ISOPERIMETRY, STABILITY, AND IRREDUNDANCE IN DIRECT
PRODUCTS

NOGA ALON* AND COLIN DEFANT?

ABSTRACT. The direct product of graphs Gi, ..., Gy is the graph with vertex set V(G1) X --- X
V(G,) in which two vertices (g1, ..., gn) and (g1, ..., g,) are adjacent if and only if g; is adjacent to
g; in G; for all i. Building off of the recent work of Brakensiek, we prove an optimal vertex isoperi-
metric inequality for direct products of complete multipartite graphs. Applying this inequality, we
derive a stability result for independent sets in direct products of balanced complete multipartite
graphs, showing that every large independent set must be close to the maximal independent set
determined by setting one of the coordinates to be constant. Armed with these isoperimetry and
stability results, we prove that the upper irredundance number of a direct product of balanced
complete multipartite graphs is equal to its independence number in all but at most 37 cases. This
proves most of a conjecture of Burcroff that arose as a strengthening of a conjecture of the second
author and Iyer. We also propose a further strengthening of Burcroff’s conjecture.

1. INTRODUCTION

All graphs in this paper are assumed to be simple. We denote the vertex set and edge set of a
graph G by V(G) and E(G), respectively. The letter u will denote the uniform probability measure
on V(G). That is, u(S) = |S|/|V(G)| for all S C V(G). The direct product (also called the tensor
product, Kronecker product, weak product, or conjunction) of graphs G, ..., Gy, denoted by either
G1 x -+ x Gy or [[i; Gi, is the graph with vertex set V(G1 x --- x G,,) = V(G1) x --- x V(Gy,) in
which two vertices (g1, ...,9n) and (gi,...,g,) are adjacent if and only if {g;,¢/} € E(G;) for all
i € [n]. Much of this paper is devoted to studying direct products of balanced complete multipartite
graphs, which are complete multipartite graphs in which the partite sets all have the same size.
We let Ku,t] denote the complete multipartite graph consisting of ¢ partite sets of size u; thus, we
are concerned with graphs of the form [ | K[u;, t;].

One motivation for studying these graphs comes from the investigation of unitary Cayley graphs,
which are specific graphs associated to commutative rings with unity. Unitary Cayley graphs have
become a popular topic over the past few decades [4,13,18-21,25,31,33,34], in part because of their
connection with a theorem of Erdés and Evans [22] that led to the notion of the representation
number of a graph [1-3,23,24,26,35] (see Section 7.6 of [26] for more details). The authors of [4]
have used a structure theorem for Artinian rings to show that the unitary Cayley graph of a finite
ring is isomorphic to a direct product of balanced complete multipartite graphs.

Hundreds of papers in graph theory have studied what is called the domination chain; this
is a collection of graph parameters that always satisfy a certain chain of inequalities. The aim
is usually to show that these inequalities are actually equalities for certain types of graphs. We
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only discuss three of these graph parameters and refer the interested reader to Section 3.5 of
[30] for more information about the domination chain. The first parameter we consider is the
independence number of a graph G, denoted «(G), which is the largest size of an independent set
in G. A very closely related notion is that of the independence ratio of a graph, which is defined by
B(G) = a(G)/|V(G)|. The closed neighborhood of a set S C V(G), denoted N[S], is the union of S
with all of the neighbors of the vertices in S. We say S is dominating if N[S] = V(G). We say S is
irredundant if N[S'\ {v}] # N[S] for all v € S. The upper domination number of G, denoted I'(G),
is the maximum size of an irredundant dominating set in G. The upper irredundance number of G,
denoted IR(G), is the maximum size of an irredundant set in G. Every maximal independent set is
an irredundant dominating set, and every irredundant dominating set is obviously an irredundant
set. Therefore, we always have the chain of inequalities

a(G) <T(G) < IR(G),

which comprises the upper portion of the domination chain. One of the notable results concerning
these parameters is a theorem of Cheston and Fricke, which shows that a(G) = IR(G) whenever G
is strongly perfect [15].

Suppose now that G = [[;_; K[u;, ;] is a direct product of balanced complete mulipartite graphs,
where t; > -+ > t,. It is straightforward to check that o(G) = |V(G)|/t, (alternatively, 8(G) =
1/t,). While studying domination parameters of unitary Cayley graphs, the second author and
Iyer were led to conjecture that for these graphs a(G) = I'(G) [20]. They proved this conjecture
in the case in which ¢, < 2 and the case in which n < 3. Burcroff observed that none of the
arguments proving those cases of the conjecture used the fact that the sets under consideration
were dominating [13]. In other words, a(G) = IR(G) when ¢, < 2 or n < 3. She then made the
following stronger conjecture.

Conjecture 1.1 ([13]). If G = [[;_, K[ui, t;] is a direct product of balanced complete multipartite
graphs, then a(G) = IR(G).

Making progress toward this conjecture, Burcroff proved the following theorem.
Theorem 1.2 ([13)). If G =[], K[ui, t;], where t; > --- > t, > 2, then

t2
IR(G) < min {a(G) + 2tg -+ - by, 2t”1a(G)} .

In this article, we prove most of Conjecture 1.1. More precisely, we explicitly list 37 graphs
Z1,...,Z37 in Section 3 and prove the following theorem.

Theorem 1.3. Let G = [ K[u;, t;] be a direct product of balanced complete multipartite graphs.
If G is not one of the graphs Z1, ..., Z37 listed in Section 3, then

a(G) = TR(G).

The proof of this theorem requires three main ingredients that are interesting in their own right.
For the first ingredient, we consider the even more general family of graphs that can be written
as a direct product of (not necessarily balanced) complete multipartite graphs. In Section 2, we
prove the following theorem via a simple application of the polynomial method. Observe that this
theorem both strengthens and generalizes Theorem 1.2.

Theorem 1.4. Let G = [[;", H;, where each graph H; is a complete multipartite graph. If S C
V(G) is an irredundant set, then there exist sets Lon(S), Soc(S) C S such that Lon(S)NSoc(S) = 0,
Lon(S) U Soc(S) = S, Lon(S) is an independent set in G, and |Soc(S)| < 2". In particular,
IR(G) < a(G) + 2".
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The second ingredient in the proof of Theorem 1.3 involves determining an optimal isoperimet-
ric inequality for direct products of complete multipartite graphs. Isoperimetric inequalities are
ubiquitous in extremal combinatorics and graph theory [5,7-11,14,16,17,28,29,32,36]. For every
graph G and every set S C V(G), the vertez boundary 0S is defined by

0S ={w € V(G) : {v,w} € E(G) for some v € S}.
Note that S can include elements of S itself, but it is also possible to have elements of S that are

not in 9S. The vertex isoperimetric profile of a graph G with respect to a measure 7 on V(G) is
the function ®-(G,-) : [0,1] — [0, 1] defined by

¢, (G,v) =min{7(9S) : S CV(G),7(S) > v}.
If we do not specify the measure 7, then we assume 7 is the uniform measure p by default. That

is, ®(G,v) == ®,(G,v).

Brakensiek essentially gave a recursive formula for ®(G, v) in the case where G is a direct product
of complete graphs that all have the same size [12]. It turns out that his proof method generalizes
substantially. Our proof of the following theorem, given in Section 4, closely follows Brakensiek’s
argument, which comprises Appendix B of [12].

