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Preparing and analyzing CT data

The natural historian’s guide to the CT galaxy: step-by-step instructions for preparing
and analyzing computed tomographic (CT) data using cross-platform, open access
software

Thaddaeus J. Buser, Olivia F. Boyd, Alvaro Cortés, Cassandra M. Donatelli, Matthew A.
Kolmann, Jennifer L. Luparell, Janne A. Pfeiffenberger, Brian L. Sidlauskas, Adam P.
Summers

ABSTRACT

The decreasing cost of acquiring computed tomographic (CT) data has fueled a global effort to
digitize the anatomy of museum specimens. This effort has produced a wealth of open access
digital 3D models of anatomy available to anyone with access to the internet. The potential
applications of these data are broad, ranging from 3D printing for purely educational purposes to
the development of highly advanced biomechanical models of anatomical structures. However,
while virtually anyone can access these digital data, relatively few have the training to easily
derive a desirable product (e.g., a 3D visualization of an anatomical structure) from them. Here,
we present a workflow based on free, open source, cross-platform software for processing CT
data. We provide step-by-step instructions that start with acquiring CT data from a new
reconstruction or an open access repository, and progress through visualizing, measuring,
landmarking, and constructing digital 3D models of anatomical structures. We also include
instructions for digital dissection, data reduction, and exporting data for use in downstream
applications such as 3D printing. Finally, we provide supplementary videos and workflows that
demonstrate how the workflow facilitates five specific applications: measuring functional traits
associated with feeding, digitally isolating anatomical structures, isolating regions of interest
using semi-automated segmentation, collecting data with simple visual tools, and reducing file
size and converting file type of a 3D model.
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Preparing and analyzing CT data
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Preparing and analyzing CT data

ITALIANO (ITALIAN)

La guida dello storico naturale alla galassia CT: istruzioni passo-passo per preparare e
analizzare i dati tomografici calcolati (CT) utilizzando un software multipiattaforma ad
accesso aperto

Thaddaeus J. Buser, Olivia F. Boyd, Alvaro Cortés, Cassandra M. Donatelli, Matthew A.
Kolmann, Jennifer L. Luparell, Janne A. Pfeiffenberger, Brian L. Sidlauskas, Adam P.
Summers

ASTRATTO

La decrescita nel costo dell’'acquisizione di immagini attraverso la tomografia computerizzata
(TC) ha incentivato uno sforzo globale nella digitalizzazione anatomica di campioni museali. Tali
sforzi sono risultati in un’abbondanza di modelli anatomici 3D accessibili al pubblico su internet
in formato open access. | potenziali impeghi di questi dati sono molteplici, spaziando dalla
stampa 3D per scopi puramente educativi allo sviluppo di modelli biomeccanici avanzati di
strutture anatomiche. Ciononostante, seppure questi dati siano in teoria accessibili a chiunque,
relativamente poche persone hanno la preparazione necessaria per derivarne un prodotto
fruibile, come per esempio una visualizzazione 3D di una struttura anatomica. In questo lavoro
presentiamo un workflow basato su un software open access gratuito e multipiattaforma che
permette I'elaborazione di dati acquisiti attraverso tomografia computerizzata. Inoltre, vengono
fornite istruzioni passo-per-passo cominciando dall’acquisizione di dati tomografici a partire da
una nuova ricostruzione o da un archivio open access e proseguendo con la visualizzazione,
misurazione, mappatura ed infine costruzione di modelli 3D di strutture anatomiche. In aggiunta,
includiamo istruzioni per la dissezione digitale nonché per la riduzione e I'esportazione dei dati
per usi successivi, come per esempio la stampa 3D. Infine offriamo video e procedure
supplementari nei quali viene dimostrato come tale workflow assista in cinque diverse
applicazioni: la misurazioni di tratti funzionali associati all’alimentazione, l'isolamento digitale di
strutture anatomiche, I'isolamento di regioni di interesse usando la segmentazione semi-
automatizzata, I'acquisizione di dati attraverso semplici mezzi visuali, la riduzione delle
dimensioni dei file e la conversione al formato 3D.
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PYCCKM (RUSSIAN)

PykoBoacTBo ectectBoucnpiTaressi mo Mupy KT: nomaroble MHHCTPYKIUHM JI51 HOATOTOBKH U
aHaJM3a JaHHbIX KOMIILIOTepHOii ToMorpadguu (KT) ¢ ucnonb3zoBanuem KpocenaaT(popMeHHOro
NMPOrpaMMHOI0 odecneyeHns ¢ OTKPHITHIM J0CTYNIOM

Tanneyc :x. Bycep, OauBusa @. boiin, AabBapo Koprec, Kaccangpa M. lonaresniu, MaThio A.
Koamann, I:xennudep JI. Jlynapes, SIan A. Ildeiippendeprep, bpaiian JI. Cupnayckac, Axam I1.
Cammepc

ABCTPAKT

CHMXCHHE CTOMMOCTH TIOJYUYCHHS JJAaHHBIX KOoMIbioTepHoi ToMorpaduu (KT) npuseno k MaccoBoi
onn(poBKe My3eHHBIX IKCIIOHATOB, YTO ITO3BOJIMJIO CO3/IaTh MHOXKECTBO MU(PPOBHIX aHaTOMUYecKux 3D-
MoJieIeit. ITH MOJIENIN HaXOAATCs IOCTYITHBI JIF0OOMY ¢ oMoIbio cetn MHTepHeT. [ToTeHInansHble
BO3MOXKHOCTH MTPUMEHEHUS 3TUX MU(POBBIX MOJIENIeH IMPOKH U BKIIOYAIOT B ce0s meyath 3D-MakeToB
Ut 00pa30BaTeIbHBIX ENel U pa3paboTKy BEICOKOTEXHOIOTHYHBIX OMOMEXaHNIECKIX aHATOMHUYECKUX
Mozeinel. HecMoTpst Ha TO, 9YTO MIPAKTUYECKU KaXKbIN KEIAOIMA UMEET OTKPBITHIN JTOCTYII K 3TUM
M(POBBIM MOJETISIM, IPE00Pa30BaTh UX B JKEJIAEMBIi MPOIYKT (HApUMeEp, TPEXMEPHYIO BH3YaTH3AIHIO
AHATOMHYECKOU CTPYKTYPBI) MOTYT OTHOCHTEIFHO HEMHOTHE. B TaHHOM! cTaThe MBI OIIMCHIBAEM paboumnit
MPOIIecC, OCHOBAHHBIN Ha UCIIOJIb30BaHUN OECIIATHOTO KPOCCIIAT()HOPMEHHOTO MPOrPaMMHOTO
o0ecriedeHus C OTKPBITHIM UCXOIHBIM KOAOM /15t 00padoTku AanHbIX KT. MBI mpennaraem norraroBbie
HWHCTPYKITNH, HaUYWHAs ¢ TTofydeHus qaHHeIX KT U3 HOBO# peKOHCTPYKITUHU WIIM XPAHUIHUIIA C OTKPBHITHIM
JOCTYIIOM. 3aTEM, Mbl OIIMCBHIBAEM BO3MOKHOCTH BU3yaJIU3al[U1, U3MEPEHUSI, OPUCHTHUPOBAHUS U
COo3/1aHus U(PPOBBIX TPEXMEPHBIX MOJIENIe aHATOMHUYECKHUX CTPYKTYp. Kpome Toro, Mbl BKITFOUHITH
WHCTPYKIUH 110 [IU(PPOBOMY aHANIH3Y, COKPAIICHUIO JAHHBIX U SKCIIOPTY NAHHBIX JUIS UCIIOIL30BAHMS B
MOCIEYIOUIUX MpoLeccax, TaKuX Kak 3D-neyaTs. B KOHIIE MBI IPEAOCTABUIIN AOMOJHUTEIBHBIE BUIEO U
OIUCAHUS PEUICHHUS ISATH KOHKPETHBIX 33/1a4; U3MepeHne (yHKIIMOHAIBHBIX IPU3HAKOB, CBA3aHHBIX C
KOpMIIeHHEM, U POBasi N3BJICUECHNE aHATOMUYECKUX CTPYKTYP, U3JICUCHNE HHTEPECYIOIINX
MOJIb30BaTENs 00JIacTel C MOMOIIBIO TTOTYyaBTOMAaTHIECKON CeTMEHTAINH, COOp JAHHBIX C TIOMOIIHIO
MPOCTHIX BU3YyaJbHBIX MHCTPYMEHTOB M COKpaIllcHHEe pa3mMepa (aiiyioB U npeodpa3oBaHue Pa3THIHBIX
TumoB (Qaiinos B 3D-Momemnm.
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DEUTSCHE (GERMAN)

Per Anhalter durch die CT Galaxie: Arbeitsablauf fiir die Verarbeitung und Analyse von
Computertomographiedaten (CT) mit plattformiibergreifenden, Open Source Software

Thaddaeus J. Buser, Olivia F. Boyd, Alvaro Cortés, Cassandra M. Donatelli, Matthew A.
Kolmann, Jennifer L. Luparell, Janne A. Pfeiffenberger, Brian L. Sidlauskas, Adam P.
Summers

ABSTRAKT

Die Kostensenkung fiir die Erhebung von Computertomographiedaten (CT) haben die
weltweiten Bemihungen zur Digitalisierung der Anatomie von Museumsexemplaren
vorangetrieben. Eine Fulle von digitalen 3D-Modellen der Anatomie sind durch diese
Bemulhungen erzeugt worden, die allen mit Internetzugang offen zur Verfiigung stehen. Die
Anwendungsmoglichkeiten dieser Daten sind breit gefachert und reichen von gedruckten 3D
Modellen fir rein padagogische Zwecke bis zur Entwicklung hochentwickelter biomechanischer
Modelle von anatomischen Strukturen. Wahrend jeder Zugriff auf diese digitalen Daten hat,
haben relativ wenige die Ausbildung aus ihnen ein wiinschenswertes Produkt (z. B. eine 3D-
Visualisierung einer anatomischen Struktur) zu kreieren. Hier prasentieren wir einen
Arbeitsablauf, der auf einer freien Open Source, plattformibergreifenden Software zur
Verarbeitung von CT-Daten basiert. Wir bieten Schritt-flir-Schritt-Anleitungen, die mit der
Erhebung von CT-Daten aus einer neuen Rekonstruktion oder einem Open-Access-Repository
beginnen, und schreiten fort mit der Visualisierung, Messung, Platzierung von landmarks und
den Aufbau digitaler 3D-Modelle anatomischer Strukturen. Weitere Anweisungen beinhalten
unter anderem virtuelle Sezierung, Datenreduktion, und den Export von Daten fir die Nutzung
in nachgelagerten Anwendungen (z. B. 3D-Drucken). SchlieRlich bieten wir zusatzliche Videos
und Arbeitsablaufe an, die demonstrieren, wie der Arbeitsablauf finf spezifische Anwendungen
ermd@glicht: die Messung funktionaler Merkmale im Zusammenhang mit Essen, die digitale
Isolierung anatomischer Strukturen, die Isolierung von Interessengebieten mit
halbautomatischer Segmentierung, das Sammeln von Daten mit einfachen visuellen Tools, die
Reduzierung der DateigréfRe und das Konvertieren des Dateityps eines 3D-Modells.

