
GraphSSD: Graph Semantics Aware SSD

Kiran Kumar Matam
kmatam@usc.edu

University of Southern California

Los Angeles, California

Gunjae Koo
gunjae.koo@hongik.ac.kr

Hongik University

Seoul, South Korea

Haipeng Zha
hzha@usc.edu

University of Southern California

Los Angeles, California

Hung-Wei Tseng
htseng3@ncsu.edu

North Carolina State University

Raleigh, North Carolina

Murali Annavaram
annavara@usc.edu

University of Southern California

Los Angeles, California

ABSTRACT

Graph analytics play a key role in a number of applications such

as social networks, drug discovery, and recommendation systems.

Given the large size of graphs that may exceed the capacity of the

main memory, application performance is bounded by storage access

time. Out-of-core graph processing frameworks try to tackle this

storage access bottleneck through techniques such as graph sharding,

and sub-graph partitioning. Even with these techniques, the need

to access data across different graph shards or sub-graphs causes

storage systems to become a significant performance hurdle. In

this paper, we propose a graph semantic aware solid state drive

(SSD) framework, called GraphSSD, which is a full system solution

for storing, accessing, and performing graph analytics on SSDs.

Rather than treating storage as a collection of blocks, GraphSSD

considers graph structure while deciding on graph layout, access, and

update mechanisms. GraphSSD replaces the conventional logical to

physical page mapping mechanism in an SSD with a novel vertex-

to-page mapping scheme and exploits the detailed knowledge of

the flash properties to minimize page accesses. GraphSSD also

supports efficient graph updates (vertex and edge modifications)

by minimizing unnecessary page movement overheads. GraphSSD

provides a simple programming interface that enables application

developers to access graphs as native data in their applications,

thereby simplifying the code development. It also augments the

NVMe (non-volatile memory express) interface with a minimal set

of changes to map the graph access APIs to appropriate storage

access mechanisms.

Our evaluation results show that the GraphSSD framework im-

proves the performance by up to 1.85× for the basic graph data fetch

functions and on average 1.40×, 1.42×, 1.60×, 1.56×, and 1.29×

for the widely used breadth-first search, connected components,

random-walk, maximal independent set, and page rank applications,

respectively.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6669-4/19/06. . . $15.00
https://doi.org/10.1145/3307650.3322275

CCS CONCEPTS

• Hardware → External storage.

KEYWORDS

SSD, Graphs, Flash storage

ACM Reference Format:

Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-Wei Tseng, and Mu-

rali Annavaram. 2019. GraphSSD: Graph Semantics Aware SSD. In The

46th Annual International Symposium on Computer Architecture (ISCA ’19),

June 22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3307650.3322275

1 INTRODUCTION

Graphs analytics are at the heart of a broad range of applications

such as social network analysis, drug discovery, page ranking, trans-

portation systems, and recommendation systems. The size of the

graphs in many of these domains exceeds the size of main memory

seen in commodity computing systems. There is a need to consider

efficient storage-centric graph processing, at least in a subset of

application scenarios where the size of the graph far exceeds the

size of the main memory. It is well known that data input/output

(I/O) time to access large graphs consumes a significant fraction of

the total execution time compared to the CPU and memory access

time [2, 10, 32].

On the storage front, the cost of solid-state drives (SSDs) has

fallen dramatically. NAND Flash SSDs cost about $100 per 1TB

as of early 2019, and the price is expected to reduce further. With

the advent of non-volatile memory express (NVMe) [13] interface,

SSDs can offer significant improvements in bandwidth and enable

tighter integration of computing with storage. Furthermore, SSDs

are equipped with reasonably capable compute fabric to handle flash

management tasks. The advent of such affordable SSDs provides

new opportunities to improve the performance of graph analytics

by making storage systems semantically aware of the graph data

being stored. In particular, we make a case for treating graphs as

a native format supported on storage, rather than treating graphs

as a collection of pages that are accessed using standard block I/O

interface.

This work presents the design and implementation of a graph

semantic aware SSD (GraphSSD) to manage graphs on an SSD

platform. GraphSSD supports the compressed sparse row (CSR)

format for graph layout and further customizes this format to enable

fast mapping of vertex id to the physical page location that contains

1

116

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-Wei Tseng, and Murali Annavaram

the adjacency information of that vertex. GraphSSD provides a set of

programming APIs to application developers to access graph vertex

and edge information, similar to recent graph frameworks such as

GraphCHI [21] and Pregel [27]. But the novelty of this work is that

the SSD controller is made aware of the graph data structures stored

on the SSD. Thus the controller can automatically translate the graph

access APIs into a set of low level physical page accesses to fetch the

requested data. These APIs accept basic graph related queries such as

fetching adjacent vertices for a target vertex, fetching edge weights

of connected edges. GraphSSD APIs are generic enough to enable

developers to write complex graph analytics on top of GraphSSD.

GraphSSD provides solutions to the following challenges:

(1) Graph as native objects: GraphSSD allows the embedded

controller in SSDs to treat graphs as native storage objects,

and provides a set of APIs that can be used to access the graph

objects on storage.

(2) NAND flash aware graph layout: NAND flash memory can

only be accessed in fixed-size pages, and pages can be ac-

cessed concurrently only across the parallel units. The widely

varying sizes of the adjacent neighbors across different ver-

tices require a graph storage mechanism that accommodates

this diversity within the constraints of the flash memories.

