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Abstract Optogenetic tools have revolutionized the study of receptor-mediated processes, but

such tools are lacking for RNA-controlled systems. In particular, light-activated regulatory RNAs are

needed for spatiotemporal control of gene expression. To fill this gap, we used in vitro selection to

isolate a novel riboswitch that selectively binds the trans isoform of a stiff-stilbene (amino-tSS)–a

rapidly and reversibly photoisomerizing small molecule. Structural probing revealed that the RNA

binds amino-tSS about 100-times stronger than the cis photoisoform (amino-cSS). In vitro and in

vivo functional analysis showed that the riboswitch, termed Werewolf-1 (Were-1), inhibits

translation of a downstream open reading frame when bound to amino-tSS. Photoisomerization of

the ligand with a sub-millisecond pulse of light induced the protein expression. In contrast, amino-

cSS supported protein expression, which was inhibited upon photoisomerization to amino-tSS.

Reversible photoregulation of gene expression using a genetically encoded RNA will likely facilitate

high-resolution spatiotemporal analysis of complex RNA processes.

Introduction
Optogenetic techniques have transformed the biomedical sciences by controlling biological events

with high spatial and temporal resolution through triggering signal transduction pathways via light-

sensing proteins (Fenno et al., 2011; Möglich and Moffat, 2010; Motta-Mena et al., 2014;

Cambridge et al., 2009); however, there is a need for photoactive molecules that can quickly and

reversibly regulate cellular events at the RNA level. Photolabile ligands have previously been used to

regulate RNA activity, but their photo-uncaging reactions are irreversible and relatively slow, requir-

ing long UV light exposures, and resulting in limited temporal control (Dhamodharan et al., 2018;

Wulffen et al., 2012; Walsh et al., 2014; Young et al., 2009; Chaulk and MacMillan, 1998;

Lucas et al., 2017). Similarly, aptamers that bind a blue-light photosensitive protein have recently

been developed for light-dependent regulation of translation (Weber et al., 2019). However, this

system requires the expression of a relatively large regulatory protein that inhibits translation of a

downstream mRNA when exposed to light and turns translation on only when slowly dark-adapted

and dissociated from the RNA, preventing fast activation of protein expression. In contrast, photore-

versible molecules, such as azobenzenes, have been employed to create several examples of photo-

sensitive RNAs. For example, a light-responsive ribozyme has shown reversible activity, (Lee et al.,

2007) and aptamers that bind photo-isomerizable ligands have been identified (Hayashi et al.,

2009; Lotz et al., 2019; Young and Deiters, 2008), but these RNAs have only been characterized

in vitro.
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Riboswitches, cellular ligand-dependent regulatory RNAs that modulate transcription and transla-

tion in bacteria, and splicing, translation, and RNA stability in eukaryotes (Breaker, 2011) represent

an attractive platform for the development of photosensitive regulatory RNAs. Riboswitches typically

consist of an aptamer domain, which bind cellular targets, such as cofactors and metabolites, and an

expression platform, which regulates gene expression by forming structures that affect downstream

events, such as ribosome binding (Fuchs et al., 2007; Breaker, 2012). Many riboswitches sense their

ligands during transcription; therefore, ligand-dependent conformational changes occur on the time-

scales of synthesis of these RNAs (Greenleaf et al., 2008; Uhm et al., 2018). Furthermore, in many

instances the aptamer and the expression platform are distinct domains of a riboswitch, allowing

molecular evolution or engineering to convert genomic riboswitches into synthetic ones through

replacement of the metabolite-sensing domains with in-vitro–selected aptamers (Etzel and Mörl,

2017).

We sought to develop a synthetic riboswitch system that regulates gene expression by binding a

photoreversible ligand. We chose stiff-stilbene as the molecular scaffold for the ligand design,

because stilbenes are well-characterized and exhibit fast photoswitching between the trans and cis

states (Quick et al., 2014; Waldeck, 1991; Szymański et al., 2013a). We used in vitro selection

(Tuerk and Gold, 1990; Ellington and Szostak, 1990) to isolate a novel RNA that selectively binds

only the trans isoform of amino stiff-stilbene (amino-tSS). Chemical probing identified amino-tSS–

induced RNA structural changes in both the aptamer domain and a downstream expression platform

derived from a bacterial riboswitch. In vitro and in vivo functional analysis showed that the ribos-

witch, termed Were-1, can induce or inhibit translation of a downstream open reading frame upon

exposure to a sub-millisecond pulse of light, through reversible photoisomerization of the ligand.

Our results demonstrate how a genetically encoded light-responsive RNA can reversibly regulate

gene expression using light, providing a new optogenetic tool to broaden the analysis of complex

RNA processes in living cells (You and Jaffrey, 2015; Liang et al., 2011; Jäschke, 2012;

Szymański et al., 2013b).

Results
To isolate a new aptamer fused to a functional expression platform, we constructed an RNA pool

derived from a bacterial SAM-I riboswitch (Winkler et al., 2003) by replacing its ligand-binding

domain with a 45-nucleotide random sequence, partially randomizing its anti-terminator and termi-

nator hairpins, and retaining its translation initiation sequences (Figure 1—figure supplement 1).

We synthesized a photoactive ligand – a trans stiff-stilbene with an amino-terminated linker designed

to maintain good cell permeability (Figure 1a). The ligand was also designed to have a narrow win-

dow for photoregulation of both isomerizations in order to keep the rest of the visible spectrum

available for the potential readouts through luminescent or fluorescent reporters. Amino-tSS was

characterized using UV-Vis and NMR spectroscopy to confirm photoisomerization to the cis confor-

mation at 342 nm and back to the trans conformation at 372 nm, and to ensure that both isoforms

are stable on timescales relevant to pulsed gene expression (Figure 1—figure supplement 2, Fig-

ure 1—figure supplement 3, Figure 1—figure supplement 4). The RNA pool- was selected in vitro

to bind amino-tSS coupled to carboxylate agarose beads and eluted under denaturing conditions

(Ellington and Szostak, 1990). We hypothesized that a pool of amino-tSS–binding aptamers would

include motifs that do not bind the cis photoisoform of the ligand and that the tSS–binding confor-

mation stabilizes the expression platform in a single state that affects either transcription or transla-

tion of a downstream open reading frame (ORF). After six rounds of in vitro selection, we cloned the

pool into bacterial plasmids and tested individual sequences for amino-tSS binding by monitoring

RNA–dependent changes in the fluorescence of the amino-tSS. One sequence (Figure 1c) showed

markedly increased fluorescence of amino-tSS (Figure 1—figure supplement 3). This sequence,

termed Werewolf-1 (Were-1) for its potential light-dependent conformational changes, was chosen

for further analysis.

To assess the ligand-dependent structural modulation of Were-1, we performed multiple RNA

structure-probing experiments, including digestions with T1 and S1 nucleases (Peng et al., 2012;

Reynolds and Gottesfeld, 1985), terbium (III) footprinting (Harris et al., 2014), in-line probing

(Regulski and Breaker, 2008), and selective 2’ hydroxyl acylation by primer extension (SHAPE)

(Wilkinson et al., 2006) using a range of amino-tSS concentrations (Figure 1b and Figure 1—figure
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Figure 1. An amino-tSS-responsive aptamer. (a) Amino-tSS isomerizes from trans to cis conformation when exposed to 342 nm light, and back to the

trans isoform at 372 nm. (b) RNase T1 probing of Were-1 structure. Right lanes contain a control with undigested RNA (ctrl), a T1-digested sequencing

control (G), and a hydroxide-mediated partial digestion ladder (OH) of the RNA. The left lanes show partial T1 digestion in the presence of increasing

amino-tSS at concentrations indicated above the gel image. The probing shows clear ligand-dependent changes—both increases (e.g. G53, G99,

G114-117) and decreases (e.g. G 42, (G46, G77)—interspersed throughout the sequence. Below, an apparent KD of 1.1 mM was calculated based on the

change in band intensity with increasing amino-tSS (dark, filled circles) for nucleotide G46, normalized to a control band (G72). Additionally, a KD of 108

mM was calculated based on the change in band intensity with increasing amino-cSS (open circles) for the same nucleotide and control (Figure 1—

figure supplement 4g), suggesting high specificity for amino-tSS. An average KD value of 1.5 mM amino-tSS was calculated for changes in nucleotides

