).

If the data are more regular with respect to x the weak solution w(x, t) enjoys
stronger regularity properties.

Proposition 20. (Regularity of wt, wxx and wtxx) In addition to the hypotheses
in Theorem 18, we make the following ones:

f ∈ L2 (0, T ;V ) and ϕ ∈ V.

Then the following is true:10

wt(x, t) ∈ C0(Q), where Q = [0, 1]× [0, T ], (53a)

wxx ∈ L∞ (0, T ;V ) , (53b)

wtxx ∈ L2 (0, T ;H) . (53c)
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Proof. (A) For all x ∈ [0, 1] and t ∈ [0, T ], and every n ≥ 0, we have

|T ′

n(t)Xn| ≤ |G′

n (t)ϕnXn (x)|+
1

γη
|(G′

n ∗ fn) (t)Xn (x)| .

Now, due to Lemma 17, we have

∞∑

n=0

|G′

n (t)ϕnXn (x)| ≤
∞∑

n=0

|G′

n (t)ϕn| ≤ C
∞∑

n=0

|ϕn| ≤ C

∞∑

n=0

(
1

λn
+ λnϕ

2
n

)

= C

(
∞∑

n=0

1

λn
+ ‖ϕ‖2V

)
< ∞,

and
∞∑

n=0

|(G′

n ∗ fn) (t)Xn (x)| ≤
∞∑

n=0

|(G′

n ∗ fn) (t)| ≤
∞∑

n=0

∫ t

0

|G′

n (t− s) fn (s)| ds

≤ C

∞∑

n=0

∫ T

0

|fn (s)| ds ≤ C

∞∑

n=0

∫ T

0

(
1

λn
+ λn |fn (s)|2

)
ds

≤ C

(
∞∑

n=0

1

λn
+ ‖f‖2L2(0,T ;V )

)
< ∞.

Applying Weierstrass Test, we obtain that the series
∑

∞

n=0 T ′

n(t)Xn (x) converges
absolutely and uniformly in Q = [0, 1]× [0, T ] hence wt(x, t) ∈ C0(Q).

(B) Like in the proof of (52a), we have5

∥∥∥∥
∂2w

∂x2
(·, t)

∥∥∥∥
2

V

≤
∞∑

n=0

λn |Gn (t)ϕnλn|2 +
∞∑

n=0

λn |(Gn ∗ fn) (t)λn|2

≤ C
∞∑

n=0

λnϕ
2
n + C

∞∑

n=0

λn

∣∣∣∣
∫ t

0

|fn (s)| ds
∣∣∣∣
2

≤ C

∞∑

n=0

λnϕ
2
n + C

∞∑

n=0

∫ t

0

λn |fn (s)|2 ds

= C
(
‖ϕ‖2V + ‖f‖2L2(0,T ;V )

)

so that wxx ∈ L∞ (0, T ;V ).

(C) Since the second order weak derivative in space of w′ is given by

∂3w

∂t∂x2
(x, t) = −

∞∑

n=0

T ′

n (t)λnXn (x)

then ∥∥∥∥
∂3w

∂t∂x2

∥∥∥∥
2

L2(0,T ;H)

=
1

2

∫ T

0

∞∑

n=0

λ2
n |T ′

n (s)|
2
ds (54)

In order to estimate the right hand side, we use multiplier λnT
′

n on the ODE (39)
that Tn solves to obtain

ηλ2
nT

′2
n = −λnT

′2
n − 1

2

(
γηλnT

′2
n + λ2

nT
2
n

)′
+ λnfn (t)T

′

n

≤ −1

2

(
γηλnT

′2
n + λ2

nT
2
n

)′
+ λnfn (t)T

′

n.
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Now we integrate from 0 to t and use the initial conditions (40):

η

∫ t

0

λ2
n |T ′

n (s)|
2
ds ≤ −1

2

(
γηλn |T ′

n (t)|
2
+ λ2

n |Tn (t)|2
)
+

1

2
γηλnϕ

2
n +

∫ t

0

λnfn (s)T
′

n (s) ds

≤ 1

2

(
γηλnϕ

2
n +

∫ t

0

λn |fn (s)|2 ds+
∫ t

0

λn |T ′

n (s)|
2
ds

)
. (55)

Thus, using (55) back into (54), we obtain

∥∥∥∥
∂3w

∂t∂x2

∥∥∥∥
2

L2(0,T ;H)

≤ C

(
∞∑

n=0

λnϕ
2
n +

∫ T

0

∞∑

n=0

λn |fn (t)|2 dt+
∫ T

0

∞∑

n=0

λn |T ′

n (t)|
2
dt

)

= C
(
‖ϕ‖2V + ‖f‖2L2(0,T ;V ) + ‖w′‖2L2(0,T ;V )

)

and the assertion follows from estimate (29).

