How Do Students Talk About Intelligence? An Investigation of
Motivation, Self-efficacy, and Mindsets in Computer Science

Jamie Gorson
Northwestern University
Evanston, IL
jgorson@u.northwestern.edu

ABSTRACT

Undergraduate programs in computer science (CS) face high dropout
rates, and many students struggle while learning to program. Stud-
ies show that perceived programming ability is a significant factor
in students’ decision to major in CS. Fortunately, psychology re-
search shows that promoting the growth mindset, or the belief that
intelligence grows with effort, can improve student persistence
and performance. However, mindset interventions have been less
successful in CS than in other domains. We conducted a small-scale
interview study to explore how CS students talk about their in-
telligence, mindsets, and programming behaviors. We found that
students’ mindsets rarely aligned with definitions in the literature;
some present mindsets that combine fixed and growth attributes,
while others behave in ways that do not align with their mindsets.
We also found that students frequently evaluate their self-efficacy
by appraising their programming intelligence, using surprising cri-
teria like typing speed and ease of debugging to measure ability.
We conducted a survey study with 103 students to explore these
self-assessment criteria further, and found that students use varying
and conflicting criteria to evaluate intelligence in CS. We believe the
criteria that students choose may interact with mindsets and impact
their motivation and approach to programming, which could help
explain the limited success of mindset interventions in CS.

CCS CONCEPTS

« Social and professional topics — Computer science educa-
tion; CS1;

KEYWORDS
Growth Mindset; Self-efficacy; Motivation; Qualitative methods.

ACM Reference format:

Jamie Gorson and Eleanor O’Rourke. 2019. How Do Students Talk About
Intelligence? An Investigation of Motivation, Self-efficacy, and Mindsets
in Computer Science. In Proceedings of International Computing Education
Research Conference, Toronto, ON, Canada, August 12—-14, 2019 (ICER ’19),
9 pages.

https://doi.org/10.1145/3291279.3339413

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICER °19, August 1214, 2019, Toronto, ON, Canada

© 2019 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-6185-9/19/08...$15.00
https://doi.org/10.1145/3291279.3339413

Eleanor O’Rourke

Northwestern University
Evanston, IL
eorourke@northwestern.edu

1 INTRODUCTION

Software development is one of the fastest growing occupations in
the United States [1], and the demand for skilled programmers is
growing rapidly. However, many students struggle to learn com-
puter science, and introductory courses often have high dropout
rates [4, 5]. This problem is particularly pronounced for women and
underrepresented minorities [17], who dropout of CS at a higher
rate than their counterparts [8]. As a result, researchers are inter-
ested in understanding student motivation to inform the design
of interventions that help reduce the dropout rate and increase
diversity in CS.

Researchers have studied a number of factors that impact student
motivation in CS, including self-efficacy [26, 27, 35, 40], emotional
reactions to programming assignments [26, 28], attributions of suc-
cesses and failures [43], sense of belonging [42], and self-regulation
[29, 30]. Mindsets about intelligence are one factor that may have
a particularly strong impact on retention and diversity in CS. Psy-
chology research shows that students who believe intelligence is
an inborn trait (fixed mindset) value proving their intelligence
over learning, and are more likely to give up when challenged to
avoid failure [11, 12, 14]. In contrast, students who believe that
intelligence is malleable (growth mindset) value learning over per-
formance, and tend to persist in the face of challenges [11, 12, 23].
Fortunately, mindset researchers have developed interventions that
promote the growth mindset, improving student persistence and
performance [2, 6, 44], and reducing the negative impacts of stereo-
type threat for women and underrepresented minorities [2, 20].

In computer science, the fixed mindset is particularly prevalent.
Multiple studies have shown that students’ mindsets become signif-
icantly more fixed during their first programming course [9, 18, 30].
Additionally, researchers found that CS students consider their
self-assessments of ability when deciding to major or persist in CS,
and interpret these assessments in different ways based on their
mindset [27]. However, we still have a limited understanding of
how mindsets are enacted in CS, and how to design mindset in-
terventions for this context. For example, Kaijanaho et al. found
that there was no correlation between mindset and performance in
two advanced CS courses [25]. Furthermore, multiple studies have
shown that traditional mindset interventions have little impact on
CS students’ mindsets and behaviors [9, 38]. In order to design
effective interventions, we first need to understand how students
think about intelligence in computer science, and how this impacts
their mindsets, motivations, and approaches to programming.

In this paper, we contribute two studies that explore how novice
university students define and measure intelligence in CS, and
how this affects their perception of programming. Through in-
depth qualitative interviews with nine students, the first study

https://doi.org/10.1145/3291279.3339413
https://doi.org/10.1145/3291279.3339413

explores how students talk about intelligence and mindsets in CS,
and how they react to struggle and challenge in their CS classes.
We found that only one participant’s talk aligned with mindset
theory; the other eight participants’ talk either included both fixed
and growth attributes or misaligned with their approaches to pro-
gramming. We also noticed, during our interviews, that students
often evaluated their self-efficacy by appraising their programming
intelligence, using surprising criteria like typing speed and ease
of debugging to measure ability. Our second study explores these
self-assessment criteria in more depth through a survey of 103 stu-
dents. We found significant variation in the criteria, showing that
students define intelligence in CS in very different ways. We believe
that self-assessment criteria may interact with mindsets and im-
pact students’ motivations and approaches to programming, which
could help explain the limited success of mindset interventions in
CS. These findings suggest a need for more research to understand
the relationship between self-efficacy and mindsets in CS.

2 RELATED WORK

A number of studies have explored students’ beliefs about intelli-
gence and motivation in CS from a variety of theoretical perspec-
tives. We first present research on mindset theory and then describe
how the theory has been applied to the computer science domain.
Finally, we discuss research that explores students’ perceived ability
in CS and their decision to pursue the major, which could relate to
self-efficacy and mindset.

2.1 Mindset Theory

Research in psychology has demonstrated that students’ beliefs
about the malleability of intelligence can have a strong impact on
their motivation, reaction to challenge, and academic performance
[6, 20]. Students with a growth mindset believe that intelligence is
malleable, and can grow through effort and practice [11, 12, 14].
Students with the growth mindset value learning over performance,
and are more likely to persist when challenged [6, 32]. Students
with a fixed mindset believe that intelligence is an unchangeable
attribute, and that there is a limit to each person’s potential growth
[11, 12, 14]. Students with the fixed mindset view challenges as tests
of their intelligence, and see mistakes as evidence of low ability
[6, 32]. For the remainder of the paper, we call the behaviors that
studies show correlate with mindset associated behaviors.