Figure 1 continued on next page
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supplement 4). The changes in the pattern of RNA probing suggested that Were-1 undergoes con-

formational modulation upon introduction of amino-tSS in both the sequence derived from the ran-

domized region (the aptamer domain) and the expression platform (Figure 1b and Figure 1—figure

supplement 7, Figure 1—figure supplement 8, Figure 1—figure supplement 9). Control experi-

ments with amino-tSS analogs, such as trans-stilbene (tS), 4,4-trans-dihydroxystilbene (tDHS), and

S-adenosyl methionine (SAM), showed no change in the probing patterns (Figure 1—figure supple-

ment 7, Figure 1—figure supplement 8, Figure 1—figure supplement 9), suggesting that Were-1

is specific for amino-tSS. Analysis of the T1 probing experiments revealed a KD of 1.1 mM, based on

the change in band intensity with increasing amino-tSS for nucleotide G42, normalized to a control

band G72 (Figure 1b). A 108 mM KD was calculated based on the same band intensity change with

increasing amino-cSS (Figure 1—figure supplement 9), revealing a 100-fold specificity for the target

ligand, amino-tSS. The average amino-tSS KD derived form the T1 nuclease probing (at positions 42,

46, 77, and 80; normalized to the band intensity at position 72) was of 1.5 mM, whereas the nuclease

S1 probing revealed a KD of 0.4 mM (based on band intensity change for positions A44-G46), and

the terbium (III) footprinting yielded a somewhat higher apparent KD of 4.8 mM (calculated based on

the change in intensity at positions A113 and U107, normalized to G134 control band; Figure 1—

figure supplement 7).

To establish the location of the amino-tSS aptamer domain, we modeled the secondary structure

of Were-1 based on the probing data and created mutants hypothesized to affect ligand binding

affinity or RNA structural stability (Figure 1c), and tested them in vitro and in vivo. The secondary

structure modeling did not support a conformation containing a Rho-independent transcriptional

terminator, in part because the selected sequence contained two mutations (C90A and U92A), which

are predicted to disrupt the stability of a full-length transcription-terminating helix (Figure 1c). The

structure-probing experiments (Figure 1b and Figure 1—figure supplement 6, Figure 1—figure

supplement 7, Figure 1—figure supplement 8, Figure 1—figure supplement 9) supported a sec-

ondary structure consisting of four helical segments. Ligand-dependent changes mapped primarily

to the loops of the molecule, suggesting that it does not undergo rearrangement in secondary struc-

ture upon amino-tSS binding. Instead, the structure probing experiments suggest that the loops

either contact the ligand directly or make tertiary contacts to form its binding pocket.

To test whether Were-1 can directly couple light-induced states of the ligand to the activity of the

expression platform in vitro, the aptamer was tested for amino-tSS–dependent conformational

Figure 1 continued

G42, G46, G77, and G80. (c) Secondary structure prediction of Were-1 derived from all structural probing data in absence of the ligand (see also

Figure 1—figure supplement 6, Figure 1—figure supplement 7, Figure 1—figure supplement 8, Figure 1—figure supplement 9). Partially

randomized regions (light blue), the Shine-Dalgarno sequence (red), the start codon (green), and the 3’ terminus sequence are derived from the B.

subtilis mswA SAM-I riboswitch. The 5’ part of the aptamer and the loop sequence (A98–U107) of the expression platform (pink) were selected from

random regions of the starting pool (Figure 1—figure supplement 1). Outlined dark letters are positions where the selected sequence differs from the

B. subtilis riboswitch expression platform. Boxed positions were mutated to the indicated nucleotides to identify regions of structural and functional

importance. Black base-pairs indicate stems that do not change in the presence of amino-tSS, and asterisks (*) indicate nucleotide positions that do

change in the presence of amino-tSS.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Derivation of dissociation constants from T1 probing data.

Figure supplement 1. In vitro selection pool design for a photoriboswitch.

Figure supplement 2. UV absorption and 1H NMR spectroscopy of E/Z isomerization of amino-tSS and amino-cSS.

Figure supplement 2—source data 1. UV spectra of amino-tSS and amino-cSS.

Figure supplement 3. 1H and 13H NMR spectra of tSS, amino-tSS, and amino-cSS.

Figure supplement 4. Stability of amino-tSS and amino-cSS in water and DMSO analyzed by UV-vis spectroscopy.

Figure supplement 5. Fluorescence of Were-1 bound to amino-tSS.

Figure supplement 5—source data 1. Fluorescence spectrum of RNA–bound amino-tSS.

Figure supplement 6. Structural probing of Were-1 in presence of amino-tSS using SHAPE and S1 nuclease digestion.

Figure supplement 6—source data 1. Derivation of apparent Kd values from RNA probing data.

Figure supplement 7. Structural probing of Were-1 in presence of amino-tSS, amino-cSS, tDHS, tS, and SAM by terbium (III) footprinting.

Figure supplement 8. Structural probing of Were-1 in presence of tDHS, tS, and SAM by T1 nuclease digestion and in-line probing.

Figure supplement 9. Structural probing of Were-1 in presence of amino-cSS, tDHS, tS, and SAM by SHAPE, and amino-cSS titration by T1 nuclease

digestion.
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changes using a strand-displacement assay that mimics mRNA binding by the bacterial ribosome

(Martini et al., 2016; Zhang and Winfree, 2009; Martini et al., 2015). We designed a DNA duplex

in which the longer strand has a toehold sequence corresponding to the reverse complement of the

Shine-Dalgarno sequence of Were-1 (Supplementary file 1 - Supplementary Table 1) and a fluoro-

phore to assess whether the shorter DNA strand, containing a quencher chromophore, is displaced

through RNA:DNA hybridization with Were-1 (Figure 2—figure supplement 1a). Polyacrylamide gel

electrophoresis (PAGE)-purified Were-1 bound the toehold readily, but the strand displacement was

diminished in the presence of amino-tSS (Figure 2—figure supplement 1b). Testing the toehold

binding at various concentrations of amino-tSS revealed a dose dependence with a half–maximal

inhibition of toehold binding at ~6 mM (Figure 2—figure supplement 1c).

We next asked whether the ribosome mimic binds this RNA during in vitro transcription

(Figure 2a and Figure 2—figure supplement 2). In the absence of the ligand, the RNA bound the

toehold efficiently, showing a robust increase of fluorescence immediately after transcription initia-

tion. In contrast, the addition of high concentration (14.8 mM) of amino-tSS strongly abrogated new

binding of the toehold, as revealed by almost a full reduction in the slope of the fluorescence expan-

sion curve (Figure 2b). Intermediate concentrations of amino-tSS were tested to assess RNA binding

and specificity, yielding a ligand-dependent response with a half-maximum of ~4 mM amino-tSS

(Figure 2c).

Probing-derived secondary structure modeling of Were-1 suggested formation of a ligand-insen-

sitive hairpin (positions 69–84). To confirm the presence of this structural element, we created a vari-

ant containing a single mutation (G69C), that was predicted to disrupt the stem, and a presumed

compensatory mutant (G69C/C84G) (Figure 1c). The G69C variant showed diminished response to

amino-tSS, whereas the G69C/C84G double-mutant exhibited partially restored activity, suggesting

that these two positions are indeed part of a helix. Other variants, C89G and C91G, designed based

on parts of the sequence that showed amino-tSS–dependent changes in the structure-probing

experiments, both showed decreased sensitivity to the ligand, suggesting that they are essential for

ligand binding. Furthermore, when testing toehold binding using the purified cis isoform of the stiff

stilbene (amino-cSS), as well as other stilbenes, such as tS, tDHS, and trans stiff stilbene (tSS; Were-1

ligand lacking the aminolated linker), no significant changes in fluorescence were observed

(Figure 2c and Figure 2—figure supplement 3). These results demonstrate that amino-tSS stabilizes

the RNA in an ‘OFF’ (ribosome-inaccessible) conformation in a dose-dependent manner and with

high ligand specificity.