https://mc.manuscriptcentral.com/iob
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CESTINA (CZECH)

Pravodce po stopach CT galaxii: krok za krokem pokyny pro pripravu a analyzu vypoctenych
tomografickych (CT) dat pomoci multiplatformového softwaru s otevienym pristupem

Thaddaeus J. Buser, Olivia F. Boyd, Alvaro Cortés, Cassandra M. Donatelli, Matthew A.
Kolmann, Jennifer L. Luparell, Janne A. Pfeiffenberger, Brian L. Sidlauskas, Adam P.
Summers

ABSTRAKTNI

Snizeni nakladi na potizeni dat z vypocetnich tomografii (CT) vyvolalo celosvétové usili o digitalizaci
anatomickych muzejnich vzorkl. Vznikla velka sbirka dat anatomickych exemplait a digitalnich 3D
modelt, ktera je kazdému pfistupna pres internet. Mozné aplikace téchto dat jsou Siroké, od 3D tisku pro
Cisté vzdeélavaci ucely az po vyvoj vysoce pokrocilych biomechanickych modeld anatomickych struktur.
Prestoze k témto digitalnim datim muze ptistupovat prakticky kdokoli, relativné malo z nich ma
védomosti, jak ziskat pozadovany produkt (napf. 3D vizualizaci anatomickeé struktury). Zde
predstavujeme pracovni postup zalozeny na bezplatném otevieném zdrojovém softwaru napiic
platformami pro zpracovani dat CT. Poskytujeme postupné pokyny, které zacinaji ziskavanim CT dat z
nové rekonstrukce nebo uloziste s otevienym pristupem a postupuji vizualizaci, méfenim, orientaci a
konstrukei digitalnich 3D modell anatomickych struktur. Zahrnujeme také pokyny pro digitalni disekei,
redukci dat a export dat pro pouziti v navazujicich aplikacich, jako je 3D tisk. Nakonec poskytujeme
doplnkova videa a pracovni postupy, které demonstruji, jak pracovni postup usnadiuje pét specifickych
aplikaci: méfeni funkénich znaki spojenych s krmenim, méteni digitalné izola¢ni anatomické struktury,
oddéleni zajmovych oblasti pomoci poloautomatizované segmentace, sbér dat pomoci jednoduchych
vizualnich nastrojii a zmenseni souboru dat a zmény formatu do 3D modeld.
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PORTUGUES (PORTUGUESE)

O Guia da Galaxia da Tomografia Computadorizada para um Bidlogo: instru¢des passo a passo

para preparar e analisar dados tomograficos usando um software gratuito de acesso aberto

Thaddaeus J. Buser, Olivia F. Boyd, Alvaro Cortés, Cassandra M. Donatelli, Matthew A.
Kolmann, Jennifer L. Luparell, Janne A. Pfeiffenberger, Brian L. Sidlauskas, Adam P.
Summers

RESUMO

O custo decrescente da obteng&o de dados de Tomografia Computadorizada (TC) alimentou
um esforco global para digitalizar espécimes depositados em museus. Esse esfor¢o produziu
uma grande variedade de modelos digitais 3D com dados de anatomia, disponiveis para
qualquer pessoa com acesso a Internet. As aplicagdes potenciais desses dados sao amplas,
desde a impressao 3D para fins puramente educacionais, até o desenvolvimento de modelos
biomecanicos de estruturas anatémicas altamente avancados. No entanto, enquanto
praticamente qualquer pessoa pode acessar esses dados digitais, relativamente poucos tém o
treinamento para obter facilmente um produto de interesse (por exemplo, uma visualizagao 3D
de uma estrutura anatémica). Aqui, apresentamos um tutorial baseado em um software gratuito
de cédigo aberto e multiplataforma para o processamento de dados de TC. Fornecemos
instrucdes passo a passo que comegam com a obtencao de dados de TC a partir de uma nova
reconstru¢do ou num repositério de acesso aberto, e progredimos através da visualizagéo,
medi¢ao, marca de referéncia e construgdo de modelos digitais 3D de estruturas anatémicas.
Também incluimos instrucdes para dissecacao digital, reducao de dados e exportagao de
dados para uso em aplicativos posteriores, como os de impressoras 3D. Por fim, fornecemos
videos e tutoriais suplementares que demonstram como o tutorial facilita cinco aplicagdes
especificas: medir caracteristicas funcionais associadas a alimentacao, isolar estruturas
anatdmicas digitalmente, isolar regides de interesse usando segmentacéo semi-automatica,
coletar dados com ferramentas visuais simples, e reduzir o tamanho de arquivo e converter

o tipo de arquivo do modelo 3D.
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FRANGAIS (FRENCH)

Guide de I’historien de la nature a travers la galaxie TDM : instructions étape par
étape pour la préparation et I’'analyse de données tomodensitométrique (TDM) a
I’aide d’un logiciel a accés ouvert multiplateforme

Thaddaeus J. Buser, Olivia F. Boyd, Alvaro Cortés, Cassandra M. Donatelli, Matthew A.
Kolmann, Jennifer L. Luparell, Janne A. Pfeiffenberger, Brian L. Sidlauskas, Adam P.
Summers

RESUME

Le colt décroissant de I'acquisition de données tomodensitométriques (TDM) a
alimenté un effort mondial pour numériser I'anatomie des spécimens de musée. Cet
effort a produit une multitude de modeles d'anatomie numérique 3D en acces libre
accessibles a tous ceux qui ont acces a Internet. Les applications potentielles de ces
données sont vastes, allant de I'impression 3D a des fins purement pédagogiques au
développement de modeles biomécaniques de structures anatomiques tres avanceés.
Cependant, alors que pratiquement tout le monde peut accéder a ces données
numeériques, relativement peu ont la formation nécessaire pour en tirer facilement un
produit intéressant (par exemple, une visualisation 3D d'une structure anatomique). Ici,
nous présentons un flux de travail basé sur un logiciel gratuit, a accés ouvert et
multiplateforme pour le traitement des données TDM. Nous fournissons des instructions
étape par étape qui commencent par l'acquisition de données TDM a partir d'une
nouvelle reconstruction ou d'un référentiel en acces gratuit, et progressent a travers la
visualisation, la mesure, le marquage et la construction de modéles numériques 3D de
structures anatomiques. Nous incluons également des instructions pour la dissection
numerique, la réduction des données et I'exportation de données a utiliser dans des
applications en aval telles que I'impression 3D. Enfin, nous proposons des vidéos et des
workflows supplémentaires qui montrent comment le workflow facilite cinq applications
spécifiques : mesurer les traits fonctionnels associés a I'alimentation, isoler
numériquement les structures anatomiques, isoler les régions d'intérét a l'aide de la
segmentation semi-automatisée, collecter des données avec des outils visuels simples,
réduire la taille du fichier et convertir le type de fichierd'un modéle 3D.
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INTRODUCTION

The applications of three-dimensional visualizations of internal anatomy are
varied and vast, spanning a galaxy of analytical possibilities. Recently, the increased
ease of gathering such data has led to their widespread adoption in the comparative
morphological community. The embrace of this new data type has in turn catalyzed
many recent biological discoveries, such as revealing brain and muscle activity during
bird flight (positron emission tomography or “PET” scanning; Gold et al., 2016),
determining how blood circulates through vasculature (magnetic resonance imaging
“MRI”; O’Brien & Williams, 2014; O’Brien, 2017), revealing the function of the
appendicular skeleton during locomotion and feeding in live sharks (X-ray
Reconstruction of Moving Morphology “XROMM,,” 3D fluoroscopy coupled with CT
animation; Camp et al., 2017; Scott, Wilga & Brainerd, 2019) and reconstructing the
feeding behavior of long-extinct monsters of the deep (CT imaging of Helicoprion;
Tapanila et al., 2013). Other researchers have used 3D digitizations to educate and
inform. Anatomical models of living and extinct taxa can be built digitally so that
students can manipulate, dissect, and scale anatomical structures online (see Rahman,
Adcock & Garwood, 2012; Manzano et al., 2015), used to make 3D prints of missing
bones of incomplete physical specimens, or print whole rare or otherwise difficult to
acquire specimens for use in teaching comparative anatomy (Gidmark, 2019; Staab,

2019). For example, the anatomically accurate, 3D printed, vertebrate skull magnetic
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puzzles by Singh, Keeffe, and Blackburn (2019) allows students to understand how

different parts of the skull fit together.

Open source efforts like MorphoSource (Boyer et al., 2016; morphosource.org)
and DigiMorph (digimorph.org) aggregate thousands of digital 3D models into
anatomical libraries and serve them freely to researchers, teachers, and laypersons alike.
Like other synthetic, open access approaches to data management and data sharing
(Sidlauskas et al., 2010; Whitlock, 2011; but see also Hipsley & Sherratt, 2019), these
repositories encourage data reuse, reanalysis and reinterpretation, and have ushered in

a digital renaissance of comparative morphology.