6.5. Analytical formulas for solid displacement and discharge velocity.
Now we are in a position to return to our original linear 1D problem (15). The solid5

displacement solution u (x, t) of (15) is the sum

u (x, t) = −xU (t) + w (x, t) (56)

where we recall that

U (t) =
1

η
e−t/η ∗ P (t)

and w (x, t) is the unique weak solution of the auxiliary problem (21) with special
data (22). From the Fourier expansions

∞∑

n=0

1√
λn

Xn (x) =
1

2
,

∞∑

n=0

(−1)
n

λn
Xn (x) =

x

2
, 0 ≤ x ≤ 1,

as well as the Fourier series (35) of ϕ and f with respect to the basis {Xn}, their
Fourier coefficients are given by

ϕn =
2u1√
λn

, (57a)

fn (t) =
2 (−1)

n

λn
(1− γ)U ′ (t) . (57b)

To summarize, we can write the solution u as a sum

u (x, t) = u1 (x, t) + u0 (x, t) , (58)

where:

u1 (x, t) = u1

∞∑

n=0

2√
λn

Gn (t)Xn (x) , (59a)

u0 (x, t) = −xU (t) +
1− γ

γη

∞∑

n=0

2 (−1)
n

λn
Gn (t) ∗ U ′ (t)Xn (x) . (59b)

Remark 21. The solid displacement solution u (x, t) ∈ C0 (Q) since the physical
data (22) satisfy f ∈ L2 (0, T ;V ) and ϕ ∈ H. Notice, however, that our special ϕ10

belongs to V if and only if u1 = 0, i.e. ϕ = 0 and u1 (x, t) ≡ 0.
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By virtue of (58), the discharge velocity (16c) is given by

v (x, t) = v1 (x, t) + v0 (x, t) (60)

where

v1 (x, t) = u1

∞∑

n=0

2
√
λn (Gn (t) + ηG′

n (t))Xn (x) , (61a)

v0 (x, t) =
1− γ

γη

∞∑

n=0

2(−1)n[Gn(t) ∗ U ′(t) + η(Gn(t) ∗ U ′(t))′]Xn(x).(61b)

Remark 22. It should be stressed that the Fourier coefficients of v1 (x, t) are O (n),
hence the component of the discharge velocity due to the presence of an initial im-
pulse u1 always exibits a blow-up whatever boundary traction P (t) is considered.5

7. Continuous vs. discontinuous boundary sources. In this section, we an-
alyze the behavior of the solutions obtained for model (15) in the case where the
compatibility conditions are satisfied (i.e., u1 = 0), and the boundary traction
P (t) is characterized by continuous or discontinuous waveforms. To graphically
represent the model solutions we proceed as follows: (1) we define the numerical10

values of model parameters (in dimensional form) consistently with the experimen-
tal data illustrated in [15]; (2) we perform the non-dimensionalization of the model
equations according to the procedure described in Section 5; (3) we compute the
model solutions in non-dimensional form; (4) we multiply the non-dimensional in-
put data and model solutions by the scaling factors introduced in (13) and plot15

the obtained results for subsequent analysis. For each considered waveform of P (t),
we provide the non-dimensional expressions of the solutions u, p and v. These
latter expressions allow us to compute the non-dimensional energies Eθ, Ec0 and
Etot, the non-dimensional dissipation functional D and the non-dimensional force
term F using the expressions (17). The resulting non-dimensional energies are then20

multiplied by the scaling factor [Etot] introduced in (13j) and the same is done for
the non-dimensional dissipation and force terms that are multiplied by the scaling
factor [D] introduced in (13i).

symbol value units

L 0.81 · 10−3 m
T 105, 104 s
θ 0.97 · 106 Nm−2

K0 2.9 · 10−16 m4N−1s−1

Pref 6 · 104 Nm−2

c0 1.67 · 10−5 m2N−1

η 4.85 · 109, 4.85 · 108 Nsm−2

Table 1. Numerical values of model parameters utilized in the
numerical simulations.

Table 1 reports the numerical values of model parameters (in dimensional form)
that are used in the next sections. The values for L, T , θ, K0 and Pref have been25

chosen consistently with the experimental data illustrated in [15]. To observe the
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asymptotic behavior of the modeled system, T has been taken equal to 105 s in the
example illustrated in Section 7.1. In this example, the corresponding value of η
is 4.85 · 109 Nsm−2. The value of the Biot coefficient α has been set equal to 0.9,
whereas in [15] it was equal to 1 since both mixture components were assumed to be
incompressible. The values of the viscoelastic parameter η and of the compressibility5

parameter c0 (which were not present in the model studied in [15]) have been set
equal to θτe and 1/Pref, respectively, where τe is an elastic time constant that has
been set equal to T/20.

