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a b s t r a c t

Which 2-regular subgraph R of a cubic graph G can be extended
to a cycle double cover of G? We provide a condition which
ensures that every R satisfying this condition is part of a cycle
double cover of G. As one consequence, we prove that every
2-connected cubic graph which has a decomposition into a
spanning tree and a 2-regular subgraph C consisting of k circuits
with k ≤ 3, has a cycle double cover containing C .

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction and definitions

All graphs in this paper are assumed to be finite. A trivial component is a component consisting
of one single vertex. In the context of cycle double covers the following definitions are convenient. A
circuit is a 2-regular connected graph and a cycle is a graph such that every vertex has even degree.
Thus every 2-regular subgraph of a cubic graph is a cycle.

In this paper the following concept is essential: a subgraph C of a connected graph H is called
non-separating if H − E(C) is connected, and separating if H − E(C) is disconnected. Hence, every
non-separating cycle C in a connected cubic graph H with |V (H)| > 2 is an induced subgraph of H
if C does not have a trivial component.

A cycle double cover (CDC) of a graph G is a set S of cycles such that every edge of G is contained
in the edge sets of precisely two elements of S. The well known Cycle Double Cover Conjecture (CDCC)
([15,17–19]; or see [23]) states that every bridgeless graph has a CDC. It is known that the CDCC can
be reduced to snarks, i.e. cyclically 4-edge connected cubic graphs of girth at least 5 admitting no
3-edge coloring, see for instance [23]. There are several versions of the CDCC, see [23]. The
subsequent one by Seymour is called the Strong-CDCC (see [6,7], or, see Conjecture 1.5.1 in [23])
and it is one of the most active approaches to the CDCC.
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Conjecture 1.1. Let G be a bridgeless graph and let C be a circuit of G. Then G has a CDC S with C ∈ S .
Note that the Strong-CDCC cannot be modified by replacing ‘‘circuit’’ with ‘‘cycle’’ since there are

infinitely many snarks which would serve as counterexamples, see [4,11]. For instance, the Petersen
graph P10 has a 2-factor, C2 say, but P10 does not have a CDC S such that C2 ∈ S . We underline that
C2 is separating! Here we only consider CDCs of graphs containing prescribed non-separating cycles.
In particular the following conjecture by the first author has been a motivation for this paper.

Conjecture 1.2 ([20]). Let C be a non-separating cycle of a 2-edge connected cubic graph G. Then G has
a CDC S with C ∈ S .

Recall that a decomposition of a graph G is a set of edge-disjoint subgraphs covering E(G). Hence,
if a connected cubic graph G has a decomposition into a tree T and a cycle C , then C is a non-
separating cycle of G. Note that all snarks with less than 38 vertices have a decomposition into a
tree and a cycle and that there are infinitely many snarks with such a decomposition, see [14]. We
consider the following equivalent reformulation of the above conjecture (see Proposition 1.5).

Conjecture 1.3. Let G be a 2-edge connected cubic graph which has a decomposition into a tree T and
a cycle C. Then G has a CDC S with C ∈ S .

Our main result is the following.

Theorem 1.4. Let G be a 2-edge connected graph with a decomposition into a tree T and a cycle C
with k ≤ 3 components. Then G has a CDC S with C ∈ S and in particular the following holds. (1) If
k ≤ 2, then G has a 5-CDC S2 with C ∈ S2. (2) Let k = 3. Then G has a 5-CDC S3 with C ∈ S3 if G is
not contractible to the Petersen graph; otherwise G has a 6-CDC S ′

3 with C ∈ S ′
3.

Theorem 1.4 shows that Conjecture 1.3 is true if the cycle C has at most three components.
Note that Theorem 1.4 is valid for all 2-edge connected graphs. The proof is based on Theorem 3.1
and results which imply the existence of nowhere-zero 4-flows. Graphs constructed from the
Petersen graph demand special treatment in the proof, see Theorem 1.4 (2). In Section 4 we consider
applications of Theorem 1.4 and Theorem 3.1 for cubic graphs. In Section 5 we present some remarks
and one more conjecture.

