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Abstract
A labeling of a digraph 𝐷 with 𝑚 arcs is a bijection from

the set of arcs of 𝐷 to {1,… , 𝑚}. A labeling of 𝐷 is

antimagic if no two vertices in 𝐷 have the same vertex-

sum, where the vertex-sum of a vertex 𝑢 ∈ 𝑉 (𝐷) for a label-

ing is the sum of labels of all arcs entering 𝑢 minus the

sum of labels of all arcs leaving 𝑢. Motivated by the con-

jecture of Hartsfield and Ringel from 1990 on antimagic

labelings of graphs, Hefetz, Mütze, and Schwartz [On

antimagic directed graphs, J. Graph Theory 64 (2010) 219–

232] initiated the study of antimagic labelings of digraphs,

and conjectured that every connected graph admits an

antimagic orientation, where an orientation 𝐷 of a graph

𝐺 is antimagic if 𝐷 has an antimagic labeling. It remained

unknown whether every disjoint union of cycles admits an

antimagic orientation. In this article, we first answer this

question in the positive by proving that every 2-regular

graph has an antimagic orientation. We then show that for

any integer 𝑑 ≥ 2, every connected, 2𝑑-regular graph has

an antimagic orientation. Our technique is new.

K E Y W O R D S
antimagic labeling, antimagic orientation, regular graph

1 INTRODUCTION

All graphs in this article are finite and simple. For a graph 𝐺, we use |𝐺| and 𝑒(𝐺) to denote the number

of vertices and edges of 𝐺, respectively. An antimagic labeling of a graph 𝐺 is a bijection from 𝐸(𝐺)
to {1, 2,… , 𝑒(𝐺)} such that for any distinct vertices 𝑢 and 𝑣, the sum of labels on edges incident to

𝑢 differs from that for edges incident to 𝑣. A graph 𝐺 is antimagic if it has an antimagic labeling.
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Hartsfield and Ringel [8] introduced antimagic labelings in 1990 and conjectured that every connected

graph other than 𝐾2 is antimagic. The most significant progress on this problem is a result of Alon

et al. [1], which states that there exists an absolute constant 𝑐 such that every graph on 𝑛 vertices with

minimum degree at least 𝑐 log 𝑛 is antimagic. Eccles [6] recently improved this result by showing that

there exists an absolute constant 𝑐0 such that if 𝐺 is a graph with average degree at least 𝑐0, and 𝐺

contains no isolated edge and at most one isolated vertex, then 𝐺 is antimagic. Cranston [4] proved

that any 𝑑-regular bipartite graph with 𝑑 ≥ 2 is antimagic. For nonbipartite regular graphs, Cranston

et al. [5] proved that every odd regular graph is antimagic, and later Bérczi et al. [2], and Chang et al. [3],

independently, proved that every even regular graph is antimagic. For more information on antimagic

labelings of graphs and related labeling problems, see the recent informative survey [7].

Motivated by antimagic labelings of graphs, Hefetz et al. [9] initiated the study of antimagic labelings

of digraphs. For a positive integer 𝑘, we define [𝑘] ∶= {1, 2,… , 𝑘}. Let 𝐷 be a digraph. We use 𝐴(𝐷)
and 𝑉 (𝐷) to denote the set of arcs and vertices of 𝐷, respectively. A labeling of 𝐷 with 𝑚 arcs is a

bijection from 𝐴(𝐷) to [𝑚]. A labeling of 𝐷 is antimagic if no two vertices in 𝐷 have the same vertex-

sum, where the vertex-sum of a vertex 𝑢 ∈ 𝑉 (𝐷) for a labeling is the sum of labels of all arcs entering

𝑢 minus the sum of labels of all arcs leaving 𝑢. A digraph 𝐷 is antimagic if it has an antimagic labeling.

A graph 𝐺 has an antimagic orientation if an orientation of 𝐺 is antimagic. Hefetz et al. [9] raised the

questions “ Is every orientation of any connected graph antimagic?” and “Does every graph admit an

antimagic orientation?.” Except for 𝐾1,2 and 𝐾3, no other counterexamples to the first question are

known. They proved an analogous result of Alon et al. [1] that there exists an absolute constant 𝑐 such

that every orientation of any graph on 𝑛 vertices with minimum degree at least 𝑐 log 𝑛 is antimagic.

They also showed that every orientation of the star 𝑆𝑛 with 𝑛 ≠ 2 is antimagic; every orientation of the

wheel 𝑊𝑛 is antimagic; and every orientation of 𝐾𝑛 with 𝑛 ≠ 3 is antimagic. For the second question,

they prove the following.

