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Let G be a directed graph associated with a weight w : E(G) → R+. For an edge-cut Q of

G, the average weight of Q is denoted and defined as wave(Q) =
P

e∈Q w(e)

|Q| . An optimal

edge-cut with average weight is an edge-cut Q such that wave(Q) is maximum among all
edge-cuts (or minimum, symmetrically). In this paper, a polynomial algorithm for this
problem is proposed for finding an optimal edge-cut in a rooted tree separating the root
and the set of all leafs. This algorithm enables us to develop an automatic clustering

method with more accurate detection of community output.
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1. Introduction

Max-Flow-Min-Cut is one of the oldest optimization problems in network the-
ory (Ford and Fulkerson, 1956). It is also known that solving the max-cut problem is
NP complete (Garey and Johnson, 1979; Karp, 1972). In this paper, we define a new
optimization problem for finding edge-cuts in a special class of weighted directed
graphs, specifically rooted weighted trees. These types of trees are typically used to
represent relationships in hierarchical data structures. The minimum cut problem
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optimizes the sum of weights of edges in a given cut, over all cuts separating source
and sink. Our new problem instead optimizes the average of the weights of edges
in a given cut, over all root-separating cuts. Importantly, we propose a polynomial
time algorithm for solving this optimization problem. Furthermore, the inequalities
in the algorithm and proof may be adapted to solve either the minimization prob-
lem or the maximization problem. Here, we present the version for maximization,
the version for minimization is similar and left to the reader.

1.1. Applications for data mining

In the development of clustering methods, one of the most challenging problems
is identifying the level of association among data points, such as the vertices of a
graph, that provides the proper output of communities. In the case of hierarchi-
cal clustering, this question becomes the determination of which collection of cuts
along the tree in the hierarchical dendrogram will be selected to form the set of com-
munities as the final output. It has been observed that “There are no completely
satisfactory algorithms that can be used for determining the number of population
clusters for many types of cluster analysis” (SAS Institute Inc., 2008).

In Qi et al. (2014), the minimum-cut approach was introduced for the automatic
selection of the final output of communities. More recently, the authors have pro-
posed AQCM, a parameter-free clustering method (Payne et al., 2019) in which the
community selection subprogram is further revised and improved by the applica-
tion of the optimal average cut method which produces fine grained outputs and
significantly improves the quality of earlier approaches. For the purpose of scien-
tific completeness, this paper provides some mathematical supports of this newly
developed method in Payne et al. (2019).

1.2. Notation and definitions

A rooted tree T is a directed graph whose underlying graph is a tree and, there is
a given vertex v0, called the root, such that, for every vertex x ∈ V (T ), the unique
path of the tree from v0 to x is a directed path.

Let T be a rooted, weighted tree with edge weight function w : E(T ) → R
+

assigning a weight w(e) to each edge e ∈ T . Let v0 be the root of T . For any edge
set X ⊆ E(T ), we set w(X) :=

∑
e∈X w(e) to be the sum of the weights of the

edges in this subset. We denote by E+(v) the out edges of vertex v and E+(e) to
refer to the out edges of the vertex that is the head of edge e when this notation
is convenient. Set α0 := w(E+(v0))

|E+(v0)| . When we refer to edge cuts, we will usually use
the symbol Q. Furthermore, all the edge cuts discussed are cuts separating the root
v0 from the set L of leaf vertices of T , we may refer to such cuts as root-separating.
The algorithm presented here relies on the graph operation edge contraction which
we denote using the standard notation T/e when we contract the edge e in the
digraph T .
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Definition 1. For e ∈ E(T − L) we define the contractibility of e, denoted by
λ(e), with the following formula:

λ(e) =
w(E+(e)) − w(e)

|E+(e)| − 1
.

Definition 2. We say an edge e is contractible if λ(e) > α0.

Definition 3. The edge set E(T −L) may be ordered λ(e1) ≥ λ(e2) ≥ · · · ≥ λ(em).
We may refer to this ordering as the contractibility ordering.

2. Optimization Problem and Algorithm

Input. A rooted weighted tree T with edge weight w : E(T ) → R
+ and the root v0

and set of leaves L.

Output. An edge cut Q of T separating the root v0 and the set L of leaves such
that

P
e∈Q w(e)

|Q| is maximum among all such edge cuts.