Note that the tree T in Conjecture 1.3 is a hist (see [1]), that is a spanning tree without a vertex
of degree two (hist is an abbreviation for homeomorphically irreducible spanning tree). Conversely,
every cubic graph with a hist has trivially a decomposition into a tree and a cycle. For informations
and examples of snarks with hists, see [13,14]. Let us also mention that Conjecture 1.3 limited to
snarks is stated in [14].

Proposition 1.5. Conjectures 1.2 and 1.3 are equivalent.

Proof. Obviously, it suffices to show that the truth of Conjecture 1.3 implies the truth of
Conjecture 1.2. Suppose that C is a non-separating cycle of a 2-edge connected cubic graph G such
that the graph GC := G − E(C) is not a tree. Let TC be a spanning tree of GC . Then the non-trivial
components of GC − E(TC ) can be paths or circuits and all are non-separating in GC . Denote by X
the edge set

{e ∈ E(GC − E(TC )) : e is not contained in a circuit of GC − E(TC )} .

Denote by Y1 the maximal 2-regular subgraph of GC − E(TC ) which may be empty. Now, subdivide
in G each of the edges of X two times and add an edge joining these two new vertices to obtain a
circuit of length two and call the union of these circuits of length two Y2. Thus we obtain a new
cubic graph G′ and it is straightforward to see that G′ has a hist T ′ such that the 2-regular subgraph
of G′−E(T ′) denoted by C ′ consists of Y1∪Y2∪C . Obviously every CDC of G′ containing C ′ corresponds
to a CDC of G containing C . �

For terminology not defined here, we refer to [3]. For more informations on cycle double covers
and flows, see [22,23].
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2. Preliminary/lemmas

If v is a vertex of a graph then we denote by Ev the set of edges incident with v. A k-CDC of a
graph G is a set S of k cycles of G such that every edge of G is contained in the edge sets of precisely
two elements of S . In our understanding of a cycle C , E(C) = ∅ is possible.

Lemma 2.1 (Goddyn [9] and Zhang [21], or see [22] Lemma 3.5.6). Let G be a graph admitting a
nowhere-zero 4-flow and let C be a cycle of G. Then G has a 4-CDC S with C ∈ S .

The following Lemma is well known and can easily be proved by using a popular result of Tutte,
namely that a graph has a nowhere-zero k-flow if and only if it has a nowhere-zero Zk-flow.

Lemma 2.2. Let G be a graph and C be a subgraph of G such that G/E(C) has a nowhere-zero k-flow.
Then G admits a k-flow f with supp(f ) ⊇ E(G) − E(C).

Definition 2.3. Let G and H be two graphs. Then G is called (k,H)-girth-degenerate if and only if
there are a sequence of graphs G0 = G, G1, . . . , Gm and a sequence of circuits C0, C1, . . . , Cm−1 such
that

(1) Ci ⊆ Gi and |E(Ci)| ≤ k for i = 0, 1, 2, . . . ,m − 1,

(2) Gi+1 = Gi/E(Ci) for i = 0, 1, 2, . . . ,m − 1 and

(3) Gm = H .
Moreover, we call G in short k-girth-degenerate if G is (k, K1)-girth-degenerate.

Note that we consider a loop as a circuit of length one and that loops can arise in the course of
contractions. For instance every complete graph is 3-girth-degenerate and every 2-connected planar
graph is 5-girth-degenerate. Note also that H in the above definition is a special minor of G and that
m = 0 implies G is (k,G)-girth-degenerate.

Lemma 2.4 (Catlin [5], or, see Lemma 3.8.11 of [22], p. 80). Let G be a graph and let C ⊆ G be a circuit
of length at most 4. If G/E(C) admits a nowhere-zero 4-flow, then so does G.

Lemma 2.5. Every 4-girth-degenerate graph G admits a nowhere-zero 4-flow.

Proof. Apply induction on the number of contractions to obtain K1 (see Definition 2.3) and apply
Lemma 2.4. �

3. Main results

Every theorem in this section has been motivated by questions on cubic graphs and was first
stated for them. Nevertheless, cubic graphs are not mentioned in the theorems presented here since
the original results were generalized.