Theorem 1.1 ([9]). For any integer 𝑑 ≥ 1,

(a) every (2𝑑 − 1)-regular graph admits an antimagic orientation.
(b) every connected, 2𝑑-regular graph 𝐺 admits an antimagic orientation if 𝐺 has a matching that

covers all but at most one vertex of 𝐺.

Hefetz et al. [9] asked whether it is true that every orientation of any connected graph on at least four

vertices is antimagic. They also pointed out that “It seems hard to discard any of the two conditions in

Theorem 1.1(b), that is connectedness and having a matching that covers all vertices but at most one.

In fact, we do not even know if every disjoint union of cycles admits an antimagic orientation.” They

proposed the following conjecture.

Conjecture 1.2 ([9]). Every connected graph admits an antimagic orientation.

Recently, Shan and Yu [10] proved that Conjecture 1.2 holds for biregular bipartite graphs. It

remained unknown whether every 2-regular graph, that is, every disjoint union of cycles, has an

antimagic orientation. In this article, we first answer this question in the positive by proving that every

2-regular graph admits an antimagic orientation. We then prove that for any integer 𝑑 ≥ 2, every con-

nected, 2𝑑-regular graph admits an antimagic orientation. It turns out that finding an antimagic orien-

tation of a 2-regular graph is, indeed, a bit more complicated than finding an antimagic orientation of

an odd regular graph (see Theorem 1.3 in [9]) or a connected, even regular graph (see Theorem 3.1

below). Our technique is new and proofs of both results are neat.

We need to introduce more notation. A closed walk in a graph is an Euler tour if it traverses every

edge of the graph exactly once. The following is a result of Euler.
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Theorem 1.3 (Euler 1736). A connected graph admits an Euler tour if and only if every vertex has
even degree.

Let 𝐷 be an orientation of a graph 𝐺 with 𝑚 edges. For any labeling 𝑐 ∶ 𝐴(𝐷) → [𝑚] of 𝐷 and any

vertex 𝑢 ∈ 𝑉 (𝐷), we use 𝑠𝐷(𝑢), or simply 𝑠(𝑢) when there is no confusion, to denote the vertex-sum

of 𝑢 for the labeling 𝑐.

2 ANTIMAGIC ORIENTATIONS OF 2-REGULAR GRAPHS

In this section, we study antimagic orientations of 2-regular graphs.

Theorem 2.1. Every 2-regular graph admits an antimagic orientation.

Proof. Let 𝐺 be a 2-regular graph on 𝑛 vertices. Then 𝑒(𝐺) = 𝑛 and every component of 𝐺 is a cycle.

Let 𝐶1, … , 𝐶𝑠, 𝐶𝑠+1, … , 𝐶𝑠+𝑡 be all distinct components of 𝐺 such that 𝐶1,… , 𝐶𝑠 are odd cycles and

𝐶𝑠+1,… , 𝐶𝑠+𝑡 are even cycles, where |𝐶1| ≤ ⋯ ≤ |𝐶𝑠| and |𝐶𝑠+1| ≤ ⋯ ≤ |𝐶𝑠+𝑡|. For any 𝑖 ∈ [𝑠 + 𝑡],
we may assume that 𝐶𝑖 has vertices 𝑣𝑖,1, 𝑣𝑖,2,… , 𝑣𝑖,𝑟𝑖

in order, where 𝑟𝑖 ∶= |𝐶𝑖|. We first find an ori-

entation 𝐷 of 𝐺. Let 𝑀1 and 𝑀2 be two disjoint matchings of 𝐺∖{𝑣1,1𝑣1,𝑟1 ,… , 𝑣𝑠,1𝑣𝑠,𝑟𝑠} such that

𝑣1,1𝑣1,2,… , 𝑣𝑠+𝑡,1𝑣𝑠+𝑡,2 ∈ 𝑀1 and 𝑀1 ∪𝑀2 = 𝐸(𝐺∖{𝑣1,1𝑣1,𝑟1 ,… , 𝑣𝑠,1𝑣𝑠,𝑟𝑠}). Let 𝐷 be the orienta-

tion of 𝐺, obtained by directing the edges of 𝐺 as follows: for all 𝑖 ∈ [𝑠], orient every edge 𝑣𝑖,1𝑣𝑖,𝑟𝑖
in {𝑣1,1𝑣1,𝑟1 ,… , 𝑣𝑠,1𝑣𝑠,𝑟𝑠} from 𝑣𝑖,𝑟𝑖

to 𝑣𝑖,1; then for all 𝑖 ∈ [𝑠 + 𝑡], orient every edge 𝑣𝑖,𝑗𝑣𝑖,𝑗+1 ∈ 𝑀1
from 𝑣𝑖,𝑗 to 𝑣𝑖,𝑗+1; and every edge 𝑣𝑖,𝑗𝑣𝑖,𝑗+1 ∈ 𝑀2 from 𝑣𝑖,𝑗+1 to 𝑣𝑖,𝑗 , where all arithmetic on the index

𝑗 + 1 in 𝑣𝑖,𝑗+1 for each cycle 𝐶𝑖 here and henceforth is done modulo 𝑟𝑖. Clearly, 𝐷 is an orientation of

𝐺. Let 𝐷𝑜 be the above orientation of the odd cycles 𝐶1,… , 𝐶𝑠.

