Received: 12 July 2017 Revised: 9 April 2018

Accepted: 19 May 2018

DOI: 10.1002/jgt.22366

ARTICLE

WILEY

Antimagic orientations of even regular graphs

Tong Li' | Zi-Xia Song?
Cun-Quan Zhang?

Department of Mathematics, Shandong Uni-
versity, Jinan, China

2Departmcm of Mathematics, University of
Central Florida, Orlando, FL 32816, USA

3Department of Mathematics, West Virginia
University, Morgantown, WV 26506, USA

Correspondence

| Guanghui Wang!

| Donglei Yang' |

Abstract

A labeling of a digraph D with m arcs is a bijection from
the set of arcs of D to {1,...,m}. A labeling of D is
antimagic if no two vertices in D have the same vertex-
sum, where the vertex-sum of a vertex u € V' (D) for alabel-

ing is the sum of labels of all arcs entering u minus the
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labelings of graphs, Hefetz, Miitze, and Schwartz [On
antimagic directed graphs, J. Graph Theory 64 (2010) 219—
232] initiated the study of antimagic labelings of digraphs,
and conjectured that every connected graph admits an
antimagic orientation, where an orientation D of a graph
G is antimagic if D has an antimagic labeling. It remained
unknown whether every disjoint union of cycles admits an
antimagic orientation. In this article, we first answer this
question in the positive by proving that every 2-regular
graph has an antimagic orientation. We then show that for
any integer d > 2, every connected, 2d-regular graph has

an antimagic orientation. Our technique is new.
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1 I INTRODUCTION

All graphs in this article are finite and simple. For a graph G, we use |G| and e(G) to denote the number
of vertices and edges of G, respectively. An antimagic labeling of a graph G is a bijection from E(G)
to {1,2,...,e(G)} such that for any distinct vertices u and v, the sum of labels on edges incident to
u differs from that for edges incident to v. A graph G is antimagic if it has an antimagic labeling.

46 | © 2018 Wiley Periodicals, Inc. wileyonlinelibrary.com/journal/jgt J Graph Theory. 2019;90:46-53.



LIET AL. 47

Hartsfield and Ringel [8] introduced antimagic labelings in 1990 and conjectured that every connected
graph other than K, is antimagic. The most significant progress on this problem is a result of Alon
et al. [1], which states that there exists an absolute constant ¢ such that every graph on n vertices with
minimum degree at least ¢ log n is antimagic. Eccles [6] recently improved this result by showing that
there exists an absolute constant ¢ such that if G is a graph with average degree at least ¢, and G
contains no isolated edge and at most one isolated vertex, then G is antimagic. Cranston [4] proved
that any d-regular bipartite graph with d > 2 is antimagic. For nonbipartite regular graphs, Cranston
etal. [5] proved that every odd regular graph is antimagic, and later Bérczi et al. [2], and Chang et al. [3],
independently, proved that every even regular graph is antimagic. For more information on antimagic
labelings of graphs and related labeling problems, see the recent informative survey [7].

Motivated by antimagic labelings of graphs, Hefetz et al. [9] initiated the study of antimagic labelings
of digraphs. For a positive integer k, we define [k] := {1,2,...,k}. Let D be a digraph. We use A(D)
and V(D) to denote the set of arcs and vertices of D, respectively. A labeling of D with m arcs is a
bijection from A(D) to [m]. A labeling of D is antimagic if no two vertices in D have the same vertex-
sum, where the vertex-sum of a vertex u € V(D) for a labeling is the sum of labels of all arcs entering
u minus the sum of labels of all arcs leaving u. A digraph D is antimagic if it has an antimagic labeling.
A graph G has an antimagic orientation if an orientation of G is antimagic. Hefetz et al. [9] raised the
questions ““ Is every orientation of any connected graph antimagic?”’ and “Does every graph admit an
antimagic orientation?.” Except for K, and K3, no other counterexamples to the first question are
known. They proved an analogous result of Alon et al. [1] that there exists an absolute constant ¢ such
that every orientation of any graph on »n vertices with minimum degree at least c log n is antimagic.
They also showed that every orientation of the star .S, with n # 2 is antimagic; every orientation of the
wheel W, is antimagic; and every orientation of K, with n # 3 is antimagic. For the second question,
they prove the following.