The numerical values of the parameters (in dimensionless form) that are used
in the computations discussed in the next sections are reported in Table 2. These10

values have been obtained by applying the scaling procedure described in Section 5
to the values in Table 1. With a slight abuse of notation, the symbols used to denote
the dimensionless parameters are the same ones that we used for the corresponding
parameters expressed with their physical units.

symbol value

L 1
T 2.5, 0.25
η 1.26 · 10−1, 1.26 · 10−2

γ 0.95

Table 2. Numerical values of model parameters in dimensionless form.

For convenience, we recall here the formulas that we use to compute the solid
displacement, the fluid pressure and the discharge velocity in dimensionless form:

u0 (x, t) = −xU (t) +
1− γ

γη

∞∑

n=0

2 (−1)
n

λn
Gn (t) ∗ U ′ (t)Xn (x) , (62a)

p0 (x, t) =

∞∑

n=0

2 (−1)
n

λn
Bn(t)X

′

n (x) , (62b)

v0 (x, t) =

∞∑

n=0

2 (−1)
n
Bn(t)Xn (x) , (62c)

where

Bn (t) =
1− γ

γη

[
(Gn ∗ U ′) (t) + η ((Gn ∗ U ′) (t))

′

]
. (62d)

Recalling formula (43) and using the fact that (Gn ∗ U ′)′ = G′

n ∗ U ′, we obtain the
following simplification for the coefficients Bn (t)

Bn (t) =
1− γ

γη

(
1− ηΛ1n

Λ2n − Λ1n
e−Λ1nt ∗ U ′ − 1− ηΛ2n

Λ2n − Λ1n
e−Λ2nt ∗ U ′

)
. (62e)

7.1. The case of step pulse at t = t∗. Let t∗ ∈ [0, T ). We consider the following15

boundary source:

P (t) = H (t− t∗) =

{
0 if t < t∗

1 if t ≥ t∗.
(63)
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Figure 1. The step pulse at t = t∗.

Figure 1 gives a graphical representation of P (t) for t∗ ∈ (0, T ).
Replacing (63) into (18) we obtain

U(t) =

{
0, t < t∗

1− e−
t−t∗

η , t ≥ t∗
and U ′(t) =

{
0, t < t∗

1
η e

−
t−t∗

η , t ≥ t∗.
(64)

We can now compute the convolution needed in (62a):

Gn (t) ∗ U ′ (t) =





0, t < t∗,

1

η(Λ2n − Λ1n)

[
e−(t−t∗)/η − e−Λ1n(t−t∗)

Λ1n − 1/η

−e−(t−t∗)/η − e−Λ2n(t−t∗)

Λ2n − 1/η

]
, t ≥ t∗.

(65)

We observe that for t ≥ t∗,

(Gn (t) ∗ U ′ (t))
′

=
1

η
(Gn (t− t∗)− (Gn ∗ U ′) (t)) ,

and therefore the coefficients (62d) present in the expansions of pressure and dis-
charge velocity become

Bn (t) =
1− γ

γη
Gn (t− t∗) , for any t ≥ t∗.

Then displacement, pressure and discharge velocity are all zero for t < t∗, and have
the following representations for t ≥ t∗:

u(x, t) = −x−
∞∑

n=0

2(−1)n

λn

e−Λ2n(t−t∗)(ηΛ1n − 1)− e−Λ1n(t−t∗)(ηΛ2n − 1)

η(Λ2n − Λ1n)
Xn(x),

(66a)

p(x, t) =
1− γ

γη

∞∑

n=0

2(−1)n

λn
Gn (t− t∗)X ′

n(x), (66b)

v(x, t) =
1− γ

γη

∞∑

n=0

2(−1)nGn (t− t∗)Xn(x). (66c)

Note that all three series in the expressions (66) converge absolutely and uniformly
on [0, 1]× [t∗, T ], and therefore p, v ∈ C0([0, 1]× [t∗, T ]). Moreover, we observe that5

p(x, t) → 0 and v(x, t) → 0, as t → t∗.
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Remark 23. Note that if t∗ = 0, then this is the case of a continuous constant
boundary source P (t) = 1, for all t ≥ 0. Then the solid displacement, the fluid
pressure and the discharge velocity have the following representations for t ≥ 0:

u(x, t) = −x−
∞∑

n=0

2(−1)n

λn

e−Λ2nt(ηΛ1n − 1)− e−Λ1nt(ηΛ2n − 1)