Most of the 3D images in the online digital libraries result from computed
tomography scanning, commonly known as “CT” or “cat” scanning, which benefits
from the quadruple advantages of non-destructivity, shareability, printability, and
affordability (Cunningham et al., 2014; Sutton, Rahman & Garwood, 2014). Computed
tomographic scanning neither invades, modifies, or destroys the original sample. The
digital nature of CT data makes them easy to share via open-access platforms and has
sparked “big data” initiatives, such as oVert (floridamuseum.ufl.edu/overt) and the
#ScanAllFishes projects (adamsummers.org/scanallfish). The simplicity of converting
CT scans to digital “surfaces” allows almost any anatomical structure to be 3D printed,
even permitting structures to be artificially warped, scaled, or mirrored to fit

experimental or teaching needs (Stayton, 2009). Scans can also be converted into digital
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“meshes” which can be used to gather 3D geometric morphometrics data (Lawing &
Polly, 2010), model the reaction forces on the structures using finite element analysis
(FEA; see Hulsey et al., 2008), predict fluid flow around structures using computational
fluid dynamics (CFD; see Inthavong et al., 2009), study multibody dynamics
(Lautenschlager et al., 2016), or render and animate 3D objects (Garwood & Dunlop,

2014).

Perhaps most importantly, the decreasing cost, size, and complexity of CT
hardware, and the development of open source software like Horos (horosproject.org)
or 3D Slicer (Fedorov et al., 2012; Kikinis, Pieper & Vosburgh, 2014,
https://download.slicer.org) has opened access to scientists working outside the
biomedical arena. Aspiring digital anatomists no longer need to seek time on the multi-
million-dollar, room-sized set-ups in hospitals, but can use desktop machines costing
far less. The spread of these smaller systems, often purchased through collaborative
interdepartmental funding opportunities, has drastically decreased the cost per study,
increased the willingness of researchers to share their data, and caused CT data to
explode in popularity, even among scientists who lack access to CT hardware (see
Davies et al., 2017). The methods have now transcended biomedical and
anthropological research to penetrate fields like organismal taxonomy, paleontology,
comparative anatomy and physiology, as well as biomechanics and biomimetics (Cohen

et al., 2018; Divi, Strother & Paig-Tran, 2018; Santana, 2018; Rutledge, Summers &
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Kolmann, 2019). The advantages to biodiversity and taxonomical research cannot be
understated as rare, endemic, and understudied taxa can now be shared widely. More
open access to specimens allows for systematic hypotheses to be updated, re-examined
and replicated, and each scan preserves an in silico virtual record of morphology for
posterity. Metaphorically, each of these virtual specimens can be considered a point of
light in a vast and growing constellation depicting the world’s biological diversity.
Those researchers able to navigate that starfield, which we dub the CT galaxy, will be

poised to visualize and analyze biodiversity in ways never before possible.

As is typical when technologies become newly affordable and accessible, the
pace of method development has far outstripped the pace of training. Though many
researchers and educators have become aware of CT’s potential, relatively few have
been able to participate in focused training workshops. Strides have been made in
establishing best practices in the process of CT scanning itself, and in the curation of 3D
data (Davies et al., 2017; Keklikoglou et al., 2019). However, the only available training
protocols for analyzing the CT data after they have been gathered have been ad-hoc
efforts developed within research groups and passed among scientists via email and
similar channels. This contribution aims to democratize access to such training by

publishing an open-access workflow using freely available and cross-platform software.

Herein, we outline a set of practices in the production, visualization, and analysis

of CT data. We have found this workflow saves time and money while maximizing
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efficiency. We hope that these suggestions tempt the uninitiated to experiment with CT
methods for the first time or ease the struggle of learning new techniques. To that end,
we focus on those often-tedious nuances of data preparation, formatting, and
navigating software that commonly hinder progress in CT-based studies of anatomy,
functional morphology, and macroevolution. We also emphasize tools useful for
creating pedagogical aides such as 3D prints and images of anatomical structures.
Whenever possible, we include steps for data-reduction that help to make processing
time more reasonable for older/slower machines, although most any reasonably up-to-
date machines (e.g., Mac OS X Lion 10.7.3, Windows 7, Ubuntu 10.10 or newer) can

perform all manipulations and analyses herein.

SOFTWARE

This workflow is designed to be completely open to any researcher, educator, or
enthusiast. Generally speaking, the only limitation is access to a computer with at least
8 GB of RAM, though this depends mostly on the size of the file to be analyzed. For
optimal performance, we recommend that the data file not exceed 1/10% to 1/4t the size
of the available RAM on your computer. For example, if you have 8 GB of RAM, your
data file should be no larger than 0.8 GB (800 MB) to 2 GB. If the file that you intend to
analyze is larger than this range, we include a variety of steps below for down-sampling

or working around the computationally and/or memory-intensive steps of CT analysis.
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There are a variety of software programs available to process CT data, and the
programs we employ are freely available and cross-platform (Table 1; see also Abel,
Laurini & Richter, 2012). Before beginning the workflow, ensure that you have installed
the latest stable version of the Image] (Schneider, Rasband & Eliceiri, 2012; Rueden et
al., 2017) expansion Fiji (Schindelin et al., 2012, https://fiji.sc; we use Image] v2.0.0
herein) and 3D Slicer (https://download.slicer.org; v.4.10.2 used herein). We also
recommend that users interested in working with 3D surface meshes install Meshlab
(Cignoni et al., 2008; Pietroni, Tarini & Cignoni, 2009, www.meshlab.net; v. 2016.12
used herein). If your computer has a dedicated graphics card, you can use it in Slicer to
reduce lag time when rendering your data in 3D. The process for telling Slicer to use
your graphics card will vary based on your machine, operating system, and the brand
of card. Generally, there will be an option in the automatically installed graphics card
software (NVIDIA — NVIDIA Control Panel, AMD - AMD Catalyst™ Control Center,
etc.) to select which programs you want to use the card by default. Set this up before
running Slicer (you will likely have to re-start your machine). Alternatively, users can
manually designate the graphics card within Slicer in the volume rendering step (see
Step 7.a.ii.1, below), but this action must be repeated in every session. Finally, ensure
that there is adequate hard drive space on your machine for storing the CT dataset and
derivative products thereof. Approximately 10 GB will be adequate for all steps

involved in this workflow using the example datasets. Users who wish to store and
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process several CT datasets should consider the size of the datasets with respect to their
available hard drive space. Datasets available on MorphoSource range from
approximately 200 MB to 10 GB in size, and we recommend a storage capacity of
several terabytes (TB) for users wishing to engage in extensive (i.e., high sample size)

studies using CT data.

WORKFLOW

Figure 1 illustrates the steps of this workflow. Briefly, the user will acquire a
tomographic dataset (Step 1) and read it into the program Fiji, where it can be
manipulated to reduce file size before being exported as a single file in NRRD format
(Steps 2-4). The user then imports the file into the program 3D Slicer, which can
visualize the specimen(s) or region(s) of interest. Later steps demonstrate how to
measure and landmark morphologies of interest, and/or export data for downstream
applications (Steps 5-8). Step 7.f. specifically outlines the necessary workflow for
generating the 3D surface renders for use in eventual 3D printing. The final step of the
workflow (Step 9) presents five analytical examples to launch the reader’s exploration

of practical applications.

Workflow Steps

1. Acquire CT data
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Any CT reconstruction outputs a series of grayscale images that make up the
computed tomographic “slices” of a specimen or specimens. The brightness of the
pixels making up each image in the resulting tomographic series represents the x-
ray attenuation of a given area within the scan, such that areas containing material
with high x-ray attenuation (e.g., heavily-mineralized bone) appear white. In
addition to the x and y-dimensions of the pixels, each slice contains a z-dimension
(i.e., thickness) and thus each pixel actually represents a 3D volume of space, known
as a voxel. The images in a tomographic series are usually in a standard format (e.g.,
TIFF, .BMP, .JPEG, etc.) but they are often converted to a specialty format such as
DICOM (Digital Imaging and Communications in Medicine). Whether your data
come directly from CT reconstruction software or are downloaded from a CT data
repository site such as MorphoSource.org (see Fig. 2A), OSF.io, or DigiMorph.org,
you should move or copy the folder that contains the tomographic image series to a
working location (we recommend a local file location such as the desktop rather
than a remote drive). If the image series is in any format other than DICOM, locate
the resolution/dimensionality data on either the data host website (Fig. 2A) or in the
scanner log file. Note that MorphoSource removes the original scanner log file from
their uploaded datasets, but the voxel dimensions can be found in the .CSV file

awis

accompanying your downloaded image stack dataset under the “x res,” “y res,” and

“z res” columns. For the purposes of demonstrating the steps in our workflow, we

https://mc.manuscriptcentral.com/iob

020z 1udy || uo }senb Aq 8881 8S/6008B40/A0/E60L 0 |/I0P/AOBISe-8]oILE-90UBADE/GOl/WO0"dNO"olWapese//:sdRy WOl Pepeojumoq



Preparing and analyzing CT data

will use a CT reconstruction of a pacu specimen (Pisces: Characiformes: Piaractus
brachypomus; Academy of Natural Sciences of Drexel University, specimen ID:
Fish:166685), downloaded from MorphoSource.org (MorphoSource ID M15138-
27533, see Fig. 2A and Supp. Video 1). This is a modest-sized dataset (~2.5 GB) that
works well on most machines. However, readers whose machines have low
available RAM (i.e. <8 GB) may experience lag times in processing this dataset, and
we recommend instead that they follow along with a smaller dataset, such as the
reconstruction of the sculpin Porocottus allisi (Pisces: Scorpaeniformes; University of
Washington, Burke Museum of Natural History and Culture, specimen ID: UW
047873) available from MorphoSource.org (MorphoSource ID M15090-27349; file
size: ~193 MB). If you do not already have an account and login information for
MorphoSource, you will need to create one to download these files. The time taken

to download will vary with internet connections and service providers.
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2. Import your tomographic stack of images into Fiji: While it is possible to import
a tomographic image series directly into 3D Slicer, we have found that it is more
reliable to first convert the image series into a single, NRRD format file. In fact,
all of the optional tasks that are performed in Fiji in our workflow have
analogues in 3D Slicer. Likewise, there are many tasks that we perform in 3D
Slicer that could be performed in Fiji. However, we have found that the pairing
of steps to the two programs outlined herein places each step in the program that
performs it optimally. This minimizes instances of crashing and excessive wait
times and thus maximizes the efficiency and robustness of the workflow.
Familiarity with both Fiji and 3D Slicer greatly behooves the natural historian,
especially once they become comfortable enough with the basic steps of CT
image processing and begin to explore more advanced techniques.

a. Open Fiji, go to “File”, then “Import”, and select “Image sequence.”

b. Navigate to the folder containing your tomographic image stack and
select the folder (Mac) or any image within the folder (PC), and press
“Open.”

c. Next, Fiji will present you with a window of “Sequence Options,” where
you can customize your import. If they are not checked already, check the

box for “Sort names numerically” and “Use virtual stack.” Ensure that the
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“Increment:” is set to “1” and that the “Scale:” percent is set to “100”.
Press “OK” (Fig. 2B).
i.  Note: If desired, it is possible to reduce the file size of your stack
through down-sampling, but do not attempt to do so here. See Step
3.e below.

ii.  Note: The use of the virtual stack reduces the time it takes to read-
in the dataset, and we have found this helpful in saving time when
cropping images. However, advanced users may wish to adjust
parameters of the images (e.g., brightness, contrast) in Fiji. These
steps are beyond the scope of this workflow, but for such users, we
do not recommend using the virtual stack option, as this can
introduce system errors when attempting to modify the image
parameters of large datasets. For these advanced users, or users
attempting to analyze datasets with file sizes larger than the
available memory (RAM) on their computer, Supplementary Script
1 will enable FIJI to crop and/or adjust image parameters of image

sequences with large file sizes.

