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Abstract—

In prior work, we proposed a cross-layer architecture called
Multicast-Push Unicast-Pull (MPUP) for Software Defined Net-
works (SDN) to support a reliable file-stream multicast appli-
cation. In this work, we improved the algorithms used to set
parameters: transport-layer sender retransmission timer, VLAN
rate (which is also the sending rate) and sender-buffer size. Ex-
perimental evaluation using feeds with metadata collected from
real meteorology file streams was conducted. A significant finding
is that the throughput achieved is smaller than the VLAN/sending
rate even though file blocks are multicast continuously in UDP
datagrams. Sender-buffer waiting times and propagation delays
are the main reasons for the degraded throughput. For example,
increasing the VLAN rate from 20 Mbps to 500 Mbps, reduced
the degradation from 90% to 45%. However, the degradation
increased from 45% to 58% when the VLAN rate was increased
from 500 Mbps to 1 Gbps. We found an increase in the number
of block retransmissions at the higher rates, which explains
this increased degradation. Increasing RTT from 0.1 ms to 100
ms caused throughput to drop from 274.8 Mbps to 27.6 Mbps
on a 500 Mbps VLAN. If transmission delay was a significant
component in total latency, then throughput degradation relative
to VLAN rate would be small; however, the meteorology file-
streams used in our study have small-sized data products. Due
to bandwidth borrowing between VLAN and IP-routed services,
VLAN utilization is not important, and hence we recommend
using the smallest rate at which sender-buffer waiting times are
insignificant.

Index Terms—File distribution; Layer-2 networks; Reliable
multicast; SDN

I. INTRODUCTION

There are interesting use cases for reliable multicasting of
file streams. For example, scientists engaged in atmospheric
research subscribe to real-time meteorology data streams that
are sent almost continuously by University Corporation for
Atmospheric Research (UCAR). UCAR runs the Unidata In-
ternet Data Distribution system (IDD) [1] project to collect and
distribute large amounts of meteorology data on a near real-
time basis. Examples of meteorology data include radar data,
satellite imagery wind profiler data, lightning data, and high-
resolution model data. Currently, there are 576 sites in 230
domains disseminating near real-time earth observations in this
IDD project. Over 30 types of file-streams (called feedtypes)
are distributed in this Unidata IDD project, transmitting data
products (small files) at an average rate of 45 GB per hour,
with roughly 439,000 products per hour.

Currently the Unidata IDD project uses Application Layer
Multicasting (ALM) in which unicast TCP connections are
used from the senders at UCAR to each of the receivers. Some
receivers serve as relay points in an ALM tree. This solution
does not scale well with increasing number of subscribers and
data size. Therefore, network multicast solutions are of interest
to this IDD project team.

Unlike in ALM where a sender creates multiple copies
of the data products at the application layer, in network
multicast, switches create multiple copies of incoming packets
and forward each of them to different ports, each headed to a
different set of destinations. There are two aspects to network
multicasting: data-plane packet forwarding, and control-plane
routing protocols (to add entries to switch/router forwarding
tables to create the multicast trees). IP multicast is a Layer-3
packet forwarding solution in which the destination IP address
in the IP header is used for the table lookup to determine
outgoing ports. Routing protocols such as Multicast Source
Discovery Protocol (MSDP) [2] are used to create forwarding
table entries for multicast destination IP addresses. MSDP and
related protocols were designed for distributed implementation
on IP routers. Creating inter-domain multicast trees using these
protocols was challenging, and therefore, even though routers
included features in hardware and software to support IP
multicast, most service providers do no enable this capability.

With the advent of Software Defined Networks (SDN), it
became easier to configure multicast trees in the forwarding
tables of switches from centralized SDN controllers. Inter-
domain multicast trees can similarly be configured through
coordinated operations in SDN controllers, one in each do-
main. These multicast trees could be configured for Layer-
3 or Layer-2 (L2) packet forwarding. In our study, we used
L2 Virtual LANs (VLANSs) along with MultiProtocol Label
Switched (MPLS) paths to configure inter-domain multicast
trees for the specific advantage of in-sequence packet delivery.

In prior work [3], we presented a cross-layer Multicast-
Push Unicast-Pull (MPUP) architecture for supporting reliable
file-stream multicasting over SDN networks. Specifically, the
solution includes a transport layer protocol called File Transfer
Multicast Protocol (FMTP) [4], which runs on top of UDP
and Circuit TCP (CTCP) [5], and leverages link-layer traffic
control to pace out packets at the rate used by the SDN
controller to configure VLAN/MPLS paths in switches. FMTP



creates blocks from the application data and sends each block
in a UDP datagram over the multicast tree. Since in-sequence
delivery is guaranteed on VLAN/MPLS paths, the sender does
not need to track acknowledgments from receivers as with
TCP since this approach is not scalable in a multicast setting.
Instead receivers in the multicast tree can determine if a block
is missing (due to errors or packet drops) from the block
sequence number, and send a negative acknowledgment to the
sender. The latter then uses CTCP to transmit the lost block
to the particular receiver on a unicast connection.

The problem statement of this paper is to design algorithms
to determine the best values to use for the parameters of
this cross-layer solution taking into account multiple input
variables. The parameters include the FMTP sender retrans-
mission period (while 100% reliability is desired, if the path to
one sender has high packet loss rates or if a sender is slow at
processing incoming packets, serving block retransmissions to
individual receivers without a time limit could impact FMTP
throughput in serving new products to all receivers), VLAN
and corresponding multicast sending rate, and transport-layer
and link-layer buffer sizes at the sender to hold products as
incoming file streams can have bursty product arrivals. The
input variables include file-stream characteristics (size of data
products, inter-arrival time between data products within a file
stream), number of receivers in the multicast tree, and packet
loss rates and round-trip times (RTTs) on paths from the sender
to each of the receivers.