Fortunately, studies show that students’ mindsets, and subse-
quently these associated behaviors, can be changed through in-
terventions [2, 6, 44]. Researchers have developed two types of
successful interventions. The first involves directly teaching about
the malleability of intelligence and the growth mindset through
readings and discussions. For example, Aronson et al. taught par-
ticipants about the growth mindset and then asked them to write
to younger students to teach them about the malleability of in-
telligence, creating a ’saying is believing’ effect [2]. The second
type of intervention involves changing the type of praise given to
students when they are successful. Students who are praised for
their effort when they succeed (e.g. "you must have worked hard")
are more likely to develop a growth mindset and react favorably to
subsequent failure than students who are praised for their ability
(e.g. "you must be smart") [21, 32, 34].

2.2 Mindsets in CS

While mindset interventions have been successful in many do-
mains, they have not been shown to change students’ mindsets
or behaviors in CS [9, 38]. For example, Cutts et al. designed a
direct teaching intervention in which tutors gave mindset lessons
and messages to CS students [9]. While the intervention success-
fully changed students’ mindsets on surveys, they did not find any
change in course performance. Simon et al. replicated Aronson
et al’s successful intervention [2], in which they taught students
about mindset theory and conducted a ’saying is believing’ exer-
cise, but found no significant effect on students’ mindsets in the
domain of programming [38]. Loksa et al. designed an intervention
for CS youth camps that taught students problem-solving skills
[30]. They found that students in a control group became more
fixed mindset over the course of the camp, but encouragingly they
saw no significant change in mindsets for the intervention group.
Additionally, students in the intervention group were more likely
to persist on problems before asking for help. However, it is still
unclear what aspects of Loksa et al.’s intervention produced these
effects, and whether they were a result of student mindsets, the
problem-solving scaffolds, or student age.

After their intervention had such little impact on mindset sur-
vey responses, Simon et al. conducted exploratory research on the
reliability of the mindset survey [38]. They prompted students to
explain their answers to the mindset survey and found that the sur-
vey does not always accurately capture the way students describe
their own mindsets. Additionally, some students expressed aspects
of both mindsets. Our research uses qualitative methods to under-
stand how students talk about intelligence and study the nuances
of how mindsets are enacted in the domain of CS. We provide new
evidence showing that students’ mindsets do not always match
what we would expect based on mindset theory, which could help
explain some of these surprising findings in CS.

2.3 Relationship Between Students’ Perceived
Ability and Persistence in CS

Researchers have also explored how students’ evaluations of ability
impact their emotions and persistence in CS through lenses other
than mindset theory. Lewis et al. conducted an interview study
that explores the factors that shape students’ decision to major in
CS [27]. They found that students’ self-assessments of their pro-
gramming ability impact their persistence, and that students judge
their ability based on three criteria: perceived prior experience,
speed, and grades. Our findings extend this work by studying how
students assess performance while programming instead of in CS
generally, revealing a larger and more specific set of self-assessment
criteria that could help explain how students think about and define
ability in CS.

Kinnunen and Simon found that students’ expectations about
programming also influence how they react to programming ex-
periences [26]. They found that even when students have positive
programming outcomes, they sometimes still have negative emo-
tional reactions when their performance expectations are not met.
Emotional reactions in programming are important to study be-
cause they can have a negative impact on learning outcomes [28].
While Kinnunen and Simon found that students have expectations

that influence their self-efficacy and motivation, they do not specify
or study these expectations in depth. We build on this work by
exploring expectations, which we call self-assessment criteria.

3 INTERVIEW STUDY

We designed our first study to explore how novice undergraduate
students talk about intelligence in CS. Our goal was to study how
this talk reflected students’ (1) mindsets, (2) associated behaviors,
like persistence and reaction to challenge, and (3) other motivational
factors. To address these questions, we took a qualitative approach.
In our study, students first worked on a challenging programming
problem, then filled out a mindset survey, and finally responded to
interview questions about their experiences in CS, perspectives on
programming intelligence, and mindsets. The open-ended nature of
our interviews and our inductive qualitative analysis allows us to
broadly explore how students’ perspectives on intelligence might
influence their programming behaviors.

3.1 Participants and Setting

We recruited nine undergraduate students at a large private univer-
sity who were enrolled in CS 1.5, a course designed for students
who do not feel ready to move on to the second course in the CS
sequence. We chose this demographic because the students have
been exposed to programming, but still consider themselves to be
novices. Additionally, many students in this course are still deciding
whether or not to major in CS, and thus have thought about their
ability to succeed in the field. Five (55%) of our participants were
female, which is representative of the 61% in the course, and two
(22%) of our participants had declared CS majors, which is repre-
sentative of the 26% of students in the course who had declared.
All students provided informed consent to participate and were
compensated at a rate of $30 per hour.

3.2 Procedure

Our study procedure included three key tasks: a challenging pro-
gramming problem, the mindset survey, and a clinical interview
[19]. First, we asked participants to work on a challenging pro-
gramming problem for twenty-five minutes. The goal of the pro-
gramming task was to elicit interesting thoughts and feelings about
intelligence and mindset that can be later discussed in the interview,
since studies show that mindsets only impact behaviors when stu-
dents are challenged [12]. Additionally, we wanted all participants
to have a similar experience before the survey and clinical interview
so they would be in a comparable emotional state.

Next, we asked participants to complete a mindset survey [11], so
that we could compare our qualitative evaluation of their mindset to
the canonical mindset measure. We adapted the traditional survey
to ask about programming aptitude instead of general intelligence
because studies show that domain-specific mindset surveys are
more accurate [37]. We administered the survey after the program-
ming problem, but before the interview, so that the conversation
with the researcher would not impact the survey responses.

Finally, the first author conducted a clinical interview [19], dur-
ing which the researcher asks participants a prepared set of ques-
tions and adds follow-up questions as relevant topics arise. First,
we asked participants questions that elicited mindsets indirectly.

For example, we started with questions about the programming
task ("how well do you think you did on that problem?") to de-
velop rapport. We gradually asked more general questions about
their programming experiences ("tell me about a time when you
struggled on a programming problem") and then about opinions on
programming intelligence ("what do you think it takes to succeed
in CS?"). At the very end of the interview, we asked about their
mindset in CS directly to see if they self-identify with one of the
mindsets without biasing their responses to the earlier questions.