Algorithm 1. Label the edges of 𝐶1,… , 𝐶𝑠
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F I G U R E 1 An example of running Algorithm 1 with 𝑠 = 5, 𝑝 = 2, 𝑛1 = 3, and 𝑛5 = 23

We next find a labeling 𝑐 ∶ 𝐴(𝐷) → [𝑛] of 𝐷 such that 𝑐, together with 𝐷, is a desired antimagic

orientation of 𝐺. Let 𝑛0 ∶= 0 and 𝑛𝑖 ∶= 𝑟1 +⋯ + 𝑟𝑖 for all 𝑖 ∈ [𝑠 + 𝑡]. We first find a bijection 𝑐𝑒 ∶
𝐴(𝐶𝑠+1) ∪⋯ ∪ 𝐴(𝐶𝑠+𝑡) → {𝑛𝑠 + 1,… , 𝑛}. For any 𝑖 ∈ {𝑠 + 1,… , 𝑠 + 𝑡}, let 𝑐𝑒(𝑣𝑖,𝑗𝑣𝑖,𝑗+1) = 𝑛𝑖−1 + 𝑗

for all 𝑗 ∈ [𝑟𝑖 − 2], 𝑐𝑒(𝑣𝑖,𝑟𝑖−1𝑣𝑖,𝑟𝑖) = 𝑛𝑖−1 + 𝑟𝑖, and 𝑐𝑒(𝑣𝑖,𝑟𝑖𝑣𝑖,1) = 𝑛𝑖−1 + 𝑟𝑖 − 1. We next find a labeling

𝑐𝑜 ∶ 𝐴(𝐷𝑜) → [𝑛𝑠] of 𝐷𝑜 with 𝑠(𝑣𝑖,1) = −𝑖 for all 𝑖 ∈ [𝑝], and 𝑠(𝑣𝑝+𝑗,1) = 𝑗 for all 𝑗 ∈ {1,… , ⌈ 𝑠

2⌉},

where 𝑝 = ⌊ 𝑠

2⌋. Let 𝑐𝑜(𝑣1,𝑟1𝑣1,1) = 1 and 𝑐𝑜(𝑣𝑝+1,𝑟𝑝+1𝑣𝑝+1,1) = 𝑛𝑠. Then 𝑐𝑜(𝑣1,1𝑣1,2) = 𝑐𝑜(𝑣1,𝑟1𝑣1,1) −
𝑠(𝑣1,1) = 2, and 𝑐𝑜(𝑣𝑝+1,1𝑣𝑝+1,2) = 𝑐𝑜(𝑣𝑝+1,𝑟𝑝+1𝑣𝑝+1,1) − 𝑠(𝑣𝑝+1,1) = 𝑛𝑠 − 1. We then label the remain-

ing edges of 𝐶1,… , 𝐶𝑠 recursively as depicted in Algorithm 1 on the next page, where the edges of

𝐶1,… , 𝐶𝑝 are labeled from line 1 through line 9, and the edges of 𝐶𝑝+1,… , 𝐶𝑠 are labeled from line

10 to line 18. Let 𝑐 be obtained from 𝑐𝑜 and 𝑐𝑒, that is, label the arcs in 𝐷 as they are labeled under 𝑐𝑜
and 𝑐𝑒. Clearly, 𝑐 is a labeling of 𝐷. An example on running Algorithm 1 on five odd cycles is depicted

in Figure 1.

It remains to verify that 𝑐 is antimagic. For any 𝑖 ∈ {𝑠 + 1,… , 𝑠 + 𝑡}, we see that 𝑠(𝑣𝑖,1) = −(2𝑛𝑖−1 +
𝑟𝑖), 𝑠(𝑣𝑖,𝑗) = (−1)𝛿𝑗 (2𝑛𝑖−1 + 2𝑗 − 1) for all 𝑗 ∈ {2, 3,… , 𝑟𝑖 − 2, 𝑟𝑖}, and 𝑠(𝑣𝑖,𝑟𝑖−1) = −(2𝑛𝑖−1 + 2𝑟𝑖 −
2), where 𝛿𝑗 = 0 if 𝑗 is even and 𝛿𝑗 = 1 if 𝑗 is odd. Clearly, no two vertices of 𝐶𝑠+1,… , 𝐶𝑠+𝑡 have the

same vertex-sum under 𝑐. Thus 𝑐 is an antimagic labeling of 𝐷 if 𝑠 = 0. So we may assume that 𝑠 ≥ 1.

