On the product dimension of clique factors

Noga Alon * Ryan Alweiss '

Abstract

The product dimension of a graph G is the minimum possible number of proper
vertex colorings of G so that for every pair u, v of non-adjacent vertices there is at least
one coloring in which u and v have the same color. What is the product dimension
Q(s,r) of the vertex disjoint union of r cliques, each of size s? Lovész, Nesetfil and
Pultr proved in 1980 that for s = 2 it is (1 4+ o(1)) log, 7 and raised the problem of
estimating this function for larger values of s. We show that for every fixed s, the
answer is still (1 4 o(1))log, r where the o(1) term tends to 0 as r tends to infinity,
but the problem of determining the asymptotic behavior of Q(s, ) when s and r grow
together remains open. The proof combines linear algebraic tools with the method of

Gargano, Korner, and Vaccaro on Sperner capacities of directed graphs.

1 Introduction

The product dimension of a graph G = (V, E) is the minimum possible cardinality d of
a collection of proper vertex colorings of G such that every pair of nonadjacent vertices
have the same color in at least one of the colorings (and so that any two distinct vertices
are colored differently in some coloring). Equivalently, this is the minimum d so that one
can assign to every vertex v a vector in Z%, so that two vertices are adjacent if and only if
the corresponding vectors differ in all coordinates (and so that no two distinct vertices are
assigned the same vector). If G does not contain two distinct non-adjacent vertices with
the same neighborhoods, as will be the case in this paper, we can take the parenthetical

distinctness conditions for granted. The product dimension is also the minimum number
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of complete graphs so that G is an induced subgraph of their tensor product, where the
tensor product of graphs H1, ..., Hy is the graph whose vertex set is the cartesian product
of the vertex sets of the graphs H;, and two vertices (uj,ug, ..., uq) and (vi,ve,...,vg4) are
adjacent iff u; is adjacent (in H;) to v; for all 1 <i < d. Yet another equivalent definition
is the minimum number of subgraphs of the complement G of G so that each subgraph
is a vertex disjoint union of cliques, and every edge of G belongs to at least one of the
subgraphs (and also every pair of distinct vertices are not adjacent in some subgraph).

For positive integers s, > 2 let K4(r) denote the graph consisting of r pairwise vertex
disjoint copies of the complete graph K. Any two non-adjacent vertices of this graph have
different neighborhoods. Let Q(s,r) denote the product dimension of this graph. Lovész,
Nesetfil and Pultr [10] (see also [1]) proved that Q(2,7) = [logy(2r)]. The proof of the
upper bound is simple. If ¢ = [logy(2r)] then 27 > 2r. Hence one can assign distinct
binary vectors of length ¢ to the 2r vertices of Ky(r) so that the vectors assigned to each
pair of adjacent vertices are antipodal, i.e. they differ in all coordinates. It is easy to
check that two vertices are adjacent if and only if the corresponding vectors differ in all
coordinates, showing that Q(2,7) < q.

The lower bound is proved in [10] by a linear algebra argument, and the proof given
in [1] applies exterior algebra. There is yet another (similar) short proof that proceeds by
assigning to each vertex of K,(r) a multilinear polynomial in z1, 2, ..., 2, that depends
on the coloring used, and by showing that these polynomials are linearly independent. As
mentioned in the abstract, Lovasz, Nesetfil and Pultr [10] raised the problem of estimating
Q(s,r) for larger values of s. More recently, Kleinberg and Weinberg considered the same
problem, motivated by the investigation of prophet inequalities for intersection of matroids
[8]. In this paper, we determine the asymptotic behavior of Q(s,r) for any fixed s > 2

and large 7.

Theorem 1.1. For every fized s, Q(s,r) = (1+0(1))logy r, where the o(1)-term tends to
0 as r tends to infinity.

The main tool in the proof is the method of Gargano, Kérner and Vaccaro in their work
on Sperner capacities [7]. For completeness, and since we are interested in the behavior of
the o(1)-term in the theorem above, we describe a variant of the method as needed here,
in a combinatorial way that avoids any application of information theoretic techniques.
The proof is based on what we call here Z;-covering families of vectors.