Theorem 3.1. Let G be a 2-edge connected graph. Suppose that C is a non-separating cycle of G such
that G/E(C) has a nowhere-zero 4-flow. Then G has a 5-CDC S with C ∈ S .

Proof. Since G/E(C) has a nowhere-zero 4-flow, G has by Lemma 2.2 a 4-flow f such that supp(f ) ⊇
E(G) − E(C). Set E0 = {e : f (e) = 0}. Obviously, E0 ⊆ E(C). Since G − E(C) is connected, there is a
circuit Ce of G − (E(C) − {e}) containing e. Set J1 = 	e∈E0Ce. Then J1 contains every edge of E0 but
no edge of C − E0. Moreover, set J2 = C 	 J1. Then J2 is a cycle contained in supp(f ) which contains
all edges of C − E0. Since G − E0 has a nowhere-zero 4-flow, there is by Lemma 2.1 a 4-CDC S1 of
G − E0 with J2 ∈ S1. Then the set S = (S1 − {J2}) ∪ {J1, C} is a 5-CDC of G with G ∈ S . �
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Fig. 1. A snark Q ∗ with a non-separating cycle C∗ illustrated by dashed edges.

Note that Theorems 3.1 and 3.2 are equivalent statements. Theorem 3.1 follows from
Theorem 3.2 since E0 (see the proof of Theorem 3.1) defines M and thus Theorem 3.2 can be applied.
The converse direction is shown in the proof of Theorem 3.2. Note also that E0, respectively, M is a
matching if G is cubic in Theorem 3.1, respectively, Theorem 3.2.

Theorem 3.2. Let G be a 2-edge connected graph which contains a non-separating cycle C. Suppose
that G has an edge subset M ⊆ E(C) such that G − M has a nowhere-zero 4-flow. Then G has a 5-CDC
S with C ∈ S .

Proof. Since G−M has a nowhere-zero 4-flow and because M ⊆ E(C), G/E(C) has a nowhere zero
4-flow. By applying Theorem 3.1, the result follows. �

Note that we cannot prove Theorem 1.4 directly via Theorem 3.1. Consider for instance the cubic
graph, Q say, which results from P10 by expanding each u1, u2, u3 to a triangle, see Fig. 2. Then Q has
a decomposition into a tree and a cycle C with three components consisting of triangles. Moreover,
Q/E(C) does not have a nowhere-zero 4-flow and thus Theorem 3.1 cannot be applied. Note also
that C is not contained in a 5-CDC of Q .

We proceed in our preparation for the proof of Theorem 1.4. To keep the proof of Theorem 1.4
short, we next prove several specials results.
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Fig. 2. Illustration of Gn and Un where Gn ∼= P10 (T is shown in bold face).

Proposition 3.3. Let G be a 2-edge connected graph with a vertex subset U such that

G − U is acyclic and dG(v) > 2 for every v ∈ V (G) − U (∗)
Suppose |U | ≤ 3. Then

(1) G is 2-girth-degenerate if |U | = 1,
(2) G is 4-girth-degenerate if |U | = 2, and
(3) G is 4-girth-degenerate or (4, P10)-girth-degenerate if |U | = 3.

Proof. Let (G,U) be a pair such that G is a 2-edge connected graph and U ⊆ V (G). Suppose that
(G,U) satisfies condition (∗). If there exists a circuit C ⊆ G with |E(C)| ≤ 4, then we call C a small
circuit of (G,U) and we set G′ := G/E(C) and U ′ := {vC } ∪ {U − V (C)} where vC is the vertex in G′
obtained from contracting C (note that V (C)∩ U 
= ∅ since G− U is acyclic by hypothesis). We call
(G′,U ′) a small contraction of (G,U) and observe that |U ′| ≤ |U|. Furthermore, we call a sequence of
pairs {(Gi,Ui)}ni=1 a small contraction sequence if (Gi+1,Ui+1) is a small contraction of (Gi,Ui) for each
i = 1, . . . , n − 1. It is clear that if (G1,U1) satisfies condition (∗), then every pair (Gi,Ui) satisfies
condition (∗) for i = 2, . . . , n, and Gi is 2-edge connected if i < n. Note that |U1| ≥ · · · ≥ |Un| holds
and that Ui may equal V (Gi) for some i.