Theorem 1.5. Let Hy, ..., H, be complete multipartite graphs such that f(Hy) < --- < B(Hy) and

|- B(H) 1 B(H,)
5@ 2 5m,)

keA
for all nonempty A C [n —1]. We have

0, ifv=0;
q)(Hl,l/)Z 1—B(H1), if0<1/§ﬁ(H1);
L, if B(Hy) <v <1,
If n > 2, then
0, if v=0;
O(Hy %X Hy,v) = (1 —B(H,))® <H1 X oo X Hnl’ﬁ(]an)> , if 0 <v < B(Hpy);
1—B(Hy) + B(H,)® <H1 X oo X Hy 1, llj:géHn§> , if B(H,) <v <1
.. 1_/8(Hk:) 1_5(Hn)
Remark 1.6. The hypothesis in Theorem 1.5 that H () > B(H,) for all nonempty

keA
A C [n — 1] is not a huge restriction. For example, this condition is satisfied if B(H;) < 1/2 for all

i € [n — 2]. In particular, it holds whenever the complete multipartite graphs H; are balanced.

We also prove the following useful corollary in Section 4.

Corollary 1.7. If Hy, ..., H, are complete multipartite graphs with S(Hy) < --- < B(H,) < 1/2,
then
O(Hy x -+ x Hyp,v) > 1o8a(ry) (1=B(Hn))

The final ingredient needed in the proof of Theorem 1.3 is a result concerning stability of inde-
pendent sets in direct products of complete multipartite graphs. One of the first instances of such a
result is due to the first author, Dinur, Friedgut, and Sudakov [6] and concerns graphs of the form
K" (the direct product of n copies of the complete graph K;). They show that the maximum-sized



4 ISOPERIMETRY, STABILITY, AND IRREDUNDANCE IN DIRECT PRODUCTS

independent sets in such a graph are precisely the sets of vertices obtained by fixing one of the
coordinates of the vertices to be constant. Furthermore, they show that every independent set
whose size is almost maximal must be close to one of these maximum-sized independent sets. More
precisely, they prove the following.

Theorem 1.8 ([6]). For each integert > 3, there exists a constant M (t) with the following property.
1

If I C V(K]) is an independent set with p(I) = ;(1 — €), then there exists a mazimum-sized

independent set J such that p(IAJ) < M(t)e, where INJ = (I\ J)U (J\I).

Ghandehari and Hatami [27] improved upon Theorem 1.8 and made it explicit by showing that
if t > 20 and ¢ < 1079, then one can take M(t) = 40/t. Brakensiek greatly improved upon these
results with the following theorem.

Theorem 1.9 ([12]). Let t > 3 be an integer. If I C V(K]') is an independent set with u(l) =

1
—(1—¢)> , then there exists a maximum-sized independent set J such that
t

t3

p(I\ J) < 4glost/log(t/(t=1))

In order to prove Theorem 1.3, we will need to generalize Theorem 1.9 so that it applies to direct
products of balanced complete multipartite graphs that might be of different sizes. First, we fix
some notation. If G = [[;", H;, where the graphs H; are complete multipartite graphs, we let
X;(1),...,X;(t;) be the partite sets of H;. Let

Jaj ={(x1,...,20) € V(G) : zj € Xj(a)}.

Let
logt

n(t) = 710g (ﬁ)

37/81 — (1/2)(5/81)/16) ~ 0.2779,  if t = 3;
w(t) = 35/2536 — (1/3)(7/256)/14) ~ 0.1741, if t = 4;
L if t >5

= tlogt+ O(logt)

and

t3
for all integers t > 3.
Theorem 1.10. Let G = [[; | K(u, t;], wheret;y > --- > t, > 3. Let I C V(G) be an independent

1
set with p(I) = t—(l —¢) > w(ty). There exist j € [n] and a € [t;] such that

n

ln
tj < 1= and  p(I\ Ja ;) < 4e"tn).

As with Theorem 1.4, our proof of Theorem 1.10 closely follows Brakensiek’s arguments from
Section 3.2 of [12]. We have attempted to focus on the analysis that is needed to transfer the proofs
to the setting in which the graphs in the product are not identical.

The proofs of Theorem 1.4, Corollary 1.7, and Theorem 1.10 are somewhat technical, so we have
decided to place them in Sections 4 and 5, which are after the proof of Theorem 1.3. Finally, we
strengthen Burcroff’s Conjecture 1.1 by removing the assumption that the complete multipartite
graphs in the direct product are balanced.

Conjecture 1.11. If Hy, ..., H, are complete multipartite graphs and G = [[;_, H;, then
a(G) = IR(G).
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2. NEAR INDEPENDENCE OF IRREDUNDANT SETS

There is an alternative characterization of irredundant sets of a graph G that follows immediately
from the definition. Specifically, if S C V(G), then S is irredundant if and only if for every v € S,
one of the following holds:

(a) No element of S is adjacent to v.
(b) There exists w € V(G) \ S such that v is the only neighbor of w in S.

If S is an irredundant set, then we say a vertex v € S is lonely if no element of S is adjacent to
v. Otherwise, we say v is social. If v is social, then it must satisfy condition (b) in the above
characterization. In this case, we say the vertex w is a private neighbor of v. Let pn[v;S] denote
the set of private neighbors of the social vertex v. Let Lon(S) and Soc(S) denote the set of lonely
vertices in S and the set of social vertices in S, respectively. Observe that Lon(.S) is an independent
set.

We are now able to prove Theorem 1.4, which not only generalizes and improves upon Theorem
1.2, but also turns out to be a crucial ingredient in the proof of Theorem 1.3.

Proof of Theorem 1.4. Let Hi, ..., H, be complete multipartite graphs, and let G =[], H;. Let
S be an irredundant set in G. We have seen that Lon(S) and Soc(S) form a partition of S and
that Lon(S) is independent. Hence, we need only show that | Soc(S)| < 2". As in the introduction,
let X;(1),...,X;(t;) denote the partite sets of the complete multipartite graph H;. For each vertex
v=(v1,...,0,) € V(Q), let ¢, () be the unique integer in [¢t;] such that v; € X;(c,(7)). Furthermore,
let fy(z1,...,2n) € Q[x1,. .., 2] be the polynomial defined by f,(x1,...,2n) = [1ie; (@i — (7).

For each v € Soc(S), choose some vertex p, € pn[v; S|. Note that the vertices p, for v € Soc(S)
are all distinct by the definition of the sets pn[v;S]. For any distinct y, z € Soc(S), we know that
py is not adjacent to z. This means that there is an index i € [n] such that ¢, (i) = c.(i), so
Jp,(cz(1),...,c2(n)) = 0. On the other hand, fp,(cy(1),...,¢cy(n)) # 0 because p, is adjacent to
y. These conditions easily imply that the polynomials f,, for y € Soc(S) are linearly independent.
These polynomials are multilinear, so they lie in the 2"-dimensional space spanned by the monomials
of the form [],. 4 #; for A C [n]. This implies that | Soc(S)| < 2" as desired. O

3. THE PROOF OF MOST OF BURCROFF’S IRREDUNDANCE CONJECTURE

In this section, we prove Theorem 1.3. We will need Theorem 1.4, which we proved in the previous
section, along with Corollary 1.7 and Theorem 1.10, which we prove in the following sections. Recall
the definitions of 7(t) and w(t) from the introduction. Note that if G = [[;"; K[u;,t;], where
ty > -+ >t, > 2, then Corollary 1.7 tells us that

(1) ®(G,v) = !/
for all v € [0, 1].