GraphSSD tackles this challenge by relying on a compressed

sparse row (CSR) representation for a graph, and embedding

metadata in NAND pages to store edges from one or more

vertices.

(3) Efficient indexing mechanism: GraphSSD presents an innova-

tive graph translation layer (GTL), which translates a vertex

id to a physical page address on the flash memory media

directly, thereby reducing unnecessary indirect page accesses

to reach a given vertex.

(4) Indexing compaction: GraphSSD reduces the GTL mapping

overhead by co-locating multiple vertices with few edges in

the same physical page.

(5) Support for graph updates: GraphSSD relies on Delta graphs

and Delta merging mechanisms that allow GraphSSD to mod-

ify only a small subset of pages containing the updated sub-

graph instead of re-shuffling the entire graph.

(6) We implement GraphSSD framework on an industrial strength

SSD development platform to show the performance improve-

ment of GraphSSD over a conventional graph storage ar-

chitecture. Our evaluation results show that the GraphSSD

framework improves the performance by up to 1.85× for

the basic graph data fetch functions and on average 1.40×,

1.42×, 1.60×, 1.56×, and 1.29× for the widely used breadth-

first search, connected components, random-walk, maximal

independent set, and page rank applications, respectively.

The remainder of this paper is organized as follows: Section 2

introduces the operations of an SSD platform, the graph storage

format as a background and motivates the need for a graph seman-

tic aware storage device. The detailed architecture and functions of

GraphSSD are described in Section 3. The implementation methodol-

ogy, evaluation platform and the experimental results are presented

in Sections 4, 5, and 6 respectively. Related work is provided in

Section 7, and we conclude in Section 8.

SSD controller SoCSSD controller SoC

Fl
as

h
co

nt
ro

lle
r

Fl
as

h
co

nt
ro

lle
r

Fl
as

h
co

nt
ro

lle
r

Embedded
Processor

Embedded
Processor

Embedded
Processor

PC
Ie

in
te

rfa
ce

Embedded
Processor

NAND flash packageNAND flash package

Die
Plane
Block

Block

Page Page
Page Page
Page Page

Plane

Block
Block
Block
Block

DRAM

On-chip bus

DRAM controller

Fl
as

h
co

nt
ro

lle
r

Figure 1: Modern SSD platform architecture

2 BACKGROUND AND CHALLENGES

2.1 Modern SSD platforms

Figure 1 illustrates the architecture of a modern SSD platform. An

SSD equips multiple flash memory channels to support high data

bandwidth. Multiple dies are integrated into a single NAND flash

package by employing die-stacking structure to integrate more stor-

age space on the limited platform board. Data parallelism can be

achieved per die with multi-plane or multi-way composition. Each

plane or way is divided into multiple blocks which have dozens of

physical pages.

A page is a basic physical storage unit that can be read or written

by one flash command. The page size has steadily increased as

more flash memory cells can be integrated within the same area by

using multi-bit or vertical cell technology [18]. Unlike the magnetic

storage devices, flash memory cells need to be initialized before a

write operation. This erasure process can be performed only at a

block granularity since erasing flash memory cells requires higher

electric energy, which can pollute neighboring page cells. In addition,

the erasure process is significantly slower than reading or writing.

Thus SSDs write the updated page contents to a new empty physical

page rather than erase-and-write an entire block. Consequently,

the logical block address (LBA) of a flash page is mapped to new

physical page address (PPA) in the flash memory space whenever

the page data is updated (and the old page is invalidated). The SSD

controller firmware manages this mapping information in the flash

translation layer (FTL) mapping table. The SSD controller does

garbage collection of invalid pages to create empty physical pages. It

erases an entire block, writing any valid physical pages in that block

to another empty physical page in a different block and updating the

FTL.

2.2 Out-of-core graph processing

In many domains, graphs are large requiring out-of-core graph pro-

cessing. Namely, graphs are processed in smaller chunks where each

chunk is read from the storage into the DRAM. Large graphs also

tend to be sparsely connected and hence to reduce the I/O bottleneck

large graphs are stored in a compressed format, such as the com-

pressed sparse row (CSR) format. Alternate approaches have also

been proposed to access graphs in smaller chunks such as shards [21].

Irrespective of the choice of the graph storage format, all prior tech-

niques require the storage to be treated as a block device. In this

paper, the storage controller understands the semantics of graphs

2

117

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-Wei Tseng, and Murali Annavaram

The list of APIs supported by GraphSSD currently is shown in

Table 1. All GraphSSD APIs provide a vertex id to start any type of

graph access. As such the first step in GraphSSD processing is to

access the vertex id and its associated edges in the graph from the

flash storage. To enable fast access to the physical pages consisting

of the vertex related data we propose a novel graph translation layer

as a substitute for traditional FTL used in SSDs.

3.2 Graph translation layer

In order to understand the workflow of GraphSSD it is important to

understand how graphs are laid out in storage by our design. As de-

scribed earlier, we assume that graphs are represented in CSR format

using three vectors, named rowPtr, colIdx, and val. Each entry in the

rowPtr vector is essentially the starting index into colIdx (and val)

vectors where the neighbors of that vertex are located. GraphSSD

essentially preserves this indexing mechanism while laying out these

vectors in the flash pages. The colIdx and val vectors are proportional

to the number of edges in the graph and hence they are significantly

larger than the rowPtr vector. GraphSSD stores only the colIdx and

val vectors in the NAND flash pages, and uses the rowPtr vector as

an indexing table. GraphSSD provides a translation layer for this

indexing purpose, called the Graph Translation Layer (GTL). GTL

replaces the more traditional LBA-to-PPN (logical block address

to physical page number) page mapping used in commodity SSDs.