Let Z; denote the ring of integers modulo s. For a subset A C Z; and a vector
v = (vi,v2,...,v4) € Z{, we say that v is A-covering if for every a € A there is an

1 < i < ¢ so that v; = a. The vector v is covering if it is Z,-covering. A family F C ZZ



is A-covering if for every ordered pair of distinct vectors u,v € F, the difference u — v
is A-covering. F is covering if it is Zs-covering. Therefore, a family F of vectors in
Z1 is covering if every element of Z, appears in at least one coordinate of the difference
between any two distinct vectors in the family. Let R(s,q) denote the maximum possible
cardinality of a covering family of vectors in Z¢. The following simple statement describes

the connection between Q(s,r) and R(s, q).
Proposition 1.2. If R(s,q) > r then Q(s,r) <gq.

Note that by definition R(s,q) =1 for all ¢ < s. Our main result about R(s,q) is the

following.
Theorem 1.3. 1. For every q > s > 2, R(s,q) < 297%. Equality holds for s = 2.
2. For every fized s, R(s,q) > (2 —o(1))?, where the o(1)-term tends to 0 as g — oo.

The rest of this paper is organized as follows. Section 2 contains the proof of Propo-
sition 1.2 and that of a simple combinatorial lemma. In Section 3 we present the proof of
Theorem 1.3 and note that in view of Proposition 1.2 it implies Theorem 1.1. The proof
supplies better estimates for prime values of s, and we thus first present the proof for
this special case (which suffices to deduce the assertion of Theorem 1.1 for every s) and
then describe briefly the proof for general s. The final Section 4 contains some concluding
remarks and open problems, including some (modest) estimates for R(s,q) when ¢ is not
much larger than s.

To simplify the presentation we omit, throughout the paper, all floor and ceiling signs

whenever these are not crucial. Thus, we ignore all divisibility issues.

2 Preliminaries

We first prove Proposition 1.2. If R(s,q) > r, then there exists a matrix of elements in Z
with r rows and ¢ columns so that the difference of any two rows is covering. We will use
the ¢ columns of this matrix to find ¢ graphs, each being a disjoint union of cliques, that
cover the complement of K(r). This complement is a complete multipartite graph with
r parts of size s. Label the vertices of this graph with elements of Zs so that in each part
all labels are used exactly once. We will associate each row of the matrix to a part and
each column to a vertex disjoint union of cliques. For a column (ay,--- ,a,)T, consider
the following graph. For each 0 < k < s take the k + a;th vertex (taken modulo s) from

the ith part of size s and take the union of the s cliques obtained as k ranges between 0



and s — 1. This is clearly a union of s vertex disjoint cliques. Now, suppose we have some
two vertices of the graph we are trying to cover in different parts, say the ¢ + mth vertex
of part ¢ and the fth vertex of part j for some 1 < i < j < ¢ and some ¢,m € Zs;. Then
the difference of the ith and jth rows contains an m in some column (ay,--- ,a,)’, so that
a; —a; = m in Zs, and then the disjoint union of cliques corresponding to this column
will cover our desired edge.

One can also phrase the proof using the proper coloring definition of Q(s,r). Say we
are given a matrix of r vectors {vy,--- ,v,} over Z¢ which are a Z;-covering family. We
can associate the vector v; + (7,--- ,j) to the jth vertex in the ith clique of K4(r). These
vectors are all distinct for different vertices, because if v; + (4, ,7) = vy + (§',- -, 5),
then v; — vy is not covering, so i = i’ and j = j. Now, we define ¢ colorings of K(r)
so that if a vertex x is associated to (c1,--- ,¢y), it is colored with ¢ in the kth coloring.
These colorings are proper, because if x and y are the jth and j’th vertex in the ith clique
for j # j', then their associated vectors will have a difference (j —j',--- ,j—j') # 0. Now,
say we are given two distinct non-adjacent vertices, say the jth vertex in the ith clique and
the j'th vertex in the i'th clique, where i # i’. Then v; + (j,--- ,j) and vy + (§/,--- ,j)
will share a coordinate; v; — vy is covering and thus will be j/ — j in some coordinate.

Next, we need the following simple lemma.

Lemma 2.1. Let H be a bipartite graph with classes of vertices Ay, Ay where |Ay| =
ni, |As| = na, each vertex of Ai has degree di, and each verter of Aa has degree ds.
Furthermore suppose that do > log(2n2). Then there is a union of vertex-disjoint stars

d ) leaves, such that all vertices of As

with centers in Ay, each star having at least Tog(om3)

are leaves.