Next, for any 𝑢 ∈ 𝑉 (𝐶1) ∪⋯ ∪ 𝑉 (𝐶𝑠) and 𝑣 ∈ 𝑉 (𝐶𝑠+1) ∪⋯ ∪ 𝑉 (𝐶𝑠+𝑡), we see that |𝑠(𝑢)| ≤ 2𝑛𝑠 − 1
and |𝑠(𝑣)| ≥ 2𝑛𝑠 + 3. Thus 𝑠(𝑢) ≠ 𝑠(𝑣). To show that 𝑐 is antimagic, it suffices to show that 𝑐0 given in

Algorithm 1 is an antimagic labeling of 𝐷𝑜. We do that next.

Let 𝑋 ∶= {𝑣1,1, 𝑣2,1,… , 𝑣𝑠,1}. By the choice of 𝑐𝑜, no two vertices in 𝑋 have the same vertex-sum

under 𝑐𝑜. Furthermore, for any 𝑢 ∈ (𝑉 (𝐶1) ∪⋯ ∪ 𝑉 (𝐶𝑠))∖𝑋, by the orientation 𝐷 of 𝐺, |𝑠(𝑢)| = 𝑎 + 𝑏

for some distinct integers 𝑎, 𝑏 ∈ [𝑛𝑠]. According to line 1 through line 9 in Algorithm 1, 𝛼 ≤ 𝑛𝑝 and

for any 𝑢 ∈ (𝑉 (𝐶1) ∪⋯ ∪ 𝑉 (𝐶𝑝))∖𝑋, either −(2𝑛𝑝 − 1) ≤ 𝑠(𝑢) ≤ −(𝑝 + 2) or 𝑝 + 3 ≤ 𝑠(𝑢) ≤ 2𝑛𝑝 − 1.

Similarly, according to line 10 through line 17 in Algorithm 1, 𝛽 ≥ 𝑛𝑝 + 1 and for any 𝑣 ∈ (𝑉 (𝐶𝑝+1) ∪
⋯ ∪ 𝑉 (𝐶𝑠))∖𝑋, either −(2𝑛𝑠 − 1) ≤ 𝑠(𝑣) ≤ −(2𝑛𝑝 + 3) or 2𝑛𝑝 + 3 ≤ 𝑠(𝑣) ≤ 2𝑛𝑠 − 1. It follows that

no vertex in 𝑋 has the same vertex-sum as any vertex in (𝑉 (𝐶1) ∪⋯ ∪ 𝑉 (𝐶𝑠))∖𝑋; and no vertex

in (𝑉 (𝐶1) ∪⋯ ∪ 𝑉 (𝐶𝑝))∖𝑋 has the same vertex-sum as any vertex in (𝑉 (𝐶𝑝+1) ∪⋯ ∪ 𝑉 (𝐶𝑠))∖𝑋. It

remains to show that no two vertices in (𝑉 (𝐶1) ∪⋯ ∪ 𝑉 (𝐶𝑝))∖𝑋 (resp. (𝑉 (𝐶𝑝+1) ∪⋯ ∪ 𝑉 (𝐶𝑠))∖𝑋)

have the same vertex-sum. We only verify below that no two vertices in (𝑉 (𝐶1) ∪⋯ ∪ 𝑉 (𝐶𝑝))∖𝑋 have

the same vertex-sum, because by the choice of labels stated in line 7 and line 16 in Algorithm 1, a sim-

ilar argument can be applied to prove that no two vertices in (𝑉 (𝐶𝑝+1) ∪⋯ ∪ 𝑉 (𝐶𝑠))∖𝑋 have the same

vertex-sum.

By Algorithm 1, we see that for all 𝑖 ∈ [𝑝] and 𝑢 ∈ 𝑉 (𝐶𝑖)∖{𝑣𝑖,1}, |𝑠(𝑢)| grows with the distance of

𝑢 from 𝑣𝑖,1 on the cycle 𝐶𝑖. We observe the following.