In order to test whether the Were-1 RNA interaction is selective for amino-tSS, and potentially

acts as an amino-tSS riboswitch, we created a construct consisting of the putative riboswitch, includ-

ing its minor start codon from Bacillus subtilis that was present in the starting pool, followed by a

firefly luciferase (Fluc) ORF lacking its endogenous start codon. We chose luciferase for the readout

because, unlike fluorescent proteins, it does not require excitation light and quantitatively yields

photons immediately after the enzyme is synthesized. Based on the toehold assays, we hypothesized

that in absence of amino-tSS, Were-1 would be transcribed in a conformation promoting the transla-

tion of the luciferase enzyme, whereas the presence of amino-tSS would stabilize a conformation

preventing efficient translation initiation, downregulating the luciferase expression (Figure 2d).

Using a purified bacterial in vitro transcription/translation system, luciferase production was mea-

sured in the presence and absence of amino-tSS. In absence of the ligand, the construct exhibited

robust luciferase production, demonstrating that the unbound aptamer promotes protein production

from a downstream ORF (Figure 2e). In contrast, when amino-tSS was added, protein production

decreased in a dose-dependent manner (Figure 2f). To confirm that the ligand itself did not impact

the in vitro translation system, luminescence was tested with a control plasmid lacking the ribos-

witch, and no amino-tSS sensitivity was observed (Figure 2—figure supplement 4).

To further test the riboswitch, we incorporated the construct into a bacterial plasmid and induced

its expression in Escherichia coli cells (Figure 2g). Bioluminescence, due to luciferase expression and

activity, was robust in the absence of ligand, and when the cells were incubated in the presence of

amino-tSS, bioluminescence was again diminished in a dose-dependent manner (Figure 2h and i).

To confirm the specificity of Were-1 for amino-tSS, we incubated cells in the presence of amino-cSS,

tS and tDHS, and observed no significant change in bioluminescence (Figure 2i). To determine the

effect of an alternate start codon on Fluc expression, we changed the UUG start codon in the Were-

1-Fluc plasmid to AUG. Bioluminescence was higher in the AUG samples compared to the wild-type
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Figure 2. Translation regulation by the Were-1 riboswitch. (a) Schematic of co-transcriptional binding of Were-1 RNA to amino-tSS in the presence of a

toehold-reporter complex. In absence of amino-tSS, the transcribed RNA exposes the ribosomal binding site (RBS), enabling binding of the

complementary region of the toehold reporter, displacing the quencher strand, and producing a fluorescence signal. In presence of amino-tSS, the

RNA binds the ligand, sequestering the RBS and preventing displacement of the quencher strand. (b) Co-transcriptional response of Were-1 to

different concentrations of amino-tSS using the toehold reporter. Initial transcriptions of Were-1 without ligand show identical increase in toehold

fluorescence for all samples. When amino-tSS is added (arrow), a dose-dependent decrease in fluorescence is observed. (c) Response (± SEM; n = 81)

of Were-1 (black, open circles), and its variants (red) C89G (triangles), C91G (squares), G69C (half-shaded diamonds), and G69C/C84G (open diamonds),

in the presence of amino-tSS shows a shift in dose-dependence for single mutations, particularly G69C, and partial recovery of activity for the G69C/

C84G double mutant. Were-1 shows no response in the presence of amino-cSS (black circles), trans-stilbene (tS, green, open circles) and trans-4,4-

dihydroxystilbene (tDHS, blue, open circles). Structures of tDHS and tS are shown below the graph. (d) Schematic of amino-tSS-dependent inhibition of

protein expression in vitro using a Were-1-firefly luciferase (Were-1-Fluc) construct. In absence of the ligand, the RBS is exposed and luciferase is

translated, whereas in presence of amino-tSS, the RBS is sequestered, abrogating Fluc expression. (e) In vitro translation of the Were-1-Fluc construct.

Robust luminescence is observed when no ligand is present, but the signal is significantly lower in presence of amino-tSS. (f) Response (± SEM; n = 58)

of the Were-1–regulated protein expression to amino-tSS. (g) Schematic of the Were-1-Fluc construct incorporated into a bacterial plasmid. (h) Were-1–

controlled Fluc gene expression in E. coli. Bioluminescence is observed in absence of amino-tSS, and progressively diminished with increasing amino-

Figure 2 continued on next page
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UUG construct and showed a similar amino-tSS–dependent response (Figure 2—figure supplement

5). Testing the above-described mutants confirmed the G69/C84 interaction, and the importance of

the C89 and C91 positions for ligand binding. Taken together, our results demonstrate that Were-1

controls amino-tSS–dependent protein expression in vitro and in vivo, acting as a translational

riboswitch.

We next asked whether Were-1 could regulate gene expression in a light-dependent manner, act-

ing as a photoriboswitch. For this to occur, the trans isoform of the stiff stilbene must photoisomer-

ize to its cis state, preventing binding of the Were-1 aptamer domain and promoting expression of a

downstream ORF.

Riboswitches are sensitive to co-transcriptional events because they are capable of adopting dif-

ferent RNA conformations as they are transcribed by RNA polymerase (Frieda and Block, 2012). To

first monitor changes in RNA folding over time, we used the toehold-fluorophore system to deter-

mine whether the DNA duplex was in a bound state (no strand displacement) versus an unbound

state (strand displacement releasing the quencher DNA, yielding fluorescence) during transcription.

Our results show that when the amino-tSS-bound Were-1 structure was irradiated at 342 nm of light,

the toehold fluorescence increased, suggesting that the RNA increased the binding to the ribosome

mimic present on the DNA toehold. Furthermore, when exciting amino-cSS at 372 nm of light to

switch the ligand to its trans isoform, we observed a decrease in toehold fluorescence growth, indi-

cating that the photo-generated amino-tSS was able to re-bind the Were-1 RNA. The irradiation was

repeated until all toehold was bound, with each switch showing consistent results (Figure 3—figure

supplement 1a). This experiment shows reversible, wavelength-dependent binding of the ribosome

mimic, emulating light-dependent protein expression from a downstream open reading frame. Fur-

thermore, analysis of the toehold binding as a function of exposure length revealed that even milli-

second pulses of light at 340 ± 10 nm (Fq = 1.4*10�2 W/cm2) result in a detectable change in

toehold fluorescence when compared to unexposed transcription reaction, suggesting that the sys-

tem has the capacity to act on timescales that are faster than a single nucleotide addition during

RNA synthesis (Figure 3—figure supplement 1b), which for E. coli is in tens of milliseconds range

(at 37˚C) (Manor et al., 1969; Bremer and Yuan, 1968).

To study the system further, we used the Were-1-luciferase construct and the purified bacterial in

vitro transcription/translation system and tested whether luciferase expression could be regulated

by our putative photoriboswitch. We found that when the reaction was irradiated at 342 nm of light,

luminescence increased, suggesting that Were-1’s conformation changed to expose the RBS,

enabling luciferase expression. When the cis stilbene was photoisomerized to the trans state (amino-

tSS) at 372 nm of light, luciferase protein production slightly decreased (Figure 3—figure supple-

ment 2). These data are consistent with an in vitro activity of a photoriboswitch.

Figure 2 continued

tSS. (i) Expression of Were-1-Fluc (± SEM; n = 257) in vivo (black, open circles), and its variants (red) C89G (triangles), C91G (squares), and G69C/C84G

(open diamonds), in the presence of amino-tSS, show a dose-dependent response. Were-1 mutant G69C (half-shaded diamond) and Were-1 in the

presence of amino-cSS (black circles), trans-stilbene (green, open circles) and trans-4,4-dihydroxystilbene (blue, open circles) showed no change in

bioluminescence, whereas the G69C/C84G double mutant shows restoration of activity similar to wild-type levels. Note, dose-response graphs (c, f, i)

are on a log-log scale. The apparent amino-tSS IC50s are 3.9 ± 0.2, 2.5 ± 1.0, and 5.3 ± 1.1 mM for the toehold (c), in vitro translation (f), and in vivo

expression (i), respectively. Dashed lines correspond to the 95% confidence interval of the binding model.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Kinetic data for Were-1 activity.