Proof. Define a random subset S of A; by choosing each vertex of A; to be in S with
probability p = % uniformly and independently. We claim that with positive prob-
ability, each vertex of Ay has between 1 and 4log(2n2) neighbors in S. The proof is a

simple union bound; a fixed vertex v € As has probability

1
1— da < —pdy _
(I-p)™<e 2s

of having no neighbors in S, and probability at most

4log(2n
da pAlos(2n2) < _ pedy g(2n2) _ <E>4log(2n2) _ 1
4log(2n2) ~ \4log(2n2) 4 2ns

of having more than 4log(2n2) neighbors, proving the claim. Fix an S with this property.



We now finish the proof of the lemma by an application of Hall’s theorem. For all
S C S, let N(S’) denote the set of all neighbors of S” and let e(S’, A2) denote the number

of edges from S’ to As. Then |[N(S")| > 461(05; /(’54;2)) = 3 10;(12”2) |S’|. Hence every subset of

S expands by a factor of at least Thus by Hall’s theorem, there is a union of

d
4 10g(12n2) ’
disjoint stars whose centers are exactly the vertices of S, each having at least ﬁénz)
leaves. Every remaining vertex of Ao is adjacent to some vertex in S, so we can simply

add it to an existing star. O

3 Covering families

3.1 The upper bound

The following proposition implies the assertion of Theorem 1.3, part 1.

Proposition 3.1. Fiz s > 2, and let F C Z{ be a {0, 1}-covering family of vectors. Then
|F| <2971, For s = 2 equality holds.

Proof. Put m = |F|. Let p be a prime divisor of s and consider the vectors in F as
vectors in ZJ by reducing their coordinates modulo p. Note that these vectors form a
{0, 1}-covering family over Z,, and so are distinct. Let v; = (vi1,vi2, ..., viq), (1 <i < m)
be the vectors in F (considered as elements of Z}}).

For each 1 < i < m define two polynomials F;, Q); in the variables x1,z2,..., 2, over

Zyp as follows.
PZ'(.CL‘l, cee ,ﬂjq) = H(CC] - Uz’j)a Q,-(:cl, v ,mq) = H(.Tj — Vij — 1)

It is not difficult to check that for every i, Q;(v;) # 0 and P;(v;) = 0. In addition, for
every 1 <i# 1" <m, Py(v;) =0 (as there is a coordinate j for which v;; — vy;; = 0) and
Qir(vi) = 0 (as there is a j so that v;; — vyr; = 1).

Similar reasoning gives that for the vectors v; + J, where J is the all 1-vector of length
q, Pi(vi+J) # 0, Qi(v; + J) = 0, and for every i’ # i, Py(v;i + J) = Qu(vi + J) = 0.
Therefore, for each member of the collection of 2m polynomials {P;, Q; : 1 < i < m} there
is an assignment of values of the variables in which this member is nonzero and all others
vanish. This easily implies that the set of 2m polynomials P;, (); is linearly independent
in Z,, and as each of its members lies in the space of multilinear polynomials with the m
variables x;, the number, 2m, of these polynomials is at most the dimension of this space
which is 29. Tt follows that |F| = m < 297!, as needed. For s = 2 the family of all binary



vectors in which the first coordinate is 1 is {0, 1}-covering, showing that R(2,q) > 2971
and completing the proof. [
O

3.2 Prime s

For prime s > 3, we will prove that R(s,q) > (2 — o(1))? where the o(1)-term tends to
0 as ¢ — oo. The crux of the proof is a Markov chain argument from [7], which we will
iterate O(log s) times.

A balanced word over Z¢ is a word containing the letters 1 through s — 1 an equal

number of times. A special balanced word is a balanced word such that the first W

letters are 1 and 2 in some order, the next W letters are 3 and 4 in some order, and
so on. Construct a bipartite graph between the set Ay of balanced words w over Z¢ and
the set A; of permutations 7 on ¢ elements defined as follows: w and 7 are adjacent if
and only if 7(w) is a special balanced word. By symmetry all n; = ¢! vertices in A; have

the same degree dy, and all vertices in Ao have the same degree do. We have

- a .
m2 = |42 = (q/<s— Do af(s - 1>> < (s 1)t

and d; is the total number of special balanced words, so

o (2a/(s =1\ o
/s g/
s—1
Furthermore, dy = 71d; = ((Siil)') dy > log(2ny) so by Lemma 2.1 there exists a
way to map balanced words to some set T of permutations m of ¢ elements, so that

each balanced word is associated to exactly one permutation, and each permutation in

. . s/2
T is associated to at least 4105(12”2) > 410222/(q5_1)q) > 2—3 balanced words. Thus, we can
partition the balanced words into sets S, S, - -+ so that for each S; we have |S;| > 3—: and

for all 7 there exists m; so that m;(s;) is a special balanced word for all s; € S;.

