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Abstract

The product dimension of a graph G is the minimum possible number of proper

vertex colorings of G so that for every pair u, v of non-adjacent vertices there is at least

one coloring in which u and v have the same color. What is the product dimension

Q(s, r) of the vertex disjoint union of r cliques, each of size s? Lovász, Nešetřil and

Pultr proved in 1980 that for s = 2 it is (1 + o(1)) log2 r and raised the problem of

estimating this function for larger values of s. We show that for every fixed s, the

answer is still (1 + o(1)) log2 r where the o(1) term tends to 0 as r tends to infinity,

but the problem of determining the asymptotic behavior of Q(s, r) when s and r grow

together remains open. The proof combines linear algebraic tools with the method of

Gargano, Körner, and Vaccaro on Sperner capacities of directed graphs.

1 Introduction

The product dimension of a graph G = (V,E) is the minimum possible cardinality d of

a collection of proper vertex colorings of G such that every pair of nonadjacent vertices

have the same color in at least one of the colorings (and so that any two distinct vertices

are colored differently in some coloring). Equivalently, this is the minimum d so that one

can assign to every vertex v a vector in Zd, so that two vertices are adjacent if and only if

the corresponding vectors differ in all coordinates (and so that no two distinct vertices are

assigned the same vector). If G does not contain two distinct non-adjacent vertices with

the same neighborhoods, as will be the case in this paper, we can take the parenthetical

distinctness conditions for granted. The product dimension is also the minimum number
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of complete graphs so that G is an induced subgraph of their tensor product, where the

tensor product of graphs H1, . . . ,Hd is the graph whose vertex set is the cartesian product

of the vertex sets of the graphs Hi, and two vertices (u1, u2, . . . , ud) and (v1, v2, . . . , vd) are

adjacent iff ui is adjacent (in Hi) to vi for all 1 ≤ i ≤ d. Yet another equivalent definition

is the minimum number of subgraphs of the complement G of G so that each subgraph

is a vertex disjoint union of cliques, and every edge of G belongs to at least one of the

subgraphs (and also every pair of distinct vertices are not adjacent in some subgraph).

For positive integers s, r ≥ 2 let Ks(r) denote the graph consisting of r pairwise vertex

disjoint copies of the complete graph Ks. Any two non-adjacent vertices of this graph have

different neighborhoods. Let Q(s, r) denote the product dimension of this graph. Lovász,

Nešetřil and Pultr [10] (see also [1]) proved that Q(2, r) = dlog2(2r)e. The proof of the

upper bound is simple. If q = dlog2(2r)e then 2q ≥ 2r. Hence one can assign distinct

binary vectors of length q to the 2r vertices of K2(r) so that the vectors assigned to each

pair of adjacent vertices are antipodal, i.e. they differ in all coordinates. It is easy to

check that two vertices are adjacent if and only if the corresponding vectors differ in all

coordinates, showing that Q(2, r) ≤ q.
The lower bound is proved in [10] by a linear algebra argument, and the proof given

in [1] applies exterior algebra. There is yet another (similar) short proof that proceeds by

assigning to each vertex of Ks(r) a multilinear polynomial in x1, x2, . . . , xq that depends

on the coloring used, and by showing that these polynomials are linearly independent. As

mentioned in the abstract, Lovász, Nešetřil and Pultr [10] raised the problem of estimating

Q(s, r) for larger values of s. More recently, Kleinberg and Weinberg considered the same

problem, motivated by the investigation of prophet inequalities for intersection of matroids

[8]. In this paper, we determine the asymptotic behavior of Q(s, r) for any fixed s ≥ 2

and large r.

Theorem 1.1. For every fixed s, Q(s, r) = (1 + o(1)) log2 r, where the o(1)-term tends to

0 as r tends to infinity.

The main tool in the proof is the method of Gargano, Körner and Vaccaro in their work

on Sperner capacities [7]. For completeness, and since we are interested in the behavior of

the o(1)-term in the theorem above, we describe a variant of the method as needed here,

in a combinatorial way that avoids any application of information theoretic techniques.

The proof is based on what we call here Zs-covering families of vectors.

Let Zs denote the ring of integers modulo s. For a subset A ⊂ Zs and a vector

v = (v1, v2, . . . , vq) ∈ Zqs , we say that v is A-covering if for every a ∈ A there is an

1 ≤ i ≤ q so that vi = a. The vector v is covering if it is Zs-covering. A family F ⊂ Zqs
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is A-covering if for every ordered pair of distinct vectors u, v ∈ F , the difference u − v
is A-covering. F is covering if it is Zs-covering. Therefore, a family F of vectors in

Zqs is covering if every element of Zs appears in at least one coordinate of the difference

between any two distinct vectors in the family. Let R(s, q) denote the maximum possible

cardinality of a covering family of vectors in Zqs . The following simple statement describes

the connection between Q(s, r) and R(s, q).