Figure supplement 1. Binding PAGE-purified Were-1 RNA to a ribosome-mimic.

Figure supplement 1—source data 1. Time course of toehold binding by Were-1.

Figure supplement 2. Co-transcriptional binding of a ribosome-mimic in vitro under various Mg2+ conditions.

Figure supplement 2—source data 1. Effect of Mg (II) on toehold binding by Were-1 in absence and presence of amino-tSS.

Figure supplement 3. Co-transcriptional Were-1 binding of a ribosome-mimic in vitro in the presence of tSS (in 10% DMSO).

Figure supplement 3—source data 1. Effect of tSS in Were-1 binding using the toehold assay.

Figure supplement 4. Translation of a control plasmid, Luc2-pET, lacking the Were-1 riboswitch is not inhibited in vitro by amino-tSS.

Figure supplement 4—source data 1. Lack of inhibition of Were-1-independent expression system by amino-tSS.

Figure supplement 5. The effect of the canonical start codon on Were-1-Fluc expression in vivo.

Figure supplement 5—source data 1. Comparison of protein expression by amino-tSS in Were-1 variants containing UUG or AUG start codon.

Rotstan et al. eLife 2020;9:e51737. DOI: https://doi.org/10.7554/eLife.51737 7 of 21

Tools and resources Biochemistry and Chemical Biology



Finally, we used E. coli containing the Were-1-Fluc construct to determine whether gene expres-

sion can be regulated with a pulse of light. As shown in Figure 2i, bioluminescence was greatly

diminished in the presence of amino-tSS. Upon exposing the bacteria to 342 nm light, we saw a

modest increase in bioluminescence, relative to the unexposed control samples (Figure 3a and b,

Figure 3—figure supplement 3), suggesting that upon photoisomerization of amino-tSS to the cis

isoform with a pulse of light, Were-1 changed its conformation to expose its RBS and support lucifer-

ase production. Given that photoisomerization of stiff stilbenes from trans to cis is not quantitative

(meaning, only about 40% of the ligand is photoisomerized; see Figure 1—figure supplement 2b),

the trend in protein expression at individual amino-tSS concentrations can be rationalized in the fol-

lowing way: at low ligand concentrations, translation is weakly inhibited and photoisomerization has

little impact on the rate of protein synthesis; at intermediate ligand concentrations (near the IC50

concentration, that is, at the most concentration-sensitive segment of the ligand-response curve)

photoisomerization leads to a change in amino-tSS concentration that results in the biggest change

in translation initiation; and, at high ligand concentrations, photoisomerization results in little dere-

pression of translation initiation because enough amino-tSS remains to continue inhibiting protein

synthesis. Thus the incomplete photoisomerization of the stiff stilbene results in the bell-shaped

ligand dependence upon light exposure. Additionally, in another experiment, we excited cells with a

different wavelength of light (500 nm) that should not impact the isomerization of the ligand (Fig-

ure 3—figure supplement 3). Both controls showed lower bioluminescence compared to the 342

nm–excited samples, suggesting that the increased protein expression was due to derepression of

translation initiation upon photoisomerization of amino-tSS to amino-cSS, although the amplitude of

the effect is variable, perhaps due to variability of Were-1–regulated protein expression at different

cell densities.

To further analyze the system, we tested the temporal dependence of Were-1–regulated Fluc

production by exposing an amino-tSS–containing bacterial culture to 342 nm light for various lengths

of time. Relative to unexposed controls at the same ligand concentration, the highest luciferase

expression was seen at an exposure time of 500 ms (Figure 3b). The origin of the decrease in protein

expression induction at longer exposures is currently unknown. E. coli viability begins to decrease

above ~0.1 J/cm2 (at 325 nm light exposure, increasing to ~1 J/cm2 at 390 nm) (Vermeulen et al.,

2008) and our photon flux was 0.014 and 0.055 W/cm2 for the 342 nm and 390 wavelengths of light,

respectively. This means that at exposures above ~10 s, the photon flux in our experiments would

begin to affect the cell viability. Our experiments were performed at UV exposures well below lethal

doses at these wavelengths, even at the longest exposure times; therefore, we do not expect DNA

or RNA damage to cause the exposure dependence shown in Figure 3b. We confirmed the cell via-

bility using cells expressing the Were-1-Fluc construct in absence of amino-tSS, showing insensitivity

to the UV even at multi-second exposures; therefore, the decrease of protein expression at longer

exposures likely results from a cellular activity of the amino-tSS that is likely unrelated to the Were-1

riboswitch activity. Nonetheless, Were-1–regulated induction of protein expression using submilisec-

ond pulses of light represents a significant advance in the RNA optogenetics field, even if the ampli-

tude of the responses is rather modest.

When testing the same system using amino-cSS, bioluminescence decreased in a dose-dependent

manner with increasing amino-cSS concentration after exposure to 390 nm light (Figure 3c). This

result strongly suggests that by isomerizing amino-cSS to its trans isoform with a pulse of light,

Were-1 was able to sequester its RBS to inhibit luciferase production. Here, higher amino-cSS con-

centrations resulted in greater inhibition of translation, in line with the proportional conversion of

amino-cSS to amino-tSS (Figure 3c). Testing the temporal response of Were-1–regulated Fluc

expression in the presence of amino-cSS revealed that Were-1 again regulates protein expression

optimally at short exposures, showing the highest inhibition at a millisecond of light exposure

(Figure 3d). Based on the isomerization data (Figure 1—figure supplement 2, Figure 1—figure

supplement 3, Figure 1—figure supplement 4), the long-exposure effect is likely due to the ligand

reaching a semi-photostationary state combined with an unknown effect on the ligand observed for

the longer exposures of the trans isoform. No difference in cell density was observed among the

experiments, implying that neither the ligand, nor the light pulses affect the bacterial growth, and

again suggesting negligible photo-damage to the cells.

We next asked whether Were-1 could reversibly regulate gene expression in vivo, providing an

optogenetic tool to reversibly regulate cellular events at the RNA level. Using the same E. coli
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Figure 3. Regulation of luciferase expression by the Were-1 photoriboswitch in vivo. (a) Normalized amino-tSS–dependent bioluminescence (± SEM) of

the Were-1-Fluc construct after 1 ms exposure of 342 ± 5 nm light (Fq = 1.4*10�2 W/cm2). The largest change in expression was observed in the

presence of 10 mM amino-tSS. Inset shows the light–dependent bioluminescence of the bacterial cultures at 10 mM ligand. (b) Were-1 regulation of

luciferase expression (± SEM) in vivo at various exposure times in presence of 10 mM amino-tSS. (c) Normalized bioluminescence of the Were-1-Fluc E.

Figure 3 continued on next page
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construct, we measured bioluminescence over two hours in samples that were covered during exci-

tations, and therefore unexposed to light, samples that were exposed to a sub-millisecond of 342

nm light, and samples that were first exposed to 342 nm and later excited at 390 nm for a millisec-

ond. Initial values prior to excitation showed no significant difference in bioluminescence twenty-five

minutes post induction (Figure 3e). Samples that were then exposed to 342 nm light showed an

increase in luciferase expression, compared to the unexposed control. Lastly, bioluminescence of the

samples that were subsequently exposed to 390 nm light gradually decreased due to low production

of new enzymes post exposure (the existing luciferases presumably continued to yield photons),

compared to those that were exposed only to 342 nm, which continued protein production

unabated. After ~2.5 hr, samples that were exposed to 342 nm light were 5.5 times more lumines-

cent than unexposed samples and 1.8 times more luminescent than the samples exposed to both

342 nm and 390 nm, suggesting that luciferase expression was regulated reversibly. As an additional

control, the G69C mutant was exposed alongside Were-1 and showed no significant difference

when G69C excited with 342 nm light, or 342 nm and 390 nm (Figure 3—figure supplement 4).

These results strongly suggest that Were-1 is a photoriboswitch that can reversibly regulate protein

expression in vivo.