Given all of the special balanced words of length ¢, any two of them have a difference
vector which covers {£1}. The idea of the proof will be to amplify this set {—1, 1}, first to
{=a,—1,1,a} for a primitive root & modulo s, and after r steps to {:l:ab} for 0 <b< 2.
At each stage, the number of vectors will be (2 — o(1))* where L is the length of the
vectors. Thus after O(log s) steps we will have a set of vectors that is Z; covering. We
can then add an extra coordinate of 0 to all of the vectors to make them Zs-covering.

We describe the first step of this iteration in detail. Fix a primitive root a@ modulo

s, which will be constant throughout the steps. Also fix n = 222(log(s))?, which will



again be constant throughout the steps. Initially we set ¢ = go = 100(s> — 1), ensuring
it is divisible by s — 1. We will construct words of length ¢; = gn by stringing together
balanced words of length ¢ in a specific way. If x; € S;, then force x;11 € aS;; here we
mean that if we take x;,1 and multiply its letters by o' pointwise, the result will be in

S;. Consider all vectors of length gn constructed according to this rule, by concatenating
g)n—l
qS

because at each stage other than the first we must pick x;41 so that x; € aS; for some

. q . . . .
j, and thus there are more than 27 choices for x;41. We will make z1, x,, identical over

ik

such words. Using that ny < s9, we can find more than 2 (2 —0(1))?" words
qs(n 1)5q

n balanced words of length ¢ in this way. There are more than na( such words,

all such words; this costs us a factor of n3 and thus we now have more than

of length gn of the form xjxy---x, so that z1,z, are fixed, where o(1) is as € goes to 0

and n goes to infinity. We now note that for any two different words of this form xy - - -z,

/

I, with @y = 2}, 2z, = 2], there is some minimal ¢ > 2 so that z; # x}. But

and a) -+ x
then there is some k so that x;_1 = m;_l € Sk, and that means xi,xg € aSy. Because
z; # o, we have a™lz; # o'z}, and both a~'z; and a1z} are in Si. It follows that

oz_lxi — a7t

x, covers {1} and so z; — z, covers {a}. Similarly, there is some maximal
i < nso that x; # . Then x;41 = 2}, € aS; for some j, so x; € Sj, 2 € Sj. As x; # 1},
it follows that xz; — «} must cover {1} as coordinates. When s = 5, setting o = 2 and
applying this construction already gives a covering family for Z} = Z! with (2 — on(1))¥
vectors of length N. In the general case we iterate this argument to find (2 — on(1))"V
vectors of length N, so that after the rth iteration the vectors we get cover {£a®} for all
0 < b < 2". We describe how to do this inductively.

After r iterations, we find for some ¢ = ¢, (that depends on s) a family of M? =
(2 —04(1))? (balanced) vectors over Z{ which covers +a® for all 0 < b < 2". We call these
vectors y1, -+ ,ype and let Y = {y1,--- ,yna}. We repeat the above argument. The y;
play the role of the special balanced words. Again we construct a bipartite graph. On
one side there is the set Ay of all balanced words of length ¢ and on the other side there
is Ay, permutations of ¢ elements. We have 7 is adjacent to a (balanced) vector y if and
only if 7(y) € Y. Again ng = |Az| < (s — 1)? but now d; = M?. It can easily be verified
that dy > log(2n2). Thus by Lemma 2.1 the balanced words of length ¢ will be split into
sets S1,S2,--- so that all S; satisfy |S;| > 4105(1%2) > 4+4q{\(§(871) = (2 — 04(1))4, and
furthermore for each S;, there exists a permutation m; so that for all s; € S;, m(S;) € Y.