Proposition 1.2. If R(s, q) ≥ r then Q(s, r) ≤ q.

Note that by definition R(s, q) = 1 for all q < s. Our main result about R(s, q) is the

following.

Theorem 1.3. 1. For every q ≥ s ≥ 2, R(s, q) ≤ 2q−1. Equality holds for s = 2.

2. For every fixed s, R(s, q) ≥ (2− o(1))q, where the o(1)-term tends to 0 as q →∞.

The rest of this paper is organized as follows. Section 2 contains the proof of Propo-

sition 1.2 and that of a simple combinatorial lemma. In Section 3 we present the proof of

Theorem 1.3 and note that in view of Proposition 1.2 it implies Theorem 1.1. The proof

supplies better estimates for prime values of s, and we thus first present the proof for

this special case (which suffices to deduce the assertion of Theorem 1.1 for every s) and

then describe briefly the proof for general s. The final Section 4 contains some concluding

remarks and open problems, including some (modest) estimates for R(s, q) when q is not

much larger than s.

To simplify the presentation we omit, throughout the paper, all floor and ceiling signs

whenever these are not crucial. Thus, we ignore all divisibility issues.

2 Preliminaries

We first prove Proposition 1.2. If R(s, q) ≥ r, then there exists a matrix of elements in Zs

with r rows and q columns so that the difference of any two rows is covering. We will use

the q columns of this matrix to find q graphs, each being a disjoint union of cliques, that

cover the complement of Ks(r). This complement is a complete multipartite graph with

r parts of size s. Label the vertices of this graph with elements of Zs so that in each part

all labels are used exactly once. We will associate each row of the matrix to a part and

each column to a vertex disjoint union of cliques. For a column (a1, · · · , ar)T , consider

the following graph. For each 0 ≤ k < s take the k + aith vertex (taken modulo s) from

the ith part of size s and take the union of the s cliques obtained as k ranges between 0
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and s− 1. This is clearly a union of s vertex disjoint cliques. Now, suppose we have some

two vertices of the graph we are trying to cover in different parts, say the `+mth vertex

of part i and the `th vertex of part j for some 1 ≤ i < j ≤ q and some `,m ∈ Zs. Then

the difference of the ith and jth rows contains an m in some column (a1, · · · , ar)T , so that

ai − aj ≡ m in Zs, and then the disjoint union of cliques corresponding to this column

will cover our desired edge.

One can also phrase the proof using the proper coloring definition of Q(s, r). Say we

are given a matrix of r vectors {v1, · · · , vr} over Zqs which are a Zs-covering family. We

can associate the vector vi + (j, · · · , j) to the jth vertex in the ith clique of Ks(r). These

vectors are all distinct for different vertices, because if vi + (j, · · · , j) = vi′ + (j′, · · · , j′),
then vi − vi′ is not covering, so i = i′ and j = j′. Now, we define q colorings of Ks(r)

so that if a vertex x is associated to (c1, · · · , cq), it is colored with ck in the kth coloring.

These colorings are proper, because if x and y are the jth and j′th vertex in the ith clique

for j 6= j′, then their associated vectors will have a difference (j− j′, · · · , j− j′) 6= 0̂. Now,

say we are given two distinct non-adjacent vertices, say the jth vertex in the ith clique and

the j′th vertex in the i′th clique, where i 6= i′. Then vi + (j, · · · , j) and vi′ + (j′, · · · , j′)
will share a coordinate; vi − vi′ is covering and thus will be j′ − j in some coordinate.

Next, we need the following simple lemma.

Lemma 2.1. Let H be a bipartite graph with classes of vertices A1, A2 where |A1| =

n1, |A2| = n2, each vertex of A1 has degree d1, and each vertex of A2 has degree d2.

Furthermore suppose that d2 ≥ log(2n2). Then there is a union of vertex-disjoint stars

with centers in A1, each star having at least d1
4 log(2n2)

leaves, such that all vertices of A2

are leaves.

