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ABSTRACT

Approximate computing that works on less precise data leads to

significant performance gains and energy-cost reductions for com-

pute kernels. However, without leveraging the full-stack design of

computer systems, modern computer architectures undermine the

potential of approximate computing.

In this paper, we present Varifocal Storage, a dynamic multi-

resolution storage system that tackles challenges in performance,

quality, flexibility and cost for computer systems supporting di-

verse application demands. Varifocal Storage dynamically adjusts

the dataset resolution within a storage device, thereby mitigating

the performance bottleneck of exchanging/preparing data for ap-

proximate compute kernels. Varifocal Storage introduces Autofocus

and iFilter mechanisms to provide quality control inside the storage

device and make programs more adaptive to diverse datasets. Vari-

focal Storage also offers flexible, efficient support for approximate

and exact computing without exceeding the costs of conventional

storage systems by (1) saving the raw dataset in the storage device,

and (2) targeting operators that complement the power of existing

SSD controllers to dynamically generate lower-resolution datasets.

We evaluate the performance of Varifocal Storage by running

applications on a heterogeneous computer with our prototype SSD.

The results show that Varifocal Storage can speed up data reso-

lution adjustments by 2.02× or 1.74× without programmer input.

Compared to conventional approximate-computing architectures,

Varifocal Storage speeds up the overall execution time by 1.52×.
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1 INTRODUCTION

Approximate computing is gaining traction in commercialized sys-

tems because many applications can now tolerate small errors in

input data [12, 19, 44, 47, 51, 53, 58, 94]. By receiving fewer details

from the raw data, processors and hardware accelerators that use

approximate computing can make trade-offs in accuracy to improve

performance, energy, power and cost by applying simplified circuits

or reducing computation. Therefore, approximate computing also

creates a demand for different dataset resolutions, meaning details

about the raw data (e.g., data precision levels, summarized results, in-

termediate results, and sampled contexts) from the raw-data storage

system that are essential to support exact computing.

Because existing approximate-computing research only focuses

on accelerating compute kernels by improving the design of architec-

tural components, programming frameworks, or algorithms, modern

computer systems that host approximate computing still use storage

system stacks that are designed for conventional exact computing.

Using the latest generation of GPGPUs to execute approximate

compute kernels, the overhead of preparing input datasets (due to

receiving data from the storage device, adjusting data resolutions,

etc.) becomes the most critical stage in the data-processing pipeline.

Recent advances in approximate hardware accelerators, as embod-

ied in TPUs [29], NGPUs [92], NPUs [18], and mixed-precision

support in GPGPUs [60], have further shrunk the execution time in

compute kernels and deepened the gap between data preparation and

computation in approximate applications.

To fundamentally address the aforementioned bottleneck in ap-

proximate computing, the storage device needs to work with the run-

ning application to deliver datasets in the required resolution. Since

lowering resolution reduces dataset size, such a cross-layer design

can lessen the total bandwidth demand from the data source, thus

decreasing the most latency-critical data-transfer overhead. Compute

kernels can directly use these low-resolution inputs to avoid unneces-

sary data conversion. In spite of the clear benefits of a storage device

that can effectively implement data-resolution reduction, building

such a storage device is challenging, as the design must consider all

of the following:

Performance The computations required to adjust data resolu-

tions in the storage device need to be efficient enough to not exceed

the latency of transferring the adjusted data and should not affect

normal I/O workloads.

Quality Reducing data resolutions lowers the latency in data

transfer but also has the potential to degrade output quality [25, 37,
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Figure 3: (a) The architecture of modern SSDs. (b) The modern

PCIe system-interconnect architecture.

With these approximate-computing-based acceleration tech-

niques, the latency of retrieving data from the storage system be-

comes the most critical stage in the data-processing pipeline. Fig-

ure 2 compares the latency of receiving raw data chunks from a

high-end NVM-Express (NVMe) storage device against the execu-

tion time of performing approximate/mixed-precision compute ker-

nels on the same data chunks using an NVIDIA Tesla T4 GPU [60]

for a set of applications [10, 69, 87, 91] (detailed description in

Section 7). Using a highly optimized I/O library that saturates the

NVMe I/O bandwidth, the overhead of receiving datasets exceeds

the kernel execution as the most critical stage in a majority of these

applications.

2.2 Missed Opportunities in Modern NVM-Based

Storage Systems

Without revisiting the hardware/software interface for storage de-

vices, conventional approximate-computing frameworks fail to op-

timize the increasingly critical data-preparation process from the

following opportunities:

Reduced data size Since approximate computing works on lower-

resolution datasets, the compute kernels usually consume fewer

bytes than exact computing ones. However, conventional storage

interfaces, including those based on the latest NVMe standard [4],

only support read/write commands that exchange raw data between

source and destination; applications can never reduce the bandwidth

demand of exchanging raw data between the storage device and the

host.

Rich device-internal bandwidth Conventional storage inter-

faces waste the rich internal bandwidth of storage devices. The

controllers found in modern datacenter SSDs, including the con-

troller in the prototype SSD that we used for this paper (Section 7.1),

support up to 32 channels. The internal bandwidth of our prototype

SSD can reach up to 8 GB/s if the SSD uses MLC flash mem-

ory chips with an average reading latency at 35 µs for each 8 KB

page [22, 55, 66]. However, the application only works on the host

computer and exchanges data with the SSD using limited PCIe band-

width. With newer, faster NVM technologies (e.g., ZNAND [74]

or 3DXPoint [27]), the mismatch between the internal and external

bandwidths can become more significant.

In-storage processing power Conventional interfaces also hide

the freely available processing power in SSD controllers. Figure 3(a)

shows the architecture of a modern datacenter SSD. In addition to

NVM chips, an SSD contains general-purpose cores and DRAM

to execute firmware programs and to cache/buffer data. In spite of

the limitations and dynamics of the outgoing bandwidth, the SSD

controller can still access its own data-storage arrays with channels

and banks. Nonetheless, the SSD’s general-purpose cores remain

unavailable to applications because conventional interfaces only

support access to raw data.