3. Optional Steps - data preparation
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There are several optional steps available within Fiji that serve to prepare the

data for analysis in 3D Slicer. Use the decision tree illustrated in Figure 3 to

decide which (if any) optional steps are appropriate for your dataset and your

intended analyses thereof.

a. Specify voxel size: For use when any of your downstream analyses may

include length. This step is highly recommended. Note: this step is usually

not necessary if your tomographic dataset is in DICOM format.

ii.

Locate the x, y, and z-dimension length of your tomographic
dataset. If your data come from the output of a CT reconstruction,
the voxel/pixel size is indicated in the log file of the reconstruction
(e.g., “Image Pixel Size (um)=39. 989574"; in this case it is implicit
that this is the length of each dimension). If your data come from an
online repository such as MorphoSource.org, this information may
be indicated in the specimen data (Fig. 2A).

If necessary, convert the units so that a single number is present on
the left side of the decimal place. For example, if the pixel size is
reported as 39.989574 um, convert it an arbitrary unit that
represents x 107 m. For our example analysis, we'll refer to this unit
as a “pym,” and the pixel size of the above example would be

3.9989574 pym. The voxel dimensions for the pacu specimen are
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given as 0.04 mm (Fig. 2A), so would be represented as 4 pym. The
pixel size of the sculpin reconstruction is “0.0299 mm” and we
would represent this as 2.99 pym. This step is critical for avoiding
arbitrary scaling and rounding issues in 3D Slicer, especially for
users working without a dedicated graphics card in their machine.
In Fiji, click on the window that contains the image stack data that
you opened in Step 2.
1. Go to: “Image,” then select “Properties.”
2. In the window that opens, change the “Unit of length” to
whichever is most appropriate for your data (e.g., pym), and
change the pixel/voxel dimensions to the appropriate

dimension of your data. Press “OK” (Fig 4).
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b. Digitally isolate your specimen/area of interest in the z-dimension: For
use when working with a large volume of data and/or when you are
interested in only a portion of your CT dataset (e.g., you are interested in
only skull but have scan data for the entire skeleton). This step helps
reduce files sizes and increases processing speed.

i.  Locate the upper and lower bounds of your area of interest in the z-
dimension by scrolling through the image stack using the scrub bar
at the bottom of your image stack window (Fig. 5A).

ii. Record the image number for each bound (Fig. 5A-5B).

iii.  Create a substack of just the images that contain your region of
interest.

1. Go to: “Image,” then “Stacks,” then “Tools,” and select
“Make Substack...”

iv.  In the “Substack Maker” window that pops up, input the range of
images that contain your region of interest and press “OK” (Fig.
5C).

v.  The substack that you specified will open in a new stacks window
titled “Substack” followed by the range that you specified in
parentheses.

vi.  Use this window for all additional steps.
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1. Note: It may help to close the original stack window to
avoid confusion, though leaving it open is mostly harmless.
2. Note: If attempting to analyze a dataset whose file size is

larger than your available RAM, see Workflow Step 2.c.ii.

Digitally isolate your specimen/area of interest in the x,y-dimension:
For use when working with a large volume of data and you are interested
in only a portion of your CT dataset (e.g., you are interested in only a
single side of a bilaterally symmetric structure such as the cranium). This
step may prove ineffective for highly 3-dimensional (e.g. coiled, spiraled)
specimens, and user discretion is warranted in such instances.
i.  Select the “Rectangle” tool from the “(Fiji Is Just) Image]” toolbar
(Fig. 6A).
ii.  Use the rectangle tool to select an area of your scan that
encompasses all of your specimen / area of interest.
1. Use the rectangle tool on any image in your image sequence
that contains your specimen (Fig. 6B).
2. Use the scroll bar at the bottom of the window to visually
check all images that contain your specimen to ensure that
your highlighted region is not too large or too small (Fig.

6C).
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a. Adjust borders of your rectangle as necessary.
iii.  Crop the image stack to eliminate all the area outside of your
rectangle.
1. Go to “Image,” and select “Crop.”
2. Note: if attempting to analyze a dataset whose file size is

larger than your available RAM, see Workflow Step 2.c.ii.

d. Examine the 3D volume of your cropped image stack: Use this step to
visualize the 3D structure(s) contained within your image stack. This is
useful for verifying that any previous digital dissection did not
unintentionally remove any anatomical structures of interest. This step
uses the “3D Viewer” plugin (Schmid et al., 2010), which comes pre-
loaded in the Fiji software package.

i.  Go to “Plugins,” and select “3D Viewer.”

ii. ~ Optional: Change the “Resampling factor:” from the default value
of “2” to a higher number (e.g., > 8) to decrease the amount of time
it will take your computer to load the 3D volume rendering (Fig.
7A).

1. Note: this step will decrease the resolution of the rendering

but will not affect the underlying slice data.
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iii. ~ Optional: Change the threshold value for the opacity of the volume
rendering to highlight the denser materials (e.g., bone) in your
scan.

1. Select the “Image] 3D Viewer” window.

2. Go to “Edit,” and select “Adjust threshold.”

3. Slide the “Threshold:” scroll bar until the rendering
highlights the material with the density of your choice (Fig.
7B-7C).

4. Press “OK.”

iv.  Note: The volume rendering is a rotatable 3D area. PC users have
reported issues with the rotation axis of the 3D volume in the
Image]J 3D Viewer. Until these issues are resolved by developers,
PC users can get around this issue by grabbing with the mouse
within the Image] 3D Viewer window but outside of the 3D volume
bounding box to rotate the area (i.e., click and drag in the black
space surrounding the bounding box to properly rotate the area

within the bounding box).

Reduce the file size of your image stack by down-sampling: This step
maintains the dimensionality of your specimen but reduces the resolution

and thereby file size of the data. This can affect the visualization of minute
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structures on your specimen but may be necessary for downstream
processing in programs that struggle with large file sizes (e.g., file sizes >
2GB will crash 3D Slicer on most computers with < 8GB of RAM).
Advanced users working with large file sizes (or limited RAM) are
encouraged to explore the program SPIERS (see Table 1), which can
produce 3D models without loading the data into memory.
i.  The file size of your current image stack is indicated at the top of
the stack window (Fig. 8A).
ii.  Toreduce the size, go to “Image,” then “Stacks,” then “Tools,” and
select “Reduce...”

iii. =~ The default reduction factor is “2” (Fig. 8A), this reduces the
number of slices and the size of your dataset by half and any single
voxel in the new dataset will comprise the average value of a 2x2x2
cube of voxels in the original dataset.

1. Tip: Simply divide the current file size of your dataset by the
target file size to calculate the reduction factor. For example,
if your current file size is 4.5 GB, and your target size is 1.5

GB, use a reduction factor of “3.”
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iv.  When the reduction process is complete, the new number of slices
and the new file size will replace the old values at the top of the
stack window (Fig. 8B).

v.  Note: if you did NOT set the dimensionality data for voxel size (i.e.,
Step 3.a, above), your voxel dimensions will be given in “pixels” by
default and you will need to manually change the voxel depth for
your image stack after the reduction process is complete.

1. Go to: Image -> Properties.
a. Change “Voxel depth:” to whatever number you used
as your reduction factor. For example, if you used a
reduction factor of “3”, change the voxel depth to “3.”

b. Press “OK.”

4. Export the image stack as NRRD format
a. Go to “File,” then “Save As,” and select “Nrrd.”

b. Specify file name and location and press “Save.”

5. Load NRRD volume into 3D Slicer

3D Slicer is set up such that different sets of related tasks are grouped together in

the “Modules:” drop-down menu. The programs default module is called
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“Welcome to Slicer” and this is where the program starts when it is first opened.
In the “Welcome to Slicer” module, click on “Load Data” (Fig. 9A).

a. Click on “Choose File(s) to Add.”

b. Navigate to the NRRD file.

c. Press “OK” and the NRRD will load.

d. Ensure that the display is set to conventional:

i.  Click the “Workspace view” button to reveal a drop-down menu
and select “Conventional” for optimal widescreen viewing (Fig.
9A).

e. Once the file has loaded, your screen should look something like Figure
9B.

f. If you specified the voxel size of your data (Step 3.a.), change the default
unit of length in Slicer to match the units of your data.

i.  Click the “Edit” menu and select “Application Settings.”

1. Select “Units” from the side menu.

2. Check the box next to “Show advanced options”

3. Under the “Length” submenu, change the “Suffix” from the
default value of “mm” to the unit that you specified in Step

3.a. (e.g., for our data, we would set the suffix to “pym”).
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a. Note: We recommend users also change the
“Precision” level under the “Length” submenu from
its default value of “3” to a value of 5-10. This will
decrease errors and loss of information due to
rounding.

4. Note: Users with a dedicated graphics card can designate its
use as a default setting here by selecting “Volume
rendering” from the side menu, then changing the “Default
rendering method:” to “VTK GPU Ray Casting”, changing
the “Default quality” to “Normal”, and changing the “GPU

memory size” to match the GPU memory on their machine.