For a given (G,U), let {(Gi,Ui)}ni=1 be a maximal small contraction sequence with (G1,U1) =
(G,U). Hence there is no small circuit of (Gn,Un) since the sequence is maximal. In particular, there
is no parallel edge with one end in U . Denote by N̂Un (v) the neighbors of v of Gn lying in Un. We
say two leaf-vertices v1 and v2 of V (Gn) − Un are a bad pair if |N̂Un (v1) ∩ N̂Un (v2)| ≥ 2. It is evident
that there is no bad pair in (Gn,Un), otherwise one can easily find a 4-circuit by using the bad pair
and two common neighbors of them.

Before we use all of the introduced concepts, we prove the first part of the proposition.

Proof of (1) It suffices to prove that every (G,U) with |U | = 1 contains a 2-circuit intersecting U
since we then can proceed by induction. Obviously, every component, say T , of G − U is a tree.
Since dG(v) > 2 (see condition (∗)) for every leaf-vertex v ∈ V (T ), v is adjacent via a parallel edge
to u ∈ U and thus G contains the desired 2-circuit.

Proof of (2) We proceed by contradiction. So, let S := {(Gi,Ui)}ni=1 be a maximal small contraction
sequence with (G1,U1) = (G,U) and suppose that Gn 
= K1. Gn − Un = ∅ would imply that there is
a small 2-circuit or a 1-circuit which contradicts the maximality of S. Thus, there is a component
T of Gn − Un. T is not a single vertex otherwise there will be a pair of parallel edges incident with
a vertex of Un. Hence T contains two leaf-vertices. If |Un| = 1, then each of them is adjacent via a
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parallel edge to u ∈ U , a contradiction. If |Un| = 2, then the two leaf-vertices of T form a bad pair,
a contradiction.

Proof of (3) Let S := {(Gi,Ui)}ni=1 be a maximal small contraction sequence with (G1,U1) = (G,U)
and suppose that Gn 
= K1. We show that Gn ∼= P10 which will prove statement (3). Since
|U1| ≥ · · · ≥ |Un| and since statements (1) and (2) above hold, |Un| = 3. Call a vertex subset
W ⊆ V (Gn) − Un a bad set if dGn−Un (w1, w2) ≤ 2 for any w1, w2 ∈ W and

∑
w∈W |N̂Un (w)| ≥ 4.

Suppose that Gn has a bad set W . The latter inequality and |Un| = 3 imply that one vertex of U has
two neighbors in W and the distance condition implies that Gn has a small circuit, a contradiction.
Hence, Gn does not have a bad set.

Obviously, Gn −Un 
= ∅ otherwise Gn[Un] contains a small circuit. Suppose that Gn −Un has two
components H1 and H2. Recall that Gn does not contain a small circuit. If H1 consists of a single
vertex h1, then one can find a vertex h2 in H2 such that h1, h2 form a bad pair. If neither H1 nor H2
is a single vertex, then each contains two leaf-vertices. Hence there are four leaf-vertices and each
has a pair of distinct (since Gn does not contain a 2-circuit) neighbors in Un. Since Un can provide at
most three different pairs of these neighbors, two of the leaf-vertices form a bad pair by Pigeonhole
principle. Therefore Gn − Un is connected and thus a tree which we denote by T . T is not a single
vertex otherwise there will be a small 3-circuit since Gn is 2-edge connected. Moreover, T cannot
have exactly two leaves since then T will be a path v0v1 · · · vk, and thus either {v0, v1, v2} forms a
bad set if k ≥ 2 or {v0, v1} forms a bad set if k = 1. Indeed, T cannot have four or more leaves,
otherwise one can choose a bad pair from these leaves by Pigeonhole principle. Therefore T has
exactly three leaves and thus there is a unique degree 3-vertex, say w0. Hence T consists of three
edge disjoint paths: w0x1 · · · xj, w0y1 · · · yk, w0z1 · · · zl with j, k, l ≥ 1. We claim that j = k = l = 2.
If one of {j, k, l}, say j > 2, then {xj, xj−1, xj−2} forms a bad set. If one of {j, k, l}, say k = 1, then
{x1, y1, z1} will also form a bad set. Hence j = k = l = 2. Since there is no bad pair, by symmetry, we
may assume that N̂Un (x2) = {u1, u2}, N̂Un (y2) = {u2, u3}, N̂Un (z2) = {u3, u1} where Un = {u1, u2, u3},
see Fig. 2. Since Gn does not have a small circuit, we must also have x1u3, y1u1, z1u2 ∈ E(Gn). Then
Gn is isomorphic to P10. �

Lemma 3.4. Let G be a graph with a non-separating cycle C of G. Suppose G/E(C) is
(4,H)-girth-degenerate where H is a graph admitting a k-CDC and satisfies Δ(H) ≤ 3. Then the
following holds.

(1) G has a (k + 1)-CDC S with C ∈ S if k ≥ 5.
(2) G has a 5-CDC S with C ∈ S if k ≤ 4.

Proof. Let G3 be a 2-edge connected graph having a nontrivial edge-cut Es with |Es| = s, s ∈ {2, 3}
such that G3 − Es consists of two components G1 and G2. Define two new graphs Ĝ1 := G3/E(G2)
and Ĝ2 := G3/E(G1). Denote the unique vertex in Ĝ1 (Ĝ2) which has been obtained from contracting
E(G2) (E(G1)) by g2 (g1). Let Ci ⊆ Ĝi, i = 1, 2 be a cycle such that g1 /∈ V (C2) and g2 /∈ V (C1).
Then C1, C2 are cycles of G3 and C1 ∪ C2 is also a cycle of G3. The following fact can be verified
straightforwardly and will be used in the end of the proof.

Fact 3.5. Let Ĝi, i = 1, 2 have a ki-CDC Si with Ci ∈ Si and suppose k1 ≤ k2. Then G3 has a k2-CDC
S3 with C1 ∪ C2 ∈ S3.

If |V (H)| = 1, then G/E(C) has a nowhere-zero 4-flow by Lemma 2.5 and thus Lemma 3.4 follows
by applying Theorem 3.1. Hence we assume |V (H)| > 1.

Call a vertex w0 ∈ V (H) big if it corresponds to a subgraph W0 of G with |V (W0)| > 1, i.e. W0 is
connected and Ew0 ⊆ E(H) corresponds to an s-edge-cut Es of G for some s ∈ {2, 3} such that one
component of G− Es is W0 (note that Δ(H) ≤ 3 by hypothesis). Thus E(C)∩ Es = ∅. Therefore every
component of C is either a subgraph of W0 or disjoint with W0.

We prove the lemma by induction on the number of big vertices of H denoted by b(H). If
b(H) = 0, then G = H and thus E(C) = ∅ and the lemma holds. Now suppose b(H) = n + 1.
Let w0 be a big vertex of H and let W0 be its corresponding subgraph in G.
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Define the graph J := G/E(W0) and the cycle CJ ⊆ J induced by its edge set E(CJ ) := E(C) −
(E(C) ∩ E(W0)). Then CJ is non-separating in J . Moreover,

J/E(CJ ) = G/(E(C) ∪ E(W0)).

Recall that G/E(C) is (4,H)-girth-degenerate and observe that no circuit is contracted which
intersects Ew0 , respectively, Es in order to obtain H from G/E(C). Thus, by the above equation and
since G/E(C) is (4,H)-girth-degenerate, J/E(CJ ) is (4,H)-girth-degenerate.

Furthermore, H has a k-CDC by assumption. Therefore all conditions of the considered lemma
are fulfilled and since H has (with respect to J) precisely n big vertices, J has a CDC SJ with CJ ∈ SJ
satisfying statements (1), (2) (if we replace G by J , S by SJ , and C by CJ ).

