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UNCOUNTABLE n-DIMENSIONAL EXCELLENT REGULAR
LOCAL RINGS WITH COUNTABLE SPECTRA

S. LOEPP AND A. MICHAELSEN

ABSTRACT. We prove that, for any n > 0, there exists an uncountable, n-dimensional,

excellent, regular local ring with countable spectrum.

1 INTRODUCTION

A remarkable result by M. Hochster in [3] gave exact conditions under which a
partially ordered set (poset) could be realized as the spectrum of a commutative ring.
Little is known on this question, however, when we place further restrictions on the
resulting ring. For instance, the question is open when we require the ring to be
Noetherian. Previous work done by R. Wiegand, S. Wiegand, and C. Colbert, among
others, has provided specific examples of posets that can be realized as the spectra
of Noetherian rings [1,6]. For instance, C. Colbert recently proved, for any n > 2,
the existence of an uncountable, n-dimensional, Noetherian ring with a countable
spectrum. While this is clear for dimensions 0 and 1, it was unknown in higher
dimensions until Colbert proved his result. In this paper, we prove a similar result to
Colbert’s but with stronger conditions on the ring. In particular, our main result is

as follows:

Theorem 1.1. For anyn > 0, there exists an uncountable, n-dimensional, excellent,

reqular local ring with a countable spectrum.

In the case of n = 0 and n = 1, C and C[[z]], respectively, are examples of such
rings. In the case that n > 2, we prove the existence of such a ring constructively.
The construction takes place between the polynomial ring Q[z1, ..., xz,] and the cor-
responding power series ring Q[[z1, ..., x,]] and consists of two major steps. In the
first step, we construct a local (Noetherian) countable base ring, S, with completion
Q[[z1, . .., xy]] such that S is both excellent and has the property that it contains (up
to units) every prime element in the power series ring that divides any element in S.

In the second step, we algorithmically adjoin uncountably elements to this ring S so
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that every ideal of the resulting ring, B, is extended from S. We use this to show
that B has completion Q[[z1,...,x,]] and is an excellent regular local ring.

In section 2 we present preliminaries. In section 3 we construct the base ring, S. In
section 4 we introduce some useful definitions for the remainder of the construction.
In section 5 we construct the final ring, B, and then prove that B is an uncountable,

n-dimensional, excellent, regular local ring with a countable spectrum in section 6.

2 PRELIMINARIES

For the rest of this paper assume n > 2, and define Ry = Q[z1,...,2,), T =
Q[lz1,...,z,]] and M = (z1,...,2,)T the maximal ideal of T. We will use quasi-
local to refer to a ring with a unique maximal ideal and local to refer to a Noetherian
quasi-local ring. When R is a local ring, R indicates the completion of R at its
maximal ideal M.

In this paper we will be constructing many rings with completion T". To show that

they have this property, we make use of the following proposition.

Proposition 2.1 ([2, Proposition 1]). If (R, RN M) is a quasi-local subring of a
complete local ring (R, M), the map M — R/M? is onto and IRN R = IR for every
finitely generated ideal I of R, then R is Noetherian and the natural homomorphism

R— 7R isan isomorphism.
Applied to a subring of T' = Q[[z1, . .., x,]], this yields the following corollary.

Corollary 2.2. Let (R, RN M) be a quasi-local subring of T' such that Ry C R, and,
assume that, for every finitely generated ideal I of R, IT N R = IR. Then R is
Noetherian, R =T and R is a regular local ring (RLR).

Proof. We will use Proposition 2.1 to show that R has completion 7T". To do this, we
will show that the map R — T/M? is onto. Given t + M? € T/M?, we know that
t=s+mfor s € Ryand m € M? Then,t —s=m € M? so s+ M? =t+ M2
Thus the map is onto. Since, for any finitely generated ideal I of R we have that
I'T N R = IR, by Proposition 2.1, R is Noetherian with completion T". Furthermore,
since T"is a RLR, so is R. U

Note that if (R, R N M) is a local ring with R = R, then R is a faithfully flat
extension of R and so any finitely generated ideal I of R satisfies IR N R = IR.

The following definitions and lemmas pertain to excellent rings. Define, for any
P € Spec A, k(P) = Ap/PAp.



Definition 2.1 ([5, Definition 1.4]). Given a local ring (A4, AN M), A is excellent if
(a) For all P € Spec A, E@A L is regular for every finite field extension L of k(P),

and

(b) A is universally catenary.