3.3 Data Analysis

We analyzed the data by using a combination of deductive and
inductive qualitative coding to create a theoretically informed code-
book [31, 39, 41]. We developed initial deductive codes based on
research that outlines the relationship between mindsets and be-
haviors. For example, the attribution literature shows that students
who have a growth mindset are more likely to attribute their suc-
cess to effort [14, 36], so we created an effort attribution code. We
also created inductive codes for other types of talk that related to
mindset, intelligence, and persistence. This open coding allowed us
to identify emergent themes that we were not expecting based on
the mindset literature. We iterated on our codes until their defini-
tions were clear. Then, the two authors independently coded all of
the data and discussed any discrepancies. There are 14 codes in the
final codebook.

In the codebook, four pairs of codes capture cases where partici-
pants’ talk exposes their beliefs about the malleability of program-
ming intelligence, which we call mindset talk. For example, when
a participant states that there is a limit to their potential growth
in CS, we would label this as fixed mindset talk. Three additional
pairs of codes capture cases where a participant either behaves or
talks about behaving in a way that literature shows is associated
with a mindset, which we call associated behaviors. For example, if a
participant says that struggle is good because it results in learning,
we would label this as an associated behavior of the growth mindset.
The codebook is shown in Table 1.

One limitation of qualitatively coding interviews to study mind-
sets is that we must interpret students’ statements and make judge-
ments about their meaning. While prior research shows that people
with certain mindsets tend to say certain things and behave in
certain ways, we cannot definitively know an individual’s mindset
from their talk alone. However, this type of qualitative analysis
allows us to gain a deeper understanding of how student beliefs are
enacted in real contexts than we can achieve through Likert-scale
surveys. We therefore believe this approach will provide important
new insights into student mindsets about intelligence in CS.

3.4 Mindset Findings

To analyze how our participants’ mindsets are enacted through
their talk we counted the number of statements that were labeled
with either mindset talk codes or associated behavior codes for
each participant. Then, we calculated the percentage of mindset
talk that was coded as growth and the percentage of associated
behavior talk that was coded as growth. Based on the literature,
we would expect that most students would have one consistent
mindset and the corresponding associated behaviors. For example,

Growth Mindset Talk Codes

Fixed Mindset Talk Codes

Attributes an outcome to effort or learning

Attributes an outcome to their ability

States that growth in CS is possible with effort

States that there is a limit to their ability or potential for success in CS

States that peers are different based on controllable reasons | States that peers are different based on innate reasons

Self-identifies as growth mindset

Self-identifies as fixed mindset

Growth Mindset Associated Behavior Codes

Fixed Mindset Associated Behavior Codes

States that struggle, practice, or challenge is good

Doesn’t value effort, struggle, practice, or challenge

Asks researcher for help on programming task

Asks researcher about performance on the programming task

Is motivated, persists, or seeks out a learning opportunity

Avoids a learning opportunity or programming activity

Table 1: Qualitative codes used to analyze our interviews, including codes that indicate either a fixed or growth mindset, and
codes that indicate behaviors that are associated with either a fixed or growth mindset.

100% (Growth) i
I~ N \- - .
- \ - -
1o LN Cluster
LS, - _
: . = * = aligned
50% T J
.S = * misaligned
%)
259 o mixed
) . b
.
'Y
0% (Fixed) i

Percentage of Mindset
Talk Coded as Growth

Percentage of Behavior
Talk Coded as Growth

Figure 1: Graph showing the percentage of mindset talk that
was coded as growth (left) and the percentage of associated
behaviors that were coded as growth (right). Participants are
grouped into three clusters: the first includes the participant
whose talk aligned with mindset theory; the second includes
participants with misaligned mindset talk and associated be-
haviors; the third includes mixed mindset participants.

if the majority of a student’s mindset talk was growth, we would
also expect most of their associated behavior talk to be growth.

We used the percentages of growth mindset talk and associated
behavior talk to classify and cluster the participants. We classified
participants as having a growth mindset if at least 75% of their
mindset talk was labeled with growth codes, and fixed if 75% of
their mindset talk was labeled fixed. We classified participants as
having growth mindset associated behaviors if at least 75% of their
associated behavior talk was labeled with growth codes, and fixed if
75% of their associated behavior talk was labeled fixed. To confirm
that we agreed with the classifications, we read all of the statements
coded as mindset talk or associated behaviors for each participant.
Finally, we compared our classifications with the participants’ self-
identified mindsets and responses to the mindset survey.

Next, we identified clusters of participants by analyzing the
relationship between their mindset talk and associated behavior
classifications, as shown in Figure 1. The three clusters that we
identified are: aligned with mindset theory, misaligned mindset and
associated behaviors, and mixed mindset. We define each cluster in
more detail in the sections that follow, and present one participant
from each cluster as a case study.

3.4.1 Aligned with Mindset Theory. This cluster represents par-
ticipants whose mindset talk is consistent and corresponds with
their associated behaviors. We only had one participant in this
cluster, P8, a female, first-year student who is not a CS major. P8
talked with a very strong and consistent growth mindset; 100%
of her mindset talk was labeled with growth codes. For example,
she expressed her belief that effort leads to improvement, saying
"I think I can become better, but I don’t think that I am there just
yet...I put in more hours, so it made me smarter at programming".
Additionally, all but one of her associated behaviors were labeled
with growth codes. For example, she expressed that she seeks out
learning opportunities by frequently going to office hours: "it’s
very interesting to see how [the TAs] think, because they’re so much
more experienced, to see how they look through a problem... my TAs
are really good, they’re really cool, they’re pretty motivated, and it
kinda motivates me to do well". Dweck notes that people with a
fixed mindset tend to avoid more experienced people because they
fear being compared to them and exposed as having lesser ability,
while those with a growth mindset actively seek out opportuni-
ties to learn from people with more experience [12]. P8’s growth
mindset talk also aligns with her response to the survey and her
self-identified mindset, which were both strongly growth mindset.

3.4.2 Misaligned Mindset and Associated Behaviors. This cluster
describes participants whose associated behaviors are misaligned
with their mindset talk. Participants in this cluster have a consistent
mindset (75% of mindset talk was labeled with one mindset) but
their associated behavior talk does not match (less than 75% of
associated behaviors were labeled with the same mindset). The four
participants in this cluster all presented growth mindsets through
their talk, but over half of their associated behaviors were fixed.

As a representative example, consider P3, a female, first-year
student who is a CS major. 100% of her mindset talk was labeled with
growth codes. For example, she saw programming as something that
requires learning rather than as an innate skill: "[Programming is]
more about learning the different structure, and the different strategies.
I don’t think everyone is just born with intuition for that. It’s a lot of
learning." She also believes that if she works hard she can improve:
"If I studied really hard over the summer, I think I would be a lot better.
Or at least I'd be more familiar with certain things than my peers."