Now we will again construct a Markov chain. Consider all words of length gn = ¢,41

consisting of n balanced words of length ¢ of the form x1x2 - - - x,, so that if z; € S;, then

/

_ /
n SO that x1 = 27,

T
ziv1 € o S;. If we have two such words z1z9- -z, and 2\zh -z



Ty, =z}, let i > 1 be minimal so that x; # /. Then if ;-1 = 2/_, € Sj, i, 2}, € o S;.
This means that x; — } covers {£a’} modulo s for 2" < b < 271, Now, if we let z;,
i < n, be maximal so that z; # 2}, then 2,41 = 2}, € ¥ S for some j and so z;, z} are
not equal but are both in S;. This means z; — ; covers {£a’} modulo s for 0 < b < 2.
So indeed the family covers {+a’} modulo s for 0 < b < 2"*1 as long as x1 and z,, are

fixed over the family. We can always find

min; |5 T

(q/(s—1),..q.7q/(3_1)> o (s—1)

such words if n is large enough, where the o(1) terms tend to 0 as ¢ — oo and n is
sufficiently large. We will soon see that our choice of n = 1% (log(s))? is sufficient. Iterating
the argument logy(s) times allows us to find (2 — 0(1))? vectors of some length ¢ which
cover Z:. Adding a single coordinate where all vectors are 0 gives us vectors of length
q + 1 that cover Z,, without changing the asymptotic analysis.

With care, we can extract quantitative bounds. We assume ¢ > 0 is a fixed constant

log(s)

and show that we only require ¢ = (og) (log(s))2> to have a (2 — €)? size covering

system over Z¢ for large s. Say that after r iterations, we have M9 = M,! vectors of length
q = q, for some M < 2 (which is nearly 2). Then min; S; > = and thus we find at

5qlog(s)
least
min; | S| - M S M
( q ) ~ M(5qlog(s))"s? ~ (2s)4(5qlog(s))"
Q/(s_1)7 7Q/(8_1)

M m
= = MIH
((25)1/ nq'/1(5log(s)) /4 > Ak
vectors of length gn = gr41. Recall that n = 122(log(s))? and g = (1 + 0(1))100s?, where
o(1) is as s goes to infinity, so when we iterate the Markov chain argument log,(s) times,

we lose a factor of at most

< (28)210g(8)/n H(qonj)l/qonj (5log(s))l/qo(5log(s))Qlog(s)/n
7=0

My
Miog, (s)

< (10slog(s))2108(s)/ng10108(5)/5 (5 |og (5))1/1005%

In the last inequality here the bound on the second term holds because the relevant infinite

q(l)/qO)mo < 9l0logs/s?

product is at most ( . For large s this is easily seen to be smaller than,

say, 1 + ¢/4. Since for large s, Mo > 2 — ¢/2, for s > so(¢€) we get My, (5) > 2 — €. Thus

8



logs(s)
at the end we have ¢ = 100s? (%(bg(s)y) ™ and at least (2 — €)? vectors of length

€
q which cover Z;. One can easily modify the argument to work for any larger ¢, or

simply use the super-multiplicative property of R(s,q) (see the beginning of Section 4)

to conclude, taking ¢ = 1/logs, that for every large s and for all ¢ > g(3+o(1))loglogs

R(s,q) > (2 — logs)q' This completes the proof of Theorem 1.3, part 2, for prime s.

3.3 General s

Given an arbitrary fixed integer s > 2, we now show how to find (2 — o(1))? vectors in
Z¥ which form a Zs-covering family; this shows R(s,q) > (2 — 0(1))? even for composite
s. The general strategy is similar to our strategy in the previous section, except now we
work over Z, and the set we are covering does not grow so quickly. As before, we are not
concerned with the vectors covering 0, because we can simply add an extra coordinate
to deal with it. Since the argument is very similar to the one described in the previous
subsection, we only provide a brief description omitting some of the formal details.

We prove the stronger statement that for any fixed s, we can find a (2 — 04(1))? size
family over Z that covers [—s, s], i.e. the difference of any two vectors contains all integers
between —s and s as coordinates. Let S be the least common multiple of the first s positive
integers. We will assume without loss of generality that 25 | g.

At the first step of our iteration, we consider vectors over Z? with an equal number of
each element of [25] as coordinates so that the first & coordinates are 1s and 2s in some
order, the next ¢ are an equal number of 3s and 4s, and so on. We can find (2 — 0,4(1))¢
of these and they cover {£1}. Furthermore, they have the property that for any ordered
pair of these vectors, there is a coordinate in which the first has an even integer 2k and
the second has the odd integer 2k — 1 for some 1 < k < S. This property is crucial and
maintained throughout our iterations.

Now we describe the mth step of our iteration, for 2 < m < s. Define a bijection f = f,
on [25] so that for all integers 1 < k < S, f(2k) = f(2k—1)4+m. We can do this for instance
by setting f(1) =1, f(2) = m+1, f(3) =2, f(4) =m+2,--- , f(2m—1) = m, f(2m) = 2m
and then set f(z) = f(x —2m) + 2m for z > 2m as long as = < 25.