η(Λ2n − Λ1n)
Xn(x), (67a)

p(x, t) =
1− γ

γη

∞∑

n=0

2(−1)n

λn
Gn (t)X

′

n(x), (67b)

v(x, t) =
1− γ

γη

∞∑

n=0

2(−1)nGn (t)Xn(x) . (67c)

All three series in (67) converge absolutely and uniformly on [0, 1] × [0, T ], and
therefore p, v ∈ C0([0, 1]× [0, T ]).5

Figure 2. Left panel: solid displacement u at x = L as a function
of t. Middle panel: fluid pressure p at x = 0 as a function of t.
Right panel: discharge velocity v at x = L as a function of t. The
applied boundary traction is a step pulse of amplitude Pref at
t∗ = 0.

7.1.1. The case t∗ = 0. Figure 2 illustrates displacement, fluid pressure and dis-
charge velocity (left, middle and right panel, respectively) as a function of t. Dis-
placement and velocity are evaluated at x = 1 (right boundary) whereas the pressure
is evaluated at x = 0 (left boundary). Within the observational time interval, the
displacement decreases monotonically till it reaches an asymptotic value of approx-10

imately 50µm. Conversely, pressure and discharge velocity exhibit a nonmonotonic
behaviour, characterized by a rapid increase, attaining a maximum value of approxi-
mately 2.3kPa and 0.002µms−1, respectively, followed by a monotonic decrease that
approaches zero asymptotically The behavior of the simulated solutions are consis-
tent with those reported in [15, 13].15

Figure 3 illustrates displacement, fluid pressure and discharge velocity (left, mid-
dle and right panel, respectively) as a function of x and t. We see that, after
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an initial transient due to structural viscoelasticity, the solid displacement tends
to a linear behavior along the domain length, being maximum (in absolute value)
at x = L. Mathematically, this behavior is due to the fact that, for long times,
the viscoelastic terms in the series in (67a) become negligible with respect to the
linear elastic component. Both pressure and discharge velocity distributions de-5

crease as time → +∞, in agreement with the fact that definition (43) implies that
limt→+∞ Gn(t) = 0 for all n ≥ 0.
Figure 4 illustrates the energies per unit area Eθ, Ec0 and Etot (left, middle and

right panels, respectively) as a function of t. In agreement with the previous analysis
for the displacement and pressure profiles, we see that Eθ tends to a constant value10

as time increases because the deformation of the mixture tends to become uniform
in all the domain. At the same time, Ec0 decreases in time following the decrease
of the pressure, being significant only during the initial transient. As a result, the
total potential energy Etot of the mixture tends to coincide with Eθ, as demonstrated
by the right panel of Figure 4.15
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Figure 3. Top panel: solid displacement u as a function of x and
t. Middle panel: fluid pressure p as a function of x and t. Bottom
panel: discharge velocity v as a function of x and t. The applied
boundary traction is a step pulse of amplitude Pref at t∗ = 0.
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Figure 4. Simulated profiles of Eθ (left), Ec0 (middle) and Etot as
a function of t. The applied boundary traction is a step pulse of
amplitude Pref at t∗ = 0.

Figure 5. Left panel: dissipation as a function of t. Right panel:
force term as a function of t. The applied boundary traction is a
step pulse of amplitude Pref at t∗ = 0.
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Figure 5 illustrates the dissipation D and force term F (left and right panel,
respectively) as a function of t. The temporal profiles of both functions rapidly
decay to zero as time increases. This is consistent with the fact that the domain
of the mixture tends to deform in a uniform manner as time gets large so that its
time variation becomes rapidly negligible.5

7.1.2. The case t∗ > 0. We assume that the external traction applied at the right
boundary x = L has a jump discontinuity at t∗ = 0.25T .

Figure 6. Left panel: solid displacement u at x = L as a function
of t. Middle panel: fluid pressure p at x = 0 as a function of t.
Right panel: discharge velocity v at x = L as a function of t. The
applied boundary traction is a step pulse of amplitude Pref at
t∗ = 0.25T .