(a) For any 𝑖, 𝑘 ∈ [𝑝] with 𝑖 < 𝑘, 𝑐(𝑣𝑘,𝑟𝑘−𝑗+1𝑣𝑘,𝑟𝑘−𝑗) < 𝑐(𝑣𝑖,𝑟𝑖−𝑗𝑣𝑖,𝑟𝑖−𝑗−1) < 𝑐(𝑣𝑘,𝑟𝑘−𝑗𝑣𝑘,𝑟𝑘−𝑗−1) for any

𝑗 = 0, 1,… , ⌊ 𝑟𝑖

2 ⌋ − 2, and 𝑐(𝑣𝑖,𝑗𝑣𝑖,𝑗+1) < 𝑐(𝑣𝑘,𝑗𝑣𝑘,𝑗+1) for any 𝑗 = 1,… , ⌊ 𝑟𝑖

2 ⌋.
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(b) For any 𝑖 ∈ [𝑝], 𝑐(𝑣𝑖,𝑟𝑖−𝑗𝑣𝑖,𝑟𝑖−𝑗−1) > 𝑐(𝑣𝑖,𝑗+1𝑣𝑖,𝑗+2) for any 𝑗 = 0… , ⌊ 𝑟𝑖

2 ⌋ − 2.

Suppose for a contradiction that there exist two distinct vertices 𝑢,𝑤 in (𝑉 (𝐶1) ∪⋯ ∪ 𝑉 (𝐶𝑝))∖𝑋
such that 𝑠(𝑢) = 𝑠(𝑣). We may assume that 𝑢 ∈ 𝑉 (𝐶𝑖) and 𝑤 ∈ 𝑉 (𝐶𝑘) for some 𝑖, 𝑘 ∈ [𝑝]. Clearly,

𝑖 ≠ 𝑘. We may further assume that 𝑖 < 𝑘, 𝑠(𝑢) = 𝑎 + 𝑏, and 𝑠(𝑤) = 𝑥 + 𝑦 for some distinct integers

𝑎, 𝑏, 𝑥, 𝑦 ∈ [𝑛𝑝]with 𝑎 < 𝑏 and 𝑥 < 𝑦. If 𝑎 < 𝑥 and 𝑢 ≠ 𝑣
𝑖,⌊ 𝑟𝑖

2 ⌋
, then by line 7 in Algorithm 1 , 𝑏 < 𝑦, con-

trary to the fact that 𝑎 + 𝑏 = 𝑥 + 𝑦. If 𝑎 > 𝑥 and 𝑢 ≠ 𝑣
𝑖,⌊ 𝑟𝑖

2 ⌋
, then by (a) and line 7 in Algorithm 1 , 𝑏 > 𝑦,

a contradiction. If 𝑎 < 𝑥 and 𝑢 = 𝑣
𝑖,⌊ 𝑟𝑖

2 ⌋
, since 𝑐(𝑣

𝑖,⌊ 𝑟𝑖
2 ⌋+2

𝑣
𝑖,⌊ 𝑟𝑖

2 ⌋+3
) < 𝑎, then 𝑐(𝑣

𝑖,⌊ 𝑟𝑖
2 ⌋+2

𝑣
𝑖,⌊ 𝑟𝑖

2 ⌋+3
) < 𝑥,

by line 7 in Algorithm 1 , 𝑏 < 𝑦, also a contradiction. Thus 𝑎 > 𝑥 and 𝑢 = 𝑣
𝑖,⌊ 𝑟𝑖

2 ⌋
, then 𝑥 < 𝑎 < 𝑏 < 𝑦.

Let 𝑞 ∶= ⌊ 𝑟𝑖

2 ⌋ and 𝑞∗ ∶= ⌊ 𝑟𝑘

2 ⌋. Then 𝑞 ≤ 𝑞∗ because 𝑟𝑖 ≤ 𝑟𝑘. According to Algorithm 1, we see that 𝑢 =
𝑣𝑖,𝑞+1, and 𝑐(𝑣𝑖,𝑟𝑖−𝑞+2𝑣𝑖,𝑟𝑖−𝑞+1) < 𝑥. Suppose first that 𝑤 = 𝑣𝑘,𝑗 for some 𝑗 ∈ [𝑞∗]. By the orientation

of 𝐺 and the fact that 𝑎 > 𝑥, we see that 𝑗 ≤ 𝑞 − 1. By (a), 𝑐(𝑣𝑖,𝑟𝑖−𝑞+2𝑣𝑖,𝑟𝑖−𝑞+1) > 𝑐(𝑣𝑘,𝑟𝑘−𝑗+2𝑣𝑘,𝑟𝑘−𝑗+1)
because 𝑗 ≤ 𝑞 − 1. By (b), 𝑐(𝑣𝑘,𝑟𝑘−𝑗+2𝑣𝑘,𝑟𝑘−𝑗+1) > 𝑥. It follows that 𝑐(𝑣𝑖,𝑟𝑖−𝑞+2𝑣𝑖,𝑟𝑖−𝑞+1) > 𝑥, contrary

to the fact that 𝑐(𝑣𝑖,𝑟𝑖−𝑞+2𝑣𝑖,𝑟𝑖−𝑞+1) < 𝑥. Thus 𝑤 = 𝑣𝑘,𝑟𝑘−𝑗 for some 𝑗 ∈ [𝑞∗]. Since 𝑎 > 𝑥, by the ori-