Due to the relatively longer latency of accessing NVM devices

and the over-provisioning of processing power to avoid the cost

of adding an embedded operating system, SSD cores are idle for

significant amounts of time. To accurately determine processor idle

time, we analyzed the loading of each processor core in our baseline

data-center SSDs under different scenarios. The maximum utiliza-

tion appeared when we saturated the outgoing PCIe bandwidth by

continually issuing 32 MB read requests. Under this scenario, the

busiest SSD processor core spent 70.4% of its time parsing NVMe

requests, and the second busiest core spent 46.5% of its time re-

ceiving commands from the PCIe interconnect. All other processors

responsible for managing data accesses for flash data were only busy

12.5% of the time. When the SSD is performing garbage collection,

none of the processors are busy for more than 20% of the time due to

the long latency of erase and write operations characteristic of SSDs.

Consistent with these results, previous studies of data-center-class

SSDs and common SSD prototypes [66, 95] have shown the aver-

age utilization of their SSD processors to be lower than 30%. With

frameworks such as FlashAbacus [96], the SSD controller typically

has even more idle time to spare for non-essential workloads.

2.3 Alternative Approaches

A number of alternatives have been suggested to address the data-

I/O bottleneck for general-purpose applications and the dataset-

preparation requirements for approximate-computing applications.

However, none of the alternatives addresses the demands of approxi-

mate computing in modern heterogeneous computers. Rather, each

alternative only addresses a subset of the challenges of presenting

datasets in different resolutions.

Increasing I/O bandwidth The most direct approach to improv-

ing data-transfer performance between the storage device and the

host computer is to increase the I/O bandwidth of the storage de-

vice. However, this approach is difficult and expensive in modern

architectures. Figure 3(b) shows the topology of attaching peripheral

devices, host processors, and other accelerators in the most pop-

ular system interconnect for a PCI Express (PCIe). Most modern

SSDs attach to a PCIe using 4× PCIe Gen3 lanes that provide up to

4 GB/sec of bandwidth. As modern CPUs incorporate their memory

controllers on-chip and use an exclusive processor-memory bus, the

bandwidth that the host application can use to communicate with

other devices (including GPUs, NICs, hardware accelerators, and

SSDs) is limited by the total PCIe bandwidth to which the CPU

connects. As a result, the actual outgoing bandwidth that the SSD

can use is narrower than the theoretical bandwidth, as it is usually

the case that multiple devices are competing for the bandwidth going

into the CPU/memory controller. In this modern system-interconnect

architecture, increasing the bandwidth is very challenging since it

requires the CPU to make more PCIe lanes available (i.e., increase
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Synopsis Description

int vs_setup(int fildes, struct

vs_operator** op_list, const char

*restrict format)

This function sets up the VS operator to apply on a file stream that is associated with a file descriptor, fildes. The

op_list describes the desired operators for data associated with the open file descriptor. This function collects data

formats within the file through the format string and VS will apply each operator to each type of data in the string

accordingly. If the list contains a nop operator, VS will not apply any approximation of the corresponding data.

int vs_read(int fildes, void *buf, size_t

nbyte, struct vs_feedback *fb)

The function reads data from the storage device using the previously set operators for the open file descriptor and provide

the feedback through the struct vs_feedback data structure.

int vs_release(int fildes) The function disables the VS operators on the given data stream that fildes represents and releases the resources that

these operators use.

Table 1: Sample functions from the VS API.

int setup(int argc, char **argv)  {

    // Skip — the rest of code ...

    int infile;

    // VS: Declare VS variables

    struct vs_operator op[1];

    struct vs_feedback fb[1];

    // Open a file descriptor

    infile = open(filename, O_RDONLY, "0600");

    // Read precise data from the file descriptor

    read(infile, &npoints,   sizeof(int));

    read(infile, &nfeatures, sizeof(int));

    // Skip — some other initialization code ...

    // VS: set parameters for desired operator 

    // PACKING(default)/PACKING_AF(autofocus)/VS_IF(iFilter) 

    op[0].op = PACKING;

    op[0].resolution = HALF;

    // Skip — some other initialization code ...

    // VS: apply the desired VS operator for the file

    vs_setup(infile, &op, “%f”);

    // VS: read data processed by the VS operator

    vs_read(infile, buf, npoints*nfeatures*sizeof(float), &fb);

    // VS: disable the usage of VS operator for the file

    vs_release(infile);

    // Skip — the rest of code ...

    // VS: use approximate kernel if the operator succeed

    if(fb[0].resolution == op[0].resolution)

        cluster_approximate(…);

    else

        cluster(…);

    // Skip — the rest of code ...

}

Figure 6: A KMeans code sample with inserted VS function

calls.
parameters that allows the underlying storage device to adjust data

as well as control variables that Autofocus and iFilter use to control

the adjusted data. Table 1 lists three representative API functions;

the functions are used when an application calls open to create a

file descriptor. If the offset of an open file descriptor needs to be

manipulated, the application simply uses conventional file system

functions like lseek or fseek.

Figure 6 shows KMeans code (Rodinia benchmark suite [69])

with VS function calls inserted. In the example, KMeans uses con-

ventional system-library functions (e.g., open and close) to manage

the file descriptor. If the program reads data using standard I/O func-

tions (as in the two read function calls in the code), VS does not

change the resolution of the accessed data. The modified KMeans

code initiates VS for the infile file descriptor by calling vs_setup.

This version of the code sets the desired operator and resolution.

The vs_setup function also accepts an argument that describes the

data formats. In the KMeans code sample, VS will interpret the file

content as floating point numbers.

VS starts adjusting data only if the application calls the vs_read

function. This function resembles the existing Linux read function

except that (1) the resulting data size may be different from the

requested data size, since operators will trim data sizes in most cases,

and (2) the function will provide feedback regarding the resolution

that VS selects. If the program calls a regular read function to re-

place the vs_read in Figure 6, VS will not change the data resolution

(even if the program previously initiated VS using vs_setup). These

API functions (e.g., vs_read) can interact with the underlying file

system cache to further improve performance if another application

is requesting the same dataset with the same resolution.

If VS successfully adjusts the data, the application can use

a compute kernel that supports lower-resolution input (e.g.,

cluster_approximate) to further reduce the total execution time

of the program. If the kernel is elastic to changes in dataset size (like

machine learning algorithms), then no need to change the compute

kernels. In many cases, the programmer can compose approximate

versions of compute kernels by slightly modifying the original ker-

nel functions to operate on less precise data types or summarized

input datasets [70, 71]. The application can also use library func-

tions (e.g., Mixed-Precision CUDA libraries and FANN library for

NPU [18]) leveraging approximate hardware accelerators to perform

the approximation in compute kernels.