GraphSSD maps a given vertex id (Vi) to the physical NAND page

number where the neighbor vertices (colIdx values) are stored.

GTL architecture: Figure 5 shows the structure of graph trans-

lation table (GTT) and Figure 4 shows the page layout for the graph.

Each entry in GTT includes the mapping from a vertex id to the

physical page number (PPN), and a tuple of status flags (dirty, exten-

sion, and valid). We will later describe how the GTT status flags are

utilized. While conceptually each vertex maps to the physical pages

storing all its neighbors through GTT, most of the real-world graphs

have sparse connectivity. Hence, lots of vertices have only a few

edges. As such, it is possible to co-locate the neighbors of multiple

vertices in a single physical page. In this scenario, it is wasteful to al-

locate one GTT entry per vertex. To reduce this wastage GTT stores

only one vertex id per physical page. GTT stores just the smallest

vertex id from all the vertices whose neighbors are stored in a given

physical page. Namely for each vertex Vi, there is a GTT entry in-

dexed with vertex id V j that is smaller than or equal to Vi. The next

entry in GTT has a vertex id Vk which is greater than Vi. To make this

search process efficient, GTL stores all the vertex ids in sorted order

in GTT. If the graphs are directional, GraphSSD stores the incoming

and outgoing edge information in separate pages, and keeps separate

GTT for each of incoming and outgoing edge information.

Since each physical page may store neighbors of multiple vertices

we need to identify the offset of the neighbor list for each vertex

id. For this purpose, each physical page includes additional fields

to store layout information as shown in Figure 4. We will describe

the fields in the page starting from the last field and moving to

the front. The last field in the physical page stores the number of

vertices whose neighbor lists are stored in that page. Preceding this

count there are N+1 <vertex, offset> tuples, corresponding to the

N vertices stored in that page. Each tuple stores the vertex id and

the starting byte offset within the page where the neighbor list for

that vertex is stored in that page. Since the last adjacency list stored

in page may fill a page partially a special tuple is used to indicate

the ending offset for the last neighbor list. This ending offset of the

last neighbor list is necessary to mark where the valid data in a page

ends. The offset information and metadata described above is stored

from the end of the page, and the actual vertex neighbor lists are

stored from the starting of the page. Storing location pointers along

with the adjacent vertices in a page helps us 1) in reducing the size of

the GTT which will enable keeping a large chunk of GTT in DRAM,

and 2) making no extra NAND page accesses to reach the adjacent

vertices associated with a vertex id.

We now discuss different graph layout scenarios in GTT.

1. When neighbor vertices of a vertex Vi are stored entirely in a

page: In this case, all neighbors are stored contiguously in the page

and the starting offset of the neighbor list is stored in the location

tuple associated with Vi.

2. When neighbor vertices of a vertex Vi are stored across multiple

pages: Vi’s neighbors span multiple pages for two reasons. First, Vi

has many neighbors which will not fit in a single page. In this case,

at least one page stores only the neighbors of Vi. That page will

store just a single location pointer tuple and the last field on the page

indicates that only a single vertex’s neighbors are located on that

page. After filling multiple full pages for a long neighbor list, there

may be at most one partial page to store the last remaining neighbors.

That page may also store the neighbors of other vertices. In this case,

the location pointer tuples of all vertices including Vi are stored just

as the first case above. GTL handles these dense vertices by storing

the Vi to physical page mapping in GTT for each page that stores the

neighbors of Vi. Thus Vi may have more than one GTT entry.

3. There is a third case where the number of neighbors of Vi may

not fit in the existing free space in a page, and hence may span two

different pages, even though the total number of vertices do not

exceed a single page. We explored different options for packing the

page but in the end, for simplicity of design, we decided to avoid

spanning neighbors across two pages. Hence, if the neighbors do not

fit in the leftover space in a page we simply allocate the neighbors

to a new page.

An example of page layout: Figure 6 shows an example of GTT

and the corresponding physical page layout. In this example, the GTL

entry corresponding to V 1 stores P1, indicating that the neighbors

of V 1 are stored in physical page P1. Since the next entry of GTL

corresponds to vertex V 3 it implies that the previous GTL entry

also stores neighbors of V 2. Similarly, second GTL entry shows that

the neighbors of V 3, V 4 and V 5 are stored in the physical page P2.

Finally the neighbors of V 6 span two physical pages P3 and P4.

The physical page organization is shown on the right half of

Figure 6. For instance, the physical page P2 stores neighbors of

three vertices and hence the last field (labeled No.V) shows the

count to be 3. To the right of this field are the tuples that shows

each vertex and its starting byte offset in the page. The tuple (V 3,1)

in physical page P2 shows that vertex V 3’s neighbors are located

starting at byte offset 1 within the page. A custom tuple (End,3)

shows that the last valid byte on this page is byte 2. Hence GraphSSD

can extract the neighbors of each vertex by decoding the graph page

layout as described. The GTL also shows that V6 has two page

entries since it is a dense vertex with many neighbors that span more

than one page.

4

119

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-Wei Tseng, and Murali Annavaram

position then we may need to shift other entries in the GTT, and in

the worst case, we may need to shift all the GTT entries. To avoid

this scenario we keep an extended bit in the GTT entry. When the

extended bit is set, the GTT entry doesn’t point to a NAND page

number but instead points to a location where GTT entries are stored

contiguously for the newly added page and the old page that is split.