Discussion
Regulation of cellular events with light offers many advantages over other approaches, particularly

through ultrafast and spatially resolved deployment of the incident photons in live animals, making

optogenetic tools invaluable for the mechanistic dissection of many biological systems (Fenno et al.,

2011). Most optogenetic tools have been developed based on optical receptors, such as rhodopsins

and flavin-binding proteins (Möglich and Moffat, 2010), which necessitate their adaptation to the

pathways interrogated by the optogenetic tools. Methods based on these receptors are thus limited

by the availability of the appropriate protein motifs and their photoactive ligands or prosthetic

groups, such as flavin and retinal. Regulatory photoreceptor proteins that bind synthetic ligands

have not been, to our knowledge, developed. On the other hand, in vitro selection of RNAs offers a

facile approach to identify aptamers that bind a wide variety of molecular targets, including photoac-

tive molecules (Lotz et al., 2019). Furthermore, riboswitches, cellular ligand-binding RNAs, have

been identified in many bacteria, where they typically regulate transcription and translation, and

eukaryotes, where they regulate translation, and RNA splicing and stability (Breaker, 2011;

Zhang et al., 2020). Riboswitches therefore offer an attractive mechanism for the development of

synthetic regulatory elements, with expression platforms linked to aptamers binding synthetic

ligands, although only a few examples of fully de novo selected synthetic riboswitches exist

(Hallberg et al., 2017).

Figure 3 continued

coli incubated with amino-cSS after 1 s exposure of 390 ± 9 nm light (Fq = 5.5*10�2 W/cm2) showing progressively lower protein expression at higher

amino-cSS concentrations, presumably due to higher production of amino-tSS after photoisomerization. (d) Change of Fluc expression after

photoisomerization of 15 mM amino-cSS at 390 ± 9 nm for various exposure times, showing largest photoswitching at 1 ms exposure. (e) Regulation of

luciferase expression (± SEM) by the Were-1-Fluc construct before exposure, after a 1 ms pulse of 342 ± 5 nm light (black arrow), which resulted in

increased bioluminescence (black and gray circles) compared to control (empty circles). Samples exposed to 0.5 ms of 390 ± 9 nm light (gray arrow)

showed gradual inhibition of new protein production (gray) compared to samples that were only exposed to 342 nm (black).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Photoswitching of Were-1.

Figure supplement 1. Co-transcriptional binding of a ribosome-mimic in vitro under amino-tSS photoisomerization conditions.

Figure supplement 1—source data 1. Photoswitching of Were-1 binding by the DNA toehold.

Figure supplement 2. Were-1 photoregulates translation in vitro.

Figure supplement 2—source data 1. Photoregulation of Were-1-regulated translation in vitro.

Figure supplement 3. Were-1 photoregulation of protein expression in vivo.

Figure supplement 3—source data 1. Wavelength-dependent photoregualtion of Were-1-regulated protein expression in vivo.

Figure supplement 4. Lack of photoactivity of the Were-1-Fluc G69C variant.

Figure supplement 4—source data 1. Lack of photoswitching of the G69C variant of Were-1.
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We show that novel riboswitches, regulated by synthetic ligands, can be evolved from random

libraries fused to expression platforms using in vitro selection. Werewolf-1 is the first synthetic ribos-

witch that binds only one photoisoform of its ligand and reversibly regulates bacterial protein

expression at the RNA level. This work provides a new optogenetic tool for probing RNA-level bio-

molecular processes in living cells, and serves as a platform to evolve new RNAs of similar function.

We expect that Were-1 and similar photoriboswitches will allow reversible photoregulation of a vari-

ety of RNA-centered cellular events with a high spatiotemporal resolution in bacteria and multicellu-

lar organisms alike, advancing the field of optogenetics. In particular, the fast action of the Were-1

photoriboswitch offers new opportunities for mechanistic studies of translational cis regulatory ele-

ments, such as riboswitches, in vitro and in vivo. Short pulses of UV light can be deployed using light

sources commonly found on fluorescence microscopes coupled to mechanical shutters used in film

cameras, which allow exposures down to ~100 ms. Such excitation systems thus allow triggering of

photoswitches on timescales shorter than individual steps in RNA and protein synthesis

(Manor et al., 1969; Bremer and Yuan, 1968; Maaløe and Kjeldgaard, 1966), and many folding

transitions in these macromolecules (Vogel and Jensen, 1994; Young and Bremer, 1976; Al-

Hashimi and Walter, 2008; Crothers, 2001). In contrast to photocaged ligands, the photoreversibil-

ity of the Were-1 photoriboswitch is expected to yield short pulses of translation, allowing finely

tuned expression of proteins with the potential of triggering the production of a small number of

regulatory proteins in single cells, as well as in individual cells in consortia of microorganisms (bio-

films) or complex organisms.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Strain, strain
background
(Escherichia coli)

BL21(DE3) Sigma-Aldrich CMC0016 Electrocompetent
cells

Recombinant
DNA reagent

pBV-Luc-c36
(plasmid)

This paper IPTG inducible Were-1–
controlled firefly luciferase
gene with T7 RNA
polymerase promoter

Recombinant
DNA reagent

pBV-Luc
(plasmid)

Adgene RRID: Addgene_16539 Parent plasmid for
Were-1 construct

Chemical
compound, drug

Amino-tSS This paper Were-1 ligand,
trans isoform

Chemical
compound, drug

Amino-cSS This paper Cis isoform of the
Were-1 ligand

Chemical
compound, drug

tSS This paper Were-1 ligand, trans
isoform lacking a linker

Chemical
compound, drug

tS Sigma-Aldrich Cat# 139939 Trans stilbene

Chemical
compound, drug

tDHS Santa Cruz
Biotechnology

CAS 659-22-3 4,4-trans-
dihydroxystilbene

Reagents and equipment
Unless otherwise stated, all reagents were purchased from Sigma-Aldrich. (E)�6’-(2-aminoethoxy)�

2,2’,3,3’ tetrahydro-[1,1’-biindenylidene]�6-ol (amino-tSS) was synthesized and prepared as

described below. Commercially available reagents were used without further purification. Absor-

bance spectra were recorded with a Thermo Scientific NanoDrop 1000 spectrophotometer. Fluores-

cence excitation and emission spectra were measured with a Varian Cary Eclipse fluorescence

spectrometer, unless otherwise specified. Bioluminescence was measured using an Andor 866

EMCDD camera, BioTek Synergy H1 plate reader, or IVIS Lumina II.
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Synthesis of (E)�6’-(2-aminoethoxy)�2,2’,3,3’ tetrahydro-[1,1’-
biindenylidene]�6-ol
All starting reagents were commercially available, and of analytical purity, and were used without fur-

ther treatment. Solvents were dried according to standard methods. 1H and spectra were recorded

on Varian UNITY INOVA-300 and Bruker Avance-600 instruments. Chemical shifts (d) are reported in

ppm relative to residual solvent peak (DMSO: dH = 2.50 ppm) as internal standard. Accurate mass

measurements (HRMS) were obtained by ESI on an Agilent 6530 Q-TOF MS spectrometer. Analytical

TLC was performed using a precoated silica gel 60 Å F254 plates (0.2 mm thickness) visualized with

UV at 254 nm. Preparative column chromatography was carried out using silica gel 60 Å (particle

size 0.063–0.200 mm). Purifications by HPLC were performed under the following conditions: Agilent

ZORBAX SB-C18 column (5 mL, 9.4 � 150 mm); UV/Vis detection at lobs = 254 nm; flow rate 4 mL/

min; gradient elution method H2O (0.1% TFA) – CH3CN (0.1% TFA) from 95:5 to 0:100 in 20 min.

Purity of compounds was confirmed using Agilent eclipse plus C18 column (3.5 mL, 4.6 � 100 mm);

UV/Vis detection at lobs = 254 nm; flow rate 0.5 mL/min; gradient elution method H2O (0.1% TFA) –

CH3CN (0.1% TFA) from 95:5 to 0:100 in 20 min.

Synthesis details

Scheme 1. Synthesis of stiff stilbene derivatives tSS, amino-tSS, and amino-cSS.