Theorem 1.3 states that Conjecture 1.1 holds for all but 37 exceptional graphs Zi,..., Z37.
These exceptional graphs are not necessarily counterexamples to the conjecture; they are simply
the graphs that our proof technique cannot handle. These exceptional graphs are the following
(here, we write K}* for [[i", Ky):
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K3 K[2,3] x K3 K[3,3] x K3 Ky x K3

K[2,4] x K3 Ky x K[2,3] x K2 K? x K2 K[2,4] x K4 x K2
K3} x K[2,3] x K3 K} x K3 Ks x K3 K[2,5] x K3

Ks x K[2,3] x K2 Ks x Ky x K3 Ks x K} x K3 K2 x K2

K x K3 K¢ x Ky x K3 K¢ x K} x K3 K x K5 x K3
K; x K3 K; x Ky x K3 Kg x K3 K x Ky x K3
Ko x K3 Ko x K3 K3 K[2,3] x K3

Ky x K3 K?x K3 K3} x K2 K5 x K3

K5 x Ky x K3 Kg x K3 Ky x K3 K$S

Ky x K3

Proof of Theorem 1.5. Let G = []i; K[u;,t;], where t; > --- > t,. As mentioned in the intro-
duction, this theorem was proven in [20] for ¢, < 2 and also for n < 3 (although it was Burcroff
who observed that the proof showing that a(G) = I'(G) actually proves the stronger fact that
a(G) = IR(G)). Hence, we may assume ¢, > 3 and n > 4. Assume G is not one of the 37 ex-
ceptional graphs listed above. Let S C V(G) be a maximum-sized irredundant set. We must have

M(S) > B(G) = 1/tn-

Consider the set Lon(S) of lonely vertices in S and the set Soc(S) of social vertices in S, as
defined in Section 2. Since Lon(.S) is an independent set, we know that p(Lon(S)) < 1/t,. Write

wu(Lon(S)) = tln(l —¢). Let

2™, 2n

€0

TV wr e unty g

By Theorem 1.4, we know that | Soc(S)| < 2", so

(2)  e=1—tuu(Lon(S)) = 1 — ta(u(S) — u(Soc(S))) < 1 — t, (j - WQ(;)|) — e

Let us assume for the moment that G' # K3; we will return to the case G = K3 later. We claim
that

(3) t1n(1 —e0) > wltn).

We first prove this claim when ¢,, > 4. Because n > 4, we have

2n
—(l—ep)=—— >

1 1 1281 2\14
th tn UL Unby-- oty 7 T th)

1 /2\*
It is easy to check that P <t) > w(ty,) when t,, > 4.

n n
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1
We now prove that (3) holds when ¢, = 3. We wish to see that g(l —£0) > w(3), which we can

rewrite as
2n
(4) < 1—3w(3) ~0.166285.

If n > 8§, then

2n n

<1—-3w(3

so we may assume n < 7.

Suppose n = 4. It is easy to check that (3) holds whenever ¢; > 11 or uq - - - u, > 4, so we may
assume t; < 10 and ug---u, < 3. This leaves us with only finitely many graphs. We can now
check by hand that among the remaining graphs, the claim fails precisely for those appearing in
our list of exceptional graphs. In other words, we can use the assumption that G is not in that list
to verify that (4) holds.

The proofs of the cases n = 5, n = 6, and n = 7 are similar to the proof of the case n = 4. For
the case n = 7, we must also use the assumption that G # K g .

We now know that Lon(.S) is an independent set satisfying
p(Lon(S) = (1= 2) = (1 20) > wi(ta)
so we can apply Theorem 1.10 to see that there exist j € [n] and a € [t;] such that
tn
1-¢

(5) t; < and p(Lon(S)\ Juj) < 4e7(tn)

For every v € Soc(S), choose a vertex p, € pn[v;S]. Let
P ={p,:veSoc(S)NJy;} and Y =(S\ Ju;)UP.
If v € Soc(S), then p, is adjacent to v. Because J,; is independent, P is disjoint from J, ;. It
follows that Y is disjoint from J, ;. By the definition of a private neighbor given in Section 2, the
vertices p, for v € Soc(S) N J, ; are distinct and do not lie in S. Consequently,
u(Y) = p(S\ Ja) + p(P) = (S \ Ja5) + p(Soc(S) N Ja,;)

n

= H(S0c(S) U (Lon($) \ /o)) = p(Soc(S)) + a(Lon($) \ Jo) < s + 470,

Using (2) and the definition of €g, we find that
(6) w(Y) < eo/ty + 4e1)

Since Y is disjoint from J, ;, we have

1 1
(7) p(0Y) N Jaj) 2 - p(0Y) = ;M(Y)l/"(t"),

J J
where we have used Corollary 1.7 in the form of equation (1). By the definition of a private
neighbor, 0P is disjoint from Lon(S) N J, ;. We also know that d(Lon(S) \ Ju ;) is disjoint from
Lon(S) N Jaj, s0 (0Y) N Ja; € Joj \ Lon(S). Hence,

p((9Y) N Jaj) < p(Ja,j) — p(Lon(S) N Ja j) < ti — p(Lon(S) N Ja ;) < u(S) — p(Lon(S) N Ja,;)

n

(8) = (S \ Jaj) + p(Soc(S) N o j) = p(S\ Jaj) + p(P) = p(Y).
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We wish to show that S = J, ;. Assume that this is not the case. Because pu(S) > 1/t, > p(Jq ),
S cannot be a proper subset of J, j. As a consequence, p(Y) > (S \ Jg ;) > 0. Therefore, we can
combine (7) and (8) to see that

©) < (),
J

Note that we have divided each side of an inequality by ,u(Y)l/ n(tn); this is precisely where we have
used the fact that (YY) > 0. We now use (2), (5), (6), and (9) to see that

1— 1— 1 1=1/n(tn)
0 < <= < (Y)Y < (ot + 42 ")
n n J
on on n(ta)\ 1/ 1) on on A\ Mtn) 1=1/n(tn)
_ 4 <|—=+4+4(—
(Ul"'untl"'tn+ <U1"'Unt1"‘tn1) > B (tZJF (t2_1> )
1=1/n(tn)
16 | (167"
(10 §<¢+4(a> |

where we have used the fact that n > 4 in the last step. This tells us that

1=1/n(tn) 1=1/n(ts)
16 16 77(tn) B 16 16 77(tn)

16 16\ n(tn)\ /)
2
:<a*4”<a> ) |

This last expression is decreasing as a function of ¢,. If ¢, > 5, then
1-1/n(5)
16 2 16\
This contradicts the fact that
on on on 4
< < < —

Therefore, we may assume t,, € {3,4}.

€0 = = 0.128.

If ¢, = 4, then (10) tells us that

_ n(4)\ 1=1/1(4)
1= _ (16 +4<16> ) ~ 0.1181.

4 44 43

This contradicts the fact that

2" 2" 2n 2t

< < < —
UL Upty o tpe1 tg—l = gn—1 — 43
If ¢,, = 3, then invoking (2), (3), and (5) yields
tn tn 1

i < < < < 4.
T 1 —e T 1-¢ " w(3)
This tells us that t; = 3, so (9) becomes

t

1 1-1/n(3)
(11) = < (50/3 n 453(3)> .

We saw in (4) that g9 < 0.166285, which easily contradicts (11).
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We have reached our desired contradiction in all cases except that in which G = KJ. In this
case, we have p(Lon(S)) = é(l —g) > %(1 —g0) = %(1 —27/35) > 7/27, so we can apply Theorem
1.9 to see that

p(Lon(S) \ Jaj) < 4¢73)
for some j € [7] and a € [3]. The proof now proceeds exactly as before. We define the set Y as
before, assume that S # J, j, and deduce that (9) holds with t; = ¢, = 3. That is,

)1—1/77(3) —~1/n(3)

o (50/3 +4e]® - ((27/36) /3+4 (27/36)”(3)> : ~ 0.2256.

3
This is our final contradiction. O

Remark 3.1. Suppose G =[] K[u;, t;] is not one of the 37 exceptional graphs listed above. The
preceding proof of Theorem 1.3 shows that if ¢ > --- > ¢, > 3 and n > 4, then every irredundant
set of G of size IR(G) is actually an independent set.