Theorem 1.1 ([9]). For any integer d > 1,

(@) every 2d — 1)-regular graph admits an antimagic orientation.

(b) every connected, 2d-regular graph G admits an antimagic orientation if G has a matching that
covers all but at most one vertex of G.

Hefetz et al. [9] asked whether it is true that every orientation of any connected graph on at least four
vertices is antimagic. They also pointed out that “It seems hard to discard any of the two conditions in
Theorem 1.1(b), that is connectedness and having a matching that covers all vertices but at most one.
In fact, we do not even know if every disjoint union of cycles admits an antimagic orientation.” They
proposed the following conjecture.

Conjecture 1.2 ([9]). Every connected graph admits an antimagic orientation.

Recently, Shan and Yu [10] proved that Conjecture 1.2 holds for biregular bipartite graphs. It
remained unknown whether every 2-regular graph, that is, every disjoint union of cycles, has an
antimagic orientation. In this article, we first answer this question in the positive by proving that every
2-regular graph admits an antimagic orientation. We then prove that for any integer d > 2, every con-
nected, 2d-regular graph admits an antimagic orientation. It turns out that finding an antimagic orien-
tation of a 2-regular graph is, indeed, a bit more complicated than finding an antimagic orientation of
an odd regular graph (see Theorem 1.3 in [9]) or a connected, even regular graph (see Theorem 3.1
below). Our technique is new and proofs of both results are neat.

We need to introduce more notation. A closed walk in a graph is an Euler four if it traverses every
edge of the graph exactly once. The following is a result of Euler.
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Theorem 1.3 (Euler 1736). A connected graph admits an Euler tour if and only if every vertex has
even degree.

Let D be an orientation of a graph G with m edges. For any labeling ¢ : A(D) — [m] of D and any
vertex u € V(D), we use sp(u), or simply s(u) when there is no confusion, to denote the vertex-sum
of u for the labeling c.

2 | ANTIMAGIC ORIENTATIONS OF 2-REGULAR GRAPHS

In this section, we study antimagic orientations of 2-regular graphs.
Theorem 2.1. Every 2-regular graph admits an antimagic orientation.

Proof. Let G be a 2-regular graph on n vertices. Then e(G) = n and every component of G is a cycle.
LetCy, ..., Cy, Cyyq, ..., Cyy, be all distinct components of G such that Cy, ..., C, are odd cycles and
Cyi1s .., Cyy, are even cycles, where |Cy| < -+ < |Cg| and |Cy | £ - < |Cyy,|. Forany i € [s + 1],
we may assume that C; has vertices v; 1, 0; 5, ..., ;,, in order, where r; := |C;|. We first find an ori-
entation D of G. Let M and M, be two disjoint matchings of G\{v; jvy,, ..., v, 0y, } such that
V10125 - Uggr 1 Uspr2 € My and My U My = E(G\{v} 10y, ..., 0,10, }). Let D be the orienta-
tion of G, obtained by directing the edges of G as follows: for all i € [s], orient every edge v; v;
in {v 0,005 U510, ) from v to v, o5 then for all i € [s + 1], orient every edge v; ;v; ;41 € M
fromv; ; to v; ;,1; and every edge v; ;v; ;.1 € M, from v, ;,; to v; ;, where all arithmetic on the index
J+ linuy, ;,, for each cycle C; here and henceforth is done modulo r;. Clearly, D is an orientation of
G. Let D, be the above orientation of the odd cycles Cy, ..., C,.