6. Optimize image contrast
This step adjusts the contrast of the image and is useful for any downstream step
where visually differentiating structures is useful, such as trimming and editing
segmentations (e.g., Step 7.c). However, it does not alter the underlying data; it
simply alters how those data are visualized.
a. Click on the drop-down menu located in the upper bar of the program
window, to the right of the word “Modules:”

i.  Select “Volumes” module (Fig. 10A).
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b. Under the “Display” sub-menu there is a sliding tool element, flanked by
“W” and “L.”

i.  Click the “Auto W/L” button (Fig. 10A) to reveal a drop-down
menu and select “Manual Min/Max.”

c. Adjust the Min/Max slider bar maximum and minimum (left and right
pegs, respectively) to fine tune the contrast on your image slices. Adjust
the maximum value so that the bone or other high-density material is
clearly visible and distinct but that fine structures (e.g., sutures) are
distinguishable and not washed-out by too high of contrast. Adjust the
minimum value so that the specimen is clearly distinct from the

background (see Fig. 10B).

7. Data visualization and analyses
There are many useful tasks and analyses available in 3D Slicer. Figure 11
illustrates a decision tree for selecting among the tasks that we have found to be
most common and useful. Many of the analyses within 3D Slicer can be
performed directly on the tomographic image series or on a 3D visualization of
the specimen(s) therein. For users with very limited RAM and/or processing (i.e.,

CPU) speed, skipping Steps 7.a — 7.c and taking measurements and landmark
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coordinate data directly from the slices is a way to avoid the computation and
memory-taxing processes involved in 3D visualization.

a. Volume rendering: This step creates a 3D visualization of the dataset and
allows the operator to assign different values of opacity and color to
materials of different density. It is useful for data exploration, measuring
and counting anatomical structures (see Step 7.d below), placing
anatomical landmarks (see Step 7.e below), and creating images of the
anatomy (see Step 7.a.ii.5 below; see also examples in Conway, Moore &
Summers, 2017; Conway, Stewart & Summers, 2018). Volume renderings
have been used to provide visual evidence of damage or healing to parts
of the skeleton (Kolmann, Urban & Summers, 2018), visualize otoliths
(Paig-Tran, Barrios & Ferry, 2016), assess stomach contents (Kolmann et
al., 2018), and track changes in the orientation of anatomical structures
across specimens (Kolmann et al., 2016, 2019; see also Workflow Step 9.d
below). Volume renderings cannot be used for 3D printing other
downstream processes that take place outside of 3D Slicer such as finite
element analysis. Volume rendering can be computationally taxing,
especially on older machines, and some users may experience frustrating
lag-times when attempting to visualize even modest-sized datasets. If

your machine has a dedicated graphics card, using it will drastically
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reduce lag and other difficulties associated with volume rendering (see
Step 7.a.ii.1, below). Alternatively, many of the same operations
performed on volume renderings (e.g., measuring anatomical structures)
can be performed on surface renderings (Step 7.b, below), which do not
tax the CPU nearly as much (but typically require more RAM than volume
renderings in Slicer).
i.  Click on the “modules” dropdown menu and click on “Volume
Rendering.”
ii. Inthe “Volume Rendering Module”, tweak the inputs until you can
see the anatomical structures of interest (See Fig. 12):
1. If you have a dedicated graphics card, change the rendering
settings so that Slicer uses the graphics card rather than your
CPU to render your data. This will increase the performance
of your machine drastically for all steps related to volume
rendering.
a. In the “Display” sub-menu, click the dropdown menu
titled “Rendering,” and change “VTK CPU Ray
Casting” to “VTK GPU Ray Casting” (Fig. 12A).
b. Expand the “Advanced...” sub-menu by clicking on it

(Fig. 12A).
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c. Click on the “Techniques” tab (Fig. 12B).

Click on the “GPU memory size:” drop-down
menu and select a unit of memory that is close
to but not greater than that of your dedicated
graphics memory. For example, if you have an
“Intel Iris 1536 MB” graphics card, you would
select “1.5 GB” from the drop-down menu (Fig.

12B).

d. Click on the “Quality:” drop down menu and select

“Normal” (Fig. 12B).

i.

Note: If you wish to take a high-quality
snapshot of a volume rendering (see Step
7.a.ii.3., below), you can avoid unnecessary lag
time by optimizing the volume rendering
parameters under “Normal” quality, then
changing the quality to “Maximum” just before

taking the snapshot.

e. Note: The process for checking for the presence and

specifications of a dedicated graphics card varies by

operating system, but this is a rigidly defined area of
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doubt and uncertainty and can typically be resolved
with a quick internet search.

2. Click the eyeball icon located to the left of the “Volume” drop
down menu (see Fig. 12C) to toggle whether or not the 3D
rendered volume is visible. If the eye is closed, click it to open
it and the volume will appear in the purple window (after
some loading time).

3. When your volume appears, it will show up as a grey block
in the purple window. Click the “Center View” button in the
top-left of the purple window to center the volume rendering
(see Fig. 12C).

4. For a quick visualization of the skeletons of your specimen,
click the “Preset:” drop-down menu.

a. Hover your cursor over the top-left image in the drop-
down menu.
i. Thename “CT-AAA” will appear.
b. Click this image.
c. Located immediately below the “Preset:” drop-down
menu is a slider bar for adjusting the “Shift:” of the

preset.
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i.

Preparing and analyzing CT data

Adjust the peg on the “Shift:” slider bar left or
right until the rendering shows the skeleton of

your specimen.

For a customized visualization of your specimen, click the

“Volume Properties” tab in the “Advanced...” sub menu (Fig.

12C).

a. Adjust the “Scalar Opacity Mapping” controls to

reveal the structure(s) of interest (Figs. 12C - 12D).

i.

Tip: Add points on the opacity value curve by
clicking on it. Start with four points. Select a
point using the “Point:” box. Adjust the left-
right  position  (corresponds to  the
density/greyscale values of your original CT
dataset) of that point using the “X:” box. Adjust
the opacity value of that point using the “O:”
box.

Tip: Start with four points in the Scalar Opacity
Mapping graph: two on the left at the bottom of
the graph (O : 0.00) and two on the right at the

top of the graph (O : 1.00). Adjust the X position
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of each point as follows: Point 0, X = 0; Point 1,
X = 50; Point 2: X = 200; Point 3, X = 255. Now,
adjust the X position of Point 1 until the
structures of interest are revealed (Fig. 12C -

12D).

b. Use the “Scalar Color Mapping” to assign colors to

ranges of the opacity curve (Fig. 13A).

i

Tip: Start with three points: one on the far left,
one in the center, and one on the far right.
Assign the color black to the far left (select the
far-left point, which should be point “0” in the
“Point:” box and click the color box
immediately to the right of the “Point:” box.
This will bring up the color assignment screen.
Select the color black and hit the “Okay”
button), gold to the center, and white to the
right. Experiment with how changing the
position of the center dot on the horizontal axis
changes the color map on your specimen. Try

adding additional points by clicking anywhere
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in the “Scalar Color Mapping:” graph.
Experiment with different colors (and
brightness values thereof) and positions for
each dot until you find a scheme that you find

suitable (see Fig. 13A).

6. Tip: To further refine the 3D image, change the specimen

view from “Conventional” to “3D Only” (Fig. 13A). Click the
“Pin” button on the top left of the purple “3D Only” window.
Click the “Eye” button to open a screen that allows you to
toggle on and off the specimen bounding box and 3D axis
labels (Fig. 13A). This screen also allows you to change the
background color from “Light Blue” (default color), to
“Black”, or “White.” There are many other useful features
contained in the “Pin” window. One of which is the blue and
red sunglasses button, which allows the user to project the
image using anagram or other specialty-glasses-enabled
schemes. When you are satisfied with your view of the
specimen, export an image using the camera icon (Fig. 13B).
Your image will be saved by default at the resolution of your

screen. To change the resolution of the image, change the
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“Scale factor:” to higher (increased resolution) or lower
(decreased resolution) than the default value of “1.0.” When
you press “OK,” your image has been taken, but not yet
saved. Go to the “File” drop-down menu and select “Save.”
Here you can save your snapshot by checking only the box for

your labeled snapshot (see Step 8, below).

b. Segment bone or other dense material(s) of interest using a density

threshold: This step is useful for creating 3D models of anatomy that can
be used for fine-scale digital dissection (see Step 7.c), measuring (see Step
7.d), and/or placing landmarks (see Step 7.e) on anatomical structures.
The segmentations produced in this step can be used to create surface
renderings which can be exported as 3D meshes and used for 3D printing
and/or downstream analyses in other programs (see Step 7.f). While we
use a density based “threshold” to create a segmentation here, there are
several other options within 3D slicer for creating segmentations. We have
found the threshold-based approach to be the simplest and most
accessible option, especially for new users. However, we encourage
readers to explore the other options once they become comfortable with

the basic steps outlined here.
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1ii.

iv.

Preparing and analyzing CT data

Click on the drop-down menu for “Modules.”
1. Select “Segment Editor” module.
Click the “Add” button to add a new segment (Fig. 14A).
1. Keep both the default color and name of this new segment or
customize by double-clicking on either one.
Click the “Threshold” button (Fig. 14A).
Scroll down to find the “Threshold Range:” indicator. You can
adjust the lower and upper bounds of the threshold range by
adjusting the left and right pegs (respectively) on the indicator bar,
or by changing the values in the left and right boxes (respectively).
For most applications (and/or for a starting point), set the upper
bounds to the maximum value (255). Adjust the lower bounds
according to the minimum density material that you wish to
include in your segment. Very low values of the lower bounds will
cause your segment to include lower-density material while high
values of the lower bounds will result in only denser material being
included.
1. Note: While most users working with fresh or preserved
specimens have little need to adjust the upper bounds of the

threshold range beyond what is described above, users
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working with fossil data may wish to adjust the upper
threshold bounds to eliminate undesirable high-density
materials in the surrounding matrix. Users working with
fossil data especially are encouraged to review Sutton,
Rahman, and Garwood (2014).
To get a closer look at the effect of changing your threshold range,
change the view of your workspace so that you are only looking at
one of the slice views of your data (Fig. 14A). The default view is
called “Conventional” and includes a 3D window on top and a
sagittal, coronal, and axial view below. Change the view to that of
the sagittal slice (the red window below) by clicking the Slicer
layout button to reveal a drop-down menu of different view
options.
1. Select “Red slice only” (Fig. 14B).
Now we can clearly see the effects of changing our threshold range
for this slice. Adjust your threshold until as much of the bone is
captured (it will change color to whatever you have selected for
your segment).
1. Tip: Set your threshold value initially by lowering it until

speckles of segment (as indicated by the segmentation color)
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begin to appear in unwanted areas of your specimen (e.g.,
soft tissue such as the lens of the eye if present; see Fig. 14B).
Next, raise the threshold value just until all of these
undesirable spots disappear (Fig. 14C). Next, check for areas
in your structure of interest that are thin and adjust the
threshold as necessary to ensure that all areas are
encapsulated by the segment. It may not be possible to set a
threshold that perfectly captures your anatomical feature of
interest, but the segment can be trimmed or expanded using
the eraser or paintbrush tools (respectively) to make fine
adjustments to the area included in the segment and match it
to your structure of interest (see Step 7.c., below).

vii.  Press the “Apply” button (Fig. 14C).