4. VERTEX ISOPERIMETRY

In this section, we prove Theorem 1.5 and Corollary 1.7. Because deducing the corollary from
the theorem is quick, we will do this first.

Proof of Corollary 1.7. Assume Hy, ..., H, are complete multipartite graphs such that 5(H;) <
-+« < B(Hp) < 1/2. By Remark 1.6, the hypotheses of Theorem 1.5 are satisfied. The proof of the
corollary is by induction on n. The case n = 1 is an immediate consequence of Theorem 1.5, so
assume n > 2. The desired inequality is obvious if v = 0, so we can also assume v > 0.

If v < B(H,), then it follows from Theorem 1.5 and induction that

O(Hy % -+ x Hy,v) = (1 — B(H,))® <H1 X e Hyy, B(VHn)>
U logg (s, _1)(1=B(Hn-1)) U logg 1,,) (1=B(Hn))
> (- 501) (50 > - 0) (50

— VlogB(Hn)(l—B(Hn))‘
By a similar token, if §(H,) < v <1, then
V= B(Hn)
O(Hy % - x Hy,v) =1— B(H, H)® ( Hy x - x H, ,, 2 —2n)
(Hy o Hy) = 1= 5(H,) + B0 (Hyx o x Hooa =5 )
v — B(H,) \ 88— 1=AHn-1))
- B(Hn)>
v — B(H,) logg(p,,) (1—B(Hn))
=i |
To ease notation, put 8 = B(H,), ¢ = logg(1 — ), and x = 3/v. Our assumption on v implies that
8 < x < 1. We wish to show that
C
5C+5(” 5) > 1

1-p
Dividing each side of this inequality by v¢, we find that it is equivalent to

(12) xc+5<i:;)czl.

> B(H,)' e 1A 1 g(H,,) <

> B(Hy) a0 (=2 4 5(H,) (
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Observe that equality holds in (12) if x = f or z = 1. Noting that 0 < ¢ < 1, we find that
the left-hand side of (12) is concave down (or constant if ¢ = 1) as a function of x in the range
B < x < 1. Therefore, (12) holds throughout this range. O

We now turn our attention to proving Theorem 1.5. The theorem is straightforward if n =1, so
we can assume n > 2. Let Hy,..., H, be as in the statement of the theorem, and let G = [, H;.
Let X;(1),..., Xi(t;) be the partite sets in H;. We may assume that | X;(1)| > --- > |X;(¢;)|. Notice
that B(H;) = | Xi(1)|/|V (H:)l.

It will be convenient to work with complete graphs rather than complete multipartite graphs, so
we define a map, denoted coll, that essentially collapses the partite sets. For each i, let H] be a
copy of the complete graph Ky, with V(H;) = [t;]. Let G’ =[]}, H]. Define coll; V( i) — HI
by declaring that coll; sends the elements of X;(a) to a for every a € [ i]. Let coll : V(G) — V(G )
be the product map coll = coll; x --- x coll,. We also let p = coll, p denote the pushforward of
the uniform probability measure p on V(G) under the map coll. That is, p(T) = u(coll™}(T')) for
all T C V(G'). Alternatively, we can simply define p on the singleton sets by

p({(a1,...,an)}) = 1 X1(a1)] - | Xn(an)]

V(G
and extend its definition by additivity.

For every set T C V(G), we have p(coll(T)) = u(coll™*(coll(T))) > u(T) and p(dcoll(T)) =
p(coll 1 (D coll(T))) = (8 coll ™ (coll(T'))) = wu(8T). Tt follows that

:)
®,(G,v) =min{p(dS) : S CV(G'), p(S) > v}.
u(G

In other words, the vertex isoperimetric profile ® -) of G with respect to the uniform measure
1 is the same as the vertex isoperimetric profile <I> (G -) of G’ with respect to the measure p.

We use the notation J,; from the introduction for the graph G’. That is to say that if i € [n]
and a € [t;], then we put

Jai = [tl] X oo X [ti—l] X {CL} X [ti+1] X [tn] C V(G/)
Observe that p(J,;) = | Xi(a)|/|V (H;)|; in particular, p(J1 ;) = B(H;). The following proposition is

crucial in estabhshlng Theorem 1.5.

Proposition 4.1. Fiz v € (0,1], and choose a set S C V(G') such that p(S) > v and p(dS) =
®,(G',v). Assume that S is chosen to mazimize p(S). There exists a set S C V(G') such that
p(S") = p(S), p(0S") = p(dS), and either S" C Jy,, or Ji,, €S’

To prove Proposition 4.1, we follow [12] and define compressions.

Definition 4.2. For = (x1,...,zy,) € [t1] X -+ X [t,], let - = (21,...,®i—1,Zit1,...,2Ty). For
T C [t1] X - X [tn], define the compression of T in the i** coordinate by

G(T)={xetr] x - x[tn] rxi <|{y €T :y- =z-i}}
The set T is called compressed if ¢;(T) =T for all i € [n].

Brakensiek proves some important facts about compressions that are stated as Remark 2, Claim
5, and Claim 6 in [12]. The proofs generalize immediately to our more general setting, so we will
not repeat them here. Instead, we state the results in the following lemmas and refer the reader to
Brakensiek’s paper for the proofs.
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Lemma 4.3. If T C [t1] X - - - X [t,], then there is a finite sequence iy, ..., iy of elements of [n] such
that ¢;, o ¢, _, o---0¢;, (T) is compressed.

Lemma 4.4. If I is an independent set in G' and i € [n], then ¢;(I) is also independent.
Lemma 4.5. If T C V(G'), then p(0c;(T)) < p(0T) for all i € [n].

Invoking Lemmas 4.3 and 4.5, we find that we can assume without loss of generality that the set
S in Proposition 4.1 is compressed.

Define
o: V(G —{0,1}"
by requiring that II(x); is 0 if z; = 1 and is 1 otherwise. Because | X;(1)|/|V (H;)| = 5(H;), we have
(13) p(II7Y(2)) = [T =B [] 8H
zi=1 21 =0

for all z € {0,1}".

For z € {0,1}", let =z be the Boolean complement of z. Suppose that T'C V(G’) is compressed
and that z € V(G’) is adjacent to some y € T. If II(x); = II(y);, then neither z; nor y; is equal
to 1. Since 7' is compressed, then the vertex y' defined by y; = 1 and y; = y; for j #iisin T
and is adjacent to x. Thus, we may assume II(z); # II(y);. We can do this for all i, meaning that
x € I~Y(=II(y)). Conversely, if z € V(G') and y € T are such that z € II"1(=II(y)), then certainly
x is adjacent to y. This proves that if T C V(G’) is compressed, then
(14) or= |J m'(=a).

z€II(T)
It follows that
(15) pOT) = > p(H(=2))= > [ B0 [T (- 58(H).
2€I(T) z€ll(T) z;=1 2 =0
Consequently,

(16) p(OT) = p(d 11~ (I(T))).

For every B C [n], define op : {0,1}" — {0,1}" by op(z); = z; if i ¢ B and op(z); = 1 — a; if
i€B.For AC[n—1]and T C V(G), let

Fa(T)={z € I(T) :2; =0 for alli € A, xp, = 1,0 4u(n)(x) € I(T)}.
Following Brakensiek, we define the folding operators fold4 for all A C [n — 1] by
fold4(T) = I ((I(T) \ FA(T)) U 0 au(ny (Fa(T))).
Note that fold 4 is idempotent in the sense that fold 4 (fold4(T")) = fold 4(T"). We make the following
claim:

Claim: If T and fold 4(T") are both compressed, then p(T") < p(fold (7)) and p(9T") > p(0 fold 4(T")).