The solution approach is to develop algorithms/heuristics
for finding ideal values for parameters and evaluate these
heuristics by measuring output metrics such as throughput,
FMTP File Delivery Ratio (FFDR, a measure of how suc-
cessfully FMTP delivered data products), and latency. For
evaluation of these algorithms, we used an application-layer
software package called Local Data Manager (LDM) [6]. This
package is used by the Unidata IDD (for North-American
data distribution) and other IDD projects, such as IDD-Brasil
(South-American peer), IDD-Caribe (Central-American peer),
and Antarctic-IDD, US government agencies such as NOAA,
FAA, NASA and USGS, commercial entities, and foreign Met
offices such as the UK office!. We integrated our MPUP
solution into this LDM application. We then executed this
new version of LDM, LDM7, on the NSF Chameleon testbed
[7] and emulated different network paths (by varying packet
loss rate and RTT). The collected measurements were used to
compute throughput, FFDR and latency for different configu-
rations of the input parameters. Statistical analysis was then
used to test hypotheses, which led us to formulate methods
for selecting parameter values.

The key contributions of this work are as follows. First,
a trial deployment was tested, and we found it feasible to
use network multicast trees across multiple domains with L2
SDN services. Second, a measurements-based approach to
compute the FMTP sender retransmission timer was proposed
and evaluated. Third, a new algorithm was designed to choose

Thttp://www.metoffice.gov.uk/public/weather/forecast/world
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Fig. 1: Multicast-Push Unicast-Pull (MPUP) Architecture

an appropriate value for the VLAN/sending rate and sender
buffer size. Fourth, an analytical study of the measured values
was used to characterize relationships between output metrics
and input parameters. Finally, our prior work used only one
feedtype, while in this work, we ran one experiment with
multiple feedtypes. Since the traffic characteristics of input
file streams affect performance, this extension was important
for the general applicability of our solution.

Section II provides an overview of the MPUP architecture.
Our trial deployment of the LDM software, modified for
the MPUP solution, is described in Section III. Section IV
describes our methods for choosing values for the FMTP
sender retransmission timer, and the VLAN rate (and sender-
buffer size). Section V describes our experiments and discusses
the results. Section VI reviews other related research. Section
VII concludes the paper.
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II. CROSS-LAYER ARCHITECTURE: MPUP

Fig. 1 illustrates a modified version of the cross-layer
Multicast-Push Unicast-Pull (MPUP) architecture proposed in
our prior work [3]. The specific changes made are highlighted
in the description below. Network services, transport-layer,
application-layer components, and cross-layer aspects are cov-
ered below.

A. Network services

Two networks are assumed in this system model (as shown
Fig. 1): IP-routed network and an SDN. For WAN deploy-
ments, the IP-routed network is the Internet, and an example
of SDN that offers L2 services with which multicast trees
can be created is the Internet2 Advanced Layer 2 Services
(AL2S) network [8]. As the Internet offers the ubiquitous
IP-routed best-effort service, this service is leveraged for
reliability reasons, while the basic file-stream multicast and
unicast block retransmissions are carried out on the SDN.
Internet2 offers both AL2S and IP-routed services on the same
physical network, as do other providers.

Fig. 1 shows the details of the protocol stack inside the
sender and a receiver. Each sender and receiver has two NICs
(these could physical or virtual). Applications in the end hosts
choose NIC1 for SDN-based services and NIC2 for IP-routed
services.



There is a Control-plane Module (CM) at the application
layer, which communicates with the SDN controller to estab-
lish an L2 multicast tree? across the SDN. Individual receivers
can be added to, or dropped from, a existing multicast tree
as users at these receiver nodes subscribe to, or unsubscriber
from, a particular file-stream. All control-plane communica-
tion occurs over the IP-routed network using standard TCP as
shown in Fig. 1.

There are two reasons for using the SDN for the multicast
tree: (i) in-sequence delivery, and (ii) rate guarantees. By
establishing an end-to-end multicast tree, the path from a
sender to any receiver is fixed, and all user-data carrying
packets will follow the same path through the SDN. This
feature of in-sequence delivery allows for the transport pro-
tocol to use negative acknowledgements, and thus avoid the
ACK-implosion problem in multicast settings. Rate-guaranteed
service does not necessarily require configuring data-plane
actions such as policing or scheduling on every link of an end-
to-end path. In networks with light loads, the SDN can offer a
high probability of delivering packets at a given rate. In MPUP,
the link-layer traffic-control functionality (e.g., Linux tc) is
used to ensure that the sender paces packets at a fixed rate,
equal to the rate used in the multicast-tree setup request sent
in the control plane to the SDN controller. This ensures that
the flow itself will not have bursty traffic, which can lead to
packet drops in small-buffer, inexpensive enterprise switches
on the path. Having a fixed rate of packet delivery on the
multicast tree makes it easier to select parameters such as the
FMTP sender retransmission timer, as will be illustrated in
Section IV.

In addition to the CM, the Unicast-Pull Module (UPM) also
uses the IP-routed network, as shown in Fig. 1. The purpose
of this module is described in Section II-C.

B. Transport-layer protocols

Fig. 1 shows the MPUP solution uses two non-standard
transport-layer protocols: FTMP and CTCP. These protocols
are reviewed below.

FMTP: For each file (data product), FMTP sends a Begin-
of-Product (BOP) message via L2 multicast to all receivers.
Next, the FMTP sender divides the file into blocks large
enough to fit in UDP datagrams, and multicasts these file
blocks. Finally, FMTP multicasts an End-of-Product (EOP)
message to all receivers. The FMTP receiver checks each
FMTP packet header and detects missing blocks. If all blocks
are received correctly, the FTMP receiver sends an End-of-
Retx-Reqs message to the sender. If one or more data blocks
are missing, the FMTP receiver sends a Retx—Request back to
the FMTP sender via the reliable unicast service over CTCP.
The FMTP sender retransmits the requested data blocks via
the reliable unicast service to just the requesting receiver. A
sender retransmission timer is set for each file after the BOP is
sent. When this timer expires, the FMTP sender stops serving

2With VLANS, the tree is more commonly referred to as a multipoint virtual
topology since a sender can be located on any leg of the VLAN.

all pending and new retransmission requests and sends back
rejections. On the FMTP receiver side, a receive timer is set for
each file when its BOP is received. If the timer expires before
the reception of the corresponding EOP, the FMTP receiver
immediately requests retransmissions for all missing blocks
and the EOP for that file. This timer is new relative to the
FMTP description in our prior work, and is required to handle
the loss of one or more blocks at the end of the file and loss
of EOP [9].