Proof. Define a random subset S of A1 by choosing each vertex of A1 to be in S with

probability p = log(2n2)
d2

uniformly and independently. We claim that with positive prob-

ability, each vertex of A2 has between 1 and 4 log(2n2) neighbors in S. The proof is a

simple union bound; a fixed vertex v ∈ A2 has probability

(1− p)d2 < e−pd2 =
1

2n2

of having no neighbors in S, and probability at most(
d2

4 log(2n2)

)
p4 log(2n2) ≤

(
ped2

4 log(2n2)

)4 log(2n2)

=
(e

4

)4 log(2n2)
<

1

2n2

of having more than 4 log(2n2) neighbors, proving the claim. Fix an S with this property.
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We now finish the proof of the lemma by an application of Hall’s theorem. For all

S′ ⊆ S, let N(S′) denote the set of all neighbors of S′ and let e(S′, A2) denote the number

of edges from S′ to A2. Then |N(S′)| ≥ e(S′,A2)
4 log(2n2)

= d1
4 log(2n2)

|S′|. Hence every subset of

S expands by a factor of at least d1
4 log(2n2)

. Thus by Hall’s theorem, there is a union of

disjoint stars whose centers are exactly the vertices of S, each having at least d1
4 log(2n2)

leaves. Every remaining vertex of A2 is adjacent to some vertex in S, so we can simply

add it to an existing star.

3 Covering families

3.1 The upper bound

The following proposition implies the assertion of Theorem 1.3, part 1.

Proposition 3.1. Fix s ≥ 2, and let F ⊂ Zqs be a {0, 1}-covering family of vectors. Then

|F| ≤ 2q−1. For s = 2 equality holds.

Proof. Put m = |F|. Let p be a prime divisor of s and consider the vectors in F as

vectors in Zqp by reducing their coordinates modulo p. Note that these vectors form a

{0, 1}-covering family over Zp, and so are distinct. Let vi = (vi1, vi2, . . . , viq), (1 ≤ i ≤ m)

be the vectors in F (considered as elements of Zqp).

For each 1 ≤ i ≤ m define two polynomials Pi, Qi in the variables x1, x2, . . . , xq over

Zp as follows.

Pi(x1, . . . , xq) =

q∏
j=1

(xj − vij), Qi(x1, . . . , xq) =

q∏
j=1

(xj − vij − 1).

It is not difficult to check that for every i, Qi(vi) 6= 0 and Pi(vi) = 0. In addition, for

every 1 ≤ i 6= i′ ≤ m, Pi′(vi) = 0 (as there is a coordinate j for which vij − vi′j = 0) and

Qi′(vi) = 0 (as there is a j so that vij − vi′j = 1).

Similar reasoning gives that for the vectors vi+J , where J is the all 1-vector of length

q, Pi(vi + J) 6= 0, Qi(vi + J) = 0, and for every i′ 6= i, Pi′(vi + J) = Qi′(vi + J) = 0.

Therefore, for each member of the collection of 2m polynomials {Pi, Qi : 1 ≤ i ≤ m} there

is an assignment of values of the variables in which this member is nonzero and all others

vanish. This easily implies that the set of 2m polynomials Pi, Qi is linearly independent

in Zp, and as each of its members lies in the space of multilinear polynomials with the m

variables xj , the number, 2m, of these polynomials is at most the dimension of this space

which is 2q. It follows that |F| = m ≤ 2q−1, as needed. For s = 2 the family of all binary
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vectors in which the first coordinate is 1 is {0, 1}-covering, showing that R(2, q) ≥ 2q−1

and completing the proof. �

3.2 Prime s

For prime s ≥ 3, we will prove that R(s, q) ≥ (2 − o(1))q where the o(1)-term tends to

0 as q → ∞. The crux of the proof is a Markov chain argument from [7], which we will

iterate O(log s) times.

A balanced word over Zqs is a word containing the letters 1 through s − 1 an equal

number of times. A special balanced word is a balanced word such that the first q
(s−1)/2

letters are 1 and 2 in some order, the next q
(s−1)/2 letters are 3 and 4 in some order, and

so on. Construct a bipartite graph between the set A2 of balanced words w over Zqs and

the set A1 of permutations π on q elements defined as follows: w and π are adjacent if

and only if π(w) is a special balanced word. By symmetry all n1 = q! vertices in A1 have

the same degree d1, and all vertices in A2 have the same degree d2. We have

n2 = |A2| =
(

q

q/(s− 1), · · · , q/(s− 1)

)
≤ (s− 1)q

and d1 is the total number of special balanced words, so

d1 =

(
2q/(s− 1)

q/(s− 1)

)(s−1)/2
>

2q

qs/2
.

Furthermore, d2 = n1
n2
d1 =

(
( q
s−1)!