Figure 6 illustrates the computed displacement, fluid pressure and discharge ve-
locity (left, middle and right panel, respectively) as a function of t. Displacement
and velocity are evaluated at x = L (right boundary) whereas the pressure is evalu-10

ated at x = 0 (left boundary). We notice that the three graphs are the translation
of the corresponding graphs in Figure 2. In particular, we see that u, p and v are
continuous at t = t∗, where their value is equal to zero.
Figure 7 illustrates the displacement, fluid pressure and discharge velocity (left,

middle and right panel, respectively) as a function of x and t.15

Figure 8 illustrates the energies per unit area Eθ, Ec0 and Etot (left, middle and
right panels, respectively) as a function of t.
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Figure 7. Top panel: solid displacement u as a function of x and
t. Middle panel: fluid pressure p as a function of x and t. Bottom
panel: discharge velocity v as a function of x and t. The applied
boundary traction is a step pulse of amplitude Pref at t∗ = 0.25T .
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Figure 8. Simulated profiles of Eθ (left), Ec0 (middle) and Etot as
a function of t. The applied boundary traction is a step pulse of
amplitude Pref at t∗ = 0.25T .

Figure 9. Left panel: dissipation as a function of t. Right panel:
force term as a function of t. The applied boundary traction is a
step pulse of amplitude Pref at t∗ = 0.25T .
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Figure 9 illustrates the dissipation D and force term F (left and right panel,
respectively) as a function of t. We notice that both D and F are discontinuous at
t = t∗ where they experience a finite jump.

Figure 10. The unbounded ramp pulse.

7.2. The case of unbounded ramp pulse. Let P (t) be the dimensionless un-
bounded ramp pulse of unit-slope starting at t = 0, represented in Figure 105

P (t) = tH (t) = t, t ≥ 0. (68)

In this case, we have

U(t) = t− η
(
1− e−

t
η

)
and U ′(t) = 1− e−

t
η , t ≥ 0. (69)

Gn (t) ∗ 1 =
1

(Λ2n − Λ1n)

[
1− e−Λ1nt

Λ1n
− 1− e−Λ2nt

Λ2n

]
, t ≥ 0, (70a)

Gn (t) ∗ e−
t
η =

1

(Λ2n − Λ1n)

[
e−t/η − e−Λ1nt

Λ1n − 1/η
− e−t/η − e−Λ2nt

Λ2n − 1/η

]
, t ≥ 0. (70b)

Summing the two above expressions we obtain

Gn (t) ∗ U ′(t) =
1

(Λ2n − Λ1n)

[
1− e−Λ1nt

Λ1n
− 1− e−Λ2nt

Λ2n
− e−t/η − e−Λ1nt

Λ1n − 1/η
+

e−t/η − e−Λ2nt

Λ2n − 1/η

]
, t ≥ 0.

(71)

Note that the above expression can be rewritten as

Gn (t)∗U ′(t) =
1

Λ1nΛ2n
+

1

(Λ2n − Λ1n)

( e−Λ1nt

Λ1n(ηΛ1n − 1)
− e−Λ2nt

Λ2n(ηΛ2n − 1)

)
+

η2γ

1− γ
e−

t
η .

The time derivative of expression (71) is given by: for t ≥ 0,

(Gn (t) ∗ U ′ (t))
′

=
1

(Λ2n − Λ1n)

(
e−Λ1nt − e−Λ2nt

+
(1/η)e−t/η − Λ1ne

−Λ1nt

Λ1n − 1/η
− (1/η)e−t/η − Λ2ne

−Λ2nt

Λ2n − 1/η

)

=
1

(Λ2n − Λ1n)

( −e−Λ1nt

ηΛ1n − 1
+

e−Λ2nt

ηΛ2n − 1

)
− ηγ

1− γ
e−

t
η . (72)
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Note that

η (Gn (t) ∗ U ′ (t))
′

= Gn (t) ∗ exp (−t/η) = Gn (t) ∗ 1−Gn (t) ∗ U ′ (t) ,

and the coefficients Bn(t) become

Bn (t) =
1− γ

γη
Gn (t) ∗ 1 =

1− γ

γη

∫ t

0

Gn (s) ds. (73)

Then the displacement, the pressure and the discharge velocity have the following
representations for t ≥ 0:

u0(x, t) = −x(t− η) +
1− γ

γη

∞∑

n=0

2(−1)n

λn

[
1

Λ1nΛ2n

+
1

Λ2n − Λ1n

(
e−Λ1nt

Λ1n(ηΛ1n − 1)
− e−Λ2nt

Λ2n(ηΛ2n − 1)

)]
Xn(x), (74a)

p0(x, t) =
1− γ

γη

∞∑

n=0

2(−1)n

λn

1

(Λ2n − Λ1n)

[
1− e−Λ1nt

Λ1n
− 1− e−Λ2nt

Λ2n

]
X ′

n(x),

(74b)

v0(x, t) =
1− γ

γη

∞∑

n=0

2(−1)n
1

(Λ2n − Λ1n)

[
1− e−Λ1nt

Λ1n
− 1− e−Λ2nt

Λ2n

]
Xn(x).