Algorithm 1. Label the edges of Cy, ..., C;

Data: Odd cveles T4, ..., ', with the given orientation D,, s(v; 1) = —i for all i € |p|,
s(vjg) =j—plorall j € {p+1,....5}, colvr,,v11) = 1, Colvg gv3.2) =2,
ro{!'ptr:_r,.‘ 1 I'p‘.-1_I:' n,, and rc["p—!!.ll'pv 12)=n,—1

Result: An antimagic labeling of [

fori =2 to pdo

Assign the smallest unused number, say a, in [ns| to the edge entering v;1;

Assign the value a — s(v; 1) to the edge leaving the vertex v; 4;

end

Set A to be the set of edges in & incident with v, for all i € [p|, and set A* to be A;

while A # E(Cy)u---UE|(C) do

Assign the smallest unused number in [n,] to the edge e € (E(Cy) U--- U E(Cp))\A

which is adjacent to the edge £* € A* with c,(e*) the smallest among the labels on the

edges in A*;

= Set A to be AU {e}, and set A* to be (A*\e*) U {e};

= & A W -

0 end

1wforj=p+2tosdo

11 Assign the largest unused number, say 3, in [n,] to the edge entering v;1;

12 Assign the value 8 — s(v;1) to the edge leaving v;;;

13 end

14 Set B to be the set of edges in G incident with v;; forall j€ {p+1,..., s}, and set B* to
be B:

i1s while B # E(Cpqq) U -+ U E(C;) do

16 Assign the largest unused number in [n,] to the edge e € (E(Cpyq) U---U E(C)\B
which is adjacent to the edge e* € B* with c,(e*) the largest among the labels on the
edges in B* ;

17 Set B to be BU {e}, and set B* to be (B*\e*) U {e}:

18 end
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FIGURE 1 Anexample of running Algorithm 1 with s =5, p =2, n; =3, and ns = 23

We next find a labeling ¢ : A(D) — [n] of D such that ¢, together with D, is a desired antimagic
orientation of G. Let ny :=0 and n; :=r| + --- +r; for all i € [s +¢]. We first find a bijection c, :
A(C DU UA(Cyy) = {ng+1,....n}. Foranyi € {s+1,...,s+ 1}, letc,(v; ;0; j41) =nmi_; +J
forall j € [r; =21, ¢, (v, v;,) =ni_y +r;and ¢, (v, 0;1) = n_y +r; — 1. We next find a labeling
¢, + A(D,) = [ng] of D, with s(v; ;) = —i for all i € [p], and s(v,;; ;) =j forall j € {1,..., [%] 1
where p = L%J Let ¢,(vy,,v;,1) =1 and co(up+1’,p+lup+1’1) = n,. Then ¢, (v 101 5) = ¢, (v, 01)) —
s(vy) =2, and ¢,(Vpy1 1Upt12) = CO(UP_'_]J[H_I Upi1,1) — S(Upy11) = ng — 1. We then label the remain-
ing edges of Cy, ..., C, recursively as depicted in Algorithm 1 on the next page, where the edges of
c,....C p are labeled from line 1 through line 9, and the edges of C RPN C, are labeled from line
10 to line 18. Let ¢ be obtained from ¢, and c,, that is, label the arcs in D as they are labeled under ¢,
and c,. Clearly, c is a labeling of D. An example on running Algorithm 1 on five odd cycles is depicted
in Figure 1.

Itremains to verify that ¢ is antimagic. Forany i € {s + 1,...,s + 1}, we see that s(v; ;) = —(2n;_; +
ri), s(u; ;) = (—1)5/(2nl-_1 +2j—1)forall j€{2,3,...,r; —2,r;}, and s(ui’,i_l) =—2n_1 +2r;, -
2), where 5j = 0if j is even and éj = 11if j is odd. Clearly, no two vertices of C, ..., C,,, have the

same vertex-sum under c. Thus c is an antimagic labeling of D if s = 0. So we may assume that s > 1.
Next, forany u € V(Cj) U - UV(Cy)andv € V(C 1)U - UV (Cy,,), we see that |s(u)| < 2n, —1
and [s(v)| > 2ng + 3. Thus s(u) # s(v). To show that ¢ is antimagic, it suffices to show that ¢ given in
Algorithm 1 is an antimagic labeling of D,. We do that next.