First, observe that if T is compressed, then Fy(T') = 0, so foldg(T) = I~ (II(T)). By (16), this
proves our claim in the case A = (). Now assume that A C [n — 1] is nonempty. If z € F4(T) and
we let 2’ = 0 4u(n}(2), then

p(I(2)) = [ (0 - () [[ BH) and p(I' (<)) = [[ (1= B(H:) [] B(H)
z;:()

zi=1 2 =0 2=
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by (13). Using the hypothesis of Theorem 1.5, we deduce that

pI17Y(z)) _ 1-—B(Hy) B(Hy)
p(71(2) — B(Hn) 11 T B(Hy) -

This shows that p(IT7!(2)) < p(H_l(UAU{n}(z))) for z € Fa(T). Now,

p(T) <pM AT = Y pM' =)= D> p=)+ Y p7(2)

keA

z€II(T) z€I(T)\Fa(T) 2€FA(T)
< D @@+ Y pM T oaumy(2) = > p(II71(2))
2€II(T)\Fa(T) z€F,(T) zE(I(T)\Fa(T))Jo au(n} (Fa(T))
= p(folda(T)).
By a similar argument,
pI Y (~2) B(H.) I1 1-B(Hy)
P~ (o augmy(72))) 1= B(Hy) B(Hk)

keA

when z € F4(T). By (15),
pOT)= > p'(=2))= Y pM(=2)+ Y p(T(—2))

2€Il(T) 2€I(T)\Fa(T) 2€FA(T)
> Y pT =)+ Y p(T  (oaumy(52) = > p(II™" (=2))
z€ll(T)\Fa(T) z€FA(T) z€(I(T)\Fa(T))Uo augny (Fa(T))
_ p(@folda(T)).

This completes the proof of our claim, so we can return to our set .S and the proof of Proposition
4.1.

Proof of Proposition 4.1. Using (16) and our assumption that S was chosen to maximize p(S), we
see that S = IT"Y(TI(S)). We claim that there is a sequence Ay, ..., Ay of subsets of [n — 1] and a
sequence S = Sp, S1,. .., Sy of compressed subsets of V(G’) such that S; = fold 4, (S;—1) for all i € [/
and fold4(S¢) = Sy for all A C [n—1]. We omit the proof of this claim because it is identical to the
proof of Claim 18 and the discussion thereafter in [12]. Let S = Sy. By the preceding discussion, we
know that p(S¢) > p(Se—1) = -+ = p(So) = p(S) and p(9Se) < p(9Se—1) < -+ < p(050) = p(9S).
By our choice of S, this means that p(S’) = p(S) > v and p(95’) = p(0S) = ®,(G’,v). We want
to prove that either S’ C .J; ,, or Ji, C S’. Suppose S" € Ji,, so that there exists x € S\ Jy .
Let A={ie[n]:2z; =1} ={i € [n] : II(x); = 0}. Because = ¢ J;,, we know that n ¢ A. The
fact that fold 4(S") = S’ tells us that F4(S’) = 0. In particular, z & F4(S’). By the definition of
FA(S"), this means that the vector y = o 44, (I1(w)) is in TI(S"). However, y; = 1 for all i € [n —1]
while y,, = 0. It now follows easily from the fact that S’ is compressed that Ji, C S'. g

Proof of Theorem 1.5. As mentioned above, we may assume n > 2. Fix v € (0,1], and choose
S C V(G') such that p(S) > v and p(9S) = ¢,(G,v) = ®,(G',v). We may assume that S is
chosen to maximize p(S). By Proposition 4.1, we may further assume that either S C Jj, or
Jin € 5. By abuse of notation, we let p denote the pushforward of p under the collapsing map
from V(Hy x -+- x Hp—1) to V(H] x --- x H] ;) (just as we defined p on V(G’)).
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Assume first that v < B(H,). We know that p(Ji,) = B(Hy), so p(0Ji,) > @,(G' v) =
®,(G,v). It is easy to check that the proper containment J; , C S would imply the contradiction
p(0S) > p((?JLn) Therefore, S C Jy,,. Let

= {(xl,.. , Tp— 1) € V(H{ cee X H?’?,*l) : (xl,.. . ,wn_l,l) S S}
We have p(T) = p(5)/6(Hy) = v/B(Hn), s

B,(G,v) = B,(G',v) = p(dS) = (1 — B(H))p(dT) > (1 — B(H,))P, (Hi X oo x Hl_y, )

— (1- B(H)®, (H ‘oo Ho, m) |

On the other hand, there exists 77 C V(Hy x --- x H/ ;) with p(T") > v/B(H,) and

n

v v
p(0T") = @, <H{ X o ng_l,B(Hn)) =9, <H1 X o an_l,B(Hn)>.
Defining
= {( , Tp—1, 1) : (a;l, Ce ,l‘n_l) S T/},
we find that p(S") = B(H, ) (1) > and

D,.(G,v) = B,(G,v) < p(0S") = (1~ B(H))p(OT") = (1 - B(H,))®, (H X oo x Hyo, 5(H)> -

This completes the proof in the case where v < 5(H,,).

Assume now that §(H,) < v < 1. We must have J;, C S. Let
U={(z1,.. ,xn_1) EV(H} x -+ x H,_1):(x1,...,Zn_1,y) € S for some y € {2,...,t,}}.

If (1,...,2p-1) € U, then (21,...,24-1,2) € S for all z € {2,...,t,}. Indeed, adding the
additional points of the form (z1,...,2n—1,2) to S increases p(S) while keeping p(95) the same,
so the claim follows from our assumption that S was chosen to maximize p(5). We have

_ p(S) = p(Jin) _ v — B(Hn)
AU =TT a0, 2 T Al

and
(G, v) = (G, v) = p(9S) = p(8J1,0) + p(OU x {1}) = 1 — B(Hy) + B(Hn)p(9U)

/ / — Hn
> 1— B(Hn) + B(Hn)®, (Hl X X Hygs Z gEHni)
_ B(H,
=1-B(Hy) + B(Hn)®, (Hl X oo X Hpo, %) '
On the other hand, there exists U’ C V/(Hj x -+ x H;,_,) with p(U’) > Z:SE?; and
— B(H, — B(Hn

Defining
Q={(z1,...,zn-1,2): (x1,...,xn1) €U, 2 €{2,...,tp}} and S =J,UQ,
we find that p(S’) = B(H,,) + (1 — B(Hy))p(U') > v and
D(Gv) = Bp(G',v) < p(DS) = p(01) + p(OQ 1 J1) = 1 — B(Hn) + p(0U" x {1})

— 1= B(H,) + B(Hu)p(0U') =1 — B(H,) + B(H,)®,, (Hl XX Zig&i) '
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This proves the case in which 8(H,) <v < 1. O

5. INDEPENDENT SET STABILITY

This section is devoted to proving Theorem 1.10. Recall the definitions of n(t), w(t), and J, ; from
the introduction and Definition 4.2 from the previous section. Suppose Hi, ..., H, are complete
multipartite graphs such that each graph H; has t; partite sets, and let G = [[;_, H;. Say a set
S C V(G) is sorted if pu(S N Jyj) > -+ > p(SNJg, ;) for all j € [n]. We will often assume the
independent sets we consider are sorted. This is simply for notational convenience; we can always
relabel the partite sets without loss of generality in order to ensure that the set under consideration
is sorted. Note that if the graphs H; are complete, then the sets X;(1), X;(2),...,X;(t;) are
singletons. Thus, to ease notation, we identify X;(j) = {j}.

Most of the results in this section concern large independent sets in direct product graphs.
However, we start with a result about independent sets in direct products of complete graphs that
makes no assumption on the size of the independent set.