Isolate regions of interest from segmentation: This step is useful for
isolating small and/or complex structures such as individual bones from a
skeleton, or a single specimen from scan data that contain multiple
specimens.

i.  Visualize the 3D structure of your segment.

1. Select “Conventional View” (Fig. 15A).
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2. In the “Segment Editor” module, click the “Show 3D” button
(Fig. 15A).

3. To reposition your specimen/segment in the 3D window,
select the "None" tool in the "Effects" section. Using your left
mouse button will rotate specimen, holding down the "Shift"
key while dragging with the left mouse button with
reposition your specimen, the right mouse button will zoom
in and out.

ii.  Select the “Scissors” button in the "Effects” section (Fig. 15B).

1. This tool can be used on either the 3D view or any of the
slice views and has several options available, perhaps the
most useful for us are the “Erase inside” and “Erase outside”
options under the “Operation:” section. Keep in mind that
the erasure applies to the entire image stack, so use this tool
carefully, especially when used within a slice view.

a. Note: To remove unwanted areas of the segmentation
from only a single slice, select the “Erase” button in
the “Effects” section. This tool can be time-consuming
to use but is invaluable for fine-scale cleanup of a

segmentation.
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To erase part of your segment that is not of interest, click the “Erase
inside” option, then encircle the undesired region with the scissor
tool (Fig. 15B).

1. Note: If you have a region of interest that is fairly uniform in
shape, it may be useful to start the cleanup process by first
using the scissor tool with the “Erase outside” option
selected before switching to the “Erase inside” option for

turther cleanup.

d. Measure anatomical structures: This step can be performed in the 3D

view (on either a volume or surface rendering) or in any of the slice views.

ii.

iii.

Go to the “Annotations” module from the module drop-down
menu (Fig. 16A).
Select the “Ruler” tool from the cursor tools drop-down menu (Fig.
16A).
Make sure that the entire structure is visible before attempting to
measure it.
1. Tip: If it is not possible to view the entire structure when
placing the measurement points, place the points as close as

possible to where they should be, then change views and
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move the points into their correct position(s) by clicking and

dragging with the cursor.

iv.  Click on each end of the structure that you intend to measure (Fig.

16B).

The value of the measurement (i.e., the length) will appear
next to a line connecting the two points of your
measurement. The measured length will also appear in the
“Annotations” box, next to the measurement (it will be given
a default name) in the “Value” column (Fig. 16B).

Note: the measurement will be indicated in the units that
you specified in Step 3.a. If you followed our example, this
unit is “pym” (see Step 5. if 3D Slicer reports this value in
an undesirable unit). If you are interested in comparing this
measure to measures taken other units (e.g., mm), you will
need to convert your measures to a common unit. For
example, we measured the orbit diameter of the pacu
specimen as 1297.8 pym, which is equivalent to 12.978 mm.
The orbit of the sculpin specimen is approximately 308.2

pym, which is equivalent to 3.082 mm.
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v.  Optional: If you will be making multiple measurements, you can
keep track of them in the “Annotations” window. You can change
the name of a measurement to reflect what it is measuring (e.g.,
“Orbit Diameter”), hide measurements from the 3D viewer, delete

measurements that were not satisfactory, etc. (Fig 16C).

e. Adding markers to anatomical landmarks of interest: This step can be
used for capturing and exporting 3D coordinate values for anatomical
landmarks. These values can be used to calculate distances between the
landmark points and/or used in geometric morphometrics studies.
Landmarks can be placed in either the 3D view (on either a volume or
surface rendering) or in any of the slice views. Users interested in
advanced landmark placement and analysis (including the use of sliding
semi-landmark curves, etc.) are encouraged to explore the “SlicerMorph”
extension for 3D Slicer (Rolfe et al., 2020; slicermorph.github.io).

i.  Click on the “Modules” dropdown menu and click on the
“Markups” module (Fig. 17A).
ii.  Click the Marker dropdown menu to select the “Fiducial” option

(Fig. 17A).
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1. Tip: Use the 3D and 2D views to ensure your markers are in
the right place.

2. Tip: To center all views around a particular marker, right-
click that marker in the table to the left and select “Jump
Slices” to go to the corresponding slices in the RYG view and
“Refocus all Cameras” to center the 3D view around that
mark.

Click on your point of interest in either the 3D or any slice view to
place a landmark (Fig. 17B).

1. A description of the landmark will appear in the “Markups”
module window, which includes an auto-generated name
for the landmark as well as its coordinates.

a. Note: Slicer was created to work with medical data.
The coordinate system, “RAS,” is short for the human
anatomical coordinate system (R: left towards Right,
A: posterior towards Anterior, S: inferior towards
Superior). More info here:

https://www .slicer.org/wiki/Coordinate_systems.
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2. Tip: The “Scale” slider bar controls the size of the markers.
Slide it to a size that is easy for you to see on whichever
window you are using to mark anatomy.
iv.  Tip: Give each landmark a descriptive name by double-clicking on

each auto-generated name and replacing it (Fig. 17C).

f. Export surface / 3D mesh object: This step exports the segmentation that
was created in Workflow Step 7.b as a 3D mesh object that can be saved
and read into other software packages. Three-dimensional mesh objects
are the basis for many downstream applications. They can be 3D printed
(or milled) from ceramics, plastics, or even metal and used to test how
shape effects performance of certain morphologies like teeth, jaws, or
filtering apparatuses (Kolmann et al., 2015; Cohen & Hernandez, 2018;
Divi, Strother & Paig-Tran, 2018). Mesh objects can also be used for
gathering 3D geometric morphometrics data (e.g., Sherratt et al., 2014,
2019; Buser, Sidlauskas & Summers, 2018; Evans et al., 2019; Evans,
Williams & Westneat, 2019; Selig, Sargis & Silcox, 2019).

i.  Go to the “Segmentations” module (Fig. 18A).
ii.  Scroll down on the left panel and click the “Export/import models

and labelmaps” drop down menu (Fig. 18A).
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iii. ~ For “Operation:” select, “Export” (Fig. 18A).
iv.  For “Output type” there are two options:

1. “Labelmap” exports the segmented area as a new NRRD
format image stack, essentially copying the area (including
density/opacity values, etc.) of the original image stack that
is encapsulated by the segment.

a. This format lends itself to plugins such as Bone] for
Image]J (Doube et al., 2010; http://bonej.org/) to
calculate shape properties such as second moment of
area of the 3D shape.

2. “Models” exports a 3D surface model, which is composed of
points (vertices) in 3D coordinate space that are connected to
one another by lines (edges). The triangles formed between
the lines connecting each point are called “faces” and can be
assigned properties such as color (the default color in 3D
Slicer is “white”). This function is what you will use to
generate a surface model for eventual 3D printing.

v.  Change the “Output type” to whichever suits your needs or
whichever you wish to export first (Fig. 18A).

vi.  Click “Export” button (Fig. 18A).
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8. Saving Data
i.  Click the “Save” button in the upper left corner of the 3D Slicer
window (Fig. 18B).

1. Click the “Change the directory for the selected files” button
at the bottom of the window (Fig. 18B) and specify a
directory for storing your files.

2. If you added landmarks, custom volume properties, ROI
crops, segments, or settings and would like to change the
name(s), you can do so here.

3. If you exported a 3D surface model, the default file type is
“.vtk.” We recommend changing the file type to a more
standard format, such as “.obj,” “.stl,” or “.ply” (Fig. 18B).
These file types are the standard formats for 3D printing or
refining models prior to 3D printing (using programs like
MeshLab).

4. Check all boxes that contain files and settings you wish to
save.

5. Tip: If you would like to save all of your files as a single file

that you can reopen and/or share with colleagues, find the
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“Scene.mrml” file (Fig. 18B). This format is not recommended,
however, for archiving your work, (see 8.i.5.b, below).

a. Click on the “File Format” drop down menu for the
scene file and select “Medical Record Bundle” to save
all of your files and settings under one scene file.

i. Note: It is also possible to create a medical
record bundle by clicking the “Create a Medical
Record Bundle containing this scene” button,
which is shaped like a wrapped present and is
located in the upper left corner of the “Save
Scene and Unsaved Data” pop up window.
Clicking this button will automatically change
the scene file type to “Medical Record Bundle”
or “Medical Reality Bundle” depending on your
Slicer version and dependencies.

b. Note: This operation will not save any segmentations
as separate 3D surface models, or export any other file
separately (e.g., measurements, landmark coordinates,
etc.) so if you intend to do so, perform Step 8.i.4

(above) and 8.ii (below) without creating a Medical
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Record Bundle. You can perform both of these tasks,
but they will need to be performed separately.
ii.  Press the “Save” button (Fig. 18B).

1. Note: If you created a “Medical Record Bundle,” this step
creates a single document containing all work that can be
shared with collaborators and/or reopened by dragging and
dropping the file into a new 3D Slicer window. If you did not
create a Medical Record Bundle, this step saves each file

separately.