The algorithm is as follows:

Step 1. Determine

α0 =
w(E+(v0))
|E+(v0)| .

Step 2. Sort the edges ei of the E(T − L) so that

λ(e1) ≥ λ(e2) ≥ · · · ≥ λ(em),

where λ(ei) is the contractibility of the edge ei as in Definition 1.

Step 3. If λ(e1) > α0 then

(i) Denote the in edge to e1 by e∗. Contract T ← T/e1, and
(ii) update λ value for e∗, or update α0 if e1 had no in edge (it was in E+(v0)),

and
(iii) repeat Step 2.

If λ(e1) ≤ α0 then go to the END STEP.

END STEP. Output: Q = E+(v0).

Remark. The output Q above is an edge set of the contracted graph resulting from
the running of the algorithm, however Q is also a subset of the original set of edges
input to the algorithm. It is in the context of the input graph T that the set Q is
the solution to the optimization problem presented here.

Figures 1 and 2 illustrate an example of the output of this algorithm.
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Fig. 1. The input: a weighted tree with the root v0.

Fig. 2. The output (after contractions): E+(v0) is the optimal average edge-cut.
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In the next section, we will prove that the algorithm provides an optimal solu-
tion. That is, we prove the following theorem as our main result.

Theorem 1. The output Q of the algorithm is an edge-cut of the input rooted tree
T with the average weight

∑
e∈Q w(e)
|Q| ,

maximum among all edge-cuts separating the root v0 and the set L of leaves.

3. Proof of Optimality

3.1. Lemmas

Before the proof of Theorem 1, we need the following lemmas.

Lemma 1. Let Q be a root-separating cut of T and let e ∈ Q but e is not a
leaf-edge of T . If λ(e) > w(Q)

|Q| , then ∃Q′ 	= Q with w(Q′)
|Q′| > w(Q)

|Q| . Specifically,
Q′ = (Q\{e}) ∪ E+(e).

Proof. By the given conditions that λ(e) > w(Q)
|Q| , we have the following.

w(E+(e)) − w(e)
|E+(e)| − 1

= λ(e) >
w(Q)
|Q| =

w(Q\{e}) + w(e)
|Q\{e}|+ 1

. (1)

We will use the following classical inequality
a

b
>

c

d
⇒ a + c

b + d
>

c

d
, (2)

and define a, b, c, d as follows.

a = w(E+(e)) − w(e),

b = |E+(e)| − 1,

c = w(Q\{e}) + w(e),

d = |Q\{e}|+ 1.

Then, with the above definitions, Inequality (1) is the LHS of the implication (2).
The RHS of implication (2) is as follows.

w(Q\{e}) + w(E+(e))
|Q\{e}|+ |E+(e)| >

w(Q\{e}) + w(e)
|Q\{e}|+ 1

=
w(Q)
|Q| . (3)

Inequality (3) says that the cut Q′ = (Q\{e})∪E+(e) has the average weight greater
than the average weight of Q.

Definition 4. Let Q be a root-separating cut of T with Q 	= E+(v0). Let H be the
component of T − Q such that the root v0 ∈ V (H). For terminology, we will refer
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to H as the subtree (of T) internal to Q, or we may say H is the internal subtree of
Q.

Lemma 2. Let Q 	= E+(v0) be a root-separating cut of T and let H be the subtree
internal to Q. Let e ∈ H be a leaf edge of H. Then at least one of the following
holds :

(i) λ(e) > w(Q)
|Q|

(ii) ∃Q′ 	= Q with internal subtree H ′ such that |E(H ′)| < |E(H)| and w(Q′)
|Q′| ≥

w(Q)
|Q| . Specifically, Q′ = (Q\E+(e)) ∪ {e}.

Proof. Suppose (i) is not true. That is, w(Q)
|Q| ≥ λ(e). Thus, we have the following:

w(Q\E+(e)) + w(E+(e))
|Q\E+(e)| + |E+(e)| =

w(Q)
|Q| ≥ λ(e) =

w(E+(e)) − w(e)
|E+(e)| − 1

. (4)

We will use the following classical inequality.
a + c

b + d
≥ c

d
⇒ a

b
≥ a + c

b + d
. (5)

Define a, b, c, d as follows:

a = w(Q\E+(e)) + w(e),

b = |Q\E+(e)| + 1,

c = w(E+(e)) − w(e),

d = |E+(e)| − 1.