CTCP: In prior work [5], [10], we developed a simpler
version of TCP called Circuit-TCP (CTCP) for dedicated
circuits. Specifically, CTCP drops the congestion control part
of TCP. Since bandwidth resources are reserved for rate-
guaranteed paths, there is no possibility of packet drops in
switches/routers, and therefore, no requirement for the CTCP
sender to adjust its sending rate. As the link-layer traffic
control sends packets at a fixed rate, equal to the provisioned
multipoint VLAN rate, the CTCP should not increase and
decrease the rate at which it sends segments to the lower
layers. TCP flow control (to prevent receive-buffer overflows)
is required since multi-tasking receivers could occasionally be
handling some other task and hence not deplete the receive
buffer in a timely fashion. TCP error control is also required
for reliable transfers since even without congestion related
losses, bit errors can occur. FMTP uses CTCP only for
retransmission of missed blocks.

C. Application layer

Fig. 1 shows three components in the MPUP application
layer: Multicast-Push Module (MPM), Unicast-Pull Module
(UPM) and Control Module (CM). The MPM is used by
applications to interface with the FMTP layer. Details of
this API are provided in an MS thesis [4]. Among other
parameters, the sender MPM provides the FMTP layer the
value to use for the sender retransmission timer.

The purpose of the UPM is to enable a multicast receiver
that did not receive all blocks of a data product (file) to
request retransmission of the file. As explained in Section I, to
prevent one slow receiver from adversely impacting the overall
system performance, the FMTP sender starts a retransmission
timer, and all receivers are required to request retransmissions
of missing blocks before the timer expires. However, given
our goal to achieve 100% reliability, a back-stop mechanism
is required to allow receivers to obtain files for which their
retransmission requests exceeded this timer value. The UPM
offers this capability via unicast standard TCP connections
between the sender and each receiver that are established
across the IP-routed network.

The CM handles receiver subscription requests for appli-
cation file streams, and supports the functionality required to
establish, modify and release multicast trees.

D. Cross-layer operation

A detailed study of the interaction at the sending host
between TCP, UDP and CTCP with the lower layers was
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conducted [4]. The function that calls tc-layer enqueue is
an IP-layer function, but this IP-layer function merely passes
through the return status from the enqueue function to the
calling transport-layer function. The differences in behavior of
the three transport-layer protocols lie in the manner in which
the calling transport-layer function reacts to a failed enqueue
attempt.

Irrespective of the calling transport-layer function, if there
is no space in the t c-layer buffer, the function responsible for
enqueueing the packet will simply drop the packet, and send
back a failed response to the calling function. A TCP sender
will react to a failed-enqueue response by entering the CWR
state, and halving the congestion window (cwnd). Applications
will hold data in user-space memory if the TCP buffer is
full. A UDP sender will not react to the failed-response status
because UDP does not offer reliable transport service. Since
data-product arrival from the application layer could be bursty,
and the link-layer is moving packets out at a fixed rate, a
large UDP/t c-layer buffer is required to hold packets. With
CTCP, the sender also ignores the failed-response status as
CTCP does not adjust sending rate dynamically. In MPUP,
CTCP is used just for block retransmissions, and therefore
a moderate-sized buffer should suffice. Experimental findings
on the required UDP/tc-layer buffer size are presented in
Section V-D2.

III. MULTI-DOMAIN TRIAL DEPLOYMENT

As noted in Section I, we modified LDM ver. 6 to create
a new version LDM7, which uses FMTP, CTCP and TCP, as
illustrated in the MPUP architecture of Fig. 1. As explained
in Section II-A, MPUP uses an SDN that supports multicast
services. The availability of such an SDN is hence important
for a multi-domain WAN deployment.

Internet2 and ESnet, the two major US backbone Research-
and-Education Network (REN) providers, have deployed
SDNs, and offer dynamic L2 (VLAN/MPLS) path services.
We chose Internet2 to test LDM?7 deployed at multiple uni-
versity campuses. The Internet2 SDN controller is called Open
Exchange Software Suite (OESS) [11]. In our current deploy-
ment, only the multipoint L2 virtual network (VLAN/MPLS)
across Internet2 AL2S is dynamically established, reconfig-
ured as needed, and released.

Fig. 2 illustrates our trial deployment at the University of
Virginia (UVA), University of Maryland (UMD) and UCAR.

The corresponding regional REN providers are MARIA, MAX
and FRGP, respectively. VLAN segments are provisioned from
the LDM7 servers in the three campuses to their corresponding
Internet2 AL2S switch ports, e.g., VLAN III from UVA,
manually. Our vision is that as SDN deployment increases, and
campus and regional RENs follow Internet2’s lead and offer
dynamic L2 services, these segments can also be established
dynamically. Fig. 2 illustrates how Internet2’s dynamic L2
service capability is leveraged for our LDM7 trial deployment.
Assume that VLAN I had been previously connected to VLAN
I via an Internet2 AL2S MPLS path represented by the
magenta dashed line between switches S1 and S2. Assume
the LDM7 sender at UCAR is sending a particular feed to the
LDM?7 receiver at UMD. Steps (1) through (5) required for
the UVA LDM7 receiver to join this feed are shown in Fig. 2.

We have currently deployed LDM7 on 8 campuses and
have expansion plans. This trial deployment demonstrates the
feasibility of a WAN deployment of MPUP.

IV. METHODS FOR CHOOSING PARAMETER VALUES

This section describes our methods for determining
how to set parameters: FMTP sender retransmission timer,
VLAN/sending rate, and sender-buffer size, in a general
MPUP architecture.

A. FMTP sender retransmission timer

This parameter, 7g,4(%), limits the duration for which an
FMTP sender serves retransmission requests for file i. We
use FFDR to study the impact of this parameter [3]. FFDR
evaluates the success of file delivery by FMTP from a single
sender to multiple receivers. A file ¢ is said to have been
delivered successfully to receiver j by FMTP if all blocks
of file i were received by receiver j either via multicast
or via missed-block retransmissions on the unicast CTCP
connections from the sender to each receiver. When FFDR
is less than 100%, the application-layer UPM described in
Section II-C ensures successful delivery of all files to all
receivers as long as receivers request files within the specified
duration for which files are served by the backstop reliable
mechanism. Hence, FFDR captures the extent to which FMTP
is successful in delivering files without the backstop.