As noted in [5], we can consider only the purely inseparable finite field extensions
L of k(P). The following is a consequence of Theorem 31.6 and the definition of
formally equidimensional in [4, pp. 251].

Theorem 2.3. Let (A, M) be a local ring such that its completion, ﬁ, 1S equidimen-

sional. Then A is universally catenary.
We will now give sufficient criteria for excellent for rings with completion 7.

Lemma 2.4. Given a local ring (A, AN M) with A= T, A is excellent if, for every
P € Spec A and for any Q) € SpecT with QN A= P, (T/PT)q is a RLR.

Proof. We know that A is a local ring, and so we must show both conditions of
Definition 2.1 hold. By Theorem 2.3 A is universally catenary. We must then consider
T ® 4 L for every purely inseparable finite field extension of k(P) for each P € Spec A.
Since Z C A and all nonzero integers are units, we have that Q C k(P), and so k(P)
has characteristic 0. Every finite field extension with characteristic 0 is separable.
Since it is sufficient to check only purely inseparable field extensions, this leaves only
the trivial field extension so we need only show that T'®,4 k(P) is regular for every
P € Spec A. Note that T'®4 k(P) localized at Q ® k(P) is isomorphic to (7'/PT)q.
Hence, it suffices to show that (7//PT) is a RLR. O

We end with a lemma regarding the structure of Sing(R) of excellent rings.

Lemma 2.5 ([5, Corollary 1.6]). If R is excellent, then Sing(R) is closed in the
Zariski topology, i.e. Sing(R) = V(I) for some ideal I of R.

3 CONSTRUCTION OF THE BASE RING

We first construct a countable local excellent ring (S,S N M), where Ry C S C T,
S = T, and, for any nonzero s € S with s € pT for some prime element p of T,
pu € S for a unit u € T

Lemma 3.1. Let R be a countable ring with Ry € R C T. Then there exists a
countable ring R’ such that R C R' C T and, if I is a finitely generated ideal of R,
then ITNR C IR



Proof. Consider the set Q = {(I,¢) : I is a finitely generated ideal of R,c € IT N R}.
Since R is countable, so is {2. Enumerate 2 with 0 denoting its first element. We will
inductively define countable subrings for each (I,c) € €. First let Sy = R. Notice
that Sy is countable. Given the kth element, (I, c), with the countable ring Sy, defined,
we will construct Siy1. Let I = (aq,...,a;)R for a; € R. Then, since ¢ € IT N R, we
have that ¢ = ayty + - - - + aty for t; € T. Now let Sy = Sklti, ..., ts. Since Sy is
countable, so too is Si.1. Furthermore, notice that ¢ € I.Sg.1.

Then define R = U2, S;. We will show that I7 N R C IR for any finitely
generated ideal I of R. Given a finitely generated ideal I of R, and ¢ € IT N R, then
(I,c) € Q. If (I,c) is the jth element of €, then ¢ € I.S;1;. Notice 15,11 C IR/, so
then ITNR C IR O

Lemma 3.2. Let R be a countable ring with Ry € R C T. Then there exists a
countable local ring (R", R" N M) such that, R C R" C T, and, for every finitely
generated ideal I of R”, IT N R" = IR". Hence, R" is Noetherian, R = T, and R"
is a RLR.

Proof. Let Sy = R. Note that Sy is countable. Given the ring 5;, let S;;; be the
countable ring obtained from Lemma 3.1, such that, if I is a finitely generated ideal
of S;, we have IT N.S; C S;y1.

Now, define R’ = J;2,S;. We will show that, for every finitely generated ideal I of
R, ITNR = I. Consider some finitely generated ideal I of R'. Clearly IR’ C ITNR/,
so suppose ¢ € ITNR'. Let I = (ay,...,a,)R. For some k, a; € Sy for all 7, and
c € Sk. Then ¢ € (ay,...,a,)T NSy C (a1,...,am)Skr1 € IR'. Thus we have that
ITNR =1IR.