We then apply the same Markov chain argument as before, defining sets 5; and con-
structing words z1xo--- starting and ending at the same vectors. Now, however, when
x; is in some set Sj, instead of demanding x;11 € aS; we require ;41 € f(S;), meaning
that if we apply f~! to each coordinate of x;41, the result will be in S;. Looking at the

first place where two vectors differ gives us a difference of +m. Looking at the last place



where they differ shows that the crucial property is preserved, and also that the differences
+1,--- ,+(m — 1) are retained.

Thus after s = O(1) iterations, this algorithm produces (2 — 04(1))? vectors of length
g which cover all of [—s, s], after we add an extra coordinate to deal with covering 0. This

completes the proof of Theorem 1.3.

4 Concluding remarks and open problems

A natural open problem is to study the functions R(s,q) and Q(s,r) in general. There are
several simple properties that R(s, q) satisfies. We know that R(s, q) is (weakly) increasing
in g, because to create r covering vectors for Z, of length ¢’ > ¢, we can take r vectors for
Z of length ¢ and pad them with ¢’ — g zeroes at the end. Furthermore, we know that
R(s, q) is super-multiplicative, i.e. R(s,q1+¢q2) > R(s,q1)R(s,q2), because if m = R(s, q1),
n = R(s,q2) then we can find vectors vy, -+ , vy, of length ¢; and wy,--- ,w, of length ¢
that form covering families. The mn vectors v;w; obtained by concatenating v; and w;
are clearly a covering family of length ¢ + go.

For q < s, we have R(s,q) = 1, because of course we can take a single vector in Z¢,
but if we take two then their difference can only cover a set of size ¢ and cannot cover Z.

The next natural question is studying the value of R(s, s).

Proposition 4.1. R(s,s) < s, and R(s,s) > p where p is the smallest prime factor of s.
When p = 2 this is tight, that is, if s is even, then R(s,s) = 2.

Proof. For the lower bound, for each 0 < a < p we have a vector (0,a,2a,---,(s — 1)a)
reduced modulo s. This is a covering system for Zg, since all positive integers smaller than
p are relatively prime to s.

For the upper bound, assume there was a covering family in Z? with s + 1 vectors, so
that the difference of any two of these vectors has all values of Z; exactly once. By the
pigeonhole principle, there exist two vectors v and w so that the difference of their first
and second coordinates is the same. But then v — w has the same value in its first and
second coordinate, a contradiction.

When s is even, R(s,s) > 2 as 2 is the least prime factor of s. If R(s, s) > 3 then there

exist 3 vectors in Z2, (a1, - ,as), (b1, -+ ,bs),(c1,- -+, ¢s), which are covering. But then
S(a;—b;) = Z;;éj = (s —1)5 = 5 modulo s, and similarly ) (b; —¢;) = > (¢;i —a;) = 5
modulo s. Hence, these three sums are all § modulo s, so they must add up to 3—; =3
modulo s. But they add up to 0, so this is a contradiction. O

10



Nonetheless, the problem of determining R(s, s) for all s remains open, and the lower
bound in the last proposition is not tight. A computer search gives that R(15,15) > 4

([9]). One example is the 4 vectors given by the rows of the matrix

o o0 0 0 0 0 o o o o 0 O
3 4 5 6 7 8 9 10 11 12 13 14
5 7 9 12 14 13 3 6 4 10 8 11
110 14 7 11 4 12 5 8 2 6 13

o O O O
© = N O

w N = O

which are covering for Z5.
For ¢ which is only a little bigger than s, we can prove a reasonable upper bound,

using essentially the same observation applied in the proof that R(s,s) < s.
Proposition 4.2. If2(q — s)2 < s — 1, then R(s,q) < s+ 2(q— s) +2(q — s).

Proof. Assume a contradiction for some ¢ > s. By the definition of R(s,q), for any
r < R(s,q) there exists a matrix of r rows and ¢ columns so that the difference of any
two rows contains all values modulo s; in particular there exists such a matrix for r =
s+1+2(q—s)+2(q—s)?. We will double count the number of pairs of rows and columns
74,75, Ck,c¢ With the following property: the 2 x 2 submatrix formed by r;,7;, ¢k, ¢, has
sums of opposite corners equal.