Depending on the approximate compute kernels that the applica-

tion uses, the programmer can choose different VS operators for data

adjustments when calling the vs_setup function. To determine the

desired resolution, the programmer can leverage existing language

frameworks and profiling tools [7, 70–72]. In addition to traditional

approaches for determining resolutions, VS provides the Autofocus

mechanism to automatically decide the resolution using a set of

control variables that the programmer can optionally pass as param-

eters. The resolution-reduction choices Autofocus makes are usually

more conservative than those of a programmer, but Autofocus can

nonetheless help applications adapt to datasets. To ensure the qual-

ity of the execution result, VS may leverage existing approximate

frameworks [37, 41, 49, 68, 72, 81].

If a given application can apply multiple versions of approximate

kernels for different VS operators, the programmer can use the iFilter

mechanism to let the storage device choose the most appropriate

operators and resolutions for each dataset. The programmer can

pass “VS_IF” as the operator to trigger the iFilter mechanism and

optionally describe the available set of operators and the control

variables. Using the feedback data structure (vs_feedback), the

application can then execute the corresponding approximate kernel.

5 THE CORE VARIFOCAL STORAGE LAYER

The core of VS provides a set of operators to adjust data resolutions.

VS exposes these operators to applications through an extended

storage interface. The VS layer also implements two mechanisms to

determine appropriate data resolutions and provide quality control

over the adjusted data.
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5.1 VS Operators

VS provides several operators to adjust data resolutions before ship-

ping the data to host applications. To achieve the best performance

using the VS model, operators are selected in accordance with the

following criteria: (1) The computation overhead must match the

processing power inside the storage device. Thus, VS can minimize

the impact on access latency and power consumption and avoid extra

hardware costs. (2) A wide range of applications must be able to

apply the operator, thereby allowing for more efficient use of valu-

able device resources (VS identifies the most useful operators from

previous efforts [70, 71]). (3) The operator must allow VS to take

advantage of mismatches between external and internal bandwidths

and downsize the outgoing data—the VS model is most effective

when the data adjustment can reduce the demand of interconnecting

bandwidth.

The current VS framework supports the following categories of

operators for diverse data types.

Data Packing The data-packing operator trims the dataset size by

using fewer bytes to express each item and by condensing the layout

in memory. A data-packing operator is suitable for applications that

only use a small range within the number space of the original data

type and for applications that can tolerate some inaccuracies in the

input data. Since the data-packing operator translates raw data into

a less-precise data type, it can potentially decrease accuracy (e.g.,

double→float→half or int64→int32→short→char).

Quantization The quantization operator rescales the raw values

into a smaller value space as well as preserves the relative order of

values. The quantization operator is applicable to the application

requires large value sapce.

Reduction/Tiling The reduction operator applies a function (e.g.,

average) to a group of input values and yields a single output value.

After applying a reduction operator, VS sends only the resulting

value of each group in order to reduce the amount of data passing

through the system interconnect. This operator is especially useful

for machine learning and statistics applications when the input data

is uniformly distributed [70].

Sampling The sampling operator chooses a subset of items from

the raw data and sends the selected items to the host computer. Oper-

ators in this category can perform uniform/random data selection or

report only the most representative data. The sampling operator helps

to filter out repetitive/similar inputs that make no contribution to the

final application result. If the compute kernel is elastic with respect

to the number of records within the dataset, the sampling operator

can achieve the same effect as that of loop perforation [57, 61, 78]

but without any code modification (without the VS sampling opera-

tor, conventional loop perforation needs the raw data to be present

in system memory).

Besides, by providing the preceding types of operators, VS gives

system designers the chance to extend the number of operator types

using the mechanisms described in Section 6.3.

5.2 Autofocus and iFilter

The Autofocus and iFilter mechanisms provide quality control and

reduce the amount of programmer effort required to adjust data

resolutions. Autofocus and iFilter are inspired by two previously

observed phenomena: (1) The quality of the input data affects the

quality of the result in approximate computing [37, 41, 42]. (2) A

small subset of input data is representative of the rest of the input

data in approximate-computing applications that tolerate inaccura-

cies [41] . Building upon these observations, Autofocus and iFilter

can select the resolution/operator using only a small portion of the

raw input data from a requested dataset and then monitor the quality

of the adjusted input data.

Algorithm 1 Autofocus

Input: op, CV s ▷ CV s are optional

1: for each r ∈ R do ▷ r is sorted in ascending order

2: D← RawData

3: for each d ∈ D do

4: d′← ad just_data(d,op,r)

5: ∆← compute_CV s(d,d′,op)

6: if ∆ satisfy CV s then

7: remove d from D

8: if D ∈ /0 then

9: return r

10: else

11: go to 1

5.2.1 Autofocus. Autofocus allows the programmer to simply spec-

ify the desired VS-operator, letting VS decide the most appropriate

resolution that guarantees quality while improving performance. Aut-

ofocus also makes applications more adaptive to different datasets,

as the most appropriate resolution varies from dataset to dataset.

Algorithm 1 shows how the Autofocus mechanism works. Auto-

focus makes decisions using the programmer-selected operator (op)

and the quality-control variables specified in (CV s), with values

being determined by either the programmer or the default settings.

Autofocus then adjusts each data subset (d) using the specified oper-

ator (op) with the least precise resolution (r) that Autofocus has not

examined from the available operator resolutions (R).

Autofocus will check the quality of adjusted data (d′) by com-

paring the adjusted data with the raw data (Line 5) and generate the

comparison result (∆). Take the data-packing operator as an exam-

ple; Autofocus will compare the precision loss between the original

data type (e.g., FP32) and the adjusted data type (e.g., FP16) and

check to see whether the difference is smaller than the value from

the control variable. To reduce overhead of operators that need more

complex logic (e.g., sampling) to generate ∆ or when the controller’s

load is high, Autofocus only applies the quality-control function

compute_CV s to each byte of data in the first few pages (8 in our

experiments) and then randomly checks the remaining adjusted data.