entation of 𝐺 and (a), we see that 𝑗 ≥ 𝑞. By (b), 𝑐(𝑣𝑖,𝑟𝑖−𝑞+2𝑣𝑖,𝑟𝑖−𝑞+1) > 𝑐(𝑣𝑖,𝑞−1𝑣𝑖,𝑞). Since 𝑎 > 𝑥,

by line 7 in Algorithm 1, 𝑐(𝑣𝑖,𝑞−1𝑣𝑖,𝑞) > 𝑐(𝑣𝑘,𝑟𝑘−𝑗+2𝑣𝑘,𝑟𝑘−𝑗+1). It follows that 𝑐(𝑣𝑖,𝑟𝑖−𝑞+2𝑣𝑖,𝑟𝑖−𝑞+1) >
𝑐(𝑣𝑘,𝑟𝑘−𝑗+2𝑣𝑘,𝑟𝑘−𝑗+1), which is impossible because 𝑗 ≥ 𝑝.

This completes the proof of Theorem 2.1. ■

3 ANTIMAGIC ORIENTATIONS OF EVEN REGULAR
GRAPHS

In this section, we first prove a result on antimagic orientations of connected, 2𝑑-regular graphs, where

𝑑 ≥ 2.

Theorem 3.1. For any integer 𝑑 ≥ 2, every connected, 2𝑑-regular graph admits an antimagic
orientation.

Proof. For any integer 𝑑 ≥ 2, let 𝐺 be a connected, 2𝑑-regular graph on 𝑛 vertices. By Theorem 1.3, let

𝐶∗ be an Euler tour of 𝐺. We can regard 𝐶∗ as a cycle 𝐶 with 𝑑 ≥ 2 copies of each vertex of 𝐺 on 𝐶 .

For each vertex 𝑣 in 𝐺, arbitrarily pick one of the 𝑑 copies of 𝑣 on 𝐶 as a real vertex and the remaining

𝑑 − 1 copies of 𝑣 as imaginary vertices. Then 𝐶 has 𝑛 real vertices and (𝑑 − 1)𝑛 imaginary vertices. Let

𝑉𝑅 = {𝑣1, 𝑣2,… , 𝑣𝑛} and 𝑉𝐼 = {𝑢1, 𝑢2,… , 𝑢(𝑑−1)𝑛} be the set of real vertices and imaginary vertices

of 𝐶 , respectively. Then 𝑉 (𝐶) = 𝑉𝑅 ∪ 𝑉𝐼 . By renaming the vertices in 𝑉𝑅 if necessary, we label the

vertices of 𝑉𝑅 on 𝐶 with 𝑣1, 𝑣2, 𝑣4,… , 𝑣𝑛, 𝑣𝑛−1, 𝑣𝑛−3,… , 𝑣3 in order when 𝑛 is even; and 𝑣1, 𝑣2, 𝑣4,

… , 𝑣𝑛−1, 𝑣𝑛, 𝑣𝑛−2, … , 𝑣3 in order when 𝑛 is odd, as depicted in Figure 2. Two vertices 𝑣𝑖, 𝑣𝑗 ∈ 𝑉𝑅
are a good pair on 𝐶 if there exists a (𝑣𝑖, 𝑣𝑗)-path 𝑃𝑖,𝑗 along 𝐶 so that either 𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐶) or all the

internal vertices of 𝑃𝑖,𝑗 are imaginary vertices. Notice that such a path 𝑃𝑖,𝑗 is unique for any good pair

𝑣𝑖, 𝑣𝑗 ∈ 𝑉𝑅. We next find an orientation 𝐷 of 𝐶 .

When 𝑛 is even, set 𝑑+
𝐷
(𝑣𝑖) ∈ {0, 2} for any 𝑖 ∈ [𝑛], and 𝑑+

𝐷
(𝑢𝑗) = 1 for any 𝑗 ∈ [(𝑑 − 1)𝑛] by first

directing the path 𝑃1,2 from 𝑣1 to 𝑣2, and then paths 𝑃2,4 from 𝑣4 to 𝑣2, … , and finally 𝑃5,3 from 𝑣5
to 𝑣3, and 𝑃3,1 from 𝑣1 to 𝑣3. When 𝑛 is odd, set 𝑑+