To obtain the desired CDC of G, define the graph J ′ := G/E(G − V (W0)) (recall that W0 is
connected) and denote the unique vertex of J ′ which is not part of W0 by x. Let CJ ′ ⊆ J ′ be the
cycle induced by its edge set E(CJ ′ ) := E(C) − E(CJ ). Since G/E(C) is (4,H)-girth-degenerate and w0
a big vertex, it follows that W0/E(C) is 4-girth-degenerate and thus J ′/E(CJ ′ ) is 4-girth-degenerate.
Hence J ′/E(CJ ′ ) has a nowhere-zero 4-flow by Lemma 2.4. Since CJ ′ is a non-separating cycle of J ′,
there is by Theorem 3.1 a 5-CDC SJ ′ of J ′ with CJ ′ ∈ SJ ′ .

Depending on the value of k (concerning the k-CDC of H) there are two cases.
Case 1. k ≥ 5. Then SJ is a (k+1)-CDC of J . Since SJ ′ is a 5-CDC of J ′, and k+1 > 5, Fact 3.5 implies

that C = CJ ′ ∪ CJ is contained in a (k + 1)-CDC S of G (note that x /∈ V (CJ ′ ) and that w0 /∈ V (CJ )).
Case 2. k ≤ 4. Then SJ is a 5-CDC of J and SJ ′ is a 5-CDC of J ′. Fact 3.5 implies that C = CJ ′ ∪ CJ

is contained in a 5-CDC S of G. �

Definition 3.6. Let H be a graph and v ∈ V (H) with av, bv ∈ Ev . Then we say that the graph
(H − av − bv) ∪ ab is obtained from H by splitting away the edges av and bv.

Proof of Theorem 1.4. It is straightforward to see that we can assume that G does not have a vertex
of degree two. Moreover, we can also assume that V (C) ⊆ V (T ). If V (C) 
⊆ V (T ), we form from G and
C a new graph Ĝ (without changing the tree T ) and a new cycle Ĉ ⊆ Ĝ (having again k components).
Regard each component Ci, i ∈ {1, . . . , k} of C as an eulerian closed trail. For every vertex v ∈ V (Ci)
in G with dCi (v) ≥ 4 satisfying v /∈ V (T ), we split repeatedly pairs of consecutive edges (of the trail)
having both v as endvertex, away, until T becomes a spanning tree and we denote this obtained
cycle by Ĉ . It is straightforward to verify that every r-CDC of Ĝ which contains Ĉ corresponds to a
r-CDC of G which contains C . Hence we assume V (C) ⊆ V (T ).

Since C has at most three components, G′ = G/E(C) satisfies the conditions of Proposition 3.3
(replace G by G′). We can assume that G′ is not (4, P10)-girth-degenerate, otherwise we apply
Lemma 3.4 to G with H = P10 (since P10 has a 5-CDC). Thus G′ is at most 4-girth-degenerate by
Proposition 3.3. By Lemma 2.5, G′ admits a nowhere-zero 4-flow. Moreover, C is non-separating
since G−E(C) is a tree. Hence the conditions of Theorem 3.1 are fulfilled and its application finishes
the proof. �

4. Corollaries for cubic graphs

Within this section we show some applications of Theorems 1.4 and 3.1 for cubic graphs. For
this purpose we need the following definition and lemma.

Definition 4.1. An evenly spanning cycle of a graph G is a spanning cycle C of G such that for
every component L of C the number of vertices in L with odd degree in G is even.

For instance, V (G) is an evenly spanning cycle of G if G is an eulerian graph. In contrast to
the latter example, an evenly spanning cycle of a 2k + 1-regular graph cannot contain a trivial
component. Note that every hamiltonian circuit is an evenly spanning cycle.

Lemma 4.2 ([23] or [2]). The following statements are equivalent:
(1) A graph G has a nowhere-zero 4-flow. (2) G has an evenly spanning cycle.
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Corollary 4.3. Let G be a 2-edge connected cubic graph. Suppose that C is a non-separating cycle of G
such that G/E(C) has a hamiltonian circuit. Then G has a 5-CDC S with C ∈ S .