Figure 7 shows how GTT is updated with the extended bit, when an

adjacent edge is added between V 4 and V 2 and P2 page overflows

for the example graph shown in Figure 6.

When neighbors of Vid1 are stored in multiple pages: Then

there are multiple GTT entries with vertex id Vid1. Among them,

Vid2 is added to the page pointed by the GTT entry at the highest

index and after that, it is handled similarly to the above case.

An example edge addition: Here we will discuss an example

of adding an edge from V 4 to V 1 considering the graph shown in

Figure 6. First, the page containing the V 4’s neighbor list, P2, is

loaded into the DRAM. Then the starting offset for V 4 neighbors is

identified as 3 and V 1 is then inserted at word 3. After insertion, as

the neighbors and location pointers cannot fit in a NAND page, they

are stored in two NAND pages, P5 and P6. To have roughly equal

available space in P5 and P6, vertex neighbors of V 3 are stored in

P5, V 4 and V 5’s neighbors are stored in P6. GTT entry for V 3 does

not store the physical page number and instead it stores the location

pointers where the extended GTT information is stored. And also

the extended bit at V 3’s GTT entry is set, as shown in Figure 7.

Similar to adding an edge, we also implemented adding a vertex,

which inserts the vertex into GTT, and then adds multiple neighbors

while maintaining the previously described page layout. Due to

the space limitations we omit the description for delete and update

operations on edges and vertices.

3.4 Handling Graph Updates Efficiently With

Caching and Delta Graph

The graph update process described above leads to many unnecessary

page writes. Since SSDs can’t do in place updates, it is not possible

to simply update the NAND page with new data, even if the update

is as simple as just adjusting the edge weight. Each page update

triggers a read-modify-write sequence for the entire page which

leads to significant write amplification, in the worst case, by a factor

of 1000x. For instance, a single edge weight update leads to reading

the full page into a DRAM buffer, modifying the weight in the page

and then writing the new 16KB page (GraphSSD page size) to a

new location. To reduce the write amplification, we implemented

an optimization that relies on a multi-stage update process. First, all

updates are logged on the host side DRAM until sufficient number

of updates have been accumulated (one page worth of updates in

our current implementation) or when a timer event is triggered (a

default value of 100 milliseconds is used in this work). A host side

GraphSSD log manager is implemented for handling the logging

functionality.

Host side logger: Certain updates such as deletions or updating

an edge or vertex weight need to check whether the edge or vertex

that is modified exists in the graph in the first place. Hence, the host

side logger sends a request to the SSD itself to verify the presence

of vertex or an edge. The logger also concurrently launches another

thread to check for the edge/vertex information in the DRAM log

itself (by walking the log backwards in time), since the edge/vertex

being updated may still be resident in the DRAM log from a re-

cent update request that is not yet reflected in the SSD. If such an

edge/vertex does not exist either in SSD or in the DRAM the API

returns a FALSE condition back to the application. Note that the

request for presence check on the SSD is simply a read operation

and does not trigger any page updates.

Delta graphs: When the DRAM log is full or when the timer

interrupt expires the host side logger initiates a bulk update sequence.

As described earlier, graph insertions may trigger a page overflow

and in the worst case each insertion may trigger multiple page writes.

While DRAM buffering on the host side helps with this concern,

GraphSSD adopts the concept of a Delta graph [26] to further mini-

mize the write amplification. We implement delta graphs using two

vectors in SSD, namely deltaPointer and deltaUpdates. All updates

for a adjacency list are appended to the deltaUpdates vector. The

newly added updates for a vertex points to the previously added

delta update for that vertex. DeltaPointer for that vertex points to

the index in the deltaUpdates vector that contains the latest delta

updates for that vertex.

Graph accesses with DRAM logs and delta graphs: The graph

access mechanisms must know the presence of delta graph for a

given vertex to properly reconstruct the full graph. To mark the

presence of a delta graph GraphSSD sets a dirty bit in the GTL entry

corresponding to that vertex. Thus when a graph access request is

received, it will first access the GTL entry to identify the physical

page consisting of the original graph and if a dirty bit is set in GTL

entry the access mechanism then uses the DeltaPointer to reach all

subsequent updates to that vertex.

Merging delta graph with the initial graph: While delta graphs

allow graph updates to be gracefully handled in terms of write

amplification issue, it does lead to a slow down in graph access

latency. As such it is preferable to periodically merge delta graphs

into the original graph. For merging the delta graph into the initial

graph, we loop over GTT and identify the GTT entries whose dirty

bit is set. For these vertices, we access the delta modifications and

merge them with existing neighbor list data stored in the original

graph. After all the vertex modifications have been merged into the

graph, all the dirty bits at the GTT entries are cleared.