In our prior work [3], this timer was defined to be dependent
on file size as shown below:

Tond(1) = max(fsna * s;/r, max RTTj) (1)
1<j<m

where the symbols are explained in Table I. While this defini-
tion considered only file transmission delay and propagation
delays, we found that sender-buffering delay was a dominant
factor when the VLAN/sending rate was low (e.g., 20 Mbps).

Even with a large fs,4 value of 5000, FFDR was not 100%
when packet loss rate is non-zero. For example, when packet
loss rate was 1%, FFDR was 89% with 8 receivers, and fell
further to 77% with 16 receivers. LDM7 log files showed that
a majority of unsuccessful files, i.e., files that were not fully
delivered by FMTP because of sender retransmission timeout,



TABLE I: Notation

Input parameters
7 file index
j and m receiver index, and number of receivers, respectively
(t,t + kT) kP holding interval (during which VLAN rate and buffer size are held unchanged)
a; time instant when file ¢ was delivered to sender’s FMTP layer
S; size of file 4
System parameters
W maximum queueing delay (waiting time) in sender buffer
E maximum total delay for processing, switch/router buffer queueing and FMTP block retransmission delays
«@ threshold for per-receiver fraction of products that exceeded latency threshold
Jéj threshold for fraction of receivers that exceeded « threshold
fsnd FMTP sender retransmission timeout factor
Tond(t) FMTP sender retransmission timer for file 4
RTT; and p; | round-trip time (propagation delay) and artificially injected packet loss rate from sender to receiver j
Tk configured VLAN rate used in the k*" holding interval; when r is used without a subscript, k is implicit
Intermediate values
Ry, ideal computed VLAN rate for the k% holding interval
By, ideal computed sender-buffer size for the k" holding interval
q(t) sending-host buffer (queue) occupancy at time ¢ in ideal case
€;; and €] i sum of sender processing delay for packets of file 7, queueing delays at switch/router buffers experienced by
packets of file ¢ en route to receiver j, and FMTP block retransmission delays, actual and ideal, respectively
w; and w] sender-buffer waiting time experienced by file ¢, actual and ideal, respectively
di; and d, J latency incurred in delivering file 7 at receiver j, actual and ideal, respectively
Ag set of files that arrived in the A*™ holding interval
D;C set of files that departed the sender in the £*™ holding interval in ideal setting
Ny and N 1; number of files that arrived and departed the sender in the k" holding interval, actual and ideal, respectively
Vi, set of files whose actual latency d;; exceeded threshold in the k% holding interval at receiver j

were small-sized. For example, if fs,q = 5000 and r = 20
Mbps, the retransmission timer for the smallest observed file,
which had a size of 0.06 KB, would have been set to 0.12
second. This retransmission timer is so small that it could
have expired even when the file was still queued in the sender
buffer. If this happens, none of the receivers would have
received this file, which would result in a significant number
of retransmissions.

On the other hand, 7,,4(i) for the largest file, which had
a size of 23.7 MB [12], would have been set to 13.17 hours.
However, LDM7 guarantees to hold each file in its product
queue for only one hour. This could cause a problem because
FMTP does not hold a copy of the file in its memory space;
rather it serves retransmission requests by reading blocks
of files directly from the LDM7 product queue. Therefore,
application constraints should be considered when deciding
the FMTP sender retransmission timer.

File-independent solution: A simple solution is to have
the application provide a single value for the FMTP sender
retransmission timer to use for all files of a particular feedtype,
i.e., Tsna(i) = ¢, where ¢ depends on feedtype, and the
maximum time the application holds each file in its memory
space.

While the application dictates a maximum value for this
FMTP timer, layers below FMTP and path characteristics
dictate a minimum timer value. Therefore, propagation delays,
queueing delays, sender-buffering delays, and packet loss
rates (which impact the time for retransmissions) should be
considered when determining the minimum value for the timer.
As the lower-layers-dictated timer value could be larger than
the application-dictated timer value, a holistic approach is

required to setting this timer value.

Our solution is to monitor the maximum latency of products
in fixed intervals for each feedtype, and then adjust the
FMTP sender retransmission timer if needed. In our prior
work, maximum latency was measured for just one hour of
one feedtype NGRID. In this work, we measured maximum
latency for multiple feedtypes over multiple hours to determine
whether this value changes significantly from one hour to the
next for a given feedtype. Section V-D1 presents these results.

B. Multipoint VLAN/sending rate and sender-buffer size

In prior work [12], we proposed an algorithm for selecting
these parameters. However, there were a few drawbacks in this
algorithm: (i) no method was offered to set the threshold W
(see Table I); (ii) only a single receiver (instead of multiple
receivers) was considered in the model; (iii) per-file throughput
metric was used instead of an aggregated average throughput
metric (the former gives equal weight to all files irrespective
of size); (iv) idealistic assumptions, which are challenging
to implement, were made, such as needing to determine the
number of files that exceeded a waiting-time threshold at the
sender, and that multipoint VLAN rate should be modified
with an Exponential Weighted Moving Average (EWMA)
method, and (v) VLAN utilization was considered. Our prac-
tical implementation showed that with bandwidth-borrowing
(also called work-conserving) between VLAN queues and IP-
routed queues, it is not important to maintain a high VLAN uti-
lization. The implication of this finding is that the VLAN rate
does not need to be decreased often, and therefore instead of an
EWMA method, excessive latency violation can be monitored
and VLAN rate increased only when significant thresholds are



crossed. To modify VLAN rate, signaling is required to SDN
controllers, which is a high-overhead operation, especially in
multi-domain paths. These drawbacks are fixed in the model
presented below.

1) Ideal buffer size computation: Using an ideal path rate
Ry, buffer occupancy at the time of arrival of each file is as
follows [12]:

qlar) = qt+(k—-1)7)
g(az) = max{0,q(a1)+ 1 — R X (az —a1)}
q(a;) = max{0,q(a;—1)+ si—1 — Rk X (a; — a;—1)¥2)

To ensure O loss in the k" holding interval, the sender-
buffer size Bj should ideally be

B = max

1<i<|Ax|)

q(as) 3)

2) Ideal path rate computation: Waiting time at the sender
buffer for file ¢ is:
= 1)
Ry,
Ideal path rate Ry, for the k' holding interval is the smallest
value at which the following holds:

wj <W,1<i< N (5)

where N; = |A, ND}|.
The ideal latency to deliver file ¢ to receiver j would be

d;j = (w, + s;/Rx + RTT;/2) + E(L,j (6)

accounting for sender-buffer waiting time, transmission delay,
one-way propagation delay, and a small delay egj <E.