However, over half of her associated behaviors were labeled with
fixed mindset codes. For example, when asked to share a time when
she was proud of something she programmed, P3 decided to talk

about a time when she finished an assignment with ease: "[I'm
proud of the regular expressions programming assignment, that one
wasn’t too challenging. There wasn’t much programming, but I got it
done pretty quickly without that many errors, so I was pretty happy
with myself" Studies show that, when asked, people with fixed
mindsets are more likely to talk about being proud of moments
that demonstrate their ability, rather than their effort or learning
[13]. In this case, P3 talked about being proud of a moment when
she demonstrated her ability instead of one when she learned or
overcame a challenge. Some of P3’s associated behaviors were
also labeled as growth mindset. For example, when describing a
programming experience, she saw challenge as an opportunity to
grow rather than as a negative reflection of ability when she said: T
kept getting the error, and I would try and fix it, and then I would get
more errors because of fixing that, well, trying to fix that error. And
it was just really frustrating, but it was good practice”. Hong et al.
found that growth mindset students who were under-performing
were more likely to seek out additional practice, tutorials, and
remedial classes than students with a fixed mindset [24]. While
P3’s associated behaviors did not always align with her mindset,
she filled out the mindset survey as growth and self-identified as
growth. So the mindset survey and the self-report question captured
her mindset but not her associated behaviors.

3.4.3 Mixed Mindset. The last cluster describes participants
whose mindset talk is a mixture of the growth and fixed mindsets;
between 25% and 75% of their mindset talk was coded as growth
mindset. We categorized four participants as mixed mindset. Their
percentage of associated behavior talk coded as growth varied
widely, suggesting that the mixed mindset does not correlate with
a specific associated behavior profile.

P2, a female, third-year student who is not a CS major, is an
exemplary case study for this group. She frequently used both
growth and fixed mindset talk, making seven and eight statements
of each, respectively. She exhibited her mixed beliefs in her response
to the question "Can anyone succeed in CS?", by saying "I think
there are people that are born for this and then there are people that
need to try, but then if you try, if you really like it, I think you can. I
think there is some advantage to those that their brains are wired in
a way". Similar to her mixed beliefs, her associated behaviors were
also mixed. She demonstrated motivation to continue working on
the challenging programming task even after the clinical interview,
saying "No. I just want to figure this out". On the other hand, we
noted five instances of avoidance behavior. For example, she said:
"before I get to other courses that are more fun, I have to go through
the theory part of it, and since I'm not dedicated to CS, I don’t want
to put myself through the unnecessary hard work". Studies show that
when asked to choose a type of problem to work on, fixed mindset
people tend to choose problems that will demonstrate their ability,
while growth mindset people pick challenging problems that will
foster learning [13]. P2 responded to the survey slightly growth,
which is surprising because her statements were relatively mixed
or leaned fixed. But she did self-identify with both mindsets, saying:
"It’s like, fixed, in a sense that I think there are people that are meant
for it, and then not meant for it. But then, growth at the same time,
because even if you’re not meant for it, if you try hard enough and if
you like it enough, you can always succeed in it. So fixed and growth."

3.5 Self-Assessment Criteria Findings

Beyond coding the interview data to classify students’ mindsets,
we were also interested in identifying additional themes related
to the ways that novice programmers talk about their intelligence.
When analyzing the interviews, we noticed that students frequently
assessed their own ability using a wide variety of criteria, which
we call self-assessment criteria. For example, P9 mentioned the im-
portance of memorizing syntax when he assessed his programming
ability, saying "I feel like I should remember the syntax for basic
things, such as lists, and both C++ and Python, more closely than I
currently do". P8 used the criteria that it is better to do work on
your own when she said: "I'm particularly proud of that [assign-
ment] because I was able to figure out most of that on my own, and
I didn’t need as much TA help as I had anticipated". We identified
seven different criteria that the nine participants used to evaluate
programming ability. Table 2 describes the seven criteria codes.

3.6 Discussion

In our interview study, we found that only one of our participant’s
talk aligned with mindset research. The other eight participants fell
into two categories: those whose behavior talk did not align with
their mindset talk and those who expressed both growth and fixed
mindsets. These findings may help explain some of the surprising
and unexpected results of prior mindset research in computer sci-
ence. Specifically, our results replicated Simon et al’s findings that
some students have mixed mindsets and provided new evidence
that these students behave in a range of fixed and growth ways.
Additionally, we show that the canonical mindset survey cannot
capture mixed mindsets, as there is no response that indicates mixed
beliefs. Our mixed mindset participants responded to the survey as
growth mindset, fixed mindset, and in between. However, we found
that when asked to self-identify with a mindset, all of the mixed
mindset participants identified as both fixed and growth, suggesting
that self-identification could be a more accurate measure of mindset
than the survey. We also found that some students’ behaviors were
misaligned with their mindset talk, which may help to explain why
Cutts et al’s intervention successfully changed students’ responses
to mindset surveys but did not impact their associated behaviors.
If students’ behaviors are not always aligned with their mindset,
we would not necessarily expect an intervention that successfully
changes student mindsets to have an impact on their behaviors.
These findings are surprising because mindset theory is robust,
and has been proven in many different domains and contexts. As
a result, we suspect that other motivational factors may be inter-
acting with mindset to produce these inconsistencies. We believe
the frequent self-assessments and surprising self-assessment cri-
teria we found could be one factor that interacts with mindsets.
While researchers have mentioned the relationship between self-
assessments and motivation in CS in previous work [26, 27], our
study reveals specific self-assessment criteria that characterize the
ways students evaluate programming-specific behaviors, like being
able to memorize syntax or fix bugs quickly. These criteria emerged
when students made assessments of their intelligence in the con-
text of a programming experience. Such assessments, which are
often called self-efficacy appraisals in the psychology literature,
are particularly common when students are new to a field [3], like

Code Example Quote Count
Better if you do it yourself "If I go to a... TA and I get a lot of help from them, then I feel kind of bad, | 1
- 2 because I didn’t do the whole program by myself"”
3 g Better if you memorize syntax "They know various functions like the back of their hand" 4
é’ 5 Faster is better "If they can complete an assignment relatively quickly" 19
= ¢ | Code quality is important "Clean, understandable and short code" 32
’E I3 Computer skills are important "By how fast they type" 7
= Getting errors is bad "If it runs the first time they type it out” 3
Thinking and planning is not progress | "If they keep typing and don’t have to sit there and think" 6
Correct solution "[Their] program works" 5
Decomposing problems is bad "If they can type out a whole long idea and tweak it as opposed to having to do | 6
o = each part piece by piece slowly”
sl E Decomposing problems is good "If they do it in steps, checking/running their code as [they] go" 7
q"é’ (g\ Thinking and planning is good "They are able to plan out and structure their thoughts on how to approach the | 13
= 2 code before writing it"
'§ ;5 Good debugging skills "They are able to identify bugs. .. write test cases to check that their code is | 12
correct”
Good articulation skills "If they are able to stop and explain to you... what they are doing” 11
Ease of debugging "They understand how to debug a program quickly based off of first glance” | 15

Table 2: Codebook for the self-assessment criteria. The top set of codes were identified during the interview study. The bottom
set of codes were identified in the survey study. Both sets of codes were used to code the open-ended survey question. The
number in the right column represents the number of times each criterion was identified in the open-ended survey question.

our participants. Additionally, university students feel extra pres-
sure because they have to choose a major, which may encourage
more frequent self-efficacy appraisals as students consider their
programming ability in their decision [15, 27].