Then define R = R, ,,; we will show that R” will also have the property that,
for any finitely generated ideal I of R”, ITNR" = IR". 1If I = R" this holds. If I
is a proper finitely generated ideal of R”, then [ = (%, ce Z—Z)R” = (a1,...,an)R"
for a; € R'. Since [ is proper, we know that a; € R’ N M. Suppose x € IT N R".
Then since # € R”, x = ab™! fora € R and b ¢ R*'N M. Since x = ab™! € IT,
xb=a€ ITNR = (ay,...,a,)R C IR". Since b is invertible in R”, this means
that © = ab™! € IR", so ITN R" = IR", as desired. Thus by Corollary 2.2, R" is
Noetherian, has completion 7', and is a RLR. O

Since our base ring, (S, SNM), will have completion 7', by Lemma 2.4, to show that
S is excellent it is sufficient to show for each P € Spec .S and @) € SpecT lying over

P, (T/PT)q is a RLR. Given some intermediate ring R with completion 7", and some
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P € Spec R, the next lemma shows that there are only countably many ) € SpecT
lying over P in R such that ) is minimal in Sing(7"/PT).

Lemma 3.3. Let (R, RN M) be a countable local ring with Ry C R CT and R=T.

Then | {Q; € SpecT : Q; € minl for I where Sing(T/PT) = V(I/PT)} is a
PeSpec R

countable set.

Proof. First, since R is countable and Noetherian, Spec R is countable, so it suffices

to show that the set is countable with respect to any fixed P € Spec R. Let P €

Spec R. Then, since T is a complete local ring, T//PT is excellent. By Lemma 2.5

Sing(T'/PT) = V(I/PT) for some ideal I of T. Then consider the set of minimal

prime ideals @); of /. Since T" is Noetherian, this set is finite. O

Definition 3.1. We say a subring R of T' contains all its factors, if, for any nonzero

r € R with r € pT for some prime element p of T', pu € R for a unit u € T

Theorem 3.4. There exists an excellent, countable, RLR, (S,S N M), such that
RyCSCT, S = T, and S contains all its factors.

Proof. Let Sy = Rogr,np- Notice that Sy is local, has completion 7" and is a RLR. We
will define an ascending chain of rings recursively. For each S; we will ensure that it
satisfies the criteria of Lemma 3.3, i.e. that (S;, S;N M) is a countable local ring with
Ry C S, CT and §, = T. Notice that, in the base case, S; satisfies these conditions.
Assume that (.S;, S; N M) is a countable local ring with Ry C S; C T and SA’Z =T. We
will construct S; ;1 to satisfy these as well. First, for each s € S; where s is a nonzero
non-unit, since 7" is a UFD, choose exactly one factorization of s in 1", s = ps, - - - ps,.,
for prime elements p,, in T'. Define P(S;) = |J {ps,}. Since each s adds only finitely

s€S;
many p; and .S; is countable, this set is countable.

Next, by Lemma 3.3, the set

J {Q;:Q; €minT for I where Sing(T/PT) =V (I/PT)}
PeSpec S;

is countable. Since T' is Noetherian, every @); is finitely generated. Choose exactly
one generating set, {¢;,,...,q;} €T for each Q;. Define G(S;) = Ug,{q;,}. Each
(); adds only finitely many ¢;’s so G(5;) is countable.

Now given S;, define S! = S;[G(S;), P(S;)]. Notice since S;, G(S;), and P(S;) are
countable, so is S;. Then let (S;11,S;+1 N M) be the countable local ring obtained by
applying Lemma 3.2 to S;, so §,~+1 =T and S,;; is a RLR. Notice that S;, satisfies

the conditions of Lemma 3.3 as needed.
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Define S = J;=, S;. We will show that S is a countable, excellent, RLR such that
Ry CSCT, S=T , and S contains all its factors. First, since each S; is countable,
their countable union is countable so S is countable, as desired. Furthermore, since
each S; satisfies Ry C S; C T, so does S. Next, since each S; has a unique maximal
ideal S; N M, S is is quasi-local with maximal ideal S N M. Note that, for every ¢,
since §, =T, if I is a finitely generated ideal of .S;, then I'T'NS; = 1.5;. We will show
that this holds for S as well.

Suppose [ is some finitely generated ideal of S. It is clear that IS C IT NS, so
we will show that 1T NS C IS. Since [ is finitely generated, I = (aq,...,a;)S for
a; € S. Let c € ITNS. Choose ¢ such that a;,c € S;. Then ¢ € (a,...,a,)T NS, =
(a1,...,am)S; € IS. Thus ITNS C IS. Since Ry C S, by Corollary 2.2, S is
Noetherian, has completion 7', and is a RLR.