Proof. Since a hamiltonian circuit in G′ := G/E(C) is an evenly spanning cycle, G′ has a
nowhere-zero 4-flow by Lemma 4.2. By applying Theorem 3.1, the result follows. �

Corollary 4.4. Let G be a 2-edge connected cubic graph with a 2-factor consisting of two chordless
circuits C1, C2. Then G has a 5-CDC S with C1 ∈ S .

Proof. Since C1 is non-separating and G/E(C1) is hamiltonian, the result follows by applying
Corollary 4.3. �

Remark 4.5. C1 in Corollary 4.4 is part of some CDC even if C1 is allowed to have chords, see [8]. G
in Corollary 4.3 has some CDC even if C is separating, see [10]. The above results offer some insight
into which cycles are part of a 5-CDC (see the Strong 5-CDCC in [12]).

The next result follows directly from Theorem 1.4.

Corollary 4.6. Let G be a 2-edge connected cubic graph with a cycle C ⊆ G such that (i) C has at most
three components and (ii) G − E(C) is acyclic and has at most two components {T1, T2}.

Then G has a CDC if Tk ∪ C is bridgeless for each k ∈ {1, 2}.
Corollary 4.7. Let G be a 2-edge connected cubic graph which has a decomposition into a spanning
tree T , k1 circuits and k2 edges such that k1 + k2 ≤ 3. Then G has a CDC containing the cycle consisting
of the k1 circuits.

Proof. Since the CDCC is known to hold for graphs with small order, we can assume that k1 
= 0.
Subdivide each of the k2 edges two times and add an edge joining these two vertices to obtain
a circuit of length two. Then we obtain a new graph G′ with a hist T ′ for which we can apply
Theorem 1.4 since G′ −E(T ′) has k1 + k2 ≤ 3 circuits. Moreover, the CDC of G′ corresponds to a CDC
of G which contains all k1 circuits of G − E(T ). �

Corollary 4.8. Every cyclically 4-edge connected cubic graph which has a decomposition into a tree
and a cycle C consisting of k circuits with k ≤ 3 has a 5-CDC S with C ∈ S .

Proof. Every cubic graph which is contractible to P10 is either P10 itself or a cubic graph with a
cyclic 3-edge cut. Since for every decomposition of P10 into a tree and a 2-regular subgraph, the
2-regular subgraph consists of one circuit (see [14]), the proof follows by applying Theorem 1.4. �

5. Remarks and open problems

We know that Conjecture 1.2 is not implied by Theorem 3.1 (recall the graph Q defined below
the proof of Theorem 3.2). Is this still the case if we restrict Conjecture 1.2 to snarks? The graph
Q ∗ illustrated in Fig. 1 is a snark which has a non-separating cycle C∗ (which is contained in a
CDC) but Theorem 3.1 is not applicable since Q ∗/E(C∗) does not have a nowhere-zero 4-flow.
Q ∗ is constructed from the graph P ′ in [16, Fig. 12.1]: P ′ does not admit a nowhere-zero 4-flow
and Q ∗ is obtained from P ′ by contracting double edges and expanding vertices of degree five to
5-circuits. Observe also that C∗ is a maximal non-separating cycle of Q ∗, i.e. Q ∗ does not have a
larger non-separating cycle Ĉ satisfying C∗ ⊂ Ĉ .

With respect to Conjecture 1.3, we do not know a cyclically 4-edge connected cubic graph which
prevents the direct application of Theorem 3.1.

Problem 5.1. Does there exist a snark G which has a decomposition into a tree and a cycle C such
that G/E(C) does not have a nowhere-zero 4-flow?
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The truth of the next conjecture implies the truth of the CDCC and in particular the truth of the
5-CDCC, see Theorem 3.1.

Conjecture 5.2. Every cyclically 4-edge connected cubic graph G contains a non-separating cycle C
such that G/E(C) has a nowhere-zero 4-flow.

Note that Conjecture 5.2 would be false if G is not demanded to be cyclically 4-edge connected.
For instance, the cyclically 3-edge connected cubic graph which is obtained from K4 by replacing
every vertex of K4 with a copy of P10 − v, v ∈ V (P10) would then form a counterexample.
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