9. Example analyses:

a. Measuring traits associated with a functional morphology
(Supplementary Video 1): This video shows the complete workflow
necessary to measure the anatomical traits examined in Buser et al. (2019),
using the same CT data analyzed for one specimen included in their
study. This includes downloading a CT image stack for a sculpin
specimen (Cottus asper) from morphosource.org (MorphoSource ID M-
15632), preparing the data in Fiji, visualizing and segmenting the skull,

placing anatomical landmarks, measuring, and exporting and saving data.
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Workflow Steps demonstrated: 1, 2.a-c, 3.a-b, 3.d, 4.a-b, 5.a-¢, 6, 7.a-e and

. Digitally isolate the oral jaws of a fish (Supplementary Video 2): This
video shows how to digitally isolate an anatomical structure of interest
from the scan of a larger object. The example uses a pinfish (Lagodon
rhomboides) specimen downloaded from MorphoSource (MorphoSource
ID: M16875-31342), but the method could be easily extrapolated to any
other organism of interest. Steps include visualizing, cropping, rotating,
segmenting, and digitally dissecting a segmentation using a CT image
stack. Workflow Steps demonstrated: 7.a, 7.b, 7.c, 7.f, and 8.

Isolate a region of interest using local thresholding and semi-automated
segmentation (Supplementary Data 1): This supplementary workflow
starts with product of Workflow Steps 1-3 (a reconstructed scan, either
edited or not), and shows an alternative approach to Steps 7.b and 7.c
using a CT image stack of a specimen of Oodinus sp. (Carabidae;
MorphoSource ID M47304-85911). This approach is potentially useful for
researchers performing a high number of segmentations (either of the
same structure on multiple specimens, or, especially, several structures
within a single specimen, as several steps are semi-automated and thus

reduce operator time per segmentation. Additional software required:
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Segmentation Editor and 3D Viewer (pre-installed in Fiji distribution of
Image]), Biomedisa (Losel & Heuveline, 2016).

. Simple Tricks and Nonsense: collect data from simple visual tools
(Supplementary Data 2): This supplementary workflow shows how CT
data can be used to quickly and easily visualize anatomical structures for
rapid assessment. Workflow Steps demonstrated: 7.a.

. Reduce file size of a 3D model and convert file type (Supplementary
Video 3): This video uses the 3D segment model that was exported and
saved in Workflow Steps 7.f and 8 (respectively) and uses the program
Meshlab to reduce the complexity and file size of the 3D model and
convert the file type from OB]J to PLY. The video then demonstrates
reading the PLY file into the R statistical environment. The file reduction
and reformatting tasks are often necessary for preparing 3D models for 3D
printing or for use in programs for downstream analyses, and there are a
variety of morphometric analyses that can be performed on 3D data in R
(e.g., collecting 3D landmark data). Meshlab can also be useful in
reflecting features if specimens are asymmetrical/damaged. Additional
software required: Meshlab, R (R Core Team, 2019), RStudio (R Studio
Team, 2018), and the R package, “geomorph” (Adams & Otarola-Castillo,

2013; Adams, Collyer & Kaliontzopoulou, 2019).
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CONCLUSION

Here, we have outlined steps that will help a researcher begin their journey through the
CT galaxy. This workflow was developed through our own exploration and should
provide researchers a means to test many of their own hypotheses without getting lost
in the space of possibilities. Beyond its use in the fields of comparative anatomy,
evolution, and functional morphology that we have highlighted, this workflow could be
easily adapted to fields such as paleontology, paleoanthropology, archaeology,
museums and heritage, biomedical research, mineralogy, and geology, to name but a
few. As with all great frontiers, there is much more to explore, seek out, and more

places to boldly go in years to come.

A CT on the edge of forever

The potentially unlimited lifespan of CT data makes them useful not only to the
researcher(s) who made the initial scan, but also to future researchers who may ask
questions that the original scanner would never have considered. Collections and
researchers should consider these future applications when choosing the license under
which they share data, as retaining a strict copyright on the scanned image and its
derivates (as is the standard policy of some prominent museums) may severely limit the
ability of future researchers to reuse scans or data resulting from those scans. While it is

beyond the scope of this paper to discuss the nuances of the many types of licenses
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available, we note that many data aggregators (including GBIF and VertNet)
recommend some version of a Creative Commons license for biodiversity data, and
suggest that other options stifle reuse and may even be legally unenforceable. When the
data are made open access under a Creative Commons license, the number of future
researchers that may examine them, and thereby the number of future studies that may
come from them are virtually limitless. Until such licenses become ubiquitous,
researchers seeking to reuse scans from data aggregators should check carefully the
terms under which each digitization has been shared, and take pains to request

permission for reuse for any scans published under a restricted license.

There are many potential applications of CT data that are only beginning to be
explored by natural historians. For example, the Image] extension Bone]J can be used to
calculate biomechanical attributes (e.g., second moment of area) of anatomical
structures (see Workflow Step 9.f above; Rutledge, Summers & Kolmann, 2019). The use
of CT-based models to gather 3D geometric morphometrics data has been widely
embraced (see Workflow Steps 9.e and 9.f; Zelditch, Swiderski & Sheets, 2012; Sherratt,
2014), and offers important advantages over more traditional 2D geometric
morphometrics (Buser, Sidlauskas & Summers, 2018). Such models can also be used to
construct digital models for biomechanical analysis through applications such as finite
element analysis (Jaecques et al., 2004; Oftadeh et al., 2016; Stayton, 2018). Pairing CT

with other bio-imaging techniques like histology or material testing has great potential

https://mc.manuscriptcentral.com/iob

020z 1udy || uo }senb Aq 8881 8S/6008B40/A0/E60L 0 |/I0P/AOBISe-8]oILE-90UBADE/GOl/WO0"dNO"olWapese//:sdRy WOl Pepeojumoq



Preparing and analyzing CT data

in the visualization and interpretation of complex anatomies, as well as making sure
digital models (i.e. FEA) are accurately mimicking structural complexity (Jayasankar et
al., 2017; Lessner et al., 2019; Seidel et al., 2019; Wilken et al., 2019). Another application
of CT data that has great potential for research in comparative biology is the ability to
estimate bone mineral density (Cann, 1988; Schreiber, Anderson & Hsu, 2014). By
including samples of materials with known density in their scans, researchers can
estimate the density of the bone mineral in their specimens and compare the relative
density of anatomical structures across large numbers of specimens. The use of contrast-
enhancing elements for staining soft tissue, particularly when paired with histology, is
also on the forefront of CT-based natural history and functional morphology studies
(see Workflow Step 9.c; Pauwels et al., 2013; Descamps et al., 2014; Gignac et al., 2016;
Hongjamrassilp, Summers & Hastings, 2018). Finally, there is more to explore even in
the way that researchers gather CT data. A recently described method of ultra-high
resolution CT-based 3D reconstruction (“X-ray histotomography,” see Ding et al., 2019)

shows great potential for expanding the field even further.

Researchers, educators, and enthusiasts can use the tools, techniques, and
demonstrations provided in this workflow to acquire, process, and analyze the great
wealth of CT data that is being shared over the internet. While we concede that we are
not the guardians of the one true way of navigating the CT galaxy, we do think that our

workflow will save users a lot of time, and hopefully keep them from giving up and
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going mad. Above all we hope that our approach will reduce panic, and help readers

launch their own galaxy quests. Anything less would be illogical.

https://mc.manuscriptcentral.com/iob

020z Iudy || uo1senb Aq 18881 8G/600€B00/qOl/SE0 L 0 L/10pAdBISqe-8]0l1ie-80UuBADPE/]OI/WO02 dno-dlwepeoe//:sdiy woij papeojumoq



Preparing and analyzing CT data

FIGURE CAPTIONS
Figure 1: Flow chart of the steps involved in processing computed tomographic (CT)

data described herein.

Figure 2: Acquiring CT data and loading them into the program Fiji. Panel A shows the
MorphoSource webpage (MorphoSource ID 15138) for a pacu (Piaractus brachypomus)
specimen from the Academy of Natural Sciences of Drexel University (specimen ID:
Fish:166685). The downloadable CT image stack (MorphoSource ID M15138-27533) and
the specimen resolution data are each highlighted with a red box. Panel B shows the
image stack from Panel A being imported into Fiji, with the recommended import

options highlighted in red boxes. Illustrates Workflow Step 2.

Figure 3: Decision tree for Workflow Steps 2-4, all performed in the using the program
Fiji, which is an extension of the program Image]. Follow the decision tree to determine

which options in Step 3 may be useful for your dataset and intended analyses.

Figure 4: Specifying voxel size for the CT image stack from Workflow Step 1 using the

program Fiji. The default dimensional data and unit of length (A) are replaced with the
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values indicated on the MorphoSource web page shown in Step 2.a that have been

converted to units of "pym." See text for details. Illustrates Workflow Step 3.a.

Figure 5: Digital isolation in the z-dimension on the image stack from Workflow Step 1.
The scrub bar is highlighted with a red box in panels A and B. The upper bounds of the
region of interest is indicated on the scrub bar with a red arrow in panel A, the lower
bounds of the region of interest is indicated with a red arrow on the scrub bar in panel
B. The image number corresponding to the upper and lower bounds is highlighted with
a red box in panels A and B (respectively). The image range containing the region of
interest is specified in the “Slices:” range and highlighted with a red box in panel C.

[Mustrates Workflow Step 3.b.

Figure 6: Digital isolation in the x,y-dimension of the image stack from Workflow Step
3.b. The rectangle tool (A), is used to encompass the region of interest (in yellow) (B,C).
The scrub bar is highlighted in a red box and is used to locate the upper (B) and lower
(C) bounds of the region of interest (denoted with red arrowhead). Illustrates Workflow

Step 3.c.
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Figure 7: Visualization of CT data with a 3D volume rendering of the image stack from
Workflow Step 3.c. The resampling factor (A) does not modify the underlying image
data but decreases the resolution of the visualization in order to reduce loading time.
We recommend a resampling factor of between 2 (small datasets and/or fast computer
hardware) and 10 (large datasets and/or slow computer hardware). Adjust the
threshold from its initial value (B) until the anatomy of interest is clearly visible (C).

[ustrates Workflow Step 3.d.

Figure 8: Reducing the file size of the dataset using a reduction factor applied to the
image stack from Workflow Step 1. The initial file size and the reduction factor are each
highlighted with a red box in panel A. The resulting file size from applying the

reduction factor is highlighted with a red box in panel B. Illustrates Workflow Step 3.e.

Figure 9: Loading image stack data into 3D Slicer. Use the drop-down menus to
navigate the various modules and workspace views available in 3D Slicer (A). Panel B
shows the NRRD format tomographic dataset from Step 4 successfully loaded into 3D

Slicer. [llustrates Workflow Step 5.
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Figure 10: Image contrast optimization. The upper and lower bounds of the range of
pixel values that will be displayed for the images in the tomographic stack are indicated
with red arrowheads in the starting (default) values (A) and after manual optimization

(B). Mlustrates Workflow Step 6.