Next we will show that S contains its own factors. Let r € .S and r € pT' for some
prime element p in 7. Then r € S; for some i. Thus, pu € P(S;) for some unit u in
T. Since P(S;) C S;y1 € S, we have that pu € S;y; € S and we see that S contains
its own factors.

Finally, we will show that S is excellent by showing that, for P € Spec S, and @) €
Spec T such that QNS = P, (T'/PT)q is a RLR. Let P € Spec S and @ € SpecT such
that @ NS = P. Suppose for contradiction that Q/PT € Sing(T/PT) =V (I/PT).
Then @) O @); 2 I for some minimal prime ideal @); € SpecT" of I. Since Q; 2 I D
PT, Q;/PT € Sing(T/PT). Furthermore, P = PTNS CQ;NSC QNS =P so
Q;NS=P.

Note that P is finitely generated, so let P = (ps,...,pn)S. Choose i so that p; € S;
for all j. Then define P = PN S; and note that P’ € Spec S;. We will first show that
P'T'= PT. Observe,

so then P'T = ((p1,---,0m)S)T = (p1,-..,pm)T = PT. Thus T/PT = T/P'T,
and so since Q);/PT € Sing(T/PT'), we have Q;/P'T € Sing(T/P'T). Next we will
show that ); = PT. Since Q; NS = P, we have @, NS, = PNS; = P'. So
then, Q; € Upregpees, 1@ + @ € min[ for I where V(I/P'T) = Sing(T/P'T")}. This
means that for some generating set for Q;, {q1,...,q} C T, we have {¢x} C G(S;) C
Siv1. Thus Q; N Siy1 = (q1,--.,q)T N Six1 = (q1,...,q0)Six1. Since S 2 Sipy,
Q;NSDQ;NSit1 = (q1,-..,q)S+1. Recall that Q; NS = P, so

PT =(Q;nS)T 2 ((q1,---,q)Si41)T = (q1, - -, q)T = Q.
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We already know that Q; 2 PT, thus QQ; = PT. Then (I'/PT)q, = (T/PT)pr is
a field (and hence a regular local ring). However @Q; € Sing(T/PT), so (T'/PT)q, is
not a regular local ring, a contradiction. It follows that @)/ PT ¢ Sing(7/PT') and so
(T'/PT)q is a regular local ring. O

4  DEFINITIONS AND LEMMAS

In the previous section we constructed an excellent, countable, RLR, (5,5 N M),
with completion 7" that contains all its own factors. For the remainder of this paper,
S refers to this ring. From S, we will construct an uncountable strictly ascending
chain of rings such that, for any prime ideal P € SpecT, P intersects nontrivially
with each ring if and only if P intersects nontrivially with S. To accomplish this,
we introduce the following definitions inspired by the definition of W-subrings by W.

Zhu in her senior thesis at Williams College.

Definition 4.1. A ring R is an S*-subring of T'if S C R C T and, for any P € SpecT,
if PNS = (0) then PN R = (0).

Definition 4.2. A C'S*-subring, R, of T, is a countable quasi-local S*-subring of T’
with maximal ideal RN M.

Note that S is an example of a C'S*-subring of T". Furthermore, we will show that
the union of S*-subrings of T" is an S*-subring as well. Let R = U, R, where every
R, is an S*-subring of T". Then clearly S C R C T. Suppose P € SpecT such that
PNS =(0)andlet r € PNR. Then r € R, for some o, sor € PNR, = (0)sor =0
and thus P N R = (0), as desired. Note if each R, is quasi-local with maximal ideal
R, N M, then R will be quasi-local with maximal ideal R N M. Thus the countable
union of C'S*-subrings of T is also a C'S*-subring of T" and the uncountable union of

C'S*-subrings is a quasi-local S*-subring.

Lemma 4.1. Let R be an S*-subring of T, with q¢ a prime element of T such that
qI' N R # (0). Then, for some unit w in T, qu € S, and g7 NS = qusS.

Proof. Since R is an S*-subring of T" and ¢T" € SpecT and ¢T'N R # (0), we have
qI'NS # (0). Let s € ¢I'NS with s # 0. Since s € g7 and S contains all its factors, for
some unit v in 7', qu € S. Now since S has completion T, ¢T'NS = quT'NS = quS. 0O

Next is a lemma about factorizations of nonzero non-units in S*-subrings of 7T'.