For any two rows r;,r;, we examine their difference. This is a vector over Z; with ¢

. . —s+1 . . :
entries containing all elements modulo s, so at most (q 9 ) pairs of its entries can be

—s+1
equal. This means that for the pair of rows r;, r;j, there exist at most (q 5 + ) pairs of

columns cg, ¢p that satisfy our property. So the total number of such pairs as 1 <i,j <,

— 1
1 < k,¢ < g range is at most (;) <q ;+

that the difference of these two columns is a vector of length r over Z; which has at least

. However, if we instead fix c,c, we see

r — s pairs of equal elements. This means that there are at least <g> (r—s) 74,75, Ch, Ct

B2

and so 2¢(q — 1)(r —s) < r(r —1)(¢ — s+ 1)(g — s). By our assumption, 2¢ > r and so
2(g—=1) 2 r—1. Hence 2q(¢—1)(r—s) < r(r—1)(¢—s+1)(g—s) < 4q(g—1)(g—s+1)(g—3).
Thus r —s <2(g—s+1)(g—s) =2(¢—5) +2(g—s)* and so r < s+ 2(q — 5) +2(q — 5)?,

a contradiction. ]

with our property. Hence



Note that this argument gives a bound only when ¢ = s + O(4/s), and the bound is
s+ O((q — 8)?). We believe that this is not tight.

There is a nontrivial (though weak) bound which holds in the regime ¢ = s + w(v/s)
as long as ¢ < Cs for some fixed constant C' < log, e. The natural open problem here is
to study cases when ¢ is larger but still fairly small, for instance if ¢ = 1.5s, ¢ = slog(s),
or ¢ = 5. Furthermore, it would be interesting to figure out how large ¢ has to be so that
R(s,q) > (2 —¢€)® for a small positive constant ¢; the following argument shows that if € is
small enough, then £ must be bigger than an absolute constant which is above 1.44, but

we believe this is far from tight.
Proposition 4.3. If 1 <% < C <logy(e), then R(s,q) < (2 —¢)? fore =¢(C) > 0.

Proof. Say that R(s,q) > r so there are r vectors in Z¢ which are covering. Place them in
a matrix with r rows and ¢ columns. Now, for each column select uniformly an element
of Zs, and add it to all the elements of that column, reducing modulo s. This does not
change the covering property. After having done this, replace all entries of this matrix by
their reduction modulo 2. Given two entries of a matrix in the same column and different
rows, if initially they differed by k modulo s they now have some probability p of being
equal that depends only on k, which is the probability that if x € Z; is chosen randomly
and uniformly then the reductions of z,x + k£ modulo s have the same parity. One can
easily check that po = 1, p1 = 1/s, pa = (s—2)/s, and so on, so that [[;c, pi = e—s(1+o(1)
by Stirling’s formula. Furthermore, if we take this product over all i € Z, except for a
subset of size 2¢s for a small constant ¢, we have a bound of e *(:=9_ where € is a small
positive constant that tends to 0 with c.

Let K = cs. For any pair of rows, the probability their colors match in all but at

most 2K places is at most e=*(1=¢) for some € that tends to 0 with ¢, by a union bound
over all the at most 2<2§() possible sets of places where they do not match. Thus if

we define a graph on our r vectors where two are adjacent iff their values upon reduction

modulo 2 match in all but at most 2K places, this graph will in expectation have edge

s(1=¢') and thus for some fixed choice of the random shifts will have at most

s(1—¢€)

density e~
r2e—s(1=¢) edges. Fixing these shifts one can remove less than r2e” vertices from
this graph and get an independent set. But this set must be of size at most (2 — 0)? for
some § = d(c) > 0, because this size is bounded by the cardinality of a family of disjoint
Hamming balls in {0, 1}9, each of radius K = ¢s. Thus we have r < r2e=*01=¢) 4 (2 — §)4,
and the same inequality holds for any 7’ < r by applying the same reasoning to a set of r’

of our vectors.

12



Now if ¢ < C's for some fixed C' < log, e then setting g > qo(¢/,C), ' = 3(2 — §)?
violates the last inequality (with r replaced by ) since for this value of r' and large q,
(r")2e30=¢) < ' /2 and (2 — §)9 < 1//2 so their sum is smaller than /. This establishes

the assertion of the proposition. O

On the opposite extreme, one may ask what happens if s > 3 is a small fixed positive
integer and ¢ grows. We know by Proposition 3.1 that R(2,q) = 2971, so it is natural to

ask what happens when 2 is replaced by a larger positive integer.