3) VLAN/sending rate adjustment: Actual file latency d;;
is measured from the time instant when the sender-side ap-
plication provides a file ¢ to the FMTP layer to the time
instant when a receiver j receives all blocks of the file via
FMTP. Applications can log these timestamps, allowing for a
computation of actual file latency. In our application LDM7,
the sender sends the arrival timestamp for each data product
to the receiver, which logs this timestamp along with the
reception time for the product, and Network Time Protocol
(NTP) is used to synchronize clocks.

File ¢ belongs to set Vy; if d;j — (&;; + s: /T + RTT;/2) >
W, where an estimate of ¢;; is RT"T; multiplied by the number
of block retransmissions plus a small number to estimate
processing delays and switch/router buffer queueing delays.
A receiver j is in violation of the latency requirement in
the k' holding interval if |Vy;| /N > «. If the fraction of
such receivers relative to the total number of receivers in the
multicast tree exceeds [, then the sender should initiate an
increase in the VLAN rate for the next holding interval. If
€;; also exceeds E, packet loss rate could be high. If the
threshold is not exceeded but the E is exceeded, it may not be
useful to increase VLAN rate since this rate may not influence
the components of ¢;;.

If in the SDN controller, VLAN call blocking rate becomes
high, delay analysis should be conducted, and individual
VLAN rates should be decreased if possible.

“4)

4) Setting of thresholds used in the algorithm: Methods for
setting thresholds W and [E will depend upon the application.
We demonstrate our method for the IDD project. We propose
using 2 ms (less than 10% of the propagation delay across the
US) for the waiting-time threshold W. On the other hand, if
all products are small and all receivers are close to the sender,
2 ms may be a much higher percentage of the total latency.
This is still acceptable for the near-real-time requirement of
the IDD receiver analysis programs that consume the products
as they arrive. Finally, this 2 ms number does not make the
required VLAN rate too high relative to available link rates in
the IDD project.

For E, we propose using a small value, e.g., 2 ms plus
maxi<;j<m [IZTT;. The small value accounts for processing
and switch/router buffer queueing delays, which are typically
in microseconds in the IDD environment. The second term
accounts for retransmission delay. We estimate only one block
retransmission per product, given low packet-loss rates and
small product sizes in the IDD project.

We recommend « to be 0.1 and 3 to be 0.01, i.e., 10% and
1% respectively for the IDD application, but these numbers
depend upon the IDD administrator’s determination of user-
analysis-program requirements with respect to near real-time
product delivery.

V. EXPERIMENTAL EVALUATION

A. Setup

Chameleon, a deeply reconfigurable, NSF-supported net-
work testbed, was used to run the experiments. For our
experiments, we created a VLAN with hosts distributed in two
different racks, both of which are geographically located at
Texas Advanced Computing Center (TACC) at the University
of Texas, Austin. The number of bare-metal hosts used in each
rack was varied as we modified the number of receivers in our
multicast experiments.

Each bare-metal node had 2 cores (Intel® Xeon® CPU E5-
2670 v3 @ 2.30GHz), 128 GiB RAM, and 250 GB disk space.
Two 10GE NICs were used in this experiment. A VLAN was
stitched between the top-of-rack switches in the two racks, and
the rate of the VLAN was set to 10 Gbps.

The software used in our experiments consists of: (i) LDM?7,
(i) Linux traffic-control (tc) utility to adjust sending rate,
(iii) Linux network emulation utility, netem, to increase RTT
between sender and receivers, (iv) Linux utility, iptables,
to inject/remove artificial packet losses by inserting/deleting
DROP rules, (v) Linux utility tcpdump, to capture network
traffic on CTCP connections, and determine the number of
missing-block retransmissions, and (vi) Python scripts to parse
LDM log files for file latency, throughput, and FFDR.

B. Execution

Experiments were run to measure performance of LDM7,
an MPUP implementation. Table II shows values used for
four input parameters (see Table I for interpretations of the



symbols), and a fifth parameter is the specific feed (file-stream)
used in our experiments.

TABLE II: Values for input parameters

Symbol Value

m {1,8,16}

RTT; {0.1, 10, 20, 30, 40, 50, 100} ms
P; {0,5} %

Tk {20, ...,60}, {500, ...,1000} Mbps

Feeds (file streams): A data analysis of five IDD feedtypes
showed that both file inter-arrival times and file sizes have
long-tailed right-skewed distributions [12]. Our prior work
[3] used only the NGRID feedtype to compare LDM7 and
LDM6 (application-layer multicast version). In this work, for
a comprehensive investigation of the performance of LDM7,
we set up a receiving LDM6 server at UVA and configured it
to collect metadata (size and creation-time) for six real feed
types from a UCAR sending server. These feedtypes are listed
in Table IIT [13]. Specifically, the LDM utility, notifyme,
which allows a downstream LDM server to receive just the
metadata about files in a feedtype instead of the actual files,
was executed to receive metadata for the week of November
15-21, 2018. The real metadata collected for these feedtypes
was used as input to a program called pg_insert to create
dummy data products with the corresponding creation times
and sizes. LDM7 was used to multicast these dummy products
from a sender to multiple receivers.

TABLE III: LDM feedtypes used

Feedtypes Average traffic | Description

proportion
NGRID 22.8% NOAA port high-resolution model output
CONDUIT 17.9% NCEP high-resolution model output
NEXRAD2 9.6% Next-generation radar Level-II radar data
NEXRAD3 3.1% Next-generation radar Level-III products
HDS 2.5% High-resolution data service
IDS|DDPLUS| 0.2% International data service

The Linux tc utility was used for the traffic control
module shown in Fig. 1. A combination of Hierarchical Token
Bucket (HTB) and Bytes First In First Out (BFIFO) queueing
disciplines of tc were used to make two queues, one for
multicast and the second for retransmissions. As shown in
Fig. 1, UDP and CTCP feed packets into tc. The UDP
datagrams were directed to one queue, while packets from
all m CTCP connections (from the sender to each receiver)
were directed to the second queue.