3.5 Consistency considerations:

Anytime there is a graph update that is logged in DRAM there is a

risk of losing that state during power failures. As is the case with file

buffers in OS that cache file content, during a power loss some of

the data may be lost. But what is important is that a consistent view

is preserved after a reboot. To create a consistent view of the graph,

every update must be atomically performed. For instance, during an

edge weight update, a new page needs to be created with the updated

edge weight. Even in the presence of a delta graph at some point in

future a page update may be initiated when merging delta graphs

with the original graph. In this scenario we first create a redo-log

entry before initiating the update process. The redo-log stores the

GTL entry (physical page number), the deltaPointer and deltaUpdate

info for the vertex that is being updated. The update process then

will write the new page first, then resets the GTL dirty bit, changes

GTL entry to point to the new page, and finally invalidates the old

6

121

GraphSSD: Graph Semantics Aware SSD ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

page and resets the deltaPointer entry. If there is a power failure

either during the new page write process or after the new page is

written but before the GTL dirty bit is reset, on a reboot the redo-log

starts the entire update process by selecting another page to write

(the page that was being written before the power failure will be

garbage collected just like other invalid pages using the default SSD

policies for handling write failures). If the power failure occurs after

the GTL dirty bit is reset but before the GTL entry is updated with a

new page entry the redo-log sets the GTL dirty bit back again and

restarts the update process. If the power failure occurs after the GTL

entry has been updated but before the old page is invalidated, the

redo-log simply invalidates the old page and deltaPointers. Note

that there are several optimizations that can be made to improve the

performance of redo-logging. We currently focus on functionality

and leave optimization for future work.

Garbage collection: We use a single bit for every page in the

storage to indicate if that page is used by GraphSSD or not. If that

page has been used for storing the graph data then while moving that

NAND page during garbage collection, the garbage collector informs

GraphSSD runtime which will in turn update the GTT entry. The

page that is being moved already contains the information regarding

the smallest vertex id whose neighbor lists are stored in that page.

We update the GTT entry for that vertex id with the new NAND

page location where the data is moved.

3.6 GraphSSD cache manager

To improve the performance for graph applications when accessing

storage, graph data is cached at the host side. For algorithms based

on graph data such as page rank and graph filtering, which request

sequential vertex ids, there might be many requests to storage for

nearby vertex data. Handling these requests to the storage adds

considerable overhead and dominates the application time. To reduce

this overhead we implemented a cache manager, which caches GTT

on the host side, does graph command handling. GraphSSD cache

manager issues requests to fetch NAND pages on a cache miss. As

many vertices may reside in a NAND page, single NAND page fetch

to host side cache may serve many requests on the host side itself

thereby filtering requests to storage. The host side GTT is read-only

and all update requests invalidate the cached GTT entry and the

update is handled on the SSD itself.

During garbage collection at the SSD, data in a NAND page may

be written to another NAND page. If a NAND page storing graph

data is moved then new NAND page number should be updated

at the host GTL cache. For updating this NAND page number on

the host side cache the SSD controller automatically initiates a host

cache invalidation request which is handled by the GraphSSD cache

manager.

3.7 Graph command handling examples

We summarize our system implementation using two example graph

access APIs; GetAdjacentVertices, and GetEdgeWeight commands.

For these commands we describe how we retrieve the required data

from the NAND pages.

GetAdjacentVertices(vertexID, EdgeList): Using the requested

vertex id GTT is accessed to get the NAND page numbers storing its

adjacent vertices. If the GTT’s extended bit is set then we may have

Algorithm 1 Code snippet of BFS program using GraphSSD

1: /*BFS Request thread code*/

2: Queue.push(root)

3: while Queue not empty do

4: top_element = Queue top element

5: if top element == required element then

6: Element found

7: Exit

8: Wait until empty slot is available in GraphSSD response

queue

9: Wait until empty slot is available in GraphSSD request queue

10: GraphSSD.GetAdjacentVertices(top_element, Edge-

List)

11:

12: /*BFS Response thread code*/

13: Wait until EdgeList is available in GraphSSD response queue

14: for i=0; i < EdgeList.size(); i++ do

15: if EdgeList[i] not already visited then

16: Add to Queue

to search through the extended GTT entries to find the physical page.

Once a physical page location is identified, and if the dirty bit in the

GTT entry is set then it indicates that some of the neighbor infor-

mation in that page has been modified. Hence, GraphSSD accesses

the original graph page, and the Deltaupdates vector. Concurrently

the host side logger searches the host side DRAM logs to find any

cached or updated edge information for the given vertex. Finally the

information from the original graph page, Deltaupdate page and the

host side DRAM pages is combined to create the EdgeList buffer

which is returned to the application.

GetEdgeWeight(vertexID1, vertexID2, EdgeWeight): Using

VertexId1 we access the GTT and fetch all the pages containing

the neighbors of VertexId1. Using VertexId1 we access the NAND

page containing the neighbor lists via host cache to find if VertexId2

is a neighbor. As briefly mentioned earlier, a separate GTT structure

is used to map a vertex id to the corresponding edge weight informa-

tion using the same graph layout structure as the edge connectivity

information. We use the edge connectivity information to find the

index location of the edge to access the edge weight. Concurrently

the host side logger searches the host side DRAM logs to find any

updated edge weight for the given edge. The information returned

from the original graph pages is again reconciled with any updated

edge weight information found in the DRAM logs to get the most

recent edge weight information which is returned to the application.

4 WORKLOADS AND IMPLEMENTATION

DETAILS

GraphSSD essentially provides semantic awareness to the SSDs.

Instead of accessing SSDs with logical block address, it allows users

to query graph related information. For this purpose, it implements

basic graph access commands listed in Table 1. Users/libraries can

use these basic commands to build higher-level functions. We evalu-

ated several traditional graph applications that stress the following

features 1) accessing adjacent vertices for a requested vertex, 2)

7

122

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-Wei Tseng, and Murali Annavaram

accessing edge weight for a requested edge and 3) updating edge

weights.