(74c)

Figure 11. Left panel: solid displacement u at x = L as a function
of t. Middle panel: fluid pressure p at x = 0 as a function of t.
Right panel: discharge velocity v at x = L as a function of t. The
applied boundary traction is an unbounded ramp pulse.

Figure 11 illustrates the displacement, fluid pressure and discharge velocity (left,
middle and right panel, respectively) as a function of t. Displacement and velocity
are evaluated at x = L (right boundary) whereas the pressure is evaluated at x = 0
(left boundary). Unlike the case presented in Section 7.1, here the external pressure
load continues to increase linearly with time, thereby inducing a continuous increase5

in displacement, pressure and velocity as time goes by. Over the observational time
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interval, the magnitude of the external load is smaller than what considered in Sec-
tion 7.1 and this leads to a smaller (absolute) value of the maximum displacement,
which is about 10µm in this case.

Figure 12 illustrates the displacement, fluid pressure and discharge velocity (left,
middle and right panel, respectively) as a function of x and t. The displacement5

profile exhibits an approximately bilinear variation with respect to temporal and
spatial coordinates, whereas pressure and velocity display a nonlinear behavior in
the space-time domain. All dependent variables tend to increase in magnitude as a
function of time at any spatial position of the mixture, the discharge velocity being
closer to reach a stationary condition than the pressure.10
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Figure 12. Top panel: solid displacement u as a function of x and
t. Middle panel: fluid pressure p as a function of x and t. Bottom
panel: discharge velocity v as a function of x and t. The applied
boundary traction is an unbounded ramp pulse.
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Figure 13. Simulated profiles of Eθ (left), Ec0 (middle) and Etot
as a function of t. The applied boundary traction is an unbounded
ramp pulse.

Figure 13 illustrates the energies per unit area Eθ, Ec0 and Etot (left, middle and
right panels, respectively) as a function of t. Interestingly, Eθ exhibits a nonlinear
increase with respect to time in accordance with the fact that deformation is not
constant in space. Ec0 follows a similar pattern because of the nonlinear trend of
the pressure, but has a much smaller value, so that the Etot almost coincides with5

Eθ for all times.

Figure 14. Left panel: dissipation as a function of t. Right panel:
force term as a function of t. The applied boundary traction is an
unbounded ramp pulse.

Figure 14 illustrates the dissipation D and forcing term F (left and right panel,
respectively) as a function of t. Dissipation increase with time is characterized by
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two markedly different slopes. In a first time interval, approximately equal to T/5,
dissipation increases rapidly and is mainly determined by the fluid component of
the mixture. In the remaining part of the observational time interval, dissipation
increases less rapidly and is mainly determined by the structural viscoelasticity of
the mixture. The forcing term increases linearly with time in accordance with the5

trend of the temporal variation of solid displacement at the right boundary of the
domain, as shown in Figure 12.

7.3. The case of bounded ramp pulse. Let P (ε) (t) be the dimensionless ramp
pulse of unit amplitude and finite rise time (= ε > 0) starting at t = 0

P (ε) (t) =
1

ε
[tH (t)− (t− ε)H (t− ε)] =





0 if t ≤ 0
t/ε if 0 < t ≤ ε
1 if t > ε,

(75)

represented graphically in Figure 15.

Figure 15. Bounded ramp pulse.

10

Using the linear superposition principle, the solid displacement, fluid pressure,
and discharge velocity are given by:

uε
0 (x, t) =





1

ε
u0 (x, t) if 0 ≤ t ≤ ε

1

ε
[u0 (x, t)− u0 (x, t− ε)] if t > ε

(76a)

pε0 (x, t) =





1

ε
p0 (x, t) if 0 ≤ t ≤ ε

1

ε
[p0 (x, t)− p0 (x, t− ε)] if t > ε.

(76b)

vε0 (x, t) =





1

ε
v0 (x, t) if 0 ≤ t ≤ ε

1

ε
[v0 (x, t)− v0 (x, t− ε)] if t > ε.

(76c)

where the expressions of u0 (x, t), p0 (x, t) and v0 (x, t) are given by (74).15
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Notice that pε0 (x, t) , v
ε
0 (x, t) ∈ C0 (Q) since p0 (x, t) , v0 (x, t) ∈ C0 (Q) and

p0 (x, 0) = v0 (x, 0) = 0.