)s−1
d1 ≥ log(2n2) so by Lemma 2.1 there exists a

way to map balanced words to some set T of permutations π of q elements, so that

each balanced word is associated to exactly one permutation, and each permutation in

T is associated to at least d1
4 log(2n2)

> 2q/qs/2

4 log(2(s−1)q) >
2q

qs balanced words. Thus, we can

partition the balanced words into sets S1, S2, · · · so that for each Si we have |Si| > 2q

qs and

for all i there exists πi so that πi(si) is a special balanced word for all si ∈ Si.
Given all of the special balanced words of length q, any two of them have a difference

vector which covers {±1}. The idea of the proof will be to amplify this set {−1, 1}, first to

{−α,−1, 1, α} for a primitive root α modulo s, and after r steps to {±αb} for 0 ≤ b < 2r.

At each stage, the number of vectors will be (2 − o(1))L where L is the length of the

vectors. Thus after O(log s) steps we will have a set of vectors that is Z∗s covering. We

can then add an extra coordinate of 0 to all of the vectors to make them Zs-covering.

We describe the first step of this iteration in detail. Fix a primitive root α modulo

s, which will be constant throughout the steps. Also fix n = 100
ε (log(s))2, which will
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again be constant throughout the steps. Initially we set q = q0 = 100(s2 − 1), ensuring

it is divisible by s − 1. We will construct words of length q1 = qn by stringing together

balanced words of length q in a specific way. If xi ∈ Sj , then force xi+1 ∈ αSj ; here we

mean that if we take xi+1 and multiply its letters by α−1 pointwise, the result will be in

Sj . Consider all vectors of length qn constructed according to this rule, by concatenating

n balanced words of length q in this way. There are more than n2(
2q

qs )n−1 such words,

because at each stage other than the first we must pick xi+1 so that xi ∈ αSj for some

j, and thus there are more than 2q

qs choices for xi+1. We will make x1, xn identical over

all such words; this costs us a factor of n22 and thus we now have more than 1
n2

(2
q

qs )n−1

such words. Using that n2 < sq, we can find more than 2q(n−1)

qs(n−1)sq
= (2 − o(1))qn words

of length qn of the form x1x2 · · ·xn so that x1, xn are fixed, where o(1) is as ε goes to 0

and n goes to infinity. We now note that for any two different words of this form x1 · · ·xn
and x′1 · · ·x′n, with x1 = x′1, xn = x′n, there is some minimal i ≥ 2 so that xi 6= x′i. But

then there is some k so that xi−1 = x′i−1 ∈ Sk, and that means xi, x
′
i ∈ αSk. Because

xi 6= x′i, we have α−1xi 6= α−1x′i, and both α−1xi and α−1x′i are in Sk. It follows that

α−1xi − α−1x′i covers {±1} and so xi − x′i covers {±α}. Similarly, there is some maximal

i < n so that xi 6= x′i. Then xi+1 = x′i+1 ∈ αSj for some j, so xi ∈ Sj , x′i ∈ Sj . As xi 6= x′i,

it follows that xi − x′i must cover {±1} as coordinates. When s = 5, setting α = 2 and

applying this construction already gives a covering family for Z∗s = Z∗5 with (2− oN (1))N

vectors of length N . In the general case we iterate this argument to find (2 − oN (1))N

vectors of length N , so that after the rth iteration the vectors we get cover {±αb} for all

0 ≤ b < 2r. We describe how to do this inductively.

After r iterations, we find for some q = qr (that depends on s) a family of M q =

(2− oq(1))q (balanced) vectors over Zqs which covers ±αb for all 0 ≤ b < 2r. We call these

vectors y1, · · · , yMq and let Y = {y1, · · · , yMq}. We repeat the above argument. The yi

play the role of the special balanced words. Again we construct a bipartite graph. On

one side there is the set A2 of all balanced words of length q and on the other side there

is A1, permutations of q elements. We have π is adjacent to a (balanced) vector y if and

only if π(y) ∈ Y . Again n2 = |A2| ≤ (s− 1)q but now d1 = M q. It can easily be verified

that d2 ≥ log(2n2). Thus by Lemma 2.1 the balanced words of length q will be split into

sets S1, S2, · · · so that all Si satisfy |Si| ≥ d1
4 log(2n2)

≥ Mq

4+4q log(s−1) = (2 − oq(1))q, and

furthermore for each Si, there exists a permutation πi so that for all si ∈ Si, πi(Si) ∈ Y .

Now we will again construct a Markov chain. Consider all words of length qn = qr+1

consisting of n balanced words of length q of the form x1x2 · · ·xn, so that if xi ∈ Sj , then

xi+1 ∈ α2rSj . If we have two such words x1x2 · · ·xn and x′1x
′
2 · · ·x′n so that x1 = x′1,
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xn = x′n, let i > 1 be minimal so that xi 6= x′i. Then if xi−1 = x′i−1 ∈ Sj , xi, x′i ∈ α2rSj .