Lemma 4.2. Let (R, RN M) be an S*-subring of T and let r € RN M. Then there

exists ¢ € (x1,...,2,)S = SN M and d is a unit in T satisfying r = cd.
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Proof. First, if r = 0, then ¢ = 0 and d = 1 satisfy the desired conditions. Next,
suppose 7 # 0. Since r € RN M C M, r is not a unit in 7', so we can factor r into
primes in T to obtain r = p; ---p; for primes p; in T. For every p;, r € p, T N R
and so by Lemma 4.1, for some unit u; in T, p;u; € S. Let ¢ = pyuy - - - prpug and
d=u' - u;'. Thenc € (v1,...,2,)TNS = (21,...,7,)S and d is a unit in T such
that r = cd. O

5 THE CONSTRUCTION

In the following lemmas and propositions, we construct an ascending chain of C'S*-
subrings of T, starting from S, by adjoining power series, u, of the form specified
below. In particular, upon adjoining each u, we not only retain the properties of
CS*-subrings of T' but add new elements from 7. The uncountable union of these
rings, A, will be an uncountable S*-subring of T. To A, we adjoin elements so that
the resulting S*-subring, B, of T satisfies bT'N B = bB for any b € B. Using this
property of B we show that B is an excellent, uncountable, RLR with a countable
spectrum. Several of the definitions and lemmas in this section were inspired by ideas
in W. Zhu’s senior thesis at Williams College and work by C. Colbert in [1].

Consider v of the form
(5.1) u=14A121 + Asz1z0 + -+ Apz129 2+ -,

where A; € (x1,...,2,)R and z; € (x1,...,2,)S, for some CS*-subring, R, of T.
Notice that, since A;, z; € M, the kth term in the series is in M* for k > 2, so this

series converges in 1. So w is, in fact, a unit in 7. Now define,
Mk = 1+A121+' . '+Ak—lzl Ce 21 and Kk = Ak'zl ‘e 'Zk—1+Ak+1Z1 ‘e 'Zk—lzk—l—l—i_' e

We can then express u as M + 2, K for any k > 1. The next lemma demonstrates
how we adjoin such an element u to a C'S*-subring, R, of T so that the resulting ring

is a C'S*-subring of T'. We do this by algorithmically choosing the values of z;.

Lemma 5.1. Let R be a CS*-subring of T. Then for any A; € (x1,...,x,)R satisfy-
ing the property that whenever i > j there exists k such that A; € M* and A; ¢ M*,
there exist z; € (x1,...,x,)S such that, if u € T is of the form,

U:1+A121+A22122+"'+Ak2122"'2k+"',

then Rlu|ppjnm is a CS*-subring of T



Proof. First we define the z;’s and then show that the resulting ring is a C'S*-subring
of T. Define R” = R[X] where X is an indeterminate. Since R is a C'S*-subring of T,
R is countable. Then R”, polynomials in X over R, is also countable. Given this, we
can enumerate the nonzero elements of R” using the nonnegative integers. Consider
the ith element in the well-order, G;(X). Substituting any u of the form in equation
5.1, we have, for any k£ > 1,

Gi(u) = roau’ + -+ riu+ros = rea(My + 2. K3)" + -+ 1 (Mg + 20 Kz) + 704

for r,,; € R. By binomial expansion, this becomes

(5.2) Gi(u) = Gy(My) + 21 (gi:l P 2:? (T) zg—lf(,gM,:”—j> .

We will define the z;’s recursively using G;(M;) so that z; € (z1,...,2,)S. Notice
that, since each z; will be in (z1,...,2,)S, the second term in (5.2) is an element of
(z1,...,2,)T. This means that G;(u) € (z1,...,2,)T < G;(My) € (x1,...,2,)T.
Equivalently, G;(u) is a unit in 7" if and only if G;(M}) is a unit in 7" for all £ > 1.
Since A; € (x1,...,x,)R, we have that M; € R and so G;(M;) € R for all i, j € N.

Starting with j = 1 and ¢ = 1, we will use G;(M;) to define z; as follows:

(1) If G;(M;) is a unit, then let z; = 21 and use to Gj4+1(M;41) to define z;4;.

(2) If G;(M;) =0, then let z; = z; and use to G;j(M;11) to define z;,4.

(3) If G;(M;) is nonzero and not a unit, then since G;(M;) € R, by Lemma 4.2
G;(M;) = cd where ¢ € (z1,...,2,)S and d is a unit in 7. Since G;(M;) # 0,
c# 0. Let z; = ¢ and use Gj;1(M;41) to define z;44.