Our prior-work comparison of LDM7 and LDM6 with the
NGRID feedtype showed that with a VLAN/sending rate of
20 Mbps LDM7 and LDM6 achieved the same throughput
value. Therefore, we used 20 Mbps as a starting value for
the VLAN rate r with a buffer size B of 600 MB to ensure
that no packets were dropped by the tc buffer at the sender.
A dropped packet at the sender will require retransmissions
for all the receivers, and is hence avoided. The rate r was
set as the HTB rate and ceil parameters for both queues,
while the 600 MB buffer size was set in the BFIFO parameter.
The same values of VLAN/sending rate and sender-buffer size
were used for the CTCP queue.

The LDM application Product Queue (PQ) has two param-
eters: (siz. and gsor, Which represent the maximum size of
the PQ in bytes, and the maximum number of files that can be
stored in the PQ, respectively. If a newly arriving file causes
either of these limits to be exceeded, one or more of the oldest
files will be deleted to make space for the new file. We selected
the values 5 GB for ¢g;.. and 35000 for ¢.;,; to ensure no file
drops in the PQ for any 1-hour file streams.

The experimental workflow consists of four steps: (i) upload
LDM?7 software, configuration files (for FMTP and LDM),
metadata of 6 feedtypes and network emulation scripts (to ad-
just sending rate, packet loss rate and RTT) to the Chameleon
bare-metal nodes from a local host, (ii) run the software
and monitoring tools on the Chameleon nodes, (iii) download
collected logs from the Chameleon nodes to a local host, and
(iv) run the log parsers to extract performance measures for
analysis.

C. Output measure

A file-set throughput is computed at each receiver by
summing file sizes over a set of file indices and summing
corresponding latencies, and dividing these two sums [3]. A
set is defined to include a subset of files whose total size is
close to G, and all files in the set would have arrived and
departed within a holding interval k. A holding interval &
could have multiple sets. An averaging operation is performed
to compute the average file-set throughput values across all
receivers. The average file-set throughput for the [*" subset of
files that arrived in holding interval k is defined as follows:

1 — ZiEZkl Si

P =— = (7

where Zy; is a subset of files that arrived in holding interval
k. The subset is defined by file indices L; and Lo, which
are chosen such that ZZ(LLITD s; < G and Ziff s; > G,
where G is the aggregate file-set (group) size. A G value of
200 MB was used.

In the k" holding interval, there will be multiple Zj;
subsets, each of which has a cumulative size close to G. The
number of such sets in the k! holding interval is A;. The
throughput for a holding interval k is defined as:

j=1

jR—
T, = — r 8
k )""1:21 ki (8)

D. Results

1) FMTP sender retransmission timer: The solution to use
a constant value for the FMTP sender retransmission timer,
described in Section IV-A, was evaluated on the Chameleon
setup using multiple 1-hour traffic traces from the six LDM
feedtypes. The purpose of these experiments was to determine
whether or not the maximum latency experienced by data
products within an hour for each feedtype varies significantly
from one hour to the next. If measures of variation were small,
and if the maximum latency was below the default 1-hour



value used by the LDM?7 application to hold files in its product
queue to serve retransmission requests from receivers, then our
hypothesis that a per-feedtype constant value could be used
for the FMTP sender retransmission timer would be validated.
If either of these conditions were not met, then an alternative
approach would be required to determine how to set the FMTP
sender retransmission timer.

Our findings are shown in Tables IV and V, corresponding
to VLAN rate settings of 20 Mbps and 500 Mbps, respectively.

TABLE IV: Maximum latency across products in three 1-hour
intervals (16:00-17:00 UTC on Nov. 15, Nov. 16 and Nov. 17);

r = 20 Mbps
Feed Type Per-hour maximum latencies (s)
NGRID 64.70; 60.77; 55.73
CONDUIT 154.93; 186.90; 162.27
NEXRAD2 0.31; 0.41; 5.31
NEXRAD3 0.30; 3.81; 0.93
HDS 1.75; 9.47; 7.52
IDS|DDPLUS 0.14; 0.10; 0.10

TABLE V: Statistics for maximum latency across NGRID
products in 24 one-hour intervals (Nov. 16, 2018); r = 500

Mbps

NGRID Time (ms)
Min. 102

Ist Q 262
Median 315

3rd Q 458

Max 3352
Mean 509

Waiting times in the sender buffer can be large when r = 20
Mbps, and therefore maximum latency is higher in Table IV
than in Table V. First, we observe that there can be significant
differences among the one-hour values, e.g., for NEXRAD3,
two 1-hour segments had maximum latency less than 1 sec,
while a third one had a maximum latency of 3.81 s. However,
all the numbers observed are smaller than the 1-hour LDM7
timer limit. Therefore, it is feasible to set a constant value,
which could be different for each feedtype, for the FMTP
sender retransmission timer.

2) Sender-buffer size requirement: In a preliminary set of
sequential experiments, LDM7/FMTP/UDP was executed with
the multicast HTB class rate set to 20 Mbps, and the BFIFO
buffer size set to 7.2 MB, 300 MB, and 200 MB. The number
of packets dropped by tc in each of these experiments was
623019, 0, and 48354, respectively. We then conducted a
systematic experimental study by varying the VLAN/sending
rate, r, and increasing the t c-layer buffer size for each setting
of r until the dropped-packet rate reported in tc statistics
reached 0. Fig. 3 shows that the required buffer size dropped
from 300 MB to 20 MB as the sender multicast rate, r, was
increased from 20 Mbps to 500 Mbps. The waiting time in
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Minimum loss-free buffer size (MB)
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Fig. 3: Minimum loss-free buffer size required for various
VLAN rates [4]

254
204
154

104

Throughput (Mbps)

0 T T T T T
20 30 40 50 60

VLAN/sending rate (Mbps)
Fig. 4: Feed: NGRID 2018-11-16 22:10-23:10; RTT = 0.1ms

the sender buffer is correspondingly smaller at higher values
of 7.