Figure 16. Left panel: solid displacement u at x = L as a function
of t. Middle panel: fluid pressure p at x = 0 as a function of t.
Right panel: discharge velocity v at x = L as a function of t. The
applied boundary traction is a bounded ramp pulse with ε = 0.5T .

Figure 16 illustrates the displacement, fluid pressure and discharge velocity (left,
middle and right panel, respectively) as a function of t. Displacement and velocity5

are evaluated at x = L (right boundary) whereas the pressure is evaluated at
x = 0 (left boundary). We see that the displacement increases in magnitude almost
linearly during the increase in time of the externally applied pressure. Then, it
rapidly tends to stationary conditions once the external applied pressure becomes
constant. The asymptotic value of the displacement is the same as in the case of the10

step pulse illustrated in Section 7.1. The profile of fluid pressure increases in time
and the externally applied pressure increases; once the solid deformation attains
stationary conditions, the fluid pressure decreases. A similar trend is shown by the
discharge velocity. The maximum value of pressure is the same as in the case of a
step pulse external pressure whereas the maximum value of the discharge velocity15

is slightly smaller and coincides with the value of the velocity at t = T/2 that is
obtained in the case of an unbounded ramp external pressure (cf. Figure 11, right
panel).
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Figure 17. Top panel: solid displacement u as a function of x and
t. Middle panel: fluid pressure p as a function of x and t. Bottom
panel: discharge velocity v as a function of x and t. The applied
boundary traction is a bounded ramp pulse with ε = 0.5T .
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Figure 17 illustrates the displacement, fluid pressure and discharge velocity (left,
middle and right panel, respectively) as a function of x and t. The spatial variation
of the displacement becomes linear after the external pressure ceases to increase,
whereas, in the same time interval, both fluid pressure and discharge velocity exhibit
a spatial decrease.5

Figure 18. Simulated profiles of Eθ (left), Ec0 (middle) and Etot as
a function of t. The applied boundary traction is a bounded ramp
pulse with ε = 0.5T ,

Figure 18 illustrates the energies per unit area Eθ, Ec0 and Etot (left, middle and
right panels, respectively) as a function of t. Both Eθ and Ec0 increase in time until
the external pressure increases. Then, Eθ becomes constant since deformation is
constant in time, whereas Ec0 decreases because of the decrease of fluid pressure.
As in all previously considered examples, the contribution of Ec0 is much smaller10

than that of Eθ so that the Etot almost coincides with Eθ.
Figure 19 illustrates the dissipation D and forcing term F (left and right panel,

respectively) as a function of t. Both terms exhibit an increase with respect to time
during the increase of the externally applied pressure. Then, they both experience
a sudden decay once the externally applied pressure becomes constant. Dissipation15

tends to an asymptotic value that is much smaller than the value attained at t = T/2
whereas the force term tends to zero since the boundary displacement is almost
constant in time after t = T/2.

8. Dependence of the solution on compressibility. In this section we investi-
gate the dependence of the solution of model (12) on the compressibility parameter
c0. In terms of the dimensionless equation system (15), this amounts to analyz-
ing the solutions as a function of the quantity γ defined in (14). We denote by
c0,ref = 1.67 · 10−5m2N−1 the reference value of the compressibility parameter.
This value has been used in all the computations illustrated in Section 7. Then, we
let c0 assume the following values:

c0 = [0.001, 0.01, 0.1, 1, 10 100, 1000] c0,ref
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Figure 19. Left panel: dissipation as a function of t. Right panel:
force term as a function of t. The applied boundary traction is a
bounded ramp pulse with ε = 0.5T ,

and we compute the solid displacement and discharge velocity at x = L, the fluid
pressure at x = 0 and the energies Eθ, Ec0 and Etot, as functions of time in the
interval [0, T ], T = 10000s being the width of the observational window considered
in Section 7. All the other model parameters have been set equal to the values
adopted in Section 7. The applied boundary traction is a step pulse of amplitude5

Pref at t∗ = 0.

Figure 20. Left panel: solid displacement u at x = L as a function
of t. Middle panel: fluid pressure p at x = 0 as a function of t.
Right panel: discharge velocity v at x = L as a function of t.
The applied boundary traction is a step pulse of amplitude Pref

at t∗ = 0. The compressibility parameter c0 varies in the range
[10−3, 103]c0,ref , where the reference value c0,ref is set equal to
1.67 · 10−5m2N−1 as in all the computations illustrated in Section
7.
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Figure 20 shows the profiles of solid displacement (left panel), fluid pressure
(middle panel) and discharge velocity (right panel) as functions of time and of
the compressibility parameter c0. We notice that compressibility has a significant
impact on the quantitative values attained by the solution variables. In particular
we see that increasing c0 gives rise to:5

• an increase of the magnitude of the solid displacement;
• a decrease of pressure and velocity;
• a right shift of the peak of pressure and velocity.