We hypothesize that these self-efficacy appraisals may be one
factor that interacts with student mindsets in CS. If students feel
pressure to assess their own ability, they may choose to behave in
ways that allow them to make self-assessments, rather than in ways
that align with their mindsets about intelligence. Furthermore, these
behaviors may depend on the criteria they believe are indicative of
programming ability. For example, a student who thinks that people
who are smart at programming can solve problems on their own
may try to assess her own ability by not asking for help or using
resources even if she has a growth mindset. These self-assessment
behaviors could conflict with mindset associated behaviors, and
produce effects that do not align with mindset theory.

In the interview study, we found that participants used a wide
variety of criteria to assess their ability. However, we only inter-
viewed nine students, and therefore do not know whether these
findings generalize to a larger population, or whether students dis-
agree about how to define and assess programming ability. While
we think there might be a relationship between self-assessment
criteria, mindset, and programming behaviors, we first need to un-
derstand the criteria in more depth before we can study the possible
relationship. Therefore, we designed a second study to develop a
deeper understanding of the self-assessment criteria, independent
of mindset or programming behaviors.

4 SURVEY STUDY

In this second study, we further explore the self-assessment crite-
ria to understand (1) whether these same criteria exist in a larger

sample of students, (2) whether other self-assessment criteria arise
that we did not find in the interview study and (3) whether there
is consistency or variation in the criteria students use to measure
intelligence in CS. Note that we do not aim to study the relationship
between self-assessment criteria, mindsets, and programming be-
haviors in this study; we leave this for future work. To answer our
questions, we designed a survey with three parts: an open-ended
question about how students assess programming intelligence, 36
forced-choice Likert-scale questions about specific self-assessment
criteria, and a mindset survey. We collected data from 103 novice
CS undergraduates through two iterative rounds. In the first itera-
tion, students answered the open-ended question and the mindset
survey questions. In the second iteration, students also responded
to Likert-scale questions about the specific self-assessment criteria
that arose during the first iteration. This iterative design allowed us
to explore the prevalence of a wide set of self-assessment criteria
and better understand how students describe the criteria.

4.1 Participants and Setting

We recruited participants from the CS1 course at a large private
university through the course discussion board and department
email list. We conducted the study during the final week of the
quarter. On the first iteration of the survey, we received 50 responses.
On the second iteration of the survey, we received 56 responses,
but discarded three who answered incorrectly to a check question,
resulting in 53 usable responses. Of the participants we kept in
our sample, 44% were female and 25% were CS majors. This closely
represents the demographics of the class, which was 40% female
and 18% CS majors. Participants who completed the survey were
entered into a raffle for one of five $20 gift cards in each iteration.

80

60
|

40

c
=]
z
S
T
a
™
@
@
=
S
a
@
<4
c

=
@
2
[
a
o
o
©
2
Z

20

ol T mme]

Code Debugging Ariculation Decomposing Correct
Quality Skills Skills Problems Solution

Errors Ease Of
Are Bad Planning

Computer Memorizing Better
Debugging Skills Syntax Speed Yourself

Criteria

Figure 2: Variation in participant responses to Likert-scale survey questions, averaged across the three survey questions for
each criterion. The variation is calculated by splitting the responses into two groups, agree and disagree, and then computing
the inverse of the percent difference of the number of agrees and disagrees: (1 — abs(agree — disagree)/(agree + disagree)).

4.2 Open-ended Survey Question

We used an open-ended survey question to elicit self-assessment
criteria from students, with the goals of confirming whether the
criteria we observed in interviews are common and identifying
new criteria. We asked students to respond to the following ques-
tion: "When watching someone program, how do you know if they
are good at programming?" To design this question, we informally
tested a few options, including ones that directly asked how stu-
dents evaluate themselves, but found that participants elaborated
on assessment criteria most when asked about a specific instance
of another person programming. Since students often compare
themselves to peers when making self-assessments, we believe this
question effectively elicits the criteria that our participants think are
important for determining programming ability. The open-ended
structure allows for free response and elaboration, without biasing
responses by suggesting particular criteria.

4.2.1 Analysis. We qualitatively coded the responses to the
open-ended question for all 103 participants using a combination
of inductive and deductive methods [31, 39, 41]. First, we deduc-
tively coded the responses using the self-assessment criteria codes
identified in the interview study. Then, we inductively coded the
responses to identify new emerging themes. The two authors it-
eratively discussed and refined the codebook, and then each inde-
pendently coded 10 survey responses (20% of the data). To check
inter-rater reliability, we calculated a pooled, prevalence adjusted
kappa of 97.5%, signifying excellent agreement [7, 10, 22]. The first
author then coded the remaining 80% of the data.

4.2.2 Findings. Our analysis of the open-ended survey ques-
tion revealed instances of participants using all seven of the self-
assessment criteria identified in the interview study to evaluate
programming ability. We also found seven new emergent criteria.
The full codebook of criteria can be found in Table 2, along with
example quotes from students’ responses.

Interestingly, two of the new criteria are opposites of ones iden-
tified in the interview study, suggesting that participants disagree
about these criteria. For example, some participants expressed
that decomposing problems is good ("if they do it in steps, check-
ing/running their code as [they] go"), while others expressed that
decomposing problems is bad ("they...think about it quickly and
write it all in one sequence after thinking"). However, the converses

of the other criteria rarely or never came up. For example, only one
participant indicated that using resources is an important part of
coding, which could be considered a converse of the code better
if you do it yourself. These findings suggest that our participants
may agree about some self-assessment criteria, but disagree about
others. However, given the nature of open-ended questions, we can
not know if participants agree or disagree with a criterion unless
they explicitly mention it, since the absence of a criterion does not
necessarily imply disagreement. To test for disagreement in the
criteria, we conducted a second iteration of the survey, in which
we added Likert-scale questions that directly ask participants about
their perspectives on the criteria.