Conjecture 4.4. For any fired s > 3, R(s,q) = 0(27), and furthermore R(s,q) =
©(21/q°) where ¢ = ¢(s) > 0 is a constant that depends only on s.

Note that the vectors over Z3 with a zero in the first coordinate and with exactly |¢/2]
ones and [q/2] zeroes are a covering system, so R(3,q) = ©(27/,/q). When s is odd the
best upper bound known for R(s, q) is O(27), as shown in Proposition 3.1. When s is even,
if the vectors of a covering system for Z¢ are reduced modulo 2, any two differ in at least
s/2 places, so there are at most O(2¢ /qL%J) of them, as the Hamming balls of radius
{%J centered at these reduced vectors are pairwise disjoint. It would be interesting to
establish the above conjecture and to find the relevant constants c if they indeed exist. In
particular it seems plausible that ¢ = 1/2 when s = 3, and if so then the lower bound for

R(3,q) is essentially optimal. We conjecture that this is indeed the case.
Conjecture 4.5. R(3,q) = 0(27/,/q).

In [4] it is shown that R(3,q) < (34 0(1))2? when g is even and R(3,q) < (5 +0(1))2¢
when ¢ is odd, leaving this problem open. Note that we do not even know how to prove
the weaker claim that a {—1,0,1} covering system (or equivalently just a {£1} covering

system) over Z must have size 0(27).

Our original motivation for studying the function R(s,q) here is its connection to the
product dimension Q(s, ) of the disjoint union of r cliques, each of size s. This connection
is described in Proposition 1.2. The results here suffice to determine the asymptotic
behaviour of Q(s,r) for every fixed s as r tends to infinity, but do not provide tight
bounds when r is not much bigger than s. We conclude this short paper with several
simple comments about this range of the parameters. The first remark is that the product
dimension Q(s,r) is at least s for every r > 2. To see this fix a vertex u of the first
clique and observe that in every proper coloring of the graph K(r) of r disjoint cliques,

each of size s, there is at most one pair uv with a vertex v of the second clique so that u
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and v have the same color. As altogether there are s such pairs, and each one has to be
monochromatic in at least one vertex coloring in a collection exhibiting an upper bound
for the product dimension, the number of such colorings is at least s. Another comment
is that Q(s,r) is clearly monotone non-decreasing in both r and s. Therefore, for every
r,s > 2, Q(s,r) > Q(2,r) = [logy(2r)].

A transversal design TD(r,s) of order s and block size r (with multiplicity A = 1)
is a set V' of sr elements partitioned into r pairwise disjoint groups, each of size s, and
a collection of blocks, each containing exactly one element of each group, so that every
pair of elements from distinct groups is contained in exactly one block. A transeversal
design is resolvable if its blocks can be partitioned into parallel classes where the blocks in
any parallel class partition the set V. There is a substantial amount of literature about
transversal designs, see [5]. It is not difficult to check that Q(s,r) = s if and only if a
resolvable T'D(r, s) exists and hence the known results about resolvable transversal designs
supply nearly precise information for the range r < s (it is easy to see that such a design
cannot exist for r > s). In particular, for every prime power s, Q(s,s) = s and therefore
by the obvious monotonicity, for any prime power s, Q(s,r) = s for every 2 < r < s, and
if p is a prime power then for every s, < p, Q(s,r) < p. (Note that Propositions 1.2 and
4.1 also imply that Q(s,s) = s when s is a prime.)

It is not difficult to prove that for every s,ry,ro,

Q(s,m172) < Q(s,71) + Q(5,72). (1)

Indeed, given the graph Kg(ri72) consisting of ri1ry disjoint cliques, each of size s, we
can split the cliques into 7 disjoint groups, each consisting of ry cliques. Define Q(s,71)
proper colorings in which the cliques in every group are colored the same, based on the
system of colorings that shows that the product dimension of K4(r1) is Q(s,71). Add
to these Q(s,r2) additional colorings, whose restrictions to the ro cliques in each group
are exactly the colorings showing that the product dimension of Ks(r2) is Q(s,72). The
resulting Q(s,71) + Q(s,r2) colorings establish (1).

The above comments together with the results in the previous sections provide upper
and lower bounds for Q(s,r) for all s and r, but these bounds are quite far from each

other when r is much bigger than s but much smaller than AR o particular, for
r = 2° the bounds we have are

2

55 Qs 2°) < (1+o()p .

It would be interesting to close this gap.
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