Proposition 5.1. Let G = [[' | Ky, where t; > --- > t, > 3. Let I C V(G) be a sorted

independent set with u(I) = —(1 —¢€). Choose j € [n], and let 6 = p(I'\ Jy ;). We have

t

t t 5 1/n(tn)
e>1— 2 — 5ty + —— )
t; ti—1\t;—1

Proof. First, note that

o
I i) > .
p(I N Jay) > t— 1

Using Corollary 1.7 (in the form of (1)), we find that

. ) 5\ Lt
. ) = ) > .
(@I N Joj) N Ty ) — TR N J25)) = P (tj - 1)

Because [ is independent, I N Jy ; is disjoint from 0(1 N Jo ;) N Jy ;. Thus,

ti(1 —¢e) =0 =yp(l)—p(I\ Ji;)=pINJ;) < pJr;) —pOI NI )N 1)

1 1 K} 1/n(tn)
< — = .
- tj tj—l <7fj—1)

1 11 § o\t
Rearranging the inequality —(1—¢)—9§ < — — yields the desired result. [J
tn tp tj—1\t;—1

In the following lemmas, we assume the independent set from Proposition 5.1 is large. In Lemma
5.2, we find that for every choice of j, the value of § must either be somewhat large or somewhat
small. Lemma 5.3 shows that if the independent set is compressed, then it cannot be the case that
0 is somewhat large for every choice of j. Consequently, in this case, there is some choice of j that
makes § somewhat small. Lemma 5.4 is a purely technical result that allows us to prove Lemma
5.5, where we remove the hypothesis from Lemma 5.3 that the independent set is compressed.
Finally, we use Proposition 5.1 to show that if § is somewhat small, then it is actually very small.
This allows us to complete the proof of Theorem 1.10. Many of the ideas below are adapted from
Brakensiek’s arguments in Section 3.2 of [12].
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Lemma 5.2. Let G = [[;", Ky,, where t; > --- > t, > 3. Let I C V(G) be a sorted independent
set such that u(I) > w(t,). For all j € [n], either

ti —1 2t — )(t; — 1
M(I\Jl,j)<]t75 or M(I\Jl,j)>( ’ 24(] )

J J

Proof. Let 6 = p(I\ J1;). The first part of the proof essentially follows Brakensiek’s proof of Claim
13 in [12] with minor modifications, so we omit the details. Following his argument (and using
Corollary 1.7), we arrive at the inequality

1 1 ) 1/n(tn)
1 — — n)-
(17) R tj_1<tj_1> > wity)

t: —1 2t — 1)(t; — 1
We wish to show that this inequality fails for J 7 <5< ( J tl( J )
j J

J
side of (17) is concave up as a function of § when ¢ is in this range, it suffices to prove that the
(2t; —1)(t; — 1)

. Because the left-hand

t;i—1
inequality fails when § = ]75 and when § = . Replacing ¢; by the continuous

t4
J J
variable z and recalling that t; > t,,, we see that is suffices to prove that
1 z—1 1 (1)\Y)
18 — -— = <wl(t
(18) x+ xd $—1<3:5> < w(tn)
and
1 Qe-1D@x-1) 1 [2z-—1)\Y7
19 — — < wl(t
(19) x + xt z—1 xt < w(tn)

whenever x > t,,. This is straightforward when t, = 3 or t,, = 4, so we may assume t,, > 5. Let us
differentiate the left-hand sides of (18) and (19) with respect to . We check that these derivatives
are negative so that the left-hand sides of these inequalities are decreasing in x. This means that
it suffices to prove them in the case = t,,. Under this assumption, (18) and (19) become

1 tp—1 (ta—1) _ At =3

th B T

and

RN G VI D’ (, 1 1/n(tn) _ Aty =3
tn t t% tn - t% ’

n
Both of these inequalities are easy to verify (for the second, note that (2 — 1/t,)/"() > 1), O

Lemma 5.3. Let G = [[} | Ky, where t; > --- > t, > 3. Let I C V(G) be a compressed
independent set such that p(I) > w(t,). There exists j € [n] such that
t;i—1
p\ ) < L
J

Proof. The beginning of the proof follows Brakensiek’s proof of Lemma 15 in [12]. We induct on n.
If n =1, then we are done because I = {1} = J; ;. Assume that n > 2 and that the lemma holds
for all smaller values of n. Let G’ = [/} K;,. Let Joi = [ta]xx[tima] x {a} < [tiga] X X [tn—1].
tj—1
5
tj

By way of contradiction, assume that p(I'\ Jy ;) > for all j € [n]. According to Lemma 5.2,
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this implies that

(2t; —1)(t; — 1)
t4
J

(20) p(I\ Ji5) =
for all j € [n].

For b € [t,], put
Iy = {(a:l, e ,.%'n_l) S V(G’) : (xl, ce ,l'n_l,b) S [}.

The sets I, are compressed because I is compressed. Choose a € [t,—1] such that p((11\I2)NJan—1)
is maximal. Let I = LU ((I1\ I2) N Jgn-1). If we follow Brakensiek’s argument mutatis mutandis,
we find that I is an independent set. Moreover, Io C IcC I;. By Lemmas 4.3 and 4.4, we can
repeatedly apply compressions to the set T until we obtain a compressed independent set I cCV(G").
Because I; and I are already compressed, we know that Io C I C I;. Now,

~ = L) — p(l 1 n—1— Lu(l 1 th — (L
(21) M(I>=M<I)ZM(IZ)+M( 1) = plla) _ plh) + (s = Dplly) o plln) + Jullz)
tn—1 th—1 th—1
Because [ is compressed, we have p(ly) > u(Iz) > -+ > p(ly,). Thus, p(l) + (¢, — Du(lz) >
St u(1,) = tupu(I). Combining this with (21) yields

p (1) = 2D = 1) > t) > wlta).

tn—l

We can now apply our induction hypothesis to the compressed independent set T to see that there
exists j € [n — 1] such that

~ t.—1
p(T\Ty) < 2
J
Because [ is compressed and I C f we have
t,—1 ~ th,—1 t;—1
I\ (J15 U J1n)) = Zufb\JU — LD\ ) < I\ 1) < T e
n n n y

Invoking (20), we obtain the inequalities

(22) WU\ ) ) = I\ ) = (I (g U ) > B0 D2 =] ]

and

(23) (T Jup) O Jag) = (I Jug) = (I (i U )) > = Dl = 1) a2 18 ]

td tn t
Put I'=INJy;NJi, and I” =1 NJy ;N Ja,. Because I is compressed,
1 2t; —1  t,—1 1
(24) u(I') > PN\ Jij) Vi) 2 =2 = == > 5
tj—1 t tnt? 13
and
1 2t, —1 t;—1
(25) p(I") = PN\ Tip) NV J1g) 2 = = =
ty — 1 tt tnt]
The elements of I’ have constant j*! and n*® coordinates, so
1 1
26 oI' N J1i N Jay) = u(oIy > O(G, u(I)).
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Finally, observe that
1
(27) plI") + p@I' N T3 N o) < a1 N ) = =
J'n
because I’ UI” is an independent set. We now combine (24), (25), (26), (27), and Corollary 1.7 to
obtain

1 2t, — 1 t;—1 1
— > (1" or' N Ji N Jay,) > =2 - O(G, u(I’

S22l -1 1

> _ + MI/)l/n(tn)
e B (s )y

1/n(tn
s S U 1 ) e
- tt  (tj = 1)(ta —1) \ 3 '