This means that xi − x′i covers {±αb} modulo s for 2r ≤ b < 2r+1. Now, if we let xi,

i < n, be maximal so that xi 6= x′i, then xi+1 = x′i+1 ∈ α2rSj for some j and so xi, x
′
i are

not equal but are both in Sj . This means xi − x′i covers {±αb} modulo s for 0 ≤ b < 2r.

So indeed the family covers {±αb} modulo s for 0 ≤ b < 2r+1, as long as x1 and xn are

fixed over the family. We can always find

mini |Si|n−1(
q

q/(s− 1), · · · , q/(s− 1)

) ≥ (2− o(1))qn

(s− 1)q
= (2− o(1))qn

such words if n is large enough, where the o(1) terms tend to 0 as q → ∞ and n is

sufficiently large. We will soon see that our choice of n = 100
ε (log(s))2 is sufficient. Iterating

the argument log2(s) times allows us to find (2 − o(1))q vectors of some length q which

cover Z∗s . Adding a single coordinate where all vectors are 0 gives us vectors of length

q + 1 that cover Zs, without changing the asymptotic analysis.

With care, we can extract quantitative bounds. We assume ε > 0 is a fixed constant

and show that we only require q =
(
O(1)
ε (log(s))2

)log(s)
to have a (2 − ε)q size covering

system over Zqs for large s. Say that after r iterations, we have M q = M q
r vectors of length

q = qr for some M ≤ 2 (which is nearly 2). Then mini Si ≥ Mq

5q log(s) and thus we find at

least
mini |Si|n−1(

q

q/(s− 1), · · · , q/(s− 1)

) ≥ M qn

M q(5q log(s))nsq
≥ M qn

(2s)q(5q log(s))n

=

(
M

(2s)1/nq1/q(5 log(s))1/q

)qn
= M

qr+1

r+1

vectors of length qn = qr+1. Recall that n = 100
ε (log(s))2 and q0 = (1 + o(1))100s2, where

o(1) is as s goes to infinity, so when we iterate the Markov chain argument log2(s) times,

we lose a factor of at most

M0

Mlog2(s)
≤ (2s)2 log(s)/n

 ∞∏
j=0

(q0n
j)1/q0n

j

 (5 log(s))1/q0(5 log(s))2 log(s)/n

≤ (10s log(s))2 log(s)/n210 log(s)/s
2
(5 log(s))1/100s

2
.

In the last inequality here the bound on the second term holds because the relevant infinite

product is at most (q
1/q0
0 )100 < 210 log s/s

2
. For large s this is easily seen to be smaller than,

say, 1 + ε/4. Since for large s, M0 > 2− ε/2, for s > s0(ε) we get Mlog2(s)
> 2− ε. Thus
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at the end we have q = 100s2
(
O(1)
ε (log(s))2

)log2(s)
and at least (2− ε)q vectors of length

q which cover Zs. One can easily modify the argument to work for any larger q, or

simply use the super-multiplicative property of R(s, q) (see the beginning of Section 4)

to conclude, taking ε = 1/ log s, that for every large s and for all q > s(3+o(1)) log log s,

R(s, q) > (2− 1
log s)

q. This completes the proof of Theorem 1.3, part 2, for prime s.

3.3 General s

Given an arbitrary fixed integer s > 2, we now show how to find (2 − o(1))q vectors in

Zqs which form a Zs-covering family; this shows R(s, q) ≥ (2 − o(1))q even for composite

s. The general strategy is similar to our strategy in the previous section, except now we

work over Z, and the set we are covering does not grow so quickly. As before, we are not

concerned with the vectors covering 0, because we can simply add an extra coordinate

to deal with it. Since the argument is very similar to the one described in the previous

subsection, we only provide a brief description omitting some of the formal details.

We prove the stronger statement that for any fixed s, we can find a (2 − oq(1))q size

family over Z that covers [−s, s], i.e. the difference of any two vectors contains all integers

between −s and s as coordinates. Let S be the least common multiple of the first s positive

integers. We will assume without loss of generality that 2S | q.
At the first step of our iteration, we consider vectors over Zq with an equal number of

each element of [2S] as coordinates so that the first q
S coordinates are 1s and 2s in some

order, the next q
S are an equal number of 3s and 4s, and so on. We can find (2− oq(1))q

of these and they cover {±1}. Furthermore, they have the property that for any ordered

pair of these vectors, there is a coordinate in which the first has an even integer 2k and

the second has the odd integer 2k − 1 for some 1 ≤ k ≤ S. This property is crucial and

maintained throughout our iterations.