𝐷
(𝑣1) = 1, 𝑑+

𝐷
(𝑣𝑖) ∈ {0, 2} for any 𝑖 ∈ {2, 3,… , 𝑛},

and 𝑑+
𝐷
(𝑢𝑗) = 1 for any 𝑗 ∈ [(𝑑 − 1)𝑛] by first directing the paths 𝑃1,2 from 𝑣1 to 𝑣2 and 𝑃3,1 from 𝑣3

to 𝑣1, and then paths 𝑃2,4 from 𝑣4 to 𝑣2, … , and finally 𝑃5,3 from 𝑣3 to 𝑣5. Orientations of 𝐶 for both

cases are depicted in Figure 2.
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F I G U R E 2 Orientations of 𝐶 according to the parity of 𝑛, where real vertices and imaginary vertices of 𝐶 are

denoted by ∙ and ◦, respectively

We need to find a labeling 𝑐 ∶ 𝐴(𝐷) → [𝑑𝑛] such that 𝑐, together with 𝐷, is a desired antimagic

orientation of 𝐺. Let 𝓁0 be the length of 𝑃1,2. For any 𝑖 ∈ [𝑛 − 2], let 𝓁𝑖 be the length of 𝑃𝑖,𝑖+2. Finally,

let 𝓁𝑛−1 be the length of 𝑃𝑛−1,𝑛. Clearly,
∑𝑛−1

𝑗=0 𝓁𝑗 = 𝑑𝑛. We define a bijection 𝑐 ∶ 𝐴(𝐷) → [𝑑𝑛] as

stated in Algorithm 2 below.

Algorithm 2. Label the arcs of 𝐷
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By Algorithm 2, 𝑠𝐷(𝑢𝑗) = −1 for all 𝑗 ∈ [(𝑑 − 1)𝑛]. Let 𝐷∗ be the corresponding orientation of

𝐶∗, that is, orient each edge on 𝐶∗ as it is oriented on 𝐶 . Clearly, 𝐷∗ is an orientation of 𝐺. It

remains to verify that the bijection 𝑐 given in Algorithm 2 is an antimagic labeling of 𝐷∗. We may

assume that 𝑉 (𝐺) = 𝑉𝑅. For each 𝑣𝑖 ∈ 𝑉 (𝐺), 𝑠𝐷∗ (𝑣𝑖) = 𝑠𝐷(𝑣𝑖) + (𝑑 − 1)𝑠𝐷(𝑢∗𝑖 ) = 𝑠𝐷(𝑣𝑖) − (𝑑 − 1),
where 𝑢∗

𝑖
is one of the 𝑑 − 1 imaginary vertices of 𝑣𝑖. It suffices to show that for any 𝑣𝑖, 𝑣𝑗 ∈

𝑉𝑅 with 𝑖 ≠ 𝑗, 𝑠𝐷(𝑣𝑖) ≠ 𝑠𝐷(𝑣𝑗). According to Algorithm 2, when 𝑛 is even, we see that 𝑠𝐷(𝑣1) =
−𝓁0 − 2; 𝑠𝐷(𝑣𝑛) = −2(𝓁0 +⋯ + 𝓁𝑛−3) − 𝓁𝑛−2 − 2 if 𝑛 ≡ 0(mod 4) and 𝑠𝐷(𝑣𝑛) = 2(𝓁0 +⋯ + 𝓁𝑛−2) +
𝓁𝑛−1 if 𝑛 ≡ 2(mod 4); and for any 2 ≤ 𝑖 ≤ 𝑛 − 1, 𝑠𝐷(𝑣𝑖) = 2(𝓁0 +⋯ + 𝓁𝑖−2) + 𝓁𝑖−1 + 𝓁𝑖 if 𝑑+

𝐷
(𝑣𝑖) =

0, and 𝑠𝐷(𝑣𝑖) = −2(𝓁0 +⋯ + 𝓁𝑖−3) − 𝓁𝑖−2 − 𝓁𝑖−1 − 2 if 𝑑+
𝐷
(𝑣𝑖) = 2. When 𝑛 is odd, we see that

𝑠𝐷(𝑣1) = 𝓁0 + 𝓁1 − 1; 𝑠𝐷(𝑣𝑛) = −2(𝓁0 +⋯ + 𝓁𝑛−3) − 𝓁𝑛−2 − 2 if 𝑛 ≡ 3(mod 4) and 𝑠𝐷(𝑣𝑛) = 2(𝓁0 +
⋯ + 𝓁𝑛−2) + 𝓁𝑛−1 if 𝑛 ≡ 1(mod 4); and for any 2 ≤ 𝑖 ≤ 𝑛 − 1, 𝑠𝐷(𝑣𝑖) = 2(𝓁0 +⋯ + 𝓁𝑖−2) + 𝓁𝑖−1 + 𝓁𝑖
if 𝑑+

𝐷
(𝑣𝑖) = 0, and 𝑠𝐷(𝑣𝑖) = −2(𝓁0 +⋯ + 𝓁𝑖−3) − 𝓁𝑖−2 − 𝓁𝑖−1 − 2 if 𝑑+

𝐷
(𝑣𝑖) = 2. It can be easily

checked that for any 𝑣𝑖, 𝑣𝑗 ∈ 𝑉𝑅 with 𝑖 ≠ 𝑗, 𝑠𝐷(𝑣𝑖) ≠ 𝑠𝐷(𝑣𝑗).
This completes the proof of Theorem 3.1. ■

It would be nice if Theorem 3.1 would be true without assuming that 𝐺 is connected. From the proof

of Theorem 3.1, we obtain the following two results, where a component of a graph is odd if it has an

odd number of vertices.