Let X := {v,051,..., U, }. By the choice of c,, no two vertices in X have the same vertex-sum
under c,. Furthermore, forany u € (V(C;) U -+ U V(C,))\ X, by the orientation D of G, |s(u)| = a + b
for some distinct integers a, b € [n,]. According to line 1 through line 9 in Algorithm 1, a < n, and
foranyu € (V(C;)U - U V(Cp))\X, either —=(2n, — 1) < s(u) < =(p+2)orp+3 < s(u) <2n, - 1.
Similarly, according to line 10 through line 17 in Algorithm 1, § > n, + 1 and for any v € (V(C,; ) U
< UV(CO\X, either —(2n, — 1) < s(v) < —(2np +3) or 2np +3 < s(v) £ 2n, — 1. It follows that
no vertex in X has the same vertex-sum as any vertex in (V'(C;) U --- U V' (C,))\X; and no vertex
in (V(Cy) U -+ UV(Cy)\X has the same vertex-sum as any vertex in (V(C,y ) U - UV (C)O\X. It
remains to show that no two vertices in (V(C;) U --- U V(Cp))\X (resp. (V(Cp+1) U UV(COH\X)
have the same vertex-sum. We only verify below that no two vertices in (V' (C;) U -+ U V(Cp))\X have
the same vertex-sum, because by the choice of labels stated in line 7 and line 16 in Algorithm 1, a sim-
ilar argument can be applied to prove that no two vertices in (V(CIJ +1) U - UV(C)))\ X have the same
vertex-sum.

By Algorithm 1, we see that for all i € [p] and u € V(Ci)\{ui’l }, |s(u)| grows with the distance of
u from v; | on the cycle C;. We observe the following.

(@) Forany i,k € [p]withi <k, (U, _js1Vkp—j) < Wiy _jVip_j1) <Oy iUk, ;1) forany
. I . ri
j=0,1,..., LEJ — 2, and c(Ui’jui,j+1) < c(vk,jvk’jH) forany j=1,..., LEJ'
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(b) Forany i € [pl, c(v; Vi, _j—1) > (U 410 j4p) forany j=0..., [%J - 2.

Suppose for a contradiction that there exist two distinct vertices u, w in (V/(C;) U -+ U V(Cp))\X
such that s(u) = s(v). We may assume that u € V(C;) and w € V(C}) for some i, k € [p]. Clearly,
i # k. We may further assume that i < k, s(u) = a + b, and s(w) = x + y for some distinct integers
a,b,x,ye [np] witha < bandx < y.Ifa < xandu # Uiﬁl%,-J,thenbyline7inAlgorithm 1,b< y,con-
trary to the factthata + b = x + y.If a > xand u # Ui,lr2_iJ , then by (a) and line 7 in Algorithm 1, b > y,
a contradiction. If ¢ < x and u = UM%J, since C(Ui,L%J+2Ui,L%J+3) < a, then C(Ui,[%J+2Ui,[%J+3) < X,
by line 7 in Algorithm 1, b < y, also a contradiction. Thus a > x and u = Ui,L%J’ thenx <a<b<y.

Letq := [%J andg* := [%"J . Then g < ¢* because r; < r;. According to Algorithm 1, we see thatu =
Uig+1> and €(U; . _q120; . _q11) < x. Suppose first that w = v ; for some j € [¢*]. By the orientation
of G and the fact that a > x, we see that j < g — 1. By (a), i r,—qi2Vir—qs1) > €Wpr, 12Uk —js1)
because j < g — 1. By (b), c(vy , 42Uk, —js1) > x. It follows that ¢(v; ., _120; ,,_q11) > X, contrary
to the fact that ¢(v; ., _g420;,—g+1) < x. Thus w = vy, _; for some j € [¢*]. Since a > x, by the ori-
entation of G and (a), we see that j > g. By (b), c(v;,, _g420i,,_g11) > €(V; 4_10; ). Since a > x,
by line 7 in Algorithm 1, c(v; 4_10;4) > ¢(Uyy _j12Uk r, —j31)- It follows that c(v;, _ 1 00;, _g11) >
(Vg r, —j+2Vk,r—j+1)» Which is impossible because j > p.