4.3 Likert Scale Survey Questions

We designed a set of forced-choice Likert-scale questions to mea-
sure whether our participants agreed with statements related to
the 14 self-assessment criteria that we identified through the in-
terview study and first iteration of the survey study (see Table 2).
We designed three questions for each criterion; two that expressed
the criterion and one that expressed the converse of the criterion,
by building on the quotes and code definitions from our previous
studies. The two pairs of criteria that were opposites of each other
were expressed through three questions rather than six, resulting
in a total of 36 questions. We also included one check item that in-
structed students to answer ’disagree’ to confirm that they carefully
read the questions. We conducted think-alouds with students to
test if the questions were clear and elicited the desired constructs
[16, 33]. An example question for the criterion faster is better is:
"If you are faster at solving programming problems, then you are
more intelligent at programming”. An example of a question for ease
of debugging is: "Being able to fix a bug easily is an indication of
programming intelligence". The Likert-scale questions were given
to the 53 participants in our second round of testing.

4.3.1 Analysis. To analyze the Likert-scale data, we first flipped
the responses to the converse questions, so that all numerical re-
sponses represented agreement with the criteria. Then, we looked
at the distribution of responses to each question using bar graphs
similar to the one shown in Figure 3. To understand the variation
in participant responses, we split the responses into two groups,
agree and disagree. Then, we calculated the inverse of the percent

30

25

20
1

Number of Responses
10 15
1

Strongly Slightly Slightly Strongly
Agree Agree Agree Disagree Disagree Disagree

Figure 3: Histogram of responses to the Likert-scale survey
question: Being able to explain your program is an indication
of programming intelligence. All participants agreed.

10 12 14

6
|

Number of Responses
4 8
I I

Strongly Slightly Slightly Strongly
Agree Agree Agree Disagree Disagree Disagree

Figure 4: Histogram of responses to the Likert-scale survey
question: Someone is more intelligent at programming if they
do an assignment on their own, rather than getting help to
solve it. Participants’ responses are bimodally distributed,
ranging from strongly disagree to strongly agree.

difference in number of agrees and disagrees to capture the amount
of variation in responses. For example, given 20 survey responses
in which 10 participants disagree with an item and 10 agree with
an item, we would calculate 1 — abs(10 — 10)/20 = 1, representing
the maximum possible variation. However, given 20 participants
who agree with an item and 0 who disagree, we would calculate
1—-abs(20—-0)/20 = 0, representing the minimum possible variation.

4.3.2 Findings. We found that participants consistently agreed
with some self-assessment criteria, but expressed major disagree-
ment in response to other criteria. Figure 2, shows the average
variation in student responses to the three forced-choice Likert
scale questions for each criterion. Most of our participants agreed
with three of the self-assessment criteria; good articulation skills,
good debugging skills, and code quality is important, which each
had less than 10 percent variation in responses on average. This
shows that our participants consistently thought that these skills
demonstrate programming ability, perhaps because they are all
discussed and encouraged in early stages of the CS curriculum.
For example, Figure 3 shows the histogram of responses to one of
the good articulation skills survey questions, demonstrating that
all of the students agreed with the statement. On the other hand,
six of the self-assessment criteria had over 50 percent variation in
responses, indicating that there are differences in the way students
define and measure programming intelligence. For example, Figure
4 shows the histogram of responses to one of the better if you do it

on your own survey questions, demonstrating that participants had
a wide range of beliefs.

While this study was not designed to uncover the relationship
between self-assessment criteria and mindsets, we were interested
in measuring whether any criteria were correlated with a particu-
lar mindset. However less than 5% of participants reported fixed
mindsets on the survey, so we did not have enough data to explore
this question. Given the variation in student responses, it is clear
that growth mindset students do not all agree with the same self-
assessment criteria, so the criteria students use could be one factor
that interacts with mindsets to influence programming behaviors.

5 CONCLUSIONS

We present the results of two studies: an interview study where
students worked on a challenging programming task and then dis-
cussed their beliefs about programming intelligence, and a survey
study that asked about the criteria that students use to evaluate
programming intelligence. In the interviews, we found that only
one participant’s talk aligned with mindset theory; the other eight
participants’ talk either included both fixed and growth attributes or
misaligned with their associated behaviors. This is surprising given
the robustness of mindset research, suggesting there is something
else influencing the enactment of mindsets and associated behav-
iors in the domain of CS. During the interviews, we also found that
students frequently made self-efficacy appraisals using a variety
of criteria. Our findings in the survey study confirm that students
define and measure programming intelligence in different ways. We
suggest that these criteria may interact with students’ mindsets and
influence their behaviors. These self-assessment criteria could have
a particularly strong impact on university CS students because they
frequently make self-efficacy appraisals while deciding whether to
pursue a major or career in CS.

While these initial results provide valuable insights about mind-
sets in CS, there are a number of limitations that we hope to address
in future work. First, our interview study had a small number of
participants, so we do not know how the mindset clusters that we
identified will generalize. For both studies, we recruited partici-
pants from the same institution, so we do not know if there are
environmental factors influencing the results. Finally, our analysis
depends on qualitatively coding students’ talk rather than directly
analyzing their behavior during programming, and it is possible
that students’ talk does not always reflect their behavior in practice.

In future work, we plan to study the relationship between stu-
dents’ self-assessment criteria, mindsets, and programming behav-
iors to improve our understanding of how motivational factors
impact persistence. This work takes an important first step in this
direction by establishing the existence of self-assessment criteria
and demonstrating the nuances of mindsets in CS. We hope this
will spark additional research with the ultimate goal of designing
interventions that motivate students to persist in CS.

6 ACKNOWLEDGEMENTS

We thank Michael Horn and our Delta Lab colleagues for valuable
discussions and feedback. This work was supported by the National
Science Foundation under Grant IIS-1755628 and by the National
Science Foundation Graduate Research Fellowship Program.

REFERENCES

(1]
(2]

[3

(4]

(5]

(6

=

(71

(8]

(9]

[10]

[11

[12]

[13]

[14]

[15]

[19

[20

[21

[22

[23]

[24

[25

2018. Occupational Outlook Handbook. (April 2018). https://www.bls.gov/ooh/
fastest-growing.htm

Joshua Aronson, Carrie B. Fried, and Catherine Good. 2002. Reducing the Effects
of Stereotype Threat on African American College Students by Shaping Theories
of Intelligence. Journal of Experimental Social Psychology 38, 2 (March 2002),
113-125. https://doi.org/10.1006/jesp.2001.1491

Albert Bandura. 1982. Self-efficacy mechanism in human agency. American
psychologist 37, 2 (1982), 122.