Table 2 summarizes how we compute the control variables for each

VS operator.

If every checked piece of the adjusted data successfully passes

through the compute_CV s, VS will report the current resolution

to the host application and transfer the adjusted data (Line 9 of

Algorithm 1) through the system interconnect. If the quality of the

adjusted data (d′) fails on the control variables, Autofocus will fall

back to the next resolution (Line 11 of Algorithm 1).

5.2.2 iFilter. iFilter can work without programmer input and is

more effective than Autofocus for applications having compute
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VS Operator Function compute_CV s Description

Data Packing
abs(dataraw,dataad justed ) and

minnew_data_ f ormat ≤ datanew ≤ maxnew_data_ f ormat

For data packing, VS calculates and check if (1) the absolute difference between the original data and

adjusted data is smaller than the given threshold and (2) adjusted data falls in the range of the target data

type.

Quantization

abs(dataraw,dataad justed ∗ scale_ f actor), where

scale_ f actor =
max(dataold_data_ f ormat )−min(dataold_data_ f ormat )

max(datanew_data_ f ormat )−min(datanew_data_ f ormat )

For quantization, VS controls the quality by rescaling the adjusted data back to the raw data format and

measuring the absolute difference. VS drops the adjustment if the difference is greater than the given

threshold.

Reduction/Tiling abs(dataraw,dataad justed )
For reduction/tiling, VS computes the absolute difference between raw data and adjusted data. VS

compares if the absolute difference is smaller than the given threshold.

Sampling binary_distance(dataraw,dataad justed ) [65]
For sampling, VS calculates the Hamming distance between raw data and adjusted data and drops the

current decision if the distance is larger than the given distance.

Table 2: Summary of function compute_CV s.

Algorithm 2 iFilter

Input: OP, CV s ▷ OP, CV s are optional

1: for each op ∈ OP do

2: for each r ∈ R[op] do ▷ r is sorted in ascending order

3: D← FirstFewChunksO f RawData

4: min_size[op]← 0

5: min_res[op]← r

6: for each d ∈ D do

7: d′← ad just_data(op,d,r)

8: ∆← compute_CV s(d,d′,op)

9: if ∆ satisfy CV s[op] then

10: remove d from D

11: min_size[op]← min_size[op]+ size(d′)

12: if D ∈ /0 then

13: go to 1

14: else

15: go to 2

16: op← select_op(OP,size,res)

17: D← RawData

18: for each d ∈ D do

19: d′← ad just_data(op,d,res[op])

20: ∆← compute_CV s(d,d′,op)

21: if ∆ satisfy CV s[op] then

22: remove d from D

23: if D ∈ /0 then

24: return op, r

25: else

26: remove r from R_op

27: go to 1

kernels that are compatible with multiple VS-operators. Algorithm 2

shows how the iFilter mechanism works.

The iFilter algorithm includes a decision-making phase (Line 1–

Line 15) and a monitoring phase (Line 16–Line 27). In the decision-

making phase, iFilter will try out all available VS operators (OP) that

can be applied to the input data type for the first few pages (8 in our

experiments) of the requested data. The iFilter algorithm is similar

to the Autofocus algorithm in that it selects the most appropriate

resolution for each operator, except that iFilter will keep track of the

resolution (min_res[op]) and the resulting data size (min_size[op])
for each operator (Line 5 & Line 11).

After the decision-making phase, iFilter will enter the monitor-

ing phase and select the operator that yields the smallest data size

(Line 16). iFilter uses the selected operator (op) to adjust every piece

of raw data. If iFilter successfully reaches the end of the request,

iFilter will report the selected operator and resolution (Line 24) and

send the adjusted data to the host. If iFilter fails to reach the end

of the request, it will remove the current resolution from the avail-

able set of resolutions (R[op]) and restart the decision-making phase

to choose the next appropriate operator and resolution (Line 26 &

Line 27). The computation overhead for iFilter is thus higher than

that of Autofocus since iFilter examines more operators to choose

the one with the minimum amount of data going through the system

interconnect. However, the additional overhead is negligible with

large datasets because the relevant VS operators need only be applied

to the first few chunks of the dataset.

6 BUILDING A STORAGE DEVICE

COMPLIANT WITH VARIFOCAL STORAGE

Building a VS-compliant storage device means tackling challenges

associated with (1) providing a hardware/software interface that

allows applications to describe the resolutions and quality of the

target data, and (2) minimizing the computational overhead/cost of

adjusting data resolutions. VS overcomes the former challenge by

extending the NVMe interface; this requires the fewest modifica-

tions to the system stack and applications. VS addresses the latter

challenge by exploiting the idle cycles available in modern SSD

controllers. This section describes the NVMe extensions and the use

of existing architectural components in an SSD that are needed to

ensure VS compliance. This section also describes how to add new

operators to the VS architecture.

6.1 NVMe Extensions for VS

Conventional storage interfaces such as the popular NVMe protocol

only support read/write commands for data access. Therefore, the

NVMe extensions for VS need to provide commands to set up VS

operators and apply those operators on datasets. The extended NVMe

interface aligns with the programming model in Section 4 to simplify

the complexity of software implementation.

Setting up VS operators The NVMe extension for VS provides

a new command to set up I/O stream and file descriptors—the

vs_setup command. This command carries the descriptor num-

ber using the 8-byte reserved area in the standard NVMe command

format. The descriptor usually corresponds to a file or I/O stream in

high-level programming language/system abstractions.

VS uses an abstraction similar to an instruction-set architecture

that allows the API to map the demanding operators to each stream.

Each operator starts with a 4-byte opcode followed by a 4-byte

integer for the number of arguments, which is then followed by the

arguments (e.g., target data resolutions, quality control variables).

For each category of operator, VS provides a different opcode for
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Host System

CPU Intel Core i7-7700K [26] @ 4.2 GHz

GPU NVIDIA Tesla T4 [60]

OS & file system Linux Kernel 4.15 & EXT4

baseline/VS-compliant SSD

Controller Microsemi flashtec controller with 32 channels [66]

DRAM 2GB DDR4 DRAM

Capacity 768 GB with 10% overprovisioning

Flash Chip MLC NAND/8 KB page size [55]

I/O interface NVMe through PCIe 3.0×4

Table 3: The platform configuration used for evaluation.

different data types. The API generates a sequence of operators and

works with the driver to store the sequence in a host DMA page for

the SSD to access.