Chemical structure 1. (E)�2,2’,3,3’-tetrahydro-[1,1’-biindenylidene]�6,6’-diol (tSS).

To a stirred suspension of zinc powder (3.20 g, 48.92 mmol) in dry THF (50 ml),

TiCl4 (4.67 g, 24.58 mmol) was added over 10 min at 0˚C. The resulting slurry was heated at reflux

for 1.5 hr. Then a THF solution (50 ml) of indanone 1 (600 mg, 4.05 mmol) was added

over 3 hr period by syringe pump to the refluxing mixture. The reflux was continued for 30 min after

the addition was complete. After cooling to room temperature, the reaction mixture was poured

into a saturated solution of NH4Cl and extracted with CH2Cl2. The organic solutions were dried over

MgSO4 and concentrated by rotary evaporation under reduced pressure. The crude product was

purified by column chromatography using silica gel (hexane/iPrOH = 10:0.5) to afford tSS

in 51% yield (273 mg) as a white solid. 1H NMR (400 MHz, DMSO-d6): d 2.95 (m, 4H), 3.02 (m, 4H),

6.63 (dd, J = 8.1, 2.2 Hz, 2H), 7.02 (d, J = 2.3 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 9.17 (s, 2H). 13C NMR

(100 MHz, DMSO-d6): d 29.6, 31.9, 111.0, 114.5, 125.2, 135.0, 137.0, 143.7, 156.1. HRMS (ESI): m/

z [M]+ calculated for C 18 H 16 O 2 264.1145; found: 264.1141.
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Chemical structure 2. (E)�6’-(2-aminoethoxy)�2,2’,3,3’-tetrahydro-[1,1’-biindenylidene]�6-ol (amino-tSS).

A mixture of tSS (125 mg, 0.47 mmol), 2-(Boc-amino)ethyl bromide (106 mg, 0.47 mmol),

Cs2CO3 (772 mg, 2.37 mmol) and nBu4NBr (6 mg, 0.02 mmol) in DMF (15 ml) was heated at 50˚C for

6 hr. After cooling to room temperature, CH2Cl2 was added and the mixture was washed with a sat-

urated solution of NH4Cl, water, brine and dried over MgSO4. The organic solutions were concen-

trated by rotary evaporation under reduced pressure. The crude product was dissolved in a mixture

of CH2Cl2/TFA (16 ml; 3:1) and stirred at room temperature for 30 min. The reaction mixture was

concentrated by rotary evaporation under reduced pressure and purified by HPLC (gradient elution

method H2O (0.1% TFA) – CH3CN (0.1% TFA) from 95:5 to 0:100) to afford amino-tSS (as a TFA salt)

in 42% yield (84 mg) as an off-white solid. 1H NMR (400 MHz, DMSO-d6): d 2.96 (m, 4H), 3.01

(m, 4H), 3.22 (t, J = 5.1 Hz, 2H), 4.17 (t, J = 5.1 Hz, 2H), 6.66 (dd, J = 8.1, 2.2 Hz, 1H), 6.87 (dd, J =

8.2, 2.3 Hz, 1H), 7.03 (d, J = 2.2 Hz, 1H), 7.13 (d, J = 8.1 Hz, 1H), 7.16 (d, J = 2.4 Hz, 1H), 7.27

(d, J = 8.3 Hz, 1H), 8.10 (s, 3H), 9.28 (s, 1H). 13C NMR (100 MHz, DMSO-d6): d 29.58, 29.64, 31.8,

31.9, 38.5, 54.7, 110.8, 111.1, 113.6, 114.8, 125.3, 125.4, 134.5, 135.9, 137.1, 139.6, 143.6, 144.0,

156.2, 156.9. HRMS (ESI): m/z [M+H]+ calculated for C20H21NO2 308.1645; found: 308.1651.

Chemical structure 3. (Z)�6’-(2-aminoethoxy)�2,2’,3,3’-tetrahydro-[1,1’-biindenylidene]�6-ol ((Z)�1; amino-cSS).

A solution of amino-tSS (15 mg, 35.6 mmol) in DMSO (1 ml) in NMR cuvette was irradiated with

handheld UV lamp (8 W) for 15 min. The resulting mixture of amino-tSS and amino-cSS was purified

by HPLC (gradient elution method H2O (0.1% TFA) – CH3CN (0.1% TFA) from 95:5 to 0:100) to

afford amino-cSS (as a TFA salt) in 20% yield (2 mg) as an off-white solid. 1H NMR (400 MHz,

DMSO-d6): d 2.75 (m, 4H), 2.85 (m, 4H), 3.22 (t, J = 5.1 Hz, 2H), 4.13 (t, J = 5.1 Hz, 2H), 6.63 (dd,

J = 8.2, 2.2 Hz, 1H), 6.84 (dd, J = 8.2, 2.2 Hz, 1H), 7.12 (d, J = 8.2 Hz, 1H), 7.25 (d, J = 8.3 Hz, 1H),

7.40 (d, J = 2.0 Hz, 1H), 7.53 (d, J = 2.0 Hz, 1H), 8.02 (s, 3H), 9.25 (s, 1H). 13C NMR (100 MHz,

DMSO-d6): d 29.2, 29.3, 34.9, 35.0, 38.5, 64.4, 108.9, 109.4, 114.5, 115.2, 125.8, 125.9, 134.4, 135.7,

138.6, 140.79, 140.84, 141.1, 155.46, 156.1. HRMS (ESI): m/z [M+H]+ calcd for C20H21NO2 308.1645;

found: 308.1644.

In vitro RNA transcription
RNA was transcribed at 37 ˚C for one hour in a 50 mL volume containing 40 mM tris-HCl, 6 mM

dithiothreitol (DTT), 2 mM spermidine, 1.25 mM each rNTP, 8 mM MgCl2, 1 unit of T7 RNA polymer-

ase, and 5 pmol of DNA template. The transcripts were purified by 10% PAGE under denaturing

conditions (7 M urea). RNA was eluted from the gel into 300 mL of 300 mM KCl and precipitated by

adding 700 mL of 95% ethanol at –20˚C.

In vitro selection of amino-tSS aptamers
An RNA pool derived from a B. subtilis mswA SAM-1 riboswitch, located in the 5’ untranslated

region of the metI (cystathionine gamma-synthase, also denoted as yjcI) gene (Winkler et al., 2003;
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Grundy and Henkin, 1998) was designed by replacing the riboswitch ligand-binding domain with a

random region of 45 nucleotides. The anti-terminator stem and upstream half of the transcriptional

terminator sequence were partially randomized at a 15% level, and the loop of the terminator stem

was fully randomized. The remaining part of the riboswitch, including the downstream half of the

transcriptional terminator stem, containing a ribosome binding site (RBS) that binds the 3’ end of B.

subtilis 16S rRNA (3’-UUUCCUCCACUAG-5’) (Band and Henner, 1984) and an alternative UUG start

codon, was retained (Figure 1—figure supplement 1). The pool was synthesized by Yale School of

Medicine’s Keck Oligonucleotide Synthesis facility as a single template strand that was then purified

by 10% PAGE and converted into dsDNA by a primer-extension reaction using a primer correspond-

ing to the T7 RNA polymerase promoter. The pool was transcribed at an estimated sequence diver-

sity of 1015.

From that pool, RNAs were selected to bind amino-tSS, as follows
PAGE-purified 32P-labeled RNA transcripts of the pool were precipitated, dried, and resuspended in

a solution containing 140 mM KCl, 10 mM NaCl, 10 mM tris-chloride, pH 7.5, and 5 mM MgCl2
(binding buffer). The RNA mixture was heated to 70˚C for three minutes and loaded onto agarose

beads for a counter-selection step. Binders were discarded and the flow-through was incubated on

agarose beads linked to amino-tSS. The beads were shaken for five minutes at room temperature,

and the unbound RNA was collected. Amino-tSS beads were then washed with binding buffer for

five minutes at room temperature. This washing step was repeated six times. Potential aptamers

were then eluted twice with denaturing buffer, consisting of 7 M urea and 5 mM ethylenediaminete-

traacetic acid (EDTA) in 45 mM tris, 45 mM borate buffer, pH 8, and heated at 95˚C for five minutes.