Theresa Beaubouef and John Mason. 2005. Why the high attrition rate for
computer science students: some thoughts and observations. ACM SIGCSE
Bulletin 37, 2 (June 2005), 103. https://doi.org/10.1145/1083431.1083474

Jens Bennedsen and Michael E. Caspersen. 2007. Failure rates in introductory
programming. ACM SIGcSE Bulletin 39, 2 (2007), 32-36.

Lisa S. Blackwell, Kali H. Trzesniewski, and Carol S. Dweck. 2007. Implicit
theories of intelligence predict achievement across an adolescent transition: A
longitudinal study and an intervention. Child development 78, 1 (2007), 246-263.
http://onlinelibrary.wiley.com/doi/10.1111/].1467-8624.2007.00995..x/full

Ted Byrt, Janet Bishop, and John B. Carlin. 1993. Bias, prevalence and kappa.
Journal of Clinical Epidemiology 46, 5 (May 1993), 423-429. https://doi.org/10.
1016/0895-4356(93)90018-V

J. M. Cohoon. 2006. Just get over it or just get on with it. Retaining women in
undergraduate computing. In J. Cohoon & W. Aspray (Eds.), Women and information
technology: Research on underrepresentation (2006), 205-238.

Quintin Cutts, Emily Cutts, Stephen Draper, Patrick O’'Donnell, and Peter Saffrey.
2010. Manipulating mindset to positively influence introductory programming
performance. In Proceedings of the 41st ACM technical symposium on Computer
science education. ACM, 431-435. http://dl.acm.org/citation.cfm?id=1734409
Han De Vries, Marc N. Elliott, David E. Kanouse, and Stephanie S. Teleki. 2008.
Using Pooled Kappa to Summarize Interrater Agreement across Many Items. Field
Methods 20, 3 (Aug. 2008), 272-282. https://doi.org/10.1177/1525822X08317166
Carol S. Dweck. 1999. Self-theories: Their role in motivation, personality, and
development. Psychology Press.

Carol S Dweck. 2006. Mindset: The new psychology of success. Random House
Incorporated.

Carol S Dweck and Janine Bempechat. 1983. Children’s theories of intelligence:
Consequences for learning. Learning and motivation in the classroom (1983),
239-256.

Carol S. Dweck and Ellen L. Leggett. 1988. A social-cognitive approach to
motivation and personality. Psychological review 95, 2 (1988), 256.

Jacquelynne S. Eccles and Bonnie L. Barber. 1999. Student council, volunteering,
basketball, or marching band what kind of extracurricular involvement matters?
Journal of adolescent research 14, 1 (1999), 10-43. http://jar.sagepub.com/content/
14/1/10.short

K Anders Ericsson and Herbert A Simon. 1984. Protocol analysis: Verbal reports
as Data. MIT Press, Cambridge, MA.

Allan Fisher and Jane Margolis. 2002. Unlocking the clubhouse: the Carnegie
Mellon experience. ACM SIGCSE Bulletin 34, 2 (2002), 79-83. http://dl.acm.org/
citation.cfm?id=543836

Abraham E. Flanigan, Markeya S. Peteranetz, Duane F. Shell, and Leen-Kiat Soh.
2015. Exploring Changes in Computer Science Students’ Implicit Theories of
Intelligence Across the Semester. ACM Press, 161-168. https://doi.org/10.1145/
2787622.2787722

Herbert Ginsburg. 1997. Entering the child’s mind: The clinical interview in
psychological research and practice. Cambridge University Press, New York.
Catherine Good, Joshua Aronson, and Michael Inzlicht. 2003. Improving adoles-
cents’ standardized test performance: An intervention to reduce the effects of
stereotype threat. Journal of Applied Developmental Psychology 24, 6 (Dec. 2003),
645-662. https://doi.org/10.1016/j.appdev.2003.09.002

Elizabeth A. Gunderson, Sarah J. Gripshover, Carissa Romero, Carol S. Dweck,
Susan Goldin-Meadow, and Susan C. Levine. 2013. Parent Praise to 1- to 3-
Year-Olds Predicts Children’s Motivational Frameworks 5 Years Later. Child
Development 84, 5 (Sept. 2013), 1526-1541. https://doi.org/10.1111/cdev.12064
Kevin A. Hallgren. 2012. Computing inter-rater reliability for observational data:
an overview and tutorial. Tutorials in quantitative methods for psychology 8, 1
(2012), 23.

Gail D. Heyman and Carol S. Dweck. 1998. Children’s thinking about traits:
Implications for judgments of the self and others. Child development 69, 2 (1998),
391-403.

Ying-yi Hong, Chi-yue Chiu, Carol S. Dweck, Derrick M.-S. Lin, and Wendy Wan.
1999. Implicit theories, attributions, and coping: A meaning system approach.
Journal of Personality and Social psychology 77, 3 (1999), 588. http://psycnet.apa.
org/journals/psp/77/3/588/

Antti-Juhani Kaijanaho and Ville Tirronen. 2018. Fixed versus Growth Mindset
Does not Seem to Matter Much: A Prospective Observational Study in Two
Late Bachelor level Computer Science Courses. In Proceedings of the 2018 ACM
Conference on International Computing Education Research - ICER ’18. ACM Press,

[26]

[27

[28

™
20,

'@
=

™
=

[35

[36

[37

[39

[40

[41

[42

[43

[44

Espoo, Finland, 11-20. https://doi.org/10.1145/3230977.3230982

Paivi Kinnunen and Beth Simon. 2012. My program is ok —am I? Computing
freshmen’s experiences of doing programming assignments. Computer Science
Education 22, 1 (March 2012), 1-28. https://doi.org/10.1080/08993408.2012.655091
Colleen M. Lewis, Ken Yasuhara, and Ruth E. Anderson. 2011. Deciding to major
in computer science: a grounded theory of students’ self-assessment of ability. In
Proceedings of the seventh international workshop on Computing education research.
ACM, 3-10.