Upon receiving the vs_setup command, the SSD will add the

page specifying the operators into its internal data structure, which

usually resides in the DRAM space of the SSD. Later commands can

use the descriptor number to indicate the operators that a vs_setup

command previously set and look up the corresponding operators

from the internal data structure. When the application does not

need the setup operators for the I/O stream, the vs_release com-

mand will signal the SSD to release the descriptor, allowing a later

vs_setup command to reuse the descriptor number.

Applying VS operators VS only adjusts data resolutions on data

requested by the vs_read command. The vs_read command is

similar to a typical read command with the following exceptions:

(1) The vs_read command contains a flow number in its 8-byte

reserved area. (2) The vs_read command reports the resulting data

size to the host, as most operators will change the data size or a

negative value if an error occurs. (3) The vs_read command reports

the selected operator and the degree of data adjustment to the host

software stack if necessary.

Since the regular read does not provide any feedback to the host

computer other than the error code, vs_read requires the driver

to always allocate an additional DMA page on the host for each

command that receives the feedback. As NVMe’s Physical Region

Page (PRP) list uses a type of linked-list data structure that allows

the vs_read command to specify an almost unlimited number of

DMA pages, accommodating feedback information does not require

any change in the NVMe command format. Rather, only minor

modifications to the device driver are required.

The current NVMe standard only allows each NVMe command

to transfer at most 32 MB of data. Consequently, firmware programs

will keep the offset of processed data within the data stream as-

sociated with a given descriptor. If Autofocus or iFilter revises a

decision while processing a large (e.g., greater than 32 MB) file

transaction, the API is allowed to generate commands to restart the

entire transaction with the revised decision.

6.2 Architecting a VS-compliant SSD

To minimize extra hardware costs, VS makes efficient use of existing

architectural components in modern SSDs.

With modern flash memory technologies, the critical path of

the data-access pipeline is determined by either the access time of

flash chips or the latency of the DMA stage (i.e., depending on the

outgoing bandwidth) of the SSD. In either case, data transfer through

the critical path in the pipeline usually takes a few microseconds. As

even the humblest modern processor cores can execute thousands

of instructions within the latency period of the critical stage in the

SSD data-access pipeline, such cores are idle most of the time and

leave slack that can be taken up by VS to apply operators without

the need for additional accelerators. An SSD will not experience

any performance degradation in accessing its own data array if the

applied operator does not create more than the average data-access

latency in the pipeline.

VS extends firmware programs to reclaim these idle computing

resources for VS operators. When a chunk of the requested data

(e.g., a flash page) arrives in the SSD DRAM, the extended firmware

programs will signal an underutilized or idle processor core to fetch

data from the data location in the SSD DRAM and apply the desired

operator(s). Since VS operators reduce dataset size, the programs

using VS operators can reuse the existing data buffers and thus do

not require additional space to buffer their processing results; the

firmware programs can keep their runtime states in the SSD DRAM

or in the data caches of the processor cores.

6.3 Adding New Operators

In our SSD, VS operators are implemented as overlay functions in

the firmware programs. With the extended NVMe protocol providing

a mechanism to exchange information for adjusting data resolutions,

the overlay functions receive the same set of arguments (including

the resolution and the pointer to the SSD DRAM data-buffer loca-

tion) and report the data size and resolutions through a data structure

defined in our framework. To add a new operator, our current tool

chain requires the designer to first write C functions. The designer

also needs to update a header file where the firmware program iden-

tifies and locates the new operator. The designer can then use a

cross-compiler to generate machine code for the controller’s mi-

croarchitecture. Finally, the system deploys the compiled firmware

program to the SSD through the standard firmware update command

in the NVMe protocol [4].

7 EXPERIMENTAL METHODOLOGY

We developed VS by extending a datacenter-class SSD. We then

measured the performance of the resulting system with several work-

loads that span a wide range of applications. This section describes

the setup of the experimental platform and the benchmarks that we

used.

7.1 Experimental Platform

We built a VS-compliant SSD by extending a commercialized,

datacenter-class SSD. We attached the VS-compliant SSD to a high-

end heterogeneous machine with a GPU. The host operating system

contains the extended NVMe driver to support additional VS NVMe

commands. Table 3 lists the key specifications of the host computer

and the SSD. The VS-compliant SSD runs our modified firmware

programs. The firmware is also compatible with a standard NVMe.

Since we did not modify the code that handles regular NVMe com-

mands, the firmware achieves the same performance as a regular

NVMe SSD with the same hardware configuration. Throughout our

tests, the baseline SSD achieved a 3.2 GB/s bandwidth when commu-

nicating with the host systems, but the theoretical internal bandwidth

is twice of that.
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Workload Name Application Category Operator Resolution Raw Data Size Relative Error Rate

Breadth-First Search (BFS) [69] Graph Traversal Packing 62.5% 3.5 GB [69] 0%

Black-Scholes [91] Financial Packing 50% 3 GB [91] < -0.25%

HotSpot [69] Physics Simulation Reduction 25% 2 GB [69] < -0.15%

2D Discrete Wavelet Transform (DWT2D) [69] Image/Video Compression Reduction 50% 1.6 GB [69] < 0.1%

Inversek2j [91] Robotics Packing 50% 2 GB [91] < -0.01%

Jmeint [91] 3D gaming Packing 50% 2 GB [91] < -0.02%

KMeans [69] Data Mining Quantization 25%

1.36 GB [69]

< -0.97%

k-Nearest Neighbors (kNN) [52] Data Mining Packing 50% [69] < -0.01%

streamcluster (SC) [69] Data Mining Packing 50% < -0.01%

ThunderSVM–Train (SVM-Train) [87] Machine learning Sampling 75%
2.6 GB [79]

+ 0.5%

ThunderXGB (XGB) [88] Machine learning Packing 50% < -0.10%

CNN–Pred [1] Machine learning Quantization 12.5%

0.95 GB [79]

< -0.6%

ThunderSVM–Pred (SVM-Pred) [87] Machine learning Packing 50% < -0.01%

ThunderXGB–Pred (XGB-Pred) [10] Machine learning Packing 50% < -0.10%

Table 4: Workloads, default VS operators, input data sizes, and error rates.