3) Impact of number of receivers and packet loss rate: Of
the five input parameters listed in Section V-B, the feed and
RTT are kept unchanged. The feed used in this experiment is
NGRID, collected on 2018-11-16, from 22:10-23:10, and the
RTT is 0.1 ms. Multiple values were used for the other three
input parameters, VLAN/sending rate ~, number of receivers
m, and the artificially injected packet loss rate p;.

Fig. 4 show that when packet loss rate was 0%, there
was not much difference in throughput when the number
of receivers was increased from 8 to 16. In these logs,
we found that no packets were lost, and therefore receivers
did not require FMTP block retransmissions. Therefore, the
throughput was almost the same for both settings of m.

Fig. 4 shows that when the artificially injected packet loss
rate was 5%, the gap in throughput widened at higher values
of VLAN/sending rate r. This is because at low rates, the main
determinant of throughput is waiting time in the sender buffer,
while as rates increase, the FMTP block retransmission delays
matter more.

4) Impact of VLAN/sending rate: To gain a better under-
standing of the impact of VLAN/sending rate on latency, Fig. 5
shows throughput and degradation for the NGRID feedtype,
where degradation is defined as the ratio of the VLAN rate
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Fig. 5: Impact of VLAN/sending rate; m = 8, RTT = 0.1ms,
p=20
minus throughput to the VLAN rate. Degradation decreases
from 90% to 45% with increasing VLAN rate until 500
Mbps, and then increases to around 58%. When the VLAN
rate is low, files are queued in the sender buffer waiting for
transmission. This waiting time increases total latency, which
reduces throughput.

We illustrate the impact of sender buffer waiting delays, and
then explain the higher degradation at 1000 Mbps.

TABLE VI: Evidence of sender buffer buildup, RTT" = 0.1ms,
p =0, r =20 Mbps

File | Arrival time | Reception time | Size Latency | Throughput
at sender at a receiver

(No.) | (HHMMSS.ms) (HHMMSS.ms) | (B) (ms) (Mbps)

0 004800.721 004800.935 516824| 213.77 | 19.34

1 004800.861 004801.099 394075| 238.05 | 13.24

Table VI shows the arrival time of two files at the sender,
which is the time instant at which the file was inserted into
the product queue at the sending LDM7 server, reception-
time at a receiver, which is the time instant at which the
product was received by FMTP and passed up to the receiving
LDM?7 server, and size. Latency is the difference between
the two timestamps. Throughput values were computed by
dividing product size by latency (both values are less than
the VLAN/sending rate of 20 Mbps). No retransmissions were
required for either file.

File O experienced no waiting time in the sender buffer.
But the slightly lower throughput is due to other components,
such as processing delays, one-way propagation delay, and
switch/router queueing delays. The transmission delay for file
0, including FMTP, UDP and IP headers, is 212 ms. If we
assume that file 0 processing delays in the sender are in
ps and hence negligible, the whole file should have been
transmitted on to the wire by 004800.933. File 1 arrival time
is 004800.861, which means file 1 had to wait in the sender
buffer for 72 ms. Transmission delay of file 1 is 162 ms.
Together these two delays lower throughput to 13.8 Mbps.
The remaining part of the drop to 13.24 Mbps is explained
by the other delay components. This example illustrates that
waiting time in the sender buffer plays an important role in
degrading throughput when the VLAN/sending rate is small.

TABLE VII: Statistics for total variable delay for one-hour
NGRID products as a function of r; m = 8, RT'T = 0.1ms,

p=20

Time 20 60 500 1000
(ms) Mbps Mbps Mbps Mbps
Min -0.58 0.11 -0.07 0.05
1Q 5.01s 2.84 0.16 0.39
Median 17.69s 16.12 0.31 0.55
3Q 35.47s 79.38 0.85 0.84
Max. 80.52s 2286.21 265.98 610.54
Mean 23.33s 61.04 2.41 1.60

While we cannot provide measurements for just the sender-
buffer waiting times, we can compute latency minus the
sum of transmission delay and one-way propagation delay
to determine the sum of the following components: sender-
buffer waiting delays, processing delays, switch/router buffer
queueing delays and retransmission delays. We refer to this
sum as total variable delay. Table VII shows statistics for this
total variable delay for different VLAN/sending rate settings.
The negative minimum values occurs because NTP is not
precise enough in synchronizing sender and receiver clocks.
Delays are significant, on the order of seconds, when r is 20
Mbps. These delays decrease with increasing r. Waiting time
in sender buffer is the key delay determined by rate. With r
set to 500 Mbps, waiting times drop considerably.

Differences in values of the total variable delay between
the 500 Mbps and 1 Gbps are likely due to retransmission
delays. We ran the Linux utility tcpdump at one receiver to
capture block retransmissions. We found that several blocks
required retransmissions when the VLAN/sending rate was 1
Gbps, while no block retransmissions were required when the
rate setting was 20 Mbps.

5) Impact of feedtype: This experiment considered the
impact of the feed type on throughput. Fig. 6a shows that
CONDUIT and NGRID feedtypes achieve higher throughput
than the other three feedtypes. A comparison of the size distri-
bution of products for these feedtypes provides an explanation.
For example, we considered measurements obtained from one-
hour feeds of the six feedtypes. The median, mean, and
maximum product size was 52.6, 127.8 and 1357.2 KiB for
CONDUIT, 31.8 KiB, 149.1 KiB and 15.6 MiB for NGRID,
7.8 KiB, 29.2 KiB and 17.8 MiB for HDS, 36.2, 50.4 and
778.3 KiB for NEXRAD2, 5.8, 12.2 and 152.2 KiB for
NEXRAD3, and 0.2, 1.3 and 215.1 KiB for IDS|DDLUS.
The total number of products delivered in that hour were
23610 for CONDUIT, 15409 for NGRID, 8661 for HDS,
10498 for NEXRAD2, 13591 for NEXRAD3 and 7334 for
IDS|DDLUS. These numbers suggest that products are gener-
ally larger for CONDUIT and NGRID. The difference between
throughput and VLAN/sending rate is primarily influenced
by the contribution of transmission delay to total latency:
the higher the contribution, the smaller the difference. At
both 500 Mbps and 1 Gbps, sender-buffering waiting delay
is negligible. Also, with no artificially injected packet losses,
there will be few retransmissions, if any. With NEXRAD3
products, transmission delay, switch/router buffer queueing
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delays, processing delays, and propagation delay will have
equal weights. For example, when the VLAN rate r is 500
Mbps using the median file size, the transmission delay is
0.096 ms, which is 96 us, one-way propagation delay is 50
ps, and processing and switch/router buffer queueing delays
are likely to also be in ps. This explains why NEXRAD3
throughput is much lower than the VLAN/sending rate r.
We also observe that the NGRID feedtype has fewer and
larger files. In this case, sender buffer waiting delays could
occur with NGRID, leading to higher latency and hence lower
throughput relative to CONDUIT.