Now we describe themth step of our iteration, for 2 ≤ m ≤ s. Define a bijection f = fm

on [2S] so that for all integers 1 ≤ k ≤ S, f(2k) = f(2k−1)+m. We can do this for instance

by setting f(1) = 1, f(2) = m+1, f(3) = 2, f(4) = m+2, · · · , f(2m−1) = m, f(2m) = 2m

and then set f(x) = f(x− 2m) + 2m for x > 2m as long as x ≤ 2S.

We then apply the same Markov chain argument as before, defining sets Si and con-

structing words x1x2 · · · starting and ending at the same vectors. Now, however, when

xi is in some set Sj , instead of demanding xi+1 ∈ αSj we require xi+1 ∈ f(Sj), meaning

that if we apply f−1 to each coordinate of xi+1, the result will be in Sj . Looking at the

first place where two vectors differ gives us a difference of ±m. Looking at the last place
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where they differ shows that the crucial property is preserved, and also that the differences

±1, · · · ,±(m− 1) are retained.

Thus after s = O(1) iterations, this algorithm produces (2− oq(1))q vectors of length

q which cover all of [−s, s], after we add an extra coordinate to deal with covering 0. This

completes the proof of Theorem 1.3.

4 Concluding remarks and open problems

A natural open problem is to study the functions R(s, q) and Q(s, r) in general. There are

several simple properties that R(s, q) satisfies. We know that R(s, q) is (weakly) increasing

in q, because to create r covering vectors for Zs of length q′ > q, we can take r vectors for

Zs of length q and pad them with q′ − q zeroes at the end. Furthermore, we know that

R(s, q) is super-multiplicative, i.e. R(s, q1+q2) ≥ R(s, q1)R(s, q2), because if m = R(s, q1),

n = R(s, q2) then we can find vectors v1, · · · , vm of length q1 and w1, · · · , wn of length q2

that form covering families. The mn vectors viwj obtained by concatenating vi and wj

are clearly a covering family of length q1 + q2.

For q < s, we have R(s, q) = 1, because of course we can take a single vector in Zqs ,

but if we take two then their difference can only cover a set of size q and cannot cover Zs.

The next natural question is studying the value of R(s, s).

Proposition 4.1. R(s, s) ≤ s, and R(s, s) ≥ p where p is the smallest prime factor of s.

When p = 2 this is tight, that is, if s is even, then R(s, s) = 2.

Proof. For the lower bound, for each 0 ≤ a < p we have a vector (0, a, 2a, · · · , (s − 1)a)

reduced modulo s. This is a covering system for Zs, since all positive integers smaller than

p are relatively prime to s.

For the upper bound, assume there was a covering family in Zss with s+ 1 vectors, so

that the difference of any two of these vectors has all values of Zs exactly once. By the

pigeonhole principle, there exist two vectors v and w so that the difference of their first

and second coordinates is the same. But then v − w has the same value in its first and

second coordinate, a contradiction.

When s is even, R(s, s) ≥ 2 as 2 is the least prime factor of s. If R(s, s) ≥ 3 then there

exist 3 vectors in Zss, (a1, · · · , as), (b1, · · · , bs), (c1, · · · , cs), which are covering. But then∑
(ai− bi) ≡

∑s−1
j=0 j ≡ (s− 1) s2 ≡

s
2 modulo s, and similarly

∑
(bi− ci) ≡

∑
(ci− ai) ≡ s

2

modulo s. Hence, these three sums are all s
2 modulo s, so they must add up to 3s

2 ≡
s
2

modulo s. But they add up to 0, so this is a contradiction.
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Nonetheless, the problem of determining R(s, s) for all s remains open, and the lower

bound in the last proposition is not tight. A computer search gives that R(15, 15) ≥ 4

([9]). One example is the 4 vectors given by the rows of the matrix
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 2 1 5 7 9 12 14 13 3 6 4 10 8 11

0 3 9 1 10 14 7 11 4 12 5 8 2 6 13


which are covering for Z15.

For q which is only a little bigger than s, we can prove a reasonable upper bound,

using essentially the same observation applied in the proof that R(s, s) ≤ s.

Proposition 4.2. If 2(q − s)2 < s− 1, then R(s, q) ≤ s+ 2(q − s) + 2(q − s)2.

Proof. Assume a contradiction for some q > s. By the definition of R(s, q), for any

r ≤ R(s, q) there exists a matrix of r rows and q columns so that the difference of any

two rows contains all values modulo s; in particular there exists such a matrix for r =

s+ 1 + 2(q− s) + 2(q− s)2. We will double count the number of pairs of rows and columns

ri, rj , ck, c` with the following property: the 2 × 2 submatrix formed by ri, rj , ck, c` has

sums of opposite corners equal.