We performed all experiments with 90% utilization of SSD capac-

ity. Because SSDs over-provision internal data arrays (typically by

7%) in order to minimize garbage collection, wear-leveling, and read-

intensive workloads like those we created, we did not observe any

interference between VS operations and the regular SSD workloads.

7.2 Benchmarks

The workloads we used for VS-performance assessment are shown in

Table 4. We used these workloads on both the baseline configuration

and the VS-enabled configurations. We selected the given set of

applications based on the following criteria: (1) the application had

to be representative of approximate computing workloads found in a

publicly available repository, and (2) the application had to accept

large, publicly available datasets or provide a data generator capable

of producing large, arbitrary datasets that could serve as meaningful

input. Table 4 lists the dataset sizes that we used in experiments;

these are also the largest dataset size that our GPU can accommodate

but do not represent a limitation of our SSD or the VS programming

model. We followed examples found in previous work in modifying

the compute kernels of Black-Scholes [91], Hotspot, DWT2D, and

KMeans [70, 71]. We also implemented approximate-computing

versions of kNN, SC, SVM, and XGBoost by leveraging the native

mixed-precision support in NVIDIA’s latest Turing architecture.

When running these workloads, we used the default parameters that

each workload or its demo script suggested. For each application,

we also tried our best to exploit pipeline parallelism that overlaps

I/O, resolution adjustment and compute kernels to hide latencies.

Table 4 also lists the lowest data resolutions and the corresponding

operators that these approximate-computing applications can accept.

For each workload, we carefully profiled and chose the operators

and their parameters to limit the relative error rate to less than 1%

compared to the exact version of the same application.

In our experiments, three groups of benchmark applications were

chosen to use the same datasets: (1) KMeans, kNN, and SC, (2)

SVM-Train and XGB-Train, and (3) CNN-Pred, SVM-Pred and

XGB-Pred. With respect to evaluating VS, the key difference be-

tween KMeans and both kNN and SC is that KMeans uses an ag-

gressive packing operation that reduces input size by 25%. The key

difference between SVM-Train and XGBoost is that SVM-Train

encourages the programmer to set aside 25% of the raw data for

training. For predictors on machine learning (ML) models (e.g.,

SVM-Pred), we trained the models using precise datasets and re-

duced the resolutions of the datasets to be predicted. Using these

predictors, CNN allows an aggressive quantization that reduces

87.5% of the data size, while other models would lead to errors

larger than 1%.

For the basic/programmer-directed VS version, we applied opera-

tors and target resolutions as shown in Table 4. When the Autofocus

and iFilter mechanisms are enabled, our implementations check the

feedback from the VS API. If VS decides to adjust data resolutions,

our code can choose to apply appropriate compute kernels to process

data. Otherwise, our code uses the baseline compute kernels. When

using Autofocus and iFilter, we selected a set of default control vari-

ables that were relatively conservative across all applications. For

control variables, we used a delta value of 1% for packing, reduction,

and quantization as well as 1% binary difference [65] for sampling,

since we are targeting at less than 1% error rate.

8 RESULTS

This section presents the performance results for VS on our prototype

system and the potential impact of VS on approximate computing.

8.1 The Overhead of VS Operators and

Mechanisms

Throughout our experiments, most VS operators required less time

than the critical stage of the original data-accessing pipeline of an

SSD with limited processor cores, suggesting that the operators can

take full advantage of processing inside the storage device. In the

most complex case, the packing operator takes 1.3 µs to convert

a whole page of double-precision numbers into single-precision

floating-point numbers, and the quantization operator takes 2 µs

to rescale a double-precision number into an integer, both of these

times are shorter than the critical-stage latency of our SSD. The

reduction operator takes 0.76 µs to evaluate the average of every

pair of double-precision floating-point numbers within a flash page.

The sampling operator generally takes 0.4 µs to randomly select

from binary data.

The Autofocus and iFilter mechanisms also use the SSD general-

purpose cores to execute their algorithms. For the Autofocus mecha-

nism, VS takes at most 25 µs to stabilize the resolution for an oper-

ator working on binary numbers. For iFilter, the decision-making

phase takes about 150 µs to make its first decision because we need
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Figure 7: The speedup of reading inputs and adjusting data res-

olutions using VS.

to perform sampling for all operators. Once Autofocus and iFilter

have determined the required resolution, both mechanisms simply

compute on values for control variables, so the overhead is negligible

and the throughput unaffected.

8.2 The Performance of Data-Resolution

Adjustments

Figure 7 shows the speedup in reading input datasets and adjusting

data resolutions for each workload using different VS modes; VS is

compared with the conventional approximate programming model

that relies on the host to adjust data resolutions.

8.2.1 Programmer-Directed VS. Choosing the default VS settings

and specifying the desired operator and resolution can speed up the

performance of data adjustment by 2.02×. For KMeans and CNN-

Pred, which tolerate very low-resolution inputs, the speedup of data

adjustment can reach up to 3.82× since the storage device only needs

to send out 25% of the raw data size to the host. For Black-Scholes,

adjusting raw data on the host is more time-consuming than data

transfer. Therefore, VS can achieve more than 2× speedup since VS

also takes the advantage from the ISP model for data adjustment.

Even with the geometric mean that discounts outliers, VS still

exhibits a 1.91× speedup (Figure 7).

8.2.2 Autofocus and iFilter. Without any programmer input on the

desired resolution or even on the operator, Autofocus and iFilter

accelerate the process of preparing datasets for approximate kernels

by about 1.70× and 1.74×, respectively.

For most workloads, the Autofocus mechanism effectively selects

the same resolutions as those obtained using exhaustive profiling.

For KMeans, the programmer’s decision to condense the dataset

into 25% of the original space by quantizing, but Autofocus only

quantizes the dataset in half of the original space, producing a result

indistinguishable from the result achieved using the raw dataset.

For CNN-Pred, Autofocus conservatively decides to not quantize

inputs; however, if the programmer uses exhaustive profiling, the

quantization operator can shrink the input data size by 87.5%.