Fig. 6b offers insights into the effects of sender-buffer
waiting delays since the VLAN/sending rate is only 50 Mbps.
In this graph, we observe that NEXRAD2 performs the
best, with its throughput reaching 35.9 Mbps. NEXRAD?2
has similar size characteristics as CONDUIT. However, a
study of the product inter-arrival time characteristics showed
that in the one-hour CONDUIT feed, more than 50% of
the inter-arrival times were less than 1 ms, while the first
quartile of inter-arrival times with NEXRAD2 was 16 ms.
This observation explains that there is a smaller probability of
sender buffer buildup for the NEXRAD? feed type, and hence
waiting times are less with NEXRAD?2 than with CONDUIT.
Correspondingly, throughput is higher for NEXRAD?2. With an
artificially injected 5% packet loss rate, the impact of feedtype
on throughput decrease depends on the relative weight of re-
transmission delay to overall latency. The smaller the files, the
more significant the impact of retransmission delay since more
files are likely to require block retransmissions. Conversely,
NGRID has the largest files, and correspondingly the smallest
drop.

6) Impact of RTT: We ran a single-receiver experiment in
which we emulated paths with multiple RTT values: 0.1 ms,
10 ms, 20 ms, 30ms, 40ms, 50 ms, and 100 ms. Two sets of
experiments were executed with rate r set to 20 Mbps and 500
Mbps. The sender-buffer size was set to 600 MB.

Fig. 7 shows the results. When rate r is low, sender-buffer
waiting delays are the dominant component of latency and
hence determine throughput, not RTT. But when the base
rate is higher, RTT plays a significant role in determining
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throughput. As noted earlier, transmission delays are small
for the IDD feeds, since file sizes are small. The remaining
components, processing delays, switch/router buffer queueing
delays, and retransmission delays are small in the IDD high-
performance, low-loss environment.

VI. RELATED WORK

Multiple solutions have been proposed to leverage SDN ca-
pabilities for network multicast. A Software Defined Network
Aware Pub/Sub (SAPS) solution [14] uses a hybrid approach
with both Application Layer Multicast (ALM) and OpenFlow
based multicast (OFM), unlike our solution, which uses only
OFM. Huang et al. [15] introduced the Branch-aware Steiner
Tree (BST), a multicast tree for SDN, which is used to mini-
mize the total number of edges and branch nodes in the tree.
Iyer et al. [16] presented Avalanche, an SDN-based system,
which enables multicasting in commodity switches used for
data centers. Shen et al. [17] proposed the Recover-Aware
Steiner Tree (RST), a reliable multicast tree for SDN, and
presented an approximation algorithm to solve the problem
of finding an RST with low tree cost and recovery cost. Ren
et al. [18] characterized and addressed the Delay-guaranteed
Minimum Cost Forest (D-MCF) problem to ensure the quality
of service (QoS) of multicast applications. However, these
OpenFlow-based multicast advances focused on the control-
plane problem of finding the best multicast topologies, and



not on the data-plane problem of using multicast trees for data
dissemination. The focus of our work is on data-plane aspects.

Other solutions have investigated methods to make mul-
ticasting reliable using techniques, such as coding or using
acknowledgements. These include MCTCP [19] and ECast
[20]. Multicast TCP (MCTCP) retains the main TCP methods,
even positive acknowledgments (the ACK implosion problem
of the sender having to deal with ACKs from multiple re-
ceivers is handled by restricting its use to small groups), but
adds a control-plane component in which the SDN controller
monitors link utilization and reconfigures the multicast tree to
reduce congestion. In contrast, our FMTP solution uses nega-
tive acknowledgments, which is feasible because in-sequence
delivery is guaranteed on L2 multipoint VLANs. ECast is
an OpenFlow-enabled elastic loss recovery solution, in which
information on lost packets is obtained from receivers, and
new trees are created to multicast retransmissions. Receivers
with common missed packets will belong to the same elastic-
area multicast tree. In our WAN based multi-domain VLAN
solution, the time to set up a new multipoint VLAN is much
higher than the low latencies required in the data plane.
Therefore, this ECast solution will not work in our context.

Solutions based on P2P [21] will incur higher latency than
our network multicast solution, but hybrids are possible for a
receiver to obtain missed blocks from a nearby receiver, though
all receivers should then also have sender capabilities.

VII. CONCLUSIONS

This work demonstrated that it is feasible to deploy a net-
work multicast solution leveraging Software Defined Networks
(SDN5s) with dynamic multipoint VLAN service and IP-routed
service. We improved our prior Multicast-Push, Unicast-Pull
(MPUP) cross-layer architecture to support reliable file-stream
multicasting in two ways: (i) we evaluated a simpler solution
of using a constant value for the sender retransmission timer,
and found this to be a feasible solution for the meteorology
feedtypes (file-streams) used in our study, and (ii) we improved
the rate-selection algorithm by using measurable characteris-
tics such as file-delivery latency. An experimental evaluation
revealed interesting findings: (i) sender-buffer waiting time
is a dominant delay when using low VLAN rates, and with
bandwidth-borrowing between VLAN and IP-routed services,
VLAN utilization is not an important consideration, and there-
fore higher VLAN rates should be used; (ii) increasing VLAN
rate beyond a certain level offers no gains for file-streams
with small files; (iii) in WAN applications with small-sized
products, propagation delays can dominant total file latency;
(iv) high packet-loss rates increase retransmission delay of
missed blocks and since this delay depends on propagation
delay, losses can cause a significant degradation of throughput
in WANS; further, this degradation increases rapidly with the
number of receivers in the multicast tree.
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