This completes the proof of Theorem 2.1. [ |

3 1 ANTIMAGIC ORIENTATIONS OF EVEN REGULAR
GRAPHS

In this section, we first prove a result on antimagic orientations of connected, 2d-regular graphs, where
d>2.

Theorem 3.1. For any integer d > 2, every connected, 2d-regular graph admits an antimagic
orientation.

Proof. For any integer d > 2, let G be a connected, 2d-regular graph on n vertices. By Theorem 1.3, let
C* be an Euler tour of G. We can regard C* as a cycle C with d > 2 copies of each vertex of G on C.
For each vertex v in G, arbitrarily pick one of the d copies of v on C as a real vertex and the remaining
d — 1 copies of v as imaginary vertices. Then C has n real vertices and (d — 1)n imaginary vertices. Let
Ve ={vy,0p,....0,} and Vi = {uy,uy, ... ,u4_y,} be the set of real vertices and imaginary vertices
of C, respectively. Then V(C) = V U V;. By renaming the vertices in Vj if necessary, we label the
vertices of Vi on C with v, v,,04,...,0,,0,_1,0,_3, ..., U3 in order when n is even; and vy, v,, Uy,

-os Up_s Uy, Uy, -.., U3 In order when n is odd, as depicted in Figure 2. Two vertices v;, v; € Vg
are a good pair on C if there exists a (v;, v;)-path P, ; along C so that either v;v; € E(C) or all the
internal vertices of P, ; are imaginary vertices. Notice that such a path P, ; is unique for any good pair
v;, U; € Vg. We next find an orientation D of C.

When n is even, set d£(Ui) € {0,2} for any i € [n], and d;(uj) = 1 for any j € [(d — 1)n] by first
directing the path Py , from v; to v,, and then paths P, 4 from v, to vy, ..., and finally P55 from vs
to v3, and Py | from v; to v3. When n is odd, set dg(vl) =1, dg(vi) € {0,2} forany i € {2,3,...,n},
and d;;(u ;) = 1forany j € [(d — 1)n] by first directing the paths P, , from v; to v, and P3; from v3
to vy, and then paths P, 4 from v, to vy, ..., and finally Ps 5 from v; to vs. Orientations of C for both
cases are depicted in Figure 2.
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FIGURE 2 Orientations of C according to the parity of n, where real vertices and imaginary vertices of C are
denoted by e and o, respectively

We need to find a labeling ¢ : A(D) — [dn] such that ¢, together with D, is a desired antimagic
orientation of G. Let ¢ be the length of P; ,. For any i € [n — 2], let Z; be the length of P, ;. Finally,
let £,_, be the length of P,_; ,. Clearly, Z;’;& ¢; = dn. We define a bijection ¢ : A(D) — [dn] as
stated in Algorithm 2 below.

Algorithm 2. Label the arcs of D
Data: Cycle C with the given orientation D
Result: A bijection ¢ : A(D) — [dn]

1 Assign the numbers in [fg] to the edges of Py s in the increasing order along the orientation
of Pia;

2 Set V = {v], 1} ;

3 while V' # {vy,...,v,} do

4 fori=1ton-2do

5 Assign the numbers in {fo +--- + €1+ 1,..., 80 + - - - + £i—1 + £;} to the edges of

P; ;49 in the increasing order along the orientation of Pj ;.0 ;

[ Set V to be V U {vi0} ;

T end

8 Assign the numbers in {fp+---+ €2 +1,..., fo+---+€n-a+ fu-1} to the edges of
Pr—1n in the increasing order along the orientation of Pa-in ;