For SVM-Train, Autofocus does not perform any adjustment, but

ships the raw data for kernel computation. As the kernel computes

on raw data, SVM-Train skips the data-preprocessing stage on the

host, so we still see a slight performance gain in data adjustments.

In the fully automatic mode, iFilter achieves a speedup of 1.74×

for data preparation. Though the overhead of iFilter in its decision-

making phase is larger than that of Autofocus (as iFilter may need to

test more operators/resolutions), this overhead is relatively insignif-

icant as inputs get larger. For most cases, iFilter makes the same

decisions of the operator and target resolution as does Autofocus,

except that for KMeans, SVM-Train and CNN-Pred, iFilter selects

packing instead of the programmer’s decision.

In our experiments, the relative error rate of computation observed

when using Autofocus and iFilter never exceeded the values in Ta-

ble 4 because Autofocus and iFilter always made more conservative

choices than the programmer.

8.2.3 Internal/external bandwidth. VS is most useful when the SSD

has limited external bandwidth. Nonetheless, because VS adjusts

data resolutions within the data-access pipeline and avoids the oper-

ating system overhead, the VS model is still beneficial when internal

bandwidth matches external bandwidth. To quantify this benefit, we

modified the SSD firmware to only allow the controller to use half

of the SSD channels, so the internal bandwidth matched the external

bandwidth while preventing the application from taking advantage

of the reduced demand for outgoing bandwidth.

The "VS w/ 1:1 int/ext bandwidth" bar in Figure 7 shows the

speedup from using this modified version of our prototype SSD.

Without being able to rely on the host CPU for data adjustment, the

basic VS still speeds up the total latency of preparing datasets by

1.17×. Additionally, VS reduces the size of data going through the

system interconnect, making applications more adaptive when many

devices have to compete for the same set of limited PCIe links.

8.2.4 Case study: shared datasets. VS can reduce space overhead

by storing only one copy of each dataset but dynamically chang-

ing resolutions to accommodate the demands for diverse applica-

tions. As noted above, we allowed three groups of applications,

KMeans/kNN/SC, SVM-Train/XGB-Train, and CNN-Pred/SVM-

Pred/XGB-Pred to share raw input.

In our study, the basic VS allowed the programmer to use the

quantization operator and a resolution that reduces data size to 25%

for KMeans while using packing operator for kNN and SC to reduce

data size to 50% with the shared dataset. When Autofocus and iFilter

were enabled to select resolutions by previewing the input dataset

without having the compute kernels running, all mechanisms chose

a resolution of 50% for these applications. Note that without an

architecture like VS, the storage system must store multiple versions

of a shared dataset or provide raw data to the host for preprocessing,

hurting either space-efficiency or performance.

For SVM-Train/XGB-Train, our experiments also showed that

the programmer was able to pick different operators for the shared

dataset. When iFilter is enabled, it selects packing for SVM-Train

instead of sampling with the same resolution as that chosen by iFil-

ter for XGB-Train. As SVM-Train’s compute kernel is elastic to

different input dataset sizes, iFilter allows an application to take ad-

vantage of SVM-Trains’s elasticity to discard some data and achieve

an effect similar to the effect of loop perforation in an unmodified

compute kernel. Similarly, in CNN-Pred/SVM-Pred/XGB-Pred, the

programmer can quantize input data using VS to achieve better per-

formance than the performance achieved by simply using the same

operator for the same dataset.
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Figure 8: (a) The speedup of end-to-end latency using VS

and conventional approximate-computing framework. (b) The

speedup of data preparation using VS, compared with data

compression.

8.2.5 Case study: diverse datasets. Since Autofocus determines

the most appropriate resolution by examining the characteristics

of datasets, Autofocus makes VS more adaptive to changes in input

datasets for each approximate-computing application. In addition,

Autofocus does not rely on feedback from kernel computation re-

sults and does not require the storage device to send raw data in

the beginning, so Autofocus is more efficient than conventional ap-

proaches tackling the same problem. To illustrate this strength of

VS, we modified the data generator of Jmeint from AXBench to gen-

erate random points in various sizes of 3D spaces. We next present

the results when using Autofocus with datasets from three different

dimensions: 323, 655363 (65K3) and 42949672963 (4.3B3).

Figure 8(a) shows that VS with Autofocus exhibits significantly

shorter end-to-end latency for all datasets compared to the conven-

tional approximate-computing approach using IRA [41]. We used

the unmodified exact-computing version of Jmeint as the baseline.

Since Autofocus does not need to send raw datasets to the host, VS

outperforms IRA by more than 2.86× in the case of the 323 dataset,

with VS only sending data encoded in 8-byte integers. For the 65K3

dataset, Autofocus down-samples the datasets to short data type,

leading to a 1.80× speedup over IRA.

In the case of the 4.3B3 dataset, the distribution of point coordi-

nates expands the number space to 32-bit floating point, so approxi-

mate computing kernels cannot take advantage of using less-precise

values without exceeding the 1% error rate limit—both VS and IRA

will apply exact computing to generate results. As Autofocus detects

no potential in changing data resolutions, the slight slowdown of VS

comes from the overhead that Autofocus needs to make a decision.

In contrast, IRA slows down by 18% when approximate computing

cannot generate meaningful results.

8.2.6 Data Compression Comparisons. Since the most significant

VS performance gain comes from reducing data-movement overhead,

we also compared VS with several high-performance lossy/lossless

compression algorithms: FPC [8], C-Pack [11], BDI [64], and

ZSTD [90]. We clocked the time of reading compressed data, of

decoding data, and of adjusting resolutions. We excluded the over-

head of compressing data. We use the best-performing compression

algorithm as our baseline in Figure 8(b), showing the speedup of

using VS comparing against data compression.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

B
F

S

B
la

c
k

-S
c
h
o
le

s

D
W

T
2
D

H
o
tS

p
o
t

In
v
e
rs

e
k
2
j

J
m

e
in

t

K
M

e
a
n
s

k
N

N

S
C

S
V

M
-T

ra
in

X
G

B
-T

ra
in

C
N

N
-P

re
d

S
V

M
-P

re
d

X
G

B
-

P
re

d

a
v
e
ra

g
e

G
e
o
m

e
a
n

S
p
e
e
d
u
p

VS
VS+Autofocus

VS+iFilter
Exact Computing

Figure 9: The speedup of the end-to-end latency.