Then with the above definitions, inequality (4) is the LHS of the implication (5).
The RHS of implication (5) is as follows:

w(Q\E+(e)) + w(e)
|Q\E+(e)| + 1

≥ w(Q\E+(e)) + w(E+(e))
|Q\E+(e)| + |E+(e)| =

w(Q)
|Q| . (6)

Inequality (6) says that the cut Q′ = (Q\E+(e)) ∪ {e} has the average weight
at least the average weight of Q. Clearly if H ′ is the internal subtree of Q′, then
|E(H ′)| < |E(H)|. So condition (ii) holds as desired.

Lemma 3. Let e1 be the maximum edge in the contractibility ordering of E(T −L).
Assume that λ(e1) > α0. Then an optimal solution of T ′ = T/e1 is also an optimal
solution of T .

Proof. It is sufficient to show that there exists an edge cut Q0 of T which achieves
the maximum average weight among all root-separating cuts of T and e1 /∈ Q0.

Let Q0 be an optimal average weight cut in T . Assume e1 ∈ Q0. Observe that if
w(Q0)
|Q0| = α0, then λ(e1) > w(Q0)

|Q0| and by Lemma 1, we may define Q′ = (Q0\{e1})∪
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E+(e1) and we have w(Q′)
|Q′| > w(Q0)

|Q0| , a contradiction to the optimality of Q0. So
w(Q0)
|Q0| > α0 must be true, and Q0 	= E+(v0), and also

w(Q0)
|Q0| ≥ λ(e1). (7)

Among all optimal average weight cuts Q0 satisfying the above, we may assume
Q0 has the smallest possible internal subtree H0. Note that H0 	= ∅. Then by
Lemma 2, there is a leaf edge e ∈ H0 with

λ(e) >
w(Q0)
|Q0| . (8)

But since e 	= e1, we have λ(e) > λ(e1) (by Inequalities (7) and (8)), a contradiction
to the definition of e1 as the maximum edge in the contractibility ordering. So
e1 /∈ Q0 as desired.

3.2. Proof of Theorem 1

By Lemma 3, it is sufficient to show that, after all possible contractions of edges,
E+(v0) is an optimal solution in the resulting tree.

Suppose on the contrary that the output of the algorithm is not the proposed
cut. Let Q be an optimal cut with an internal subtree H with |H | as small as
possible. Suppose that Q 	= E+(v0). That is,

w(Q)
|Q| >

w(E+(v0))
|E+(v0)| = α0. (9)

Apply Lemma 2 here. The case (ii) of Lemma 2 does not occur since the cut Q

is optimal. Hence the case (i) implies the existence of a leaf e in the internal subtree
H with

λ(e) >
w(Q)
|Q| . (10)

By Inequalities (9) and (10), the leaf e is a contractible edge. Moreover, the maxi-
mum edge in the contractibility ordering is contractible, contradicting the assump-
tion that the algorithm terminated.

4. Conclusions and Remarks

4.1. Computational complexity of algorithm

In addition, we find that the computational complexity of the algorithm is polyno-
mial and so its implementation will be efficient and scalable to large datasets. Let
|V (T −L)| = n. The cost of step 1 is a constant. Steps 2 and 3 are repeated at most
n times. In the first loop of repeating, the cost of step 2 is O(n(log2 n)) or O(n2)
since the sorting of λ’s is involved, while the cost of step 2 in each loop after the
first sorting is at most O(n) since we only need to place one item λ(e∗) to a proper
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position in a well-sorted sequence. The cost of step 3 in every loop is at most O(n)
since only updating of the graph and the revising the weight λ are involved. Hence,
the cost of the worst case has an upper bound of O(n2)+n(O(n)+O(n)) = O(n2).

4.2. Conjectures and open problems

Problem 1. Let G be a network with the source s and the sink t and associated
with a weight w : E(G) → R+. Find an edge-cut T separating t from s such that
the average weight of T is maximum among all such edge-cuts.

The problems of finding cuts with total weights maximized or minimized have
been well studied. One is known as an NP-complete problem, while another is
polynomial (Bondy et al., 1976; Cormen et al., 2009; Goldberg and Tarjan, 1988).
But few study have been done yet for finding an edge-cut with the average weight
maximized (or minimized). We would like to propose the following conjecture.

Conjecture 1. Problem 1 is an NP-complete problem.
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