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We report a method to increase the efficiency of radio-frequency (RF) generated plasma for surface mod-
ification of electrospun biomaterials by introducing magnetization. The x-ray photoelectron spectroscopy
(XPS) reveals the oxygen/carbon ratio is consistently higher for various exposure times for magnetized
plasma than non-magnetized plasma. The principle demonstrated here supports the use of magnetic
fields as an additional controllable parameter in plasma processing of biomaterials and is extendable
to other plasma sources. The surface activation and functionalization of biomaterials has impact in the

gfgxg:g:{als broader arena of tissue engineering applications in that magneto-plasma processing (MPP) enables us
Biomimetic to tune the shape of plasma plume for selective enhanced functionalization of surface of scaffolds, which
XPS in turn has wide applications for basic cell-patterning science and in applied regenerative medicine.

Cold plasma © 2019 Elsevier B.V. All rights reserved.

1. Introduction

The surfaces of biomaterials typically require either physical or
chemical modification to produce functional bio-interfaces [1].
Surface activation and modification by plasma has been highly rec-
ommended as a functionalization approach for biomaterials.
Specifically, plasma sources operating in the low-temperature
regime (non-equilibrium plasma) which include radio-frequency
(RF), dielectric-barrier discharge (DBD), and plasma-enhanced
chemical-vapor deposition are described in literature for such
applications [2-5].

The polymer poly(caprolactone) (PCL) have been extensively
explored for fabricating electrospun scaffolds in applications rang-
ing from bone tissue engineering to small-diameter vascular grafts
and represents a model biomaterial [5-9]. For plasma surface mod-
ification of such biomaterials the typical process parameters
include power, gas flow/composition, pressure, and exposure time
[5]. An additional well-known controllable parameter is magneti-
zation; however, this parameter has been unexplored for plasma
surface processing of biomaterials. Magnetized plasmas, in general,
are well explored and are described in other fields such as plasma
diagnostics, plasma propulsion, and radio astronomy [10-14].
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Herein we report a simple, yet, scalable method of using mag-
netized plasma to increase the rate of surface modification of elec-
trospun PCL. The effects of the surface modification include
enhanced hydrophilic character due to the rapid increase of
oxygen-containing groups on the surface as evidenced by the con-
tact angle measurements and surface elemental analysis. This
methodology offers a convenient leading-edge approach to the sur-
face activation of biomaterials intended for applications in tissue
engineering.

2. Experimental
2.1. Preparation of electrospun constructs

Pellets of poly(e-caprolactone) (PCL) (inherent viscosity 1.0-
1.3 dL/g in CHCl3) (Lactel Absorbable Polymers, Durect, Birming-
ham, AL) were dissolved in 1,1,1,3,3,3-Hexafluoro-2-propanol
(HFIP) (Oakwood Chemical, Estill, SC) at a concentration of 20 w/
v%. Electrospinning was accomplished via a custom computer-
controlled system described in our previous work [5]. Briefly, the
parameters were 3 mL of working solution (rate 1.2 mL/h, 25 G)
across a distance of 20 cm to a grounded aluminum cylindrical-
mandrel (6 cm diameter x 20 cm length, rotation: 300 RPM). A
potential of 16 kV was applied, and lateral displacement was
260 mm (rate of 40 mmy/s). Fibers were degassed (vacuum, 48 h)
to remove residual solvent.
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2.2. Plasma modification

A plasma cleaner (Harrick PDC-001, Ithaca, NY) was outfitted
with a neodymium permanent magnet (200 mT + 20 mT at the
surface) by placing the magnet on the bottom of the quartz
chamber (see Supplemental information for a diagram) and a
glass microscope slide with samples of electrospun-PCL
(2 cm x 2 cm). The slide was positioned in intimate contact with
the magnet; the chamber was pumped down to working pres-
sures of 500-600 mTorr, RF power was set to high (45 W), and
ambient atmosphere was bled in at a rate of 25 sccm. Additional
electrospun-PCL samples were modified with the same condi-
tions without magnetized exposure and unmodified samples
were retained as controls (polymer samples with no plasma
exposure).

3. Results and discussion

Scanning electron microscopy (SEM) images show the porous
nature (see Supplemental information) of the constructs. The ran-
dom alignment of the fibers (diameters: 500 nm up to 3 pm) and
their pristine nature without bead formation are due to the chosen
electrospinning parameters. Fourier Transform Infrared Spec-
troscopy (FTIR) shows the expected peaks (Fig. 1a) for PCL. The ali-
phatic —CH— stretching modes are visible at2937 and 2921 cm™!
and the —C=0— stretching is visible at 1724 cm~'. Plasma modifi-
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cation did not impact the peak positions, but a slight shift of base-
line is noticed compared to control, however this is negligible and
is likely the result of IR light scattering due to roughening of the
surfaces from modification. This result is consistent with the fact
that cold plasma modification is a surface technique as no change
in bulk composition is observed [2-5].

X-ray photoelectron spectroscopy (XPS) analysis (Fig. 1b,
Fig. 2a) of the PCL surfaces revealed the efficacy of the magnetized
RF plasma treatment. During much experimentation, it was
observed that for various time exposures the magnetized plasma
consistently resulted in higher yields of oxygenated functional
groups. Surface treatment by air plasma is known to introduce
new functional groups by a variety of active species including
ozone, hydroxyl radical, excited molecular oxygen, NO, species,
and free electrons [2-5]|. These, in turn, can react with the PCL
chains resulting in the oxygen enrichment shown by XPS with
the increase in oxygen/carbon ratios. These changes increase the
surface polarity, thus, accounting for the decrease in measured
contact-angles (Fig. 2b) (5 uL glycerol drop captured by video
contact-angle measurements).

Magnetized plasma exhibits enhanced rates of modification
when compared to non-magnetized plasma for surface processing
at shorter exposure times (<5 min). The exact mechanism is
unknown at this time and the effects of both plasma types are sim-
ilar tending toward an equilibrium at longer exposure times (>5
min).
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Fig. 1. FTIR (a) and representative XPS survey scans (b) of PCL modified with both magnetized and non-magnetized plasma. The control for each are unmodified neat PCL.
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Fig. 2. XPS analysis (a) reveals consistently higher oxygen/carbon ratios as a function of exposure time (bars = standard error, n =3 for each time point). Contact angle
measurements (b) indicate a significant difference (P < 0.0001) for each treatment compared to control (unmodified PCL). For each subgroup (1 min and 5 min) there is also a
significant difference (P < 0.01) between magnetized and non-magnetized exposure (n = 6 for each). Statistics generated in GraphPad (one-way ANOVA).
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4. Conclusions

The report details a technique for increasing the efficiency of RF
plasma modification of electrospun biomaterials using magnetic
fields. The increase in surface oxygen and decrease of contact angle
are evidence of the merit of this methodology. Our continuing
research interest seeks to exploit this effect for additional plasma
sources.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.matlet.2019.04.118.
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