9 end
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By Algorithm 2, sp(u j) = —1 for all j € [(d — 1)n]. Let D* be the corresponding orientation of
C*, that is, orient each edge on C* as it is oriented on C. Clearly, D* is an orientation of G. It
remains to verify that the bijection ¢ given in Algorithm 2 is an antimagic labeling of D*. We may
assume that V'(G) = V. For each v; € V(G), sp«(v;) = sp(v;) +(d — Dspu)) = sp(v;) — (d = 1),
where u} is one of the d — 1 imaginary vertices of v;. It suffices to show that for any v;,v; €
Vg with i # j, sp(v;) # SD(Uj). According to Algorithm 2, when n is even, we see that sp(v;) =
-y —2;5p(v,) =2+ +€,_3) —C,_p—2ifn=0mod 4)and s p,(v,) =2(Zy + -+ +€,,_5) +
£, ifn=2(mod4); and forany 2 <i <n—1,sp;) =2y + -+, )+ +¢; if dg(ui) =
0, and sp(v;) = 2(Cg+ -+, 3)—C;,—C;_1 —2if dg(vi) =2. When #n is odd, we see that
splop)=Cy+¢;—Lispv,) =2+ +¢,.3)—€,_»—2ifn =3(mod 4) and s ,(v,) = 2(¢, +
e+, )+, ifn=1(mod 4);andforany2 < i <n—1,sp(0) =2(Cg+ -+ )+ + ¢
if df(v)=0, and sp(v;) =2+ +¢;3) =iy —¢;_; =2 if df(v;) =2. It can be easily
checked that for any v;,v; € Vg withi # j, sp(v;) # sp(v;).

This completes the proof of Theorem 3.1. [ |

It would be nice if Theorem 3.1 would be true without assuming that G is connected. From the proof
of Theorem 3.1, we obtain the following two results, where a component of a graph is odd if it has an
odd number of vertices.

Corollary 3.2. Let G be a 2d-regular graph, where d > 2 is an integer. If G has at most two odd
components, then G admits an antimagic orientation.

Proof. Let G{,G,, ... ,Gq be all the components of G. For each i € [g], edges of G; are oriented as
given in the proof of Theorem 3.1. We then label the edges of G| according to Algorithm 2 with
labels in {1,...,e(G})}, for all i € {2,...,q}, label the edges of G; according to Algorithm 2 with
labels in {e(G) + e(Gy) + - + e(G;_)) + 1, ...,e(Gy) + e(G,) + -+ + e(G;)}. Let D be the resulting
orientation of G. Clearly, the labeling of D is antimagic if G has at most one odd component. Without
loss of generality, we assume that both G| and G, are odd. Let vy, ..., v, be the real vertices of an
Euler tour of G|, and uy,u,,...,u,, be the real vertices of an Euler tour of G,. From the proof of
Theorem 3.1, no two vertices of D has the same vertex-sum, except that sp(#;) may be the same as
the vertex-sum of some vertex in G;. To avoid this, we relabel the edges on the paths P, and P, 5
in the orientation of G, only as follows, where P, 5, P, 3, ¢, and | are defined as in the proof of
Theorem 3.1: assign the numbers in {e(G}) + 1, ...,e(Gy) + £} to the edges of P, 5 in the increasing
order along the orientation of P, 3, then assign the numbers in {e(G) + ¢ + 1,...,e(G|) + ¢ + £}
to the edges of P, in the increasing order along the orientation of P; 5. Then sp(u;) = —1. One can
easily check that the resulting labeling of D is antimagic. [ ]

Corollary 3.3. Letd > 2 be an integer. If every vertex of a connected graph G has degree 2d or2d — 2,
then G admits an antimagic orientation.

Proof. Let G be a connected graph such that every vertex of G has degree 2d or 2d — 2. Let
C*,C, D, D* be defined as in the proof of Theorem 3.1. Then C* contains d or d — 1 copies of each
vertex of G. From the proof of Theorem 3.1, we see that |sp(u) — sp(v)| > 2 for any two distinct
vertices u, v in D; and sp«(u) = sp(u) — (d — 1) or sp«(u) = sp(u) — (d —2) for any u in D*. Thus
s p«(u) # sp«(v) for any two distinct vertices u, v in D*, and so the labeling of D* is antimagic. [ ]

It seems hard to prove that if each of G| and G, has an antimagic orientation, then the disjoint union
of G| and G, also has an antimagic orientation. But we know of no counterexamples. With the support
of Theorem 2.1, we believe the following is true.

Conjecture 3.4. Every graph admits an antimagic orientation.
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