These behaviors are indicative of the fact that the compressibility of the mixture
components allows the body to deform more under the same pressure load, thereby10

reducing the internal level of fluid pressure and limiting the impact on the fluid
velocity. We also notice that decreasing c0 has a much more significant impact than
increasing c0 on solution range variation. From the theoretical viewpoint, this is
due to the fact that γ → 1− for large values of c0 and, as a consequence, the ratio
(1− γ)/(γη), that characterizes the mathematical form of the solution expressions15

(66), tends to 0. From the physical viewpoint, decreasing the value of c0 implies
that the body cannot significantly deform upon applying a pressure load, thereby
inducing higher levels of fluid pressure whose gradients lead to larger fluid velocities.

Figure 21. Discharge velocity v at x = L as a function of t.
The applied boundary traction is a step pulse of amplitude Pref

at t∗ = 0. The compressibility parameter c0 varies in the range
[10−3, 103]c0,ref , where the reference value c0,ref is set equal to
1.67 · 10−5m2N−1 as in all the computations illustrated in Section
7. The black solid line represents the discharge velocity computed
by the model studied in [17].

Figure 21 illustrates the discharge velocity computed by the model studied in
this work and the discharge velocity computed by the model studied in [17]. The20
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principal difference between the two models is that no compressibility was included
in [17]. We see that:

• the velocity predicted by the model of [17] is a (very sharp) upper bound for
all the velocities predicted by the model studied in the present work, when
c0 → 0+;5

• for increasing values of c0, the velocities predicted by the present model differ
substantially from the upper bound velocity yielded by the model in [17]. In
particular, we see that increasing c0 gives rise to a decrease and to a right shift
of the peak in the velocity profile.

Figure 22. Simulated profiles of Eθ (left), Ec0 (middle) and Etot
as a function of t. The applied boundary traction is a step pulse of
amplitude Pref at t∗ = 0. The compressibility parameter c0 varies
in the range [10−3, 103]c0,ref , where the reference value c0,ref is set
equal to 1.67 · 10−5m2N−1 as in all the computations illustrated in
Section 7.

Figure 22 shows the profiles of Eθ, Ec0 and Etot as a function of t and of c0. We10

see that increasing c0 has the effect of increasing substantially and monotonically
the magnitude of Eθ because the deformation profile gets larger as the components
become more compressible, in accordance with Figure 20, left panel. On the con-
trary, Ec0 exhibits a nonmonotonic dependence on c0. Specifically, for c0 < c0,ref
we see that increasing c0 gives rise to an increase of Ec0 with a right shift of its15

peak; then, for c0 ≥ c0,ref , we see that increasing c0 leads to a significant mono-
tonic decrease of Ec0 . For the theoretical viewpoint, this is due to the fact that the
ratio γ/(1 − γ) → +∞ as c0 → +∞ and the pressure profile tends to decrease in
accordance with Figure 20, middle panel. The physical meaning of these results
can be appreciated by observing that the predicted total energy is mainly deter-20

mined by Eθ for large values of c0, since larger deformations can occur for more
compressible components, whereas the contribution to the total energy given by Ec0
becomes more significant for smaller values of c0, since larger pressures develop for
less compressible components.

9. Conclusions. The analysis presented in this work shows that the solutions of a25

poroviscoelastic model with compressible components remain bounded even in the
case when the imposed boundary traction is irregular in time. In particular, given
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a certain functional form for the boundary traction and a certain level of structural
viscoelasticity, the discharge velocity attains a maximum value that is lower when
compressibility is higher. By investigating the dynamics of the energy functionals
characterizing the system, we showed that this limiting effect is due to the capability
of the system to store potential energy as its components are elastically compressed,5

thereby delaying the transmission of irregularities in the linear momentum from the
solid to the fluid. As a result, the fluid has the time to accommodate for sudden
changes, resulting in bounded velocities. This mechanism is very different from
that provided by structural viscoelasticity, whose limiting effect on the discharge
velocity is due to increased viscous dissipation, as shown in [17].10

Ultimately, this work elucidates the specific role that compressibility plays in
the control of fluid flow through complex deformable porous structure, which finds
numerous applications in science and engineering. The work presented here offers
many future directions of research. For example, it would be very interesting to
investigate how the findings concerning the role of compressibility would translate15

to a more realistic three-dimensional setting. Furthermore, different viscoelastic
models could be considered and the specific roles of fluid and solid viscosities could
be investigated and compared.
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