One consequence of the above definition is that z; # 0 for all ¢ and that z; €
(1,...,2,)S for all i. Now that u has been defined by specifying each z;, define
R' = R[u]. We will now show that Ry, is a C'S*-subring of 7". Notice that R’ is
countable, and S C R C R'. Let P be a prime ideal of 7" with PN S = (0). We will
show that P N R’ = (0) by showing that, for any nonzero r € R', r ¢ P. First, since
r is nonzero, r = G;(u) for some 7. If G;(u) a unit in 7', then G;(u) ¢ P.

Next, suppose that G;(u) is not a unit. Then G;(My) is not a unit for all £ € N.
We will show that every M; is distinct. Suppose not, and that M; = M;, for some
1 # 7. Without loss of generality, assume ¢ > j. Then

M,-—Mj:Ajzl---zj—I—Aj+1zl---zj+1+---+Ai_1zl---zi_1 =0
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Since every z; is nonzero,
Ajt Az + -+ Aicizjp oz =0
Now choose k such that A;,; € M* but A; ¢ M*. Then
Ajpizip -+ Az -z = —A; ¢ MP
However A;., € M*, so Ay € M* for every £ > j + 1, thus
Ajpr+ -+ Aiizjqp0- 21 € M*

a contradiction. Thus M; # M; whenever i # j and all the M;’s are distinct.

Since 0 # G;(u) € Rlu], G;(u) has at most deg(G;) roots in R because R is an
integral domain. Each M; € R and all the M;’s are distinct, thus there exists some
k € N such that G;(My) # 0. Thus by case (3) in the algorithm above, G;(M}) = zxd

where d is a unit. Substituting into (5.2), we have

¢ m
(5.3) Gi(u) = z (d + Z T Z <T) Zi_lKngT_j> .
m=1 j=1

Notice that z; € S and z; # 0, so then 2z, ¢ P since PN S = (0). Furthermore,
since K, € M and d is a unit, d + Zf,;ll Tmi )y (?)zi_lK,zM;”_j is a unit and
thus not in P. Since P is prime, this means that G;(u) ¢ P. Thus we have shown
that P N R’ = (0). Finally, localizing R at R' N (xy,...,x,)T yields a C'S*-subring

of T. O

The next lemma shows that there exists a choice of A; € (z1,...,z,)R such that
the ring, R[u]gjunnm, from Lemma 5.1 is not equal to R. We would like to thank C.

Colbert for discussions that led to the main idea in this proof.

Lemma 5.2. Given a CS*-subring, R, of T, there exists a CS*-subring, R', of T,
where R C RN C T.

Proof. First, by Lemma 5.1, for any A; € (x4, ..., x,)R satisfying the property that
whenever ¢ > j there exists k € N such that A; € M" but A; ¢ M*, there exists a
ue T withu =1+A121+As2120+ -+, with 2z; € (21, ..., 2,)5, such that Rlu] g is
a C'S*-subring of T'. Let A; = x‘f(i) where g : ZT — Z7 is a strictly increasing function.
Notice that 4; € (zy,...,z,)R and that, fori > j, A; € M99 but A; ¢ M), We will
show that there are uncountably many possible u’s. First, notice that by a diagonal
argument there are uncountably many choices for the function ¢. We will show that

distinct choices for the function ¢ yield distinct u’s. Let u; = 1+ Az + --- and
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Uy =1+ Bz} + -+, where A; = 27 and B; = 2" where p,q : Z* — Z* are both
strictly increasing. Suppose that u; = uy. We will show that A; = B; and z; = 2. for
all 7.

First, notice that M; = 1. Since z; and 2| are both defined by the algorithm in
the proof of Lemma 5.1 using G1(M;) = G1(1), they will be the same and nonzero.
Then equating u; and ug, we have Ay + Agzo + - -+ = By + Bz, + - -+, so then

x‘f(l) —l—x‘f(z)zg +..-= xl( ) +x§’(2) bt

Without loss of generality, suppose ¢(1) < p(1), then

a(2)—q(1)