For any two rows ri, rj , we examine their difference. This is a vector over Zs with q

entries containing all elements modulo s, so at most

(
q − s+ 1

2

)
pairs of its entries can be

equal. This means that for the pair of rows ri, rj , there exist at most

(
q − s+ 1

2

)
pairs of

columns ck, c` that satisfy our property. So the total number of such pairs as 1 ≤ i, j ≤ r,

1 ≤ k, ` ≤ q range is at most

(
r

2

)(
q − s+ 1

2

)
. However, if we instead fix ck, c` we see

that the difference of these two columns is a vector of length r over Zs which has at least

r − s pairs of equal elements. This means that there are at least

(
q

2

)
(r − s) ri, rj , ck, c`

with our property. Hence (
q

2

)
(r − s) ≤

(
r

2

)(
q − s+ 1

2

)
and so 2q(q − 1)(r − s) ≤ r(r − 1)(q − s + 1)(q − s). By our assumption, 2q > r and so

2(q−1) ≥ r−1. Hence 2q(q−1)(r−s) ≤ r(r−1)(q−s+1)(q−s) ≤ 4q(q−1)(q−s+1)(q−s).
Thus r− s ≤ 2(q− s+ 1)(q− s) = 2(q− s) + 2(q− s)2 and so r ≤ s+ 2(q− s) + 2(q− s)2,
a contradiction.
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Note that this argument gives a bound only when q = s + O(
√
s), and the bound is

s+O((q − s)2). We believe that this is not tight.

There is a nontrivial (though weak) bound which holds in the regime q = s + ω(
√
s)

as long as q < Cs for some fixed constant C < log2 e. The natural open problem here is

to study cases when q is larger but still fairly small, for instance if q = 1.5s, q = s log(s),

or q = s2. Furthermore, it would be interesting to figure out how large q has to be so that

R(s, q) > (2− ε)s for a small positive constant ε; the following argument shows that if ε is

small enough, then q
s must be bigger than an absolute constant which is above 1.44, but

we believe this is far from tight.

Proposition 4.3. If 1 ≤ q
s < C < log2(e), then R(s, q) ≤ (2− ε)q for ε = ε(C) > 0.

Proof. Say that R(s, q) ≥ r so there are r vectors in Zqs which are covering. Place them in

a matrix with r rows and q columns. Now, for each column select uniformly an element

of Zs, and add it to all the elements of that column, reducing modulo s. This does not

change the covering property. After having done this, replace all entries of this matrix by

their reduction modulo 2. Given two entries of a matrix in the same column and different

rows, if initially they differed by k modulo s they now have some probability pk of being

equal that depends only on k, which is the probability that if x ∈ Zs is chosen randomly

and uniformly then the reductions of x, x + k modulo s have the same parity. One can

easily check that p0 = 1, p1 = 1/s, p2 = (s−2)/s, and so on, so that
∏
i∈Zs

pi = e−s(1+o(1))

by Stirling’s formula. Furthermore, if we take this product over all i ∈ Zs except for a

subset of size 2cs for a small constant c, we have a bound of e−s(1−ε), where ε is a small

positive constant that tends to 0 with c.

Let K = cs. For any pair of rows, the probability their colors match in all but at

most 2K places is at most e−s(1−ε
′) for some ε′ that tends to 0 with c, by a union bound

over all the at most 2

(
q

2K

)
possible sets of places where they do not match. Thus if

we define a graph on our r vectors where two are adjacent iff their values upon reduction

modulo 2 match in all but at most 2K places, this graph will in expectation have edge

density e−s(1−ε
′) and thus for some fixed choice of the random shifts will have at most

r2e−s(1−ε
′) edges. Fixing these shifts one can remove less than r2e−s(1−ε

′) vertices from

this graph and get an independent set. But this set must be of size at most (2 − δ)q for

some δ = δ(c) > 0, because this size is bounded by the cardinality of a family of disjoint

Hamming balls in {0, 1}q, each of radius K = cs. Thus we have r ≤ r2e−s(1−ε′) + (2− δ)q,
and the same inequality holds for any r′ < r by applying the same reasoning to a set of r′

of our vectors.
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Now if q < Cs for some fixed C < log2 e then setting q > q0(ε
′, C), r′ = 3(2 − δ)q

violates the last inequality (with r replaced by r′) since for this value of r′ and large q,

(r′)2e−s(1−ε
′) < r′/2 and (2 − δ)q < r′/2 so their sum is smaller than r′. This establishes

the assertion of the proposition.

On the opposite extreme, one may ask what happens if s ≥ 3 is a small fixed positive

integer and q grows. We know by Proposition 3.1 that R(2, q) = 2q−1, so it is natural to

ask what happens when 2 is replaced by a larger positive integer.