Figure 11: Decision tree for Workflow Steps 5-8, all performed using the program 3D
Slicer. Follow the decision tree to determine which optional steps in Workflow Step 7

may be useful for your intended analyses.

Figure 12: Basic volume rendering procedure. If your computer has a dedicated
graphics card, change the rendering settings to use it. The “Rendering:” drop-down
menu is highlighted in a red square (A), click it and select “VTK GPU Ray Casting.” The
“Advanced...” sub-menu is highlighted in a red square (A). Click on it to expand. Panel
B shows the “Techniques” tab highlighted in a red square. In that tab, change the “GPU
memory size:” (highlighted in red box) to match the graphics memory of your
computer and change the “Quality:” (highlighted in red box) to “Normal” (B). The
eyeball icon that toggles showing/hiding the volume rendering is highlighted with a red
square (C). In the “Advanced...” submenu, click the “Volume Properties” tab

(highlighted in red box) (C). Adjust the number and position of points on the “Scalar
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Opacity Mapping” curve so that there are four points and they create a backwards “Z”
shaped curve. Adjust the position of the second point (indicated with a red arrow) until
the anatomy of interest is visible, as shown in Panels C (starting position) and D (final
position). Adjust additional volume rendering parameters in the “Advanced” controls

to fine-tune the visualization as needed. Illustrates Workflow Step 7.a i-iii.1.

Figure 13: Fine-tuning a volume rendering by adjusting the color rendering of the
volume (A) and the background view settings (B). Add and adjust the position of points
(indicated with red arrows) in the Scalar Color Mapping graph and assign a color to
each point (A). In this example, there are five points. Points 1 and 2 are assigned the
color black, point 3 is assigned the color brown, and points 4 and 5 are assigned the
color white. The view of the volume rendering in panel B has been adjusted such that
the bounding box has been removed along with the axis labels, and the background

color has been changed to “Black.” Illustrates Workflow Step 7.a.iii.2.

Figure 14: Creating a density-based segmentation of an anatomical structure of interest.
Change the view (highlighted with a red box in panel A) to “Red slice only” after
adding a new segment and clicking the “Threshold” button. Set the upper bounds of

the “Threshold Range” to a value of “255.” Adjust the lower bounds (indicated with a
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red arrow in panels A and B) so that only the material of interest is highlighted. Too low
of a value will capture extraneous material (B), but an appropriate value will capture

only the material of interest (C). Illustrates Workflow Step 7.b.

Figure 15: Isolating a region of interest from a segmentation. Using the 3D view of the
segmentation (A), extraneous structures are selected and eliminated using the

“Scissors” tool (B). Illustrates Workflow Step 7.c.

Figure 16: Measuring anatomical structures using the “ruler” tool in 3D Slicer. Use the
ruler tool (A) to place two points on a structure of interest (each point indicated with a
red arrow in panel B). To increase the visibility of the line drawn by the ruler, click the
ruler icon in the “Edit” column, then expand the “Advanced” submenu by clicking on
it, next click the “Lines” tab and adjust the “Width” value using either the slider bar or
by inputting the desired number directly. To keep organized, we recommend giving

each measurement a descriptive name (C). Illustrates Workflow Step 7.d.

Figure 17: Placing markers on anatomical landmarks using fiducial points in 3D Slicer.
Use the “Markups” module to organize and annotate the “Fiducial” points (A). Users

can adjust the size of the fiducial points to a size that best suits their needs by using the
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“Scale” indicator, either sliding the peg left or right on the “Scale” bar or by entering a
number directly into the box on the right side of the bar. For the purposes of our
demonstration, we use a scale of “80” for maximum visibility. After a point it placed
(indicated with a red arrow in panels B and C), replace the default name (information
for that point highlighted with a red box in panel A) with a descriptive one (highlighted
with a red box in panel B) and do this for each new point (two additional points are
shown in panel C: one indicated with a blue arrowhead and the corresponding
information highlighted with a blue box, the other with no arrowhead or box) to
maintain organization. Points can be placed on either the 3D view of the segmentation
or in any of the slice views. The points “Premax_ant” and “Premax_post” are visible in
both the 3D and slice views and indicated with a red and blue arrowhead (respectively)

in both. Illustrates Workflow Step 7.e.

Figure 18: Exporting the 3D segmentation as a surface mesh (A) and saving data files
(B). We recommend changing the default surface mesh format (highlighted with a red
box in panel B) from the default .VTK to a more standard format, such as .OB], before
saving. The “Scene” file line is indicated with a red arrow and the file format drop
down menu for both the “Scene” and the 3D surface mesh are each indicated with a red

box (B). llustrates Workflow Steps 7.f and 8.
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TABLE CAPTIONS

Table 1: Open-source, cross-platform software for visualizing and analyzing CT data.
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1. Acquire CT data from source

3. Optional data preperation steps in Fiji, see Figure 3

7. Optional data analysis steps in 3D Slicer, see Figure 11
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Software URL Operating

Recommended uses;

system(s) advantages
Drishti https://github.com all (Windows, Tools for image viewing,
/nci/drishti Mac OS, editing, processing, surface
Linux) and volume rendering, mesh

SPIERS  https://spiers- all
software.org/

Blender  https://www.blend all
er.org/

Meshlab  http://www.meshl all

ab.net/

3D Slicer https://www.slicer. all
org/

FIJI https://fiji.sc/ all

generation, animation;
intuitive user interface

Tools for slice registration,
image viewing, editing,
processing, surface
rendering, mesh generation,
animation; handles large
datasets well even on
older/slower machines

Tools for editing 3D meshes,
animation, video editing;
intuitive user interface,
customizable

Tools for editing, analyzing,
and refining 3D meshes

Tools for image viewing,
editing, processing, surface
and volume rendering, file
manipulation; intuitive user
interface, extensible and
customizable with a wide
number of available modules,
actively supported and
developed

Tools for image viewing,
editing, processing, surface
and volume rendering, file
manipulation; extensible and
customizable via the large
number of purpose-built
plugins available

https://mc.manuscriptcentral.com/iob
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https://github.com/nci/drishti
https://spiers-software.org/
https://www.blender.org/
http://www.meshlab.net/
https://www.slicer.org/
https://fiji.sc/

Biomedis https://biomedisa. n/a (browser-

a

MITK
Workbenc
h

ITK-
SNAP

MANGO

de/ based)

http://mitk.org/ all

http://www.itksna all
p.org/

http://ric.uthscsa.e all
du/mango/

Semi-automated
segmentation, in-browser
viewer

Tools for image viewing,
editing, processing, surface
and volume rendering, file
manipulation, data
management; customizable
for developers

Tools for manual and semi-
automated segmentation;
easily navigable user
interface

Tools for image editing,
processing, surface and
volume rendering, file
manipulation; command line
accessible, customizable for
developers

https://mc.manuscriptcentral.com/iob
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https://biomedisa.de/
http://mitk.org/
http://www.itksnap.org/
http://ric.uthscsa.edu/mango/

Limitations

Computationally
demanding for
volume rendering

Three separate
modules for
aligning, editing,
and viewing; only
produces meshes

Lacks tools for
basic image
processing
(requires 3D

mAaA~AAAIN

All processes
restricted to

Works best on
machines with
faster graphics
processing; may
require
downsampling of
data

Not the most
intuitive interface
for new users;
some plugins no
longer actively
supported/develo
ped

https://mc.manuscriptcentral.com/iob
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Interpolates
segments
between labeled
slices (no other

HMAAANA MEAAAAATAA~

Interface may be
challenging for
new users

Features limited
to those related
to segmentation

Interface may be
challenging for
new users

https://mc.manuscriptcentral.com/iob
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Il 1/

/I This script was written by Dr. Russell Garwood using modifications
/I of an example macro from the Imaged website. Questions regarding
/I the script should be directed to russell.garwood@gmail.com /

/I google russell garwood.

I

I a //

Il Process Virtual Stack Il
I

/I This macro process the images in a virtual stack.

I

/It allows you to change brightness and contrast on CT slices and will then
/I save the processed images in a folder of your choice.

I

/'If you want to crop the data, just draw a box on and it'll save the cropped
/ region.

I

Il To import data //

1

/[---- DICOM/TIFF stack:

/I 1) The virtualstack can be opened using File->Import->Image Sequence if you have
/I a DICOM/TIFF stack.

1

//---- For VGI/VOL.:

/I 1) File->Import->Raw

/I 2) Set Image type to "32-bit Signed"

/I 3) Width height and image number: can be found in the VGI, in that order after
/Il "size ="
/I 4) Untick: "White is Zero"
/I 5) Tick: "Little-endian byte order"
// 6) Untick: "Open all files in folder"
/I 7T) Tick: "Use virtual stack"
I
Il To alter brightness and contrast //
I
/I The contrast may be way off on import, and you'll probably want to alter it
/I anyway before saving for this. Use "Image->Adjust->Brightness/Contrast.
/' When finished add these figures to the variables below, and save this file.
I eg.
/I minValue = 1113919104.00;
/I maxValue = 1127656320.00;
minValue = ;
maxValue = ;
I
Il Output Format 1/

https://mc.manuscriptcentral.com/iob
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/I Change format here to bmp, png, or tiff if needed:
outputFormat = "bmp";
I
Il To run macro Il
/I To run macro: plugins->macro->run->choose contrast and save.txt
I
I //
Il Macro Il
if (nSlices==1) exit("Stack required");
dir = getDirectory("Choose destination directory for BMP stack");
setBatchMode(true);
id = getlmagelD,;
for (i=1; i<= nSlices; i++) {

showProgress(i, nSlices);

selectimage(id);

setSlice(i);

name = getMetadata;

run("Duplicate...", "title=temp");
run("Brightness/Contrast...");
setMinAndMax(minValue, maxValue);
if(i<=10) saveAs(outputFormat, dir+"000"+(i-1));

if(i>10&&i<=100) saveAs(outputFormat, dir+"00"+(i-1));
if(i>100&&i<=1000) saveAs(outputFormat, dir+"0"+(i-1));

if(i>1000) saveAs(outputFormat, dir+(i-1));
close();
}
setBatchMode(false);
I 1/
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