On average, VS outperforms the best compression algorithm for

each dataset by 4.40×. This is because the overhead of decom-

pression consumes considerable overhead on the host even though

decompression saves bandwidth. In addition, VS generates data that

compute kernels can directly process, but the application can never

bypass the decompression overhead if we use data compression.

Without hardware-accelerated compression/decompression (which

adds costs), data compression cannot compete with VS.

8.3 The Impact of VS on Total Application

Latency

Figure 9 shows VS’s impact on the relative end-to-end latency of

running a complete workload using workloads with the conventional

approximate computing approach with GPU-accelerated kernels as

the baseline. Since VS efficiently prepares input datasets in stor-

age devices for approximate computing kernels running the GPU,

the basic programmer-directed VS leads to a speedup of 1.52× for

these applications. Using Autofocus to dynamically select data res-

olutions, these applications achieve an average speedup of 1.43×.

As Autofocus adjusts data resolutions under the constraints of the

control variables that generally lead to more conservative decisions

than the programmer, Autofocus gives up resolution adjustments in

SVM-Train and CNN-Pred and applies exact computing kernels so

as not to distort the result. Without any programmer intervention,

iFilter can improve performance by 1.46× because iFilter has more

flexibility in choosing the appropriate combinations of VS operators

and resolutions compared to Autofocus. However, without using VS,

the conventional approximate-computing approach can only speed

up exact computing by 1.07×.

8.4 Power and Energy

To quantify the effect of reducing the CPU workload, total power,

and energy consumption, we first examined the CPU frequency

when performing data packing on the VS-compliant SSD using

the baseline host-version implementation. We sampled the CPU

frequency every 500 ms. Even though packing is a very lightweight

operation, adding this computational burden to the host program

still forces the CPU frequency to go beyond 3 GHz most of the

time. For VS, which requires that the CPU handle DMA or issue

NVMe commands, the peak CPU frequency during the data I/O

is only 1274 MHz. Using a Watts Up meter to measure the power
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Figure 10: The total system energy consumption.

consumption, the total system consumes 64.7 W for this frequency.

Without VS, the system consumes an average of 70.8 W during the

whole data I/O process.

Since VS reduces both the power consumption during I/O and

the total application latency, VS also reduces the energy consump-

tion. To measure power consumption, we used Watts Up to measure

the power draw every 200 ms. Figure 10 shows that the basic VS

achieved an average energy savings of 32% for these applications

compared to the conventional approximate-computing approach.

Even without a programmer’s aggressive decision in adjusting data

resolutions, VS’s Autofocus and iFilter still achieve the same level

of energy savings in most applications, except for SVM-Train and

CNN-Pred due to their increased end-to-end latency as Section 8.2.2

explains. Autofocus and iFilter provide energy savings of 25% and

27%, respectively. In contrast to this, the conventional architecture

with aggressive data adjustments and approximate-computing ker-

nels could only improve energy consumption over exact computing

by 5%.

9 OTHER RELATED WORK

Approximate computing has a significant presence among solu-

tions that tackle the limitations of modern hardware design. Us-

ing simplified algorithms, smaller ALUs/FPUs, or faster operators,

approximate computing maximizes the area-efficiency of silicon

chips [24, 29, 32, 34, 46, 54, 77, 83, 86, 93, 97]. By designing

simpler, faster approximate circuits (e.g., circuits that use neural-

network accelerators [59], load value approximation [56], or ap-

proximate memoization [3]), approximate computing also avoids

intensive usage of slower but precise circuits for better performance

or energy efficiency. In addition, approximate computing allows

hardware designers to use unreliable transistors that are commonly

found in advanced process technologies [13, 15, 36]. Yet all of the

approximate-computing research cited above still follows the single-

point design principle, creating the resolution-adjustment problem

that this work tries to address. VS is complementary to these projects

and can work together with them to address the issues they raise.

To reduce the overhead of applying approximate hardware or

software-based approximate-computing solutions, current research

projects provide support and analysis through programming lan-

guage extensions and compilers [5, 7, 13, 15, 36, 37, 41, 70–72].

Since VS simply exposes its features to applications through an API

and proposes extensions in the I/O protocol and firmware programs,

applications can adapt VS without programming language exten-

sions or compilers. Further, the Autofocus and iFilter mechanisms

control input quality after applying VS operators within storage de-

vices, so VS can react before the compute-intensive kernel starts. VS

and existing projects are also orthogonal; the system can incorporate

VS with existing approximate-computing programming frameworks

to use VS operators and mechanisms more efficiently.

Even though VS shares the benefits from recent advances in

ISP [6, 9, 14, 23, 31, 33, 35, 40, 67, 75, 76, 82, 85, 89, 96] and near-

data processing [2, 17, 20, 39, 48, 50, 63, 80, 84], these frameworks

need the mechanisms that VS offers in order to execute approximate

computing applications efficiently. And while using approximate

computing in channel encoding [38, 62] and memory controller [30]

can achieve an effect similar to that of VS in terms of reducing

data-movement overhead, VS is independent of these projects and

requires no changes in hardware.

10 CONCLUSION

This paper presents VS architecture that supports arbitrary data reso-

lutions for both exact and approximate computing. VS adjusts the

resolution of the input data within source-storage devices giving

applications a simple way to access the features of VS and program-

mers a simple interface to do the same. VS significantly reduces

overhead and speeds up latency by leveraging underutilized proces-

sor resources. This paper also describes the Autofocus and iFilter

mechanisms that automatically select the most appropriate param-

eters for data adjustment that reduces programmer burden while

enforcing quality-control measures for outgoing data.

Through experiments conducted with a VS-compliant SSD and

the experience gained from tailoring applications on the platform,

this paper also demonstrates that a VS-compliant architecture re-

quires very few modifications to hardware or software. A clear

indication of VS’s efficiency relative to conventional approximate-

computing architectures may be found in the 2.02× speedup ob-

served for VS-based data-resolution adjustments and the 1.52×

speedup observed for total end-to-end latency, with both improve-

ments producing a change in results of less than 1% . In summary,

VS improves performance, maintains flexibility, guarantees quality,

and incurs no storage-space overhead for adjusting data resolutions—

all at a low cost.
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