Conjecture 4.4. For any fixed s ≥ 3, R(s, q) = o(2q), and furthermore R(s, q) =

Θ(2q/qc) where c = c(s) > 0 is a constant that depends only on s.

Note that the vectors over Zq3 with a zero in the first coordinate and with exactly bq/2c
ones and dq/2e zeroes are a covering system, so R(3, q) = Ω(2q/

√
q). When s is odd the

best upper bound known for R(s, q) is O(2q), as shown in Proposition 3.1. When s is even,

if the vectors of a covering system for Zqs are reduced modulo 2, any two differ in at least

s/2 places, so there are at most O(2q/qb
s−1
4
c) of them, as the Hamming balls of radius

b s−14 c centered at these reduced vectors are pairwise disjoint. It would be interesting to

establish the above conjecture and to find the relevant constants c if they indeed exist. In

particular it seems plausible that c = 1/2 when s = 3, and if so then the lower bound for

R(3, q) is essentially optimal. We conjecture that this is indeed the case.

Conjecture 4.5. R(3, q) = Θ(2q/
√
q).

In [4] it is shown that R(3, q) ≤ (12 + o(1))2q when q is even and R(3, q) ≤ (13 + o(1))2q

when q is odd, leaving this problem open. Note that we do not even know how to prove

the weaker claim that a {−1, 0, 1} covering system (or equivalently just a {±1} covering

system) over Z must have size o(2q).

Our original motivation for studying the function R(s, q) here is its connection to the

product dimension Q(s, r) of the disjoint union of r cliques, each of size s. This connection

is described in Proposition 1.2. The results here suffice to determine the asymptotic

behaviour of Q(s, r) for every fixed s as r tends to infinity, but do not provide tight

bounds when r is not much bigger than s. We conclude this short paper with several

simple comments about this range of the parameters. The first remark is that the product

dimension Q(s, r) is at least s for every r ≥ 2. To see this fix a vertex u of the first

clique and observe that in every proper coloring of the graph Ks(r) of r disjoint cliques,

each of size s, there is at most one pair uv with a vertex v of the second clique so that u
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and v have the same color. As altogether there are s such pairs, and each one has to be

monochromatic in at least one vertex coloring in a collection exhibiting an upper bound

for the product dimension, the number of such colorings is at least s. Another comment

is that Q(s, r) is clearly monotone non-decreasing in both r and s. Therefore, for every

r, s ≥ 2, Q(s, r) ≥ Q(2, r) = dlog2(2r)e.
A transversal design TD(r, s) of order s and block size r (with multiplicity λ = 1)

is a set V of sr elements partitioned into r pairwise disjoint groups, each of size s, and

a collection of blocks, each containing exactly one element of each group, so that every

pair of elements from distinct groups is contained in exactly one block. A transeversal

design is resolvable if its blocks can be partitioned into parallel classes where the blocks in

any parallel class partition the set V . There is a substantial amount of literature about

transversal designs, see [5]. It is not difficult to check that Q(s, r) = s if and only if a

resolvable TD(r, s) exists and hence the known results about resolvable transversal designs

supply nearly precise information for the range r ≤ s (it is easy to see that such a design

cannot exist for r > s). In particular, for every prime power s, Q(s, s) = s and therefore

by the obvious monotonicity, for any prime power s, Q(s, r) = s for every 2 ≤ r ≤ s, and

if p is a prime power then for every s, r ≤ p, Q(s, r) ≤ p. (Note that Propositions 1.2 and

4.1 also imply that Q(s, s) = s when s is a prime.)

It is not difficult to prove that for every s, r1, r2,

Q(s, r1r2) ≤ Q(s, r1) +Q(s, r2). (1)

Indeed, given the graph Ks(r1r2) consisting of r1r2 disjoint cliques, each of size s, we

can split the cliques into r1 disjoint groups, each consisting of r2 cliques. Define Q(s, r1)

proper colorings in which the cliques in every group are colored the same, based on the

system of colorings that shows that the product dimension of Ks(r1) is Q(s, r1). Add

to these Q(s, r2) additional colorings, whose restrictions to the r2 cliques in each group

are exactly the colorings showing that the product dimension of Ks(r2) is Q(s, r2). The

resulting Q(s, r1) +Q(s, r2) colorings establish (1).

The above comments together with the results in the previous sections provide upper

and lower bounds for Q(s, r) for all s and r, but these bounds are quite far from each

other when r is much bigger than s but much smaller than 2s
3 log log s

. In particular, for

r = 2s the bounds we have are

s ≤ Q(s, 2s) ≤ (1 + o(1))
s2

log s
.

It would be interesting to close this gap.
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