We seek a contradiction, so our goal is to prove that

1 tn
01 1 1 P\ ) 1
tk tnt] (= 1D(ta —1) \ £ titn

Multiplying both sides of this inequality by ¢;t, yields

1/n(tn)
2, —1 1 titn 1
(28) ti—— — =+ : = > 1.
) (=1t —1) \ &3

It is straightforward (though somewhat tedious) to verify that (28) holds for each fixed t, €
{3,...,21}, so we may assume t,, > 22. To ease notation, let Q(¢;,t,) denote the left-hand side
of (28). If we fix ¢, and replace t; with a continuous variable > t,, then we can differentiate
Q(z, t,) with respect to x and find (after some simplifying) that

d 2%, —1 3 ty, o 3/n(tn)
gz O tn) = TR Sy o 1)2(

— 2—3/n(tn)
Qtnt% 1 - tnti 1 (:L‘ _771)2 (1 + (B/H(tn))(x - 1))

L+ (3/n(tn))(z = 1))

0
This last expression is increasing as a function of x, so we obtain a lower bound for a—Q(m, tn) by
x

evaluating that expression when x = t,,. More precisely,

_ —3/n(tn) _
5 Qata) > 2 = I B (1 (3 /n(0) (= 1) = 2 = 5 (15 (3/1(8) (00 1)
e e D) EL

where the last inequality uses the assumption that ¢, > 22 and is easy to verify. We now know
that the left-hand side of (28) is increasing as a function of ¢; when t,, is fixed, so we are left to

prove (28) when t; = t,,. With this substitution, (28) becomes
2, — 1 1 t,—1

2 Bt

which is certainly true. ]

>1,

The next lemma is purely technical and serves no purpose for us other than allowing us to prove
Lemma 5.5.
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Lemma 5.4. Ift > 3 is an integer and x,v, m are real numbers such that

2 — 1
m/2>v > L , x>t and m>w(t),
x
then
1 1 I
(29) 5_’_?—'—1/_73;—1”/”( < m.
2t — . .
Proof. Let us first assume v > e Since v < m/2, it suffices to prove that
Lo, <y,
x xt z—1 -
which is equivalent to
L SO
xr  at z—1 -
We will prove the stronger inequality
Lo, Iume <.
xr  at T -

Because

1/n(t)
oYy o 21 12—
x - t3 x t3 ’

L(, %—11W“_%1 -1 _,
T t3 x4 B3 =7

The left-hand side of this last inequality is decreasing as a function of x, so it suffices to prove that
it holds when z = ¢. In this case, the inequality becomes

L, ot — 1\ /"® 1201 _
t\ e Tam e =0

which one can verify is true for all t > 3.

we wish to show that

2z — 1 2t — 1
We are now left to prove that (29) holds when T T Sv< VR We will prove the stronger
T
inequality
1 1 1
30 gy ) < ().
(30) s T AT T sw(t)

When viewed as a function of v, the left-hand side of (30) is concave up. Hence, it suffices to prove

20 — 1 2t —1
(30) when v = ? and when v =

x4 t3

2t —
3
t > 5. We will prove the stronger inequality

1 1 1
(31) - + oy +v— ;Vl/"(t) < w(t).

First, assume v = . It is straightforward to verify (30) for ¢ = 3 and t = 4, so assume
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The left-hand side of this last inequality is decreasing as a function of z, so it suffices to prove it
2t — 1

when z = t. With the substitutions x =t and v = —5—, (31) becomes

1 1 2t—1 1 /2t—1\"" _ -3

tat—e e ) =T

t
4t — 3
t3

where we have used the fact that w(t) = for t > 5. One can verify that this last inequality

holds for all ¢t > 5.

22 — 1
Finally, we must prove that (30) holds when v = i - With this substitution, (30) becomes
x
Lol 2e-1 1 (2% o ®
x x? x—1 xt = @A)

One can verify this last inequality when ¢ = 3 and ¢ = 4, so we may assume t > 5. We will prove
the stronger inequality

12 1 ( 1 )1/77(” 4t —3

S R

(32) e 3

z x5 x\z3

When x = ¢, (32) becomes

1 N 2 (t—1)3 _4-3

t 3 o T3
and it is easy to check that this holds for all ¢ > 5. Thus, it suffices to prove that the left-hand side
of (32) is decreasing as a function of x. The derivative of the left-hand side of (32) with respect to
x is

—72 — 6™+ (3/n(t) + 1) x73/MD2,
which is less than
z? (-1 +(3/n(t) + 1) x_3/"(t)) .

In order to prove that this derivative is negative, we need only show that (3/n(t) + 1)z=3/7(") < 1.
This follows from the fact that
3 n(t)
<1 + ) <ed < ad, g

n(t)
Lemma 5.5. Let G = [[;" | Ky, where t; > --- > t, > 3. Let I C V(G) be a sorted independent
set such that pu(I) > w(t,). There exists j € [n] such that

t;—1
P ) <
J

Proof. Our proof follows Brakensiek’s proof of Lemma 16 in [12]. Assume that the lemma is false,
and deduce from Lemma 5.2 that
(2t; —1)(t; — 1)

p(I\ Ji5) > 1
J

for all j € [n]. Whenever i # j, we have
(2t =Dt — 1)

p(ei(I)\ Jr) = p(I\ Ji) > m
J




20 ISOPERIMETRY, STABILITY, AND IRREDUNDANCE IN DIRECT PRODUCTS
If

(33) uley (1) ) > UG = D)

4
¢

for all j € [n], then we can use Lemmas 4.3 and 4.4 to obtain a compressed independent set I’ with

2t — D)(t; — 1
p(Il') = p(I) and p(I'\ Jij) > (2 24( J ) for all j € [n]. This contradicts Lemma 5.3, so

J
(33) must fail for some j € [n]. Lemma 4.4 tells us that ¢;(I) is an independent set, and it is sorted
because I is sorted. By Lemma 5.2,

ti—1
(34) e (DN 1) < e
J
We have
35 2t — 1 L NI < TN Jod) < u(D)/2
(35) a— < AU\ Jg) S u(I 0 Jzy) < p(l)/2,
7 J

where the last two inequalities follow from the fact that I is sorted. We will prove that

(36) p(O(I N J25) N J15Neg(1) < p(IN S, )
by constructing an injection ¢ : 9(INJo;)NJ1;Nec;(L) = INJy . Ifwe d(INJy;)NJijNei(l),
then w; = 1. Let ¥ (w) = (w1, ..., wj—1,2,wjt1,...,wy,). This map is clearly injective, so we just

need to check that ¢ (w) is actually an element of I N Jy ;. We know that ¢(w) € Ja j, so we must
check that ¢(w) € I. Because w € ¢;j([I), there exists z € I such that z; = w; for all i # j. Since
w € 0(I N Jay), there exists y € I such that y is adjacent to w and y; = 2. This means that
yi # w; = z for all i # j. Because y and z are distinct elements of the independent set I, they
are not adjacent. This means that they must agree in some coordinate, which must be the j*™*
coordinate. It follows that z; = 2, so ¥)(w) = z € I as desired.