4.1 Workloads

The applications evaluated include:

BFS: BFS identifies whether a given target node is reachable

from a given source node. We implemented the BFS application as

shown in code snippet 1. This algorithm fetches adjacent vertices

for a given vertex id repeatedly. For evaluating BFS, we select one

source vertex and then varied the distance at which the destination

vertex may be found at several levels along the the longest path, at 3

equal intervals from the first level to the last level.

Connected components: The number of connected components

are counted in this graph application. The approach uses BFS but it

performs the operations on all vertices.

Random walk: This application performs many random-walks

starting from several source nodes. Starting from each source node,

the application does random-walks for several iterations and in each

iteration, it walks a maximum of steps. We implemented the efficient

parallel random-walk algorithm described in [20]. This algorithm

simulates random-walks in parallel, possibly from a large number

of source vertices, and processes one vertex a time. In a step, at

each vertex, all walks currently visiting that vertex are processed

and moved forward. We evaluated with 100K parallel random walks,

with a maximum of 10 steps from the source and considered several

iteration values, 10, 50, 100, and 1000.

Maximal independent set: We implemented the maximal inde-

pendent set algorithm as described in [35]. It is an iterative algorithm

based on Luby’s classic parallel algorithm[24].

Page rank: [33] The page rank is a classic graph update algorithm

and our implementation sends edge updates if they are greater than

a certain threshold (0.4). We set the maximum number of iterations

to 5.

Graph Update benchmark: Since GraphSSD provides signifi-

cant support for graph updates, we also implemented a graph update

kernel that adds edge and vertex information. The updates are main-

tained as delta graphs and are finally merged into the initial graph.We

intersperse the graph updates with a total of 1000 get adjacent queries

on vertices selected using the latest read model. In the latest read

model, the newly added updates are accessed the most. Latest read

model represents the widely used news feed, social media, where

newly posted data is accessed the most [6]. We consider 95% of

the get adjacent queries on vertices that are being updated or newly

added to the graph.

Non-intrusive NVMe Implementation: All the GraphSSD APIs

are implemented by extending existing NVMe read/write commands.

We used the unused bytes in read and write NVMe commands to

specify the GraphSSD commands. We used these unused bytes to

pass the vertex id, end vertices of an edge and an opcode encoding

to indicate the API operation being requested.

4.2 Baseline system

For the baseline system, we considered normal SSDs where the

graph is stored in CSR format (described in 2.2). The baseline uses

block based access to reach the rowPtr, colIdx and val vectors. Each

access to the rowPtr, colIdx or Val vector is first translated to a

physical page number using traditional FTL. The baseline system

also uses file caching on the host to cache multiple pages; the size

of the host side file cache is 1GB in our implementation. As we

show later in our results section, host side caching is critical for

implementing a robust baseline that can eliminate many NAND page

accesses.

We also compare results with the popular out-of-core GraphChi

framework. While comparing with GraphChi we use the same host

side memory cache size as GraphSSD. For all the applications, when

executing over GraphSSD, Baseline, and GraphChi, application data

other than the graph data, such as visited vector in BFS application,

value vector in page rank application, etc. are allocated in main

memory.

4.3 Caching and Multi-threading

We implemented host side caching using LRU policy for both

GraphSSD and baseline. Doubly linked list and hashmap are used to

efficiently implement the LRU policy. To simulate out-of-core graph

algorithms, we consider host cache size of 1GB as the default size.

To generate I/O request parallelism our baseline and GraphSSD

implementations both provide a non-blocking request interface to

graph application threads. To support non-blocking calls, we imple-

ment a request queue and response queues. In the request queue,

graph data requests are posted from the application. Graph data re-

sponses to those requests are pushed into the response queues. The

cache manager is also parallelized using multi-threading to maximize

the throughput, and locks were sparingly used for synchronizing

between the threads as necessary.

From storage, GraphSSD loads NAND page granularity chunks

into the host cache as location pointers are stored at the end of the

NAND page and vertex data is stored at the start of the NAND page.

In our baseline we also load NAND page granularity chunks into the

file buffer host cache.

5 EVALUATION

We evaluated GraphSSD using the open-source SSD (OpenSSD)

development platform [31, 36]. The OpenSSD development plat-

form equips Xilinx Zynq-7000 programmable SoC that embeds a

dual-core ARM Cortex-A9 processor [39]. Hence the FPGA-based

programmable chip works as an SSD controller SoC on the SSD plat-

form. PCIe interface and NAND flash channels are implemented as

hardware logic on the programmable gate arrays, and the embedded

ARM core runs the SSD firmware implementing the command han-

dling, page buffer management and FTL functions. We implemented

GraphSSD on the existing SSD firmware modifying the FTL part,

command handling and host side library which manages cache on

the host side. The OpenSSD platform encloses 1 GB DDR DRAM

and 2 TB Hynix H27Q1T8YEB9R NAND flash DIMMs connected

to the programmable SoC. The SSD board communicates with the

host system via the PCIe Gen2×8 interface, which supports up to 4

GB/s bandwidth. NAND page size in OpenSSD platform is 16KB.

Host system uses a logical sector of size 4KB.

We configured the host system with Intel i7-4790 CPU running

at 4 GHz and 16 GB DDR3 DRAM. In order to extend NVMe

commands for GraphSSD, the NVMe host driver on Linux Kernel

version 3.19 was enhanced.