Corollary 3.2. Let 𝐺 be a 2𝑑-regular graph, where 𝑑 ≥ 2 is an integer. If 𝐺 has at most two odd
components, then 𝐺 admits an antimagic orientation.

Proof. Let 𝐺1, 𝐺2,… , 𝐺𝑞 be all the components of 𝐺. For each 𝑖 ∈ [𝑞], edges of 𝐺𝑖 are oriented as

given in the proof of Theorem 3.1. We then label the edges of 𝐺1 according to Algorithm 2 with

labels in {1,… , 𝑒(𝐺1)}, for all 𝑖 ∈ {2,… , 𝑞}, label the edges of 𝐺𝑖 according to Algorithm 2 with

labels in {𝑒(𝐺1) + 𝑒(𝐺2) +⋯ + 𝑒(𝐺𝑖−1) + 1,… , 𝑒(𝐺1) + 𝑒(𝐺2) +⋯ + 𝑒(𝐺𝑖)}. Let 𝐷 be the resulting

orientation of 𝐺. Clearly, the labeling of 𝐷 is antimagic if 𝐺 has at most one odd component. Without

loss of generality, we assume that both 𝐺1 and 𝐺2 are odd. Let 𝑣1,… , 𝑣𝑛 be the real vertices of an

Euler tour of 𝐺1, and 𝑢1, 𝑢2,… , 𝑢𝑚 be the real vertices of an Euler tour of 𝐺2. From the proof of

Theorem 3.1, no two vertices of 𝐷 has the same vertex-sum, except that 𝑠𝐷(𝑢1) may be the same as

the vertex-sum of some vertex in 𝐺1. To avoid this, we relabel the edges on the paths 𝑃1,2 and 𝑃1,3
in the orientation of 𝐺2 only as follows, where 𝑃1,2, 𝑃1,3, 𝓁0, and 𝓁1 are defined as in the proof of

Theorem 3.1: assign the numbers in {𝑒(𝐺1) + 1,… , 𝑒(𝐺1) + 𝓁1} to the edges of 𝑃1,3 in the increasing

order along the orientation of 𝑃1,3, then assign the numbers in {𝑒(𝐺1) + 𝓁1 + 1,… , 𝑒(𝐺1) + 𝓁1 + 𝓁0}
to the edges of 𝑃1,2 in the increasing order along the orientation of 𝑃1,2. Then 𝑠𝐷(𝑢1) = −1. One can

easily check that the resulting labeling of 𝐷 is antimagic. ■

Corollary 3.3. Let 𝑑 ≥ 2 be an integer. If every vertex of a connected graph𝐺 has degree 2𝑑 or 2𝑑 − 2,
then 𝐺 admits an antimagic orientation.

Proof. Let 𝐺 be a connected graph such that every vertex of 𝐺 has degree 2𝑑 or 2𝑑 − 2. Let

𝐶∗, 𝐶,𝐷,𝐷∗ be defined as in the proof of Theorem 3.1. Then 𝐶∗ contains 𝑑 or 𝑑 − 1 copies of each

vertex of 𝐺. From the proof of Theorem 3.1, we see that |𝑠𝐷(𝑢) − 𝑠𝐷(𝑣)| ≥ 2 for any two distinct

vertices 𝑢, 𝑣 in 𝐷; and 𝑠𝐷∗ (𝑢) = 𝑠𝐷(𝑢) − (𝑑 − 1) or 𝑠𝐷∗ (𝑢) = 𝑠𝐷(𝑢) − (𝑑 − 2) for any 𝑢 in 𝐷∗. Thus

𝑠𝐷∗ (𝑢) ≠ 𝑠𝐷∗ (𝑣) for any two distinct vertices 𝑢, 𝑣 in 𝐷∗, and so the labeling of 𝐷∗ is antimagic. ■

It seems hard to prove that if each of 𝐺1 and 𝐺2 has an antimagic orientation, then the disjoint union

of 𝐺1 and 𝐺2 also has an antimagic orientation. But we know of no counterexamples. With the support

of Theorem 2.1, we believe the following is true.

Conjecture 3.4. Every graph admits an antimagic orientation.
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