Each fraction was analyzed for radioactivity using a liquid scintillation counter. Elutions were pooled,

precipitated, dried, and resuspended in water for reverse transcription. The pool was reverse tran-

scribed, and the cDNA was amplified by PCR and used for the next round of selection.

Screening of potential amino-tSS binders
After six rounds of in vitro selection, the selected pool was cloned into a TOPO TA plasmid (Invitro-

gen) and transformed into DH5a E. coli cells. Cells were plated on agar containing kanamycin and

incubated overnight at 37 ˚C. Individual colonies were picked from the master plate and inoculated

overnight in Luria Broth containing kanamycin. Plasmids were extracted and purified using a Mini-

prep Kit (QIAGEN), and sequenced (GENEWIZ). Individual clones were PCR-amplified using the

library-specific primers and transcribed to test their optical activity in the presence and absence of

amino-tSS. tSS emission spectra were collected using an excitation at 355 nm. Were-1 showed the

highest increase in amino-tSS fluorescence at 430 nm and was chosen for further analysis.

Structure probing of Were-1
T1 nuclease probing
Were-1 RNA was dephosphorylated in a solution of the reaction buffer (50 mM potassium acetate,

20 mM Tris-acetate, 10 mM magnesium acetate, 100 mg/ml BSA, pH 7.9), 1 mg of purified RNA, and

1.5 unit of Shrimp Alkaline Phosphatase (NEB). The reaction was incubated at 37˚C for 30 min, and

heat-inactivated at 65˚C for 5 min.

50–labeled RNA (8000 cpm) was prepared in reaction buffer (70 mM Tris-HCl, pH 7.6, 10 mM

MgCl2, 5 mM DTT) using 1 mg of 50–dephosphorylated RNA, 2 mCi [g-32P] ATP (Perkin Elmer), and 15

units of T4 PNK enzyme (NEB). The reaction was incubated at 37˚C for two hours and PAGE–

purified.

The 50–labeled Were-1 RNA was added into binding buffer and the indicated concentrations of

amino-tSS or controls (no ligand, amino-cSS, tS, tDHS, and SAM), and were incubated at 55˚C for 5

min and subsequently cooled at room temperature for 5 min. Next, T1 nuclease was added (0.05

units; Thermo Fisher Scientific) and samples were incubated at 37˚C for 15 min. All conditions were

then quenched with a mixture of 7 M urea and 10 mM EDTA. Afterwards, the RNA was added to an

equal volume of phenol:chloroform:isoamyl alcohol (25:24:1) and vortexed. Samples were centri-

fuged for 3 min at 8,000 RPM, and the aqueous phase was collected and transferred to a new tube.
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Samples were fractionated on a 10% PAGE gel and exposed to a phosphor image screen (GE

Healthcare) for a minimum of 24 hr. The screen was scanned on a GE Typhoon phosphor imager.

A guanosine-specific sequencing lane was resolved in parallel to all samples using 50–labeled or

30–labeled RNA (8000 cpm), as specified, in T1 digestion buffer (250 mM sodium citrate, pH 7) and

0.5 units T1. Reactions were incubated at 55˚C for 5 min and quenched with a solution containing 7

M urea and 10 mM EDTA. RNA was extracted using phenol-chloroform, as noted above. Partial alka-

line hydrolysis was also resolved in parallel by adding 50–labeled or 30–labeled RNA (8000 cpm), as

specified, into a hydrolysis buffer (50 mM NaHCO3, 1 mM EDTA, pH 10). Reactions were incubated

at 95˚C for 10 min and quenched in a solution containing 7 M Urea and 10 mM EDTA. RNA was

extracted using phenol-chloroform.

Shape
A selective 2’-hydroxyl acylation and primer extension (SHAPE) reaction, as described (Spitale et al.,

2013), was carried out on Were-1 in the presence of increasing amino-tSS concentrations and 30 mM

controls (amino-cSS, tDHS, tS, and SAM).

S1 nuclease probing
Reactions were prepared by adding 30–labeled Were-1 RNA (8000 cpm) into S1 nuclease buffer (40

mM sodium acetate, pH 4.5, 300 mM NaCl, and 2 mM ZnSO4), and the indicated concentrations of

amino-tSS, and were incubated at 55˚C for 5 min and subsequently cooled at room temperature for

5 min. Next, S1 nuclease was added (0.2 units; Thermo Fisher Scientific) and samples were incubated

at 37˚C for 10 min and quenched in a solution of 7 M Urea and 10 mM EDTA. Samples were

extracted using phenol-chloroform and resolved on a denaturing 10% PAGE gel. The gel was then

exposed to a phosphor image screen and scanned on a GE Typhoon phosphor imager. The sequen-

ces in the degradation pattern were assigned by running T1 digestion and partial alkaline hydrolysis

in parallel lanes, as noted above.

Terbium (III) footprinting
Reactions were prepared by adding 50–labeled Were-1 RNA (8000 cpm) into the binding buffer, and

the indicated concentrations of amino-tSS or controls (no ligand, amino-cSS, tS, tDHS, and SAM),

and were incubated at 55˚C for 5 min and subsequently cooled at room temperature for 5 min. Ter-

bium (III) chloride was added to a final concentration of 10 mM and samples were incubated at 37˚C

for 30 min and then quenched with a solution of 7 M urea and 10 mM diethylenetriaminepentaacetic

acid (DTPA). Were-1 RNA was extracted using phenol-chloroform, as noted above, and samples

were fractionated on a denaturing 10% PAGE gel. The gel was exposed to a phosphor image screen

(GE Healthcare) and scanned on a GE Typhoon phosphor imager. The sequences in the degradation

pattern were assigned by running TI digestion and partial alkaline hydrolysis in parallel lanes, as

noted above.

In–line probing
Reactions were prepared by adding 30–labeled RNA (8000 cpm) into the binding buffer, pH 8.5, and

the indicated concentrations of controls (no ligand, cSS, tS, tDHS, and SAM). Samples were initially

incubated at 55˚C for 5 min and then cooled at room temperature for 5 min, and then incubated at

37˚C for 20 hr. All conditions were quenched in a solution of 7 M Urea and 10 mM EDTA. Were-1

RNA was extracted using phenol-chloroform, as noted above, and run on a denaturing 10% PAGE

gel. The gel was exposed to a phosphor image screen (GE Healthcare), and scanned on a GE

Typhoon phosphor imager. The sequences in the degradation pattern were assigned by running T1

digestion and alkaline hydrolysis in parallel lanes, as noted above.

All gels were analyzed in ImageJ. Structure predictions of Were-1 in the absence of amino-tSS

were performed using RNAfold of the Vienna RNA package (Lorenz et al., 2011; Figure 1c).

In vitro strand displacement reaction
A dsDNA reporter was designed to contain a toehold that complements the Shine-Dalgarno

sequence of the riboswitch, in which the longer (toehold) strand (Rep F) contained the 3’ toehold
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sequence, a reverse complement of the Shine-Dalgarno sequence, as well as a 5’ fluorescein. The

shorter strand (Rep Q) contained a 3’ Iowa black quencher (Supplementary file 1 - Supplementary

Table 1). A solution of 2:1 Rep Q:Rep F oligos in binding buffer was incubated at 95˚C for 1 min, fol-

lowed by 25˚C for 5 min, to anneal the strands and form the dsDNA reporter construct.

In a Falcon 384-well Optilux Flat Bottom plate, strand displacement was initiated by adding 100

nM of purified Were-1 RNA to 50 nM of toehold-fluorophore reporter. Amino-tSS was quickly added

to some samples to test for ligand-dependent displacement. Fluorescence emission was recorded in

a BioTek Synergy plate reader over a 45 min period under continuous illumination using the follow-

ing parameters: excitation wavelength, 485 nm; emission wavelength, 520 nm.