8

123

GraphSSD: Graph Semantics Aware SSD ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

by the Korea government (MSIT) (No. NRF-2018R1C1B5086594)

and Institute of Information & Communication Technology Planning

& Evaluation (IITP) grant funded by the Korea government (MSIT)

(No. 2019-0-00533, Research on CPU vulnerability detection and

validation). The views, opinions, and/or findings expressed are those

of the author(s) and should not be interpreted as representing the

official views or policies of the Department of Defense, the U.S.

Government, or the Korean government.

REFERENCES
[1] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active Disks: Programming

Model, Algorithms and Evaluation. In Proceedings of the 8th International

Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’98, pages 81–91, New York, NY, USA, 1998. ACM.
[2] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. A

Scalable Processing-in-memory Accelerator for Parallel Graph Processing. In Pro-

ceedings of the 42Nd Annual International Symposium on Computer Architecture,
ISCA ’15, pages 105–117, New York, NY, USA, 2015. ACM.

[3] Simona Boboila, Youngjae Kim, Sudharshan S. Vazhkudai, Peter Desnoyers, and
Galen M. Shipman. Active Flash: Out-of-core data analytics on flash storage. In
IEEE 28th Symposium on Mass Storage Systems and Technologies, MSST ’12,
pages 1–12, April 2012.

[4] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming
Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. Kineograph: Taking
the Pulse of a Fast-changing and Connected World. In Proceedings of the 7th

ACM European Conference on Computer Systems, EuroSys ’12, pages 85–98,
New York, NY, USA, 2012. ACM.

[5] Sangyeun Cho, Chanik Park, Hyunok Oh, Sungchan Kim, Youngmin Yi, and
Gregory R. Ganger. Active Disk Meets Flash: A Case for Intelligent SSDs. In Pro-

ceedings of the 27th International ACM Conference on International Conference

on Supercomputing, ICS ’13, pages 91–102, New York, NY, USA, 2013. ACM.
[6] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. Benchmarking cloud serving systems with YCSB. In Proceedings of the

1st ACM symposium on Cloud computing, pages 143–154. ACM, 2010.
[7] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park, Kwanghyun Park,

and David J. DeWitt. Query Processing on Smart SSDs: Opportunities and
Challenges. In Proceedings of the 2013 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’13, pages 1221–1230, New York, NY, USA,
2013. ACM.

[8] D. Ediger, R. McColl, J. Riedy, and D. A. Bader. STINGER: High performance
data structure for streaming graphs. In 2012 IEEE Conference on High Perfor-

mance Extreme Computing, pages 1–5, Sept 2012.
[9] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun

Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon
Jeong, and Duckhyun Chang. Biscuit: A Framework for Near-data Processing
of Big Data Workloads. In Proceedings of the 43rd International Symposium on

Computer Architecture, ISCA ’16, pages 153–165, Piscataway, NJ, USA, 2016.
IEEE Press.

[10] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret
Martonosi. Graphicionado: A high-performance and energy-efficient accelerator
for graph analytics. In 2016 49th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO ’16, pages 1–13, Oct 2016.
[11] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou,

Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen. Chronos: A Graph
Engine for Temporal Graph Analysis. In Proceedings of the Ninth European

Conference on Computer Systems, EuroSys ’14, pages 1:1–1:14, New York, NY,
USA, 2014. ACM.

[12] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim,
Jinha Kim, and Hwanjo Yu. TurboGraph: A Fast Parallel Graph Engine Handling
Billion-scale Graphs in a Single PC. In Proceedings of the 19th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’13,
pages 77–85, New York, NY, USA, 2013. ACM.

[13] Amber Huffman. NVM Express, 2013.
[14] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstantinou, and Steven Swanson.

Kaml: A flexible, high-performance key-value ssd. In HPCA, pages 373–384.
IEEE, 2017.

[15] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, and Arvind. GraFBoost:
Accelerated Flash Storage for External Graph Analytics. ISCA, 2018.

[16] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, et al. BigSparse:
High-performance external graph analytics. arXiv preprint arXiv:1710.07736,
2017.

[17] Yangwook Kang, Yang suk Kee, Ethan L. Miller, and Chanik Park. Enabling
cost-effective data processing with smart SSD. In IEEE 29th Symposium on Mass

Storage Systems and Technologies, MSST ’14, pages 1–12, May 2013.

[18] Jin-Yong Kim, Sang-Hoon Park, Hyeokjun Seo, Ki-Whan Song, Sungroh Yoon,
and Eui-Young Chung. NAND Flash Memory With Multiple Page Sizes for High-
Performance Storage Devices. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 24(2):764–768, Feb 2016.
[19] Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Krishna Giri Narra, Jing Li, Hung-

Wei Tseng, Steven Swanson, and Murali Annavaram. Summarizer: Trading
Communication with Computing Near Storage. In Proceedings of the 50th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO-50 ’17, pages
219–231, New York, NY, USA, 2017. ACM.

[20] Aapo Kyrola. Drunkardmob: billions of random walks on just a pc. In Proceedings

of the 7th ACM conference on Recommender systems, pages 257–264. ACM, 2013.
[21] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. GraphChi: Large-scale Graph

Computation on Just a PC. In Proceedings of the 10th USENIX Conference on

Operating Systems Design and Implementation, OSDI ’12, pages 31–46, Berkeley,
CA, USA, 2012. USENIX Association.