Alex Lishinski, Aman Yadav, Jon Good, and Richard Enbody. 2016. Learning to
Program: Gender Differences and Interactive Effects of Students’ Motivation,
Goals, and Self-Efficacy on Performance. ACM Press, 211-220. https://doi.org/
10.1145/2960310.2960329

Dastyni Loksa and Andrew J. Ko. 2016. The Role of Self-Regulation in Pro-
gramming Problem Solving Process and Success. ACM Press, 83-91. https:
//doi.org/10.1145/2960310.2960334

Dastyni Loksa, Andrew J. Ko, Will Jernigan, Alannah Oleson, Christopher J.
Mendez, and Margaret M. Burnett. 2016. Programming, Problem Solving, and
Self-Awareness: Effects of Explicit Guidance. ACM Press, 1449-1461. https:
//doi.org/10.1145/2858036.2858252

Matthew B Miles, A Michael Huberman, and Johnny Saldana. 2018. Qualitative
data analysis: A methods sourcebook. Sage publications.

Claudia M. Mueller and Carol S. Dweck. 1998. Praise for intelligence can under-
mine children’s motivation and performance. Journal of personality and social
psychology 75, 1 (1998), 33. http://psycnet.apa.org/journals/psp/75/1/33/

Judith S Olson and Wendy A Kellogg. 2014. Ways of Knowing in HCIL Vol. 2.
Springer.

Eleanor O’Rourke, Kyla Haimovitz, Christy Ballweber, Carol Dweck, and Zoran
Popovi¢. 2014. Brain points: a growth mindset incentive structure boosts persis-
tence in an educational game. ACM Press, 3339-3348. https://doi.org/10.1145/
2556288.2557157

Vennila Ramalingam, Deborah LaBelle, and Susan Wiedenbeck. 2004. Self-efficacy
and mental models in learning to program. In ACM SIGCSE Bulletin, Vol. 36. ACM,
171-175.

Dale H. Schunk. 1989. Attributions and Perceptions of Efficacy during Self-
Regulated Learning by Remedial Readers. (1989).

Michael J. Scott and Gheorghita Ghinea. 2014. On the domain-specificity of
mindsets: The relationship between aptitude beliefs and programming practice.
IEEE Transactions on Education 57, 3 (2014), 169-174. http://ieeexplore.ieee.org/
abstract/document/6662493/

Beth Simon, Brian Hanks, Laurie Murphy, Sue Fitzgerald, Renée McCauley, Lynda
Thomas, and Carol Zander. 2008. Saying isn’t necessarily believing: influencing
self-theories in computing. In Proceedings of the Fourth international Workshop
on Computing Education Research. ACM, 173-184. http://dl.acm.org/citation.cfm?
1d=1404537

Anselm Strauss and Juliet Corbin. 1994. Grounded theory methodology. Handbook
of qualitative research 17 (1994), 273-85.

F. Boray Tek, Kristin S. Benli, and Ezgi Deveci. 2018. Implicit Theories and Self-
Efficacy in an Introductory Programming Course. IEEE Transactions on Education
61, 3 (Aug. 2018), 218-225. https://doi.org/10.1109/TE.2017.2789183

David R Thomas. 2006. A general inductive approach for analyzing qualitative
evaluation data. American journal of evaluation 27, 2 (2006), 237-246.

Nanette Veilleux, Rebecca Bates, Cheryl Allendoerfer, Diane Jones, Joyous Craw-
ford, and Tamara Floyd Smith. 2013. The relationship between belonging and
ability in computer science. In Proceeding of the 44th ACM technical symposium
on Computer science education. ACM, 65-70.

Rebecca Vivian, Katrina Falkner, and Nickolas Falkner. 2013. Computer sci-
ence students’ causal attributions for successful and unsuccessful outcomes in
programming assignments. In Proceedings of the 13th Koli Calling International
Conference on Computing Education Research - Koli Calling ’13. ACM Press, Koli,
Finland, 125-134. https://doi.org/10.1145/2526968.2526982

David S. Yeager, Carissa Romero, Dave Paunesku, Christopher S. Hulleman,
Barbara Schneider, Cintia Hinojosa, Hae Yeon Lee, Joseph O’Brien, Kate Flint,
Alice Roberts, Jill Trott, Daniel Greene, Gregory M. Walton, and Carol S. Dweck.
2016. Using design thinking to improve psychological interventions: The case of
the growth mindset during the transition to high school. Journal of Educational
Psychology 108, 3 (2016), 374-391. https://doi.org/10.1037/edu0000098

https://www.bls.gov/ooh/fastest-growing.htm
https://www.bls.gov/ooh/fastest-growing.htm
https://doi.org/10.1006/jesp.2001.1491
https://doi.org/10.1145/1083431.1083474
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8624.2007.00995.x/full
https://doi.org/10.1016/0895-4356(93)90018-V
https://doi.org/10.1016/0895-4356(93)90018-V
http://dl.acm.org/citation.cfm?id=1734409
https://doi.org/10.1177/1525822X08317166
http://jar.sagepub.com/content/14/1/10.short
http://jar.sagepub.com/content/14/1/10.short
http://dl.acm.org/citation.cfm?id=543836
http://dl.acm.org/citation.cfm?id=543836
https://doi.org/10.1145/2787622.2787722
https://doi.org/10.1145/2787622.2787722
https://doi.org/10.1016/j.appdev.2003.09.002
https://doi.org/10.1111/cdev.12064
http://psycnet.apa.org/journals/psp/77/3/588/
http://psycnet.apa.org/journals/psp/77/3/588/
https://doi.org/10.1145/3230977.3230982
https://doi.org/10.1080/08993408.2012.655091
https://doi.org/10.1145/2960310.2960329
https://doi.org/10.1145/2960310.2960329
https://doi.org/10.1145/2960310.2960334
https://doi.org/10.1145/2960310.2960334
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1145/2858036.2858252
http://psycnet.apa.org/journals/psp/75/1/33/
https://doi.org/10.1145/2556288.2557157
https://doi.org/10.1145/2556288.2557157
http://ieeexplore.ieee.org/abstract/document/6662493/
http://ieeexplore.ieee.org/abstract/document/6662493/
http://dl.acm.org/citation.cfm?id=1404537
http://dl.acm.org/citation.cfm?id=1404537
https://doi.org/10.1109/TE.2017.2789183
https://doi.org/10.1145/2526968.2526982
https://doi.org/10.1037/edu0000098

	Abstract
	1 Introduction
	2 Related Work
	2.1 Mindset Theory
	2.2 Mindsets in CS
	2.3 Relationship Between Students' Perceived Ability and Persistence in CS

	3 Interview Study
	3.1 Participants and Setting
	3.2 Procedure
	3.3 Data Analysis
	3.4 Mindset Findings
	3.5 Self-Assessment Criteria Findings
	3.6 Discussion

	4 Survey Study
	4.1 Participants and Setting
	4.2 Open-ended Survey Question
	4.3 Likert Scale Survey Questions

	5 Conclusions
	6 Acknowledgements
	References