Using (36) and Corollary 1.7, we find that
p(Jij\ei(D) = p((OU N Ja5) N J1g) \ e (1) = (O N J25) N z) — p((O N J25) N1 5) Nej()

1
> (O N Jz5) M) — p(I N Jzj) = —

tj,u((?(l NJ2;5)) — (I N Jaj)
j

(37) >

1
T®(G (TN T ) = p(I N o) >

1
; 1#(1 N Ja )10 — (10 Ja ).
i— j—

Finally, combining (34) and (37) gives

u(I) = pley(D) = ey (1) N 1) + les (D) Jig) = = = p(s \ e5(1) + paley (1) \ )

tj
1 t;—1 1 t; —1 1
<=\ GD) + F— < e — N Jo )10 4 (I'0 T )
J J J J J
1 1 1
< —+ ,U,(I N JQJ)l/n(t") -+ ,U,(I N JQJ‘).

tp ot -1

However, this is a contradiction because we can apply Lemma 5.4 with t = ¢,,, z = t;, v = p(INJy ),
and m = p(I) ((35) guarantees that the hypotheses of Lemma 5.4 are satisfied) to find that

1 1 1

. + a- ﬁu(lﬂ JQJ)l/"(t”) +p(INJy;) < p(l). O
J 7 J
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We are finally prepared to complete the proof of Theorem 1.10. A brief overview of the proof is
as follows. We first assume the graph G under consideration is a direct product of complete graphs.
We use Lemma 5.5 to see that there is a choice of j such that the quantity ¢ in Proposition 5.1
is somewhat small. Proposition 5.1 then allows us to deduce that ¢ is very small, which in turn
allows us to prove the theorem in this case. To complete the proof, we show how to deduce the
general form of the theorem from the version for direct products of complete graphs.

Proof of Theorem 1.10. Let G = [[;_; K[ui, ;] be as in the statement of the theorem, and assume
for the moment that u; =1 for all ¢ € [n]. In other words, G = [[;", K3,, where t; > -+ > t,, > 3.

1
Let I C V(G) be an independent set with pu(l) = t—(l —¢) > w(ty). By relabeling the vertices in

n
each of the graphs K, if necessary, we can assume [ is sorted. According to Lemma 5.5, we can

ti—1 1
choose j € [n] such that u(I\ Jy ;) < Jtif’ < - Let 6 = pu(I'\ Ji,j). We know from Proposition
J J
5.1 that
tn tn ) 1/n(tn)
38 >1—— — 0ty .
( ) == tj +tj—1<tj—1>
We will first prove that
tn ) 1/n(tn)
39 -0ty 0.
o +tj—1<tj—1> g
ln A . tn
It will then follow from (38) that ¢ > 1 — 7 which is equivalent to t; < T
; _

Let

1/n(tn)
tn x
flx) = —tpx + <tj—1) .

1
If 0 <x < -, then
£

o) — 1 L)1 L e
f ('T) =tn <(tj _ 1>1+1/77(tn) n(tn)x —1) >t tj1.+1/77(tn) n(tn)x !

1 1 1 Hltn) t =5/n(tn)
n 3—5/n(tn
>ty | ————— — -1 =—1t tn
t; Hnln) n(tn) <t§> n(tn) ( / 77( )>

tn_ (3-5/mta)
> n(tn) _ .

1
It is easy to verify that this last expression is positive, so f(x) is increasing for 0 < z < a This

j
immediately implies (39) since f(0) = 0.

Next, let

1/n(tn)
g(m)zl—t—n—&n—i— fn ( g ) .
x

r—1\z—1
Suppose t, < x < t;. We have

J(z)=t, (x—Q — ) (111 /n(t)) (2 — 1)—2—1/n(tn)>
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61/77(tn)tn (x — 1)2+1/77(tn)
- (x — 1)2+1/n(tn) 22500t (L4+1/n(tn))

S1/n(tn)¢ (z — 1)2+1/n(tn)
> n (1+1/n(ty
T (= 1))\ 22(1/th)1/nlin)

N sl/nttn)y (z — 1)2+1/n(tn)
~ (z— 1)2H/0(n) \ 22(1/z4)1/n(tn) (L4 1/m(tn
sl/nltn)g, (z — 1)2+1/77(tn)
(40) = (z — 1)2+1/n(tn) x22—4/n(tn) +1/n(tn
(z — 1)2F1/n(tn)
It is easy to check that = a/n(n) is increasing in x, so
x n

(z — 1)2+1/n(tn) (tn — 1)2+1/77(tn)
ey~ () = =y — (L 1/n(ta)

tn —1)2 t2
= (t — 1)1/"7(tn)(t2)t;4/77(tn) — (14 1/n(tn)) = (tn — 1)1/77(1tn)m — (1 +1/n(tn))

1 1
1+ 1/5(tn)) = —— —
Combining this with (40) shows that g(x) is increasing in « when ¢, < x < t;. In particular,
g(t;) > g(tn). Referring back to (38), we see that

> > 0.

: 5\t
> .
(41) €2 Oty + (t — 1)

At this point, we simply cite the proof of Lemma 11 in [12]. In that proof, Brakensiek obtains the

equation (41) under the weaker assumption that § < B and proves that
n

(42) 8§ < 4gn(tn)

(note that he uses the symbol ¢ in place of ¢,,). Applying the exact same argument proves that (42)
holds in our case as well.

We now prove the theorem in the more general case in which G = [[;; K[u;, t;] with t; > -+ >
tn > 3. Let G' =[] K,, and consider the collapsing map coll : V(G) — V(G’) defined in Section
4. More precisely, coll = coll; x --- x coll,,, where coll; : V(K [u;,t;]) — V(K¢,) sends every vertex
in the partite set X;(a) to the vertex a. Because the complete multipartite graphs K[u;,t;] in the
product defining G are balanced, we have

(43) p(coll ™ (T)) = (T)
for all T'C G'. We use J,; to refer to the subset
V(K[ul,tl]) X oo X V( [UZ 1, ] X X ( ) X V(K[ui+17ti+1]) X e X V(K[ui+1,tn])

of V(G) and use J, ; to refer to the subset
[tl] X oo X [ti,ﬂ X {a} X [ti+1] X oo X [tn] = COH(JUM')
1
of V(G"). Let I C V(G) be an independent set with u(I) = t—(l —¢€) > w(ty). The collapsing map

n

sends independent sets to independent sets and satisfies pu(coll(T')) = p(coll ™ (coll(T))) > u(T) for
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1
all T C V(G). Therefore, the set I’ = coll(]) is an independent set of G’ with u(I') = t—(l — &)

n
for some &’ < e. We already know the theorem holds for direct products of complete graphs (such
as G'), so there exist j € [n] and a € [t;] such that

tn 1 / Nn(tn
We have I\ J,; C coll 1 (I"\ Jé,,j)v SO

U\ Jag) < pleoll (I JL ) = p(I'\ JL ;) < 4(')70) < dentte)
as desired. (]

6. CONCLUDING REMARKS

We have proven Burcroff’s conjecture that IR(G) = «(G) whenever G is a direct product of
balanced complete multipartite graphs except in 37 exceptional cases. Our proof relied on the fact
that the complete multipartite graphs in the product are balanced. As mentioned in the introduc-
tion, our new Conjecture 1.11 strengthens Burcroff’s conjecture by removing the assumption that
the graphs in the product are balanced.

In Theorem 1.5, we gave an explicit recursive formula for the vertex isoperimetric profile of the
graph [[; H; when Hi,..., H, are complete multipartite graphs satisfying 8(H;) < --- < S(Hy)

and
1= B(Hy) _ 1- B(Hy)
EEA ﬂ(Hk> N B(Hn)

for all nonempty A C [n — 1]. This last condition was satisfied for all the graphs we considered
in our applications, but it would still be interesting to compute the vertex isoperimetric profiles
of direct products of complete multipartite graphs that fail to satisfy this condition. It would also
be interesting to prove an independent set stability result like Theorem 1.10 for direct products of
complete multipartite graphs that are not necessarily balanced.

It could be possible to weaken the hypothesis that u(I) > w(t,) in Theorem 1.10. Doing so could
allow one to prove Burcroff’s conjecture for several of the 37 remaining cases. Alternatively, one
could see if an argument similar to the one used in [20] to prove the conjecture in the case n < 3
could also handle the case n = 4; this would prove 26 of the remaining 37 cases.
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