[22] Jinho Lee, Heesu Kim, Sungjoo Yoo, Kiyoung Choi, H Peter Hofstee, Gi-Joon
Nam, Mark R Nutter, and Damir Jamsek. ExtraV: boosting graph processing
near storage with a coherent accelerator. Proceedings of the VLDB Endowment,
10(12):1706–1717, 2017.

[23] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection.

[24] Michael Luby. A simple parallel algorithm for the maximal independent set
problem. SIAM journal on computing, 15(4):1036–1053, 1986.

[25] Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woonhak Kang, Mohan Ku-
mar, and Taesoo Kim. Mosaic: Processing a trillion-edge graph on a single
machine. In Proceedings of the Twelfth European Conference on Computer

Systems, pages 527–543. ACM, 2017.
[26] Peter Macko, Virendra J Marathe, Daniel W Margo, and Margo I Seltzer. LLAMA:

Efficient graph analytics using large multiversioned arrays. In Data Engineering

(ICDE), 2015 IEEE 31st International Conference on, pages 363–374. IEEE,
2015.

[27] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD International Conference

on Management of data, pages 135–146. ACM, 2010.
[28] Kiran Kumar Matam, Hanieh Hashemi, and Murali Annavaram. PartitionedVC:

Partitioned External Memory Graph Analytics Framework for SSDs. arXiv e-

prints, page arXiv:1905.04264, May 2019.
[29] Alan Mislove. Online Social Networks: Measurement, Analysis, and Applications

to Distributed Information Systems. PhD thesis, Rice University, Department of
Computer Science, May 2009.

[30] Lifeng Nai, Yinglong Xia, Ilie G Tanase, Hyesoon Kim, and Ching-Yung Lin.
GraphBIG: understanding graph computing in the context of industrial solutions.
In High Performance Computing, Networking, Storage and Analysis, 2015 SC-

International Conference for, pages 1–12. IEEE, 2015.
[31] OpenSSD. Open-Source Solid-State Drive Project for Research and Education.

http://openssd.io.
[32] Muhammet Mustafa Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov, John Greth,

Steven Burns, and Ozcan Ozturk. Energy Efficient Architecture for Graph An-
alytics Accelerators. In Proceedings of the 43rd International Symposium on

Computer Architecture, ISCA ’16, pages 166–177, Piscataway, NJ, USA, 2016.
IEEE Press.

[33] Pagerank application,. https://github.com/GraphChi/graphchi-cpp/blob/master/
example_apps/streaming_pagerank.cpp.

[34] Erik Riedel, Christos Faloutsos, Garth A. Gibson, and David Nagle. Active Disks
for Large-Scale Data Processing. Computer, 34(6):68–74, June 2001.

[35] Semih Salihoglu and Jennifer Widom. Optimizing graph algorithms on pregel-like
systems. Proceedings of the VLDB Endowment, 7(7):577–588, 2014.

[36] Yong Ho Song. Cosmos+ OpenSSD: A NVMe-based Open Source SSD Platform.
In Flash Memory Summit 2016, Santa Clara, CA, USA, 2016.

[37] Devesh Tiwari, Simona Boboila, Sudharshan S. Vazhkudai, Youngjae Kim, Xi-
aosong Ma, Peter J. Desnoyers, and Yan Solihin. Active Flash: Towards Energy-
efficient, In-situ Data Analytics on Extreme-scale Machines. In Proceedings of

the 11th USENIX Conference on File and Storage Technologies, FAST’13, pages
119–132, Berkeley, CA, USA, 2013. USENIX Association.

[38] Devesh Tiwari, Sudharshan S. Vazhkudai, Youngjae Kim, Xiaosong Ma, Simona
Boboila, and Peter J. Desnoyers. Reducing Data Movement Costs Using Energy
Efficient, Active Computation on SSD. In Proceedings of the 2012 USENIX

Conference on Power-Aware Computing and Systems, HotPower ’12, Berkeley,
CA, USA, 2012. USENIX Association.

[39] Xilinx. Zynq-7000 All Programmable SoC Data Sheet. https://www.xilinx.com/
support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf.

[40] Yahoo WebScope. Yahoo! altavista web page hyperlink connectivity graph, circa
2002. http://webscope.sandbox.yahoo.com/, 2018.

[41] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E. Priebe,
and Alexander S. Szalay. FlashGraph: Processing Billion-Node Graphs on an
Array of Commodity SSDs. In 13th USENIX Conference on File and Storage

Technologies (FAST 15), FAST ’15, pages 45–58, Santa Clara, CA, 2015.

13

128

	Abstract
	1 Introduction
	2 Background and Challenges
	2.1 Modern SSD platforms
	2.2 Out-of-core graph processing
	2.3 Graph updates

	3 Architecture
	3.1 Graph command decoder:
	3.2 Graph translation layer
	3.3 Supporting graph updates
	3.4 Handling Graph Updates Efficiently With Caching and Delta Graph
	3.5 Consistency considerations:
	3.6 GraphSSD cache manager
	3.7 Graph command handling examples

	4 Workloads and implementation details
	4.1 Workloads
	4.2 Baseline system
	4.3 Caching and Multi-threading

	5 Evaluation
	6 Experimental results
	6.1 Performance of basic APIs
	6.2 Application performance
	6.3 Comparison with GraphChi
	6.4 GraphSSD Overheads
	6.5 Graph updates

	7 Related work
	7.1 Storage system
	7.2 Graph processing

	8 Conclusion
	9 ACKNOWLEDGMENT
	References