In vitro cotranscriptional toehold-binding kinetics of Were-1
In vitro transcription was performed similarly to the above–described RNA transcription assay with

the following modifications: 3 pmol template DNA and 50 nM toehold-fluorophore reporter were

used. A 30 mL transcription reaction was initiated by the addition of 4 mM rNTP mix (containing 1

mM of each rNTP) and fluorescence emission of the toehold-fluorophore reporter was recorded in a

Varian Cary Eclipse fluorimeter under continuous illumination at 37˚C using the following parameters:

excitation wavelength, 485 nm; emission wavelength, 520 nm; increment of data point collection,

0.01 s; slit widths, 10 nm. These conditions were used for the entire experiment unless stated other-

wise. After an initial fluorescence increase, corresponding to the initial burst of transcription, amino-

tSS was rapidly added to the solution and fluorescence emission was recorded for 200 s. To switch

amino-tSS to the cis isoform (amino-cSS), the solution was excited at 342 nm (slit width, 2.5 nm; Fq

= 6.8*10�5 W/cm2) for 60 s. Fluorescence emission of the toehold-fluorophore reporter was again

recorded for 200 s. To switch the cis isoform back to the trans state, the solution was excited at 372

nm (slit width, 2.5 nm; Fq = 10*10�5 W/cm2) for 60 s. Again, fluorescence emission of the toehold-

fluorophore reporter was recorded for 200 s. This process was repeated two to three more times

until fluorescence plateaued.

IC50 measurements
A dose-response of the Were-1 riboswitch to the target ligand (amino-tSS) was assessed by measur-

ing fluorescence as a function of ligand concentration in the presence of a toehold-fluorophore

reporter construct (50 nM). Fluorescence emission was recorded under continuous illumination at 37˚

C using the following parameters: excitation wavelength, 485 nm; emission wavelength, 520 nm;

increment of data point collection, 0.01 s; slit widths, 10 nm. The apparent rate constants were mea-

sured and plotted against the amino-tSS concentrations (or other ligands, as specified). The data

were normalized to the no-amino-tSS control. The IC50 was extracted from fitting a curve to the

graph using the equation:

Normalizedfluorescence¼1�
½ligand�

½ligand�þIC50

In vitro co–transcriptional magnesium dependence of Were-1 toehold-
binding
Using the same conditions as above, the fluorescence response of toehold-binding to the Were-1

riboswitch in the presence of 8.4 mM amino-tSS under various Mg2+ concentrations was measured.

Fluorescence emission was recorded under continuous illumination at 37˚C on a BioTek Synergy H1

plate reader.

Cloning the Were-1 riboswitch for expression in E. coli cells
Were-1 DNA was cloned into the pBV-Luc (Addgene) vector in order to obtain a fused riboswitch-

firefly luciferase (Fluc) reporter construct. The PCR primers were designed to add a 5’ EcoRI site to

the template Were-1 DNA upstream of the T7 promoter and a 3’ overhang containing 35 nucleoti-

des of the Fluc gene directly downstream of its start codon to replace the Fluc start codon

sequence. Both the PCR product and plasmid were digested by EcoRI HF and KasI (New England

BioLabs) and purified. The purified construct was then inserted at the 5’ end of the Fluc coding
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sequence with T4 DNA ligase (New England BioLabs). The resulting vector was termed Were-1-Fluc

(Supplementary file 1).

Were-1-Fluc was transformed into DH5a E. coli cells and grown overnight on agar plates contain-

ing ampicillin at 37˚C. Ten colonies were picked from a master plate and individual clones were inoc-

ulated overnight in Luria Broth containing ampicillin. Plasmids were purified using a Miniprep Kit

(QIAGEN) and individually sequenced (GENEWIZ). Correct constructs were transcribed in vitro and

fractionated on an agarose gel to confirm sequencing results by measuring the size of the fused con-

struct. Using the same procedure as above, one clone was analyzed in an in vitro co-transcriptional

toehold-binding experiment to test whether the new fused construct was able to function similarly

to the stand-alone riboswitch.

In vitro transcription and translation kinetics
The PURExpress in vitro protein synthesis kit (New England BioLabs) was used to transcribe and

translate Were-1-Fluc. Experiments were performed similarly to the kit assay conditions with the fol-

lowing modifications: 200 ng/mL DNA, 100 mM D-luciferin, and 2 mM MgCl2. Amino-tSS (or other

ligands, as specified) was added in conditions when specified. A control plasmid, pET-Luc2, was also

tested in the presence and absence of 11 mM amino-tSS. All luminescence data were acquired using

an ANDOR camera (EMCCD) at 25˚C and analyzed using Solis software, and images were further

processed and analyzed using ImageJ.

To test whether Were-1 could regulate luciferase protein expression, samples were prepared

under identical conditions and luminescence was measured for approximately 40 mins. Samples

were then excited at 342 nm (Fq = 1.4*10�2 W/cm2) for 1 s, and luminescence was recorded for

approximately 30 mins. Samples were excited at 390 nm (Fq = 5.5*10�2 W/cm2) for 1 s to switch

Were-1 back to the bound ‘off’ state, and again, luminescence was measured for approximately 30

mins.

IC50 measurements
A dose-response of the Were-1 riboswitch to amino-tSS was assessed by measuring luminescence as

a function of increasing target concentration. All data were acquired using an ANDOR camera and

analyzed with Solis software, and images were further processed and analyzed using ImageJ, as

described above.

In vivo translation kinetics
Were-1-Fluc was transformed into BL21(DE3) E. coli cells and grown overnight in Luria Broth contain-

ing ampicillin (OD600 = 0.26). 1 mM IPTG was added to each well (containing 45 mL culture) to induce

T7 RNA polymerase-driven expression and 100 mM D-luciferin to provide a substrate for Fluc.

Amino-tSS or amino-cSS was also added where specified. Bioluminescence was recorded every five

mins for one hour at 37˚C using a BioTek Synergy H1 plate reader.

To test whether the Were-1 riboswitch regulates the production of Fluc, samples were prepared

under the same conditions. In the presence of amino-tSS, bioluminescence was measured on a Bio-

Tek Synergy H1 plate reader for approximately 15 mins before samples were excited at 342 nm for

1 s in order to isomerize amino-tSS to amino-cSS. Luminescence was recorded again for approxi-

mately 20 mins. Similar experiments were used regarding amino-cSS, with the exception of using

390 nm exposure for 0.5 ms in order to isomerize amino-cSS to amino-tSS, unless further specified.

In vivo light exposure analysis
To determine the dependence of the amino-tSS exposure on the Were-1-Fluc expression, samples

were prepared as described above and loaded into two black-bottom 96-well plates. One plate was

used as a control and the other was exposed to 342 nm light (Fq = 1.4*10�2 W/cm2) for their speci-

fied time using a Nikon FM-10 camera shutter in order to isomerize amino-tSS to amino-cSS. The

same procedure was performed in the presence of amino-cSS, except 390 nm light was used (Fq =

5.5*10�2 W/cm2) for their specified time to isomerize amino-cSS to amino-tSS. Bioluminescence was

measured on an IVIS Lumina II imaging system 1 hr after light exposure.
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To test whether the Were-1 riboswitch regulates the production of Fluc multiple times, samples

were prepared as described above and loaded in a black-bottom 96-well plate. The top half of the

plate was used as a control, containing the unresponsive G69C mutant, and the bottom half con-

tained Were-1. All samples contained 10 mM amino-tSS and had their bioluminescence was mea-

sured 25 min after induction on a BioTek Synergy H1 plate reader. Next, the first group of wells

remained unexposed to light and the middle and far right samples were exposed to 342 nm (Fq =

1.4*10�2 W/cm2) for 1 ms. Measurements for all samples were taken 40 min after 342 nm exposure.

Finally, the last group of wells (far right) were excited at 390 nm for 0.5 ms. Bioluminescence was

measured again, for all samples, 40 min after exposure. The same experiment was repeated with the

inactive mutant, G69C, as an additional control. Data were normalized to the unexposed samples,

and OD600 values were obtained to confirm that there was no cell death from UV damage.

IC50 measurements
A dose-response of the Were-1 riboswitch to the target metabolite (amino-tSS) was assessed by

measuring bioluminescence inhibition as a function of increasing target concentration in BL21(DE3)

E. coli cells. Bioluminescence was recorded under continuous conditions at 37˚C.
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