44 =00

p(2)—q(1) s

2+ + af 2yt

Since z; € (21,...,2,)S for all i and 1 ¢ M, the left hand side is not in M. Thus
the right hand side is not in M either, however all but the first term are in M, since
2l € (xq,...,2,)S. Thus 2?79 ¢ Ar which implies p(1) = ¢(1) and so 4; = Bj.
Since the definition of z; (respectively z;) depends only on A; and z; (respectively B;
and 2%) for all j < 4, and we have shown that z; = 2| and A; = By, we can show
inductively that z; = 2/ and A; = B; for all ¢ > 1. Since there are uncountably many
choices for the function g, there are uncountably many units u such that R{u]gpnm
is a C'S*-subring of T'. Since R is a C'S*-subring of 7', it is countable, and thus there
exists a u € T\ R such that R[u]gj,num is a CS*-subring of T'. Hence R’ = R[u]gpujnm

is the desired C'S*-subring of T O

Theorem 5.3. There exists an uncountable, quasi-local S*-subring of T, (A, ANM).

Proof. There exists a well-ordered, uncountable set, C', such that every element of
C' has only countably many predecessors. Let 0 denote the minimal element of C.
We will inductively define a C'S*-subring of T', S., for every element ¢ € C'. Define
So=95. Let 0 < ¢ € C and assume that S, has been defined for every b < ¢. If ¢ has
a predecessor, b € C, then define S, to be the C'S*-subring obtained from Lemma 5.2
with R = S, so that S, € S. C T. If ¢ is a limit ordinal, define S, = Up<.S,. Then
every S, is a C'S*-subring of T

Let A = U.eeS.. Since each S, is a C'S*-subring of T, A is a quasi-local S* subring
of T with unique maximal ideal A N M. Finally, notice that, for uncountably many
¢ € C, ¢ has a predecessor b such that S, C S., so then A is uncountable. Thus

(A, AN M) is an uncountable, quasi-local S*-subring of 7. O
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Next, we adjoin elements to the ring A such that, for the resulting ring, B, bTNB =
bB for all b € B.

Lemma 5.4. Given an uncountable S*-subring, A, of T', there exists an uncountable
S*-subring, A, of T', with A" D A, such that, for any principal ideal I of A, ITNA C
1A'

Proof. Consider the set Q = {(I,¢) : I is a principal ideal of A,¢ € IT N A}. Well-
order 2 with 0 denoting its minimal element. We will inductively define subrings for
each (I,c) € Q. Let Sy = A. Given 0 < a € Q, where Ss has been defined to be a
CS*-subring of T for every < «a, we will define S, as follows. If a is a successor
ordinal with predecessor 8 = (I, ¢), then, since [ is a principal ideal of A, I = aA for
some a € A. If a = 0, then define S, = Ss. Otherwise, c € IT' N A = aT N A implies
that ¢ = at for some t € T. Define S, = Ss[t]. Notice that ¢ € 15,. If a is a limit
ordinal, define S, = Ug<qS5.

We will now show inductively that S, is a S*-subring for every a € ). Notice that
So = A is an S*-subring by assumption. Next, suppose that Sz is a S*-subring for
every 3 < a. We will show that S, is as well. By construction, S C A C S, C T for
every a € €2 so S, is uncountable and S C S, C T. Thus we need only check that,
for any P € SpecT such that P NS = (0), we have PN S, = (0).

If « is a successor ordinal with predecessor 8 = (I, c), either I = (0) or I = aA for
a # 0. In the case where I = (0), S, = Ss and so S, is an S*-subring of T". In the
case where I = aA for some nonzero a € A, then S, = Sg[t| with ¢ € T such that
c=at € IT = aT. Consider P € SpecT such that PN S = (0). Let g € PN S,.
Then g = rpth + -+ + rit + ro for r; € S5. Then akg € PN S5 = (0). Since a # 0,
this implies that ¢ = 0 and so PN S, = (0) as desired. Next, if « is a limit ordinal,
then S, = Ug<aSs. Since each Ss is an S*-subring of T, so is S,. Thus S, is an
S*-subring of T' for every a € ).

Now define A’ = UyenS,. We will show that this is the desired ring. First, note
that S ¢ A ¢ A/ C T. Since A is uncountable, so is A’. Next, since each S, is an
S*-subring of T', so is A’. Finally, consider some principal ideal I of A. Let ¢ € ITNA.
Then oo = (I,¢) € Qand so ¢ € [Sq41 CTA. Thus ITNA C TA" as desired. O

Theorem 5.5. There exists an uncountable, quasi-local S*-subring, (B, BNM), such
that, for every principal ideal I of B, I'TN B = IB.

Proof. Beginning with By = A, the ring obtained from Theorem 5.3, inductively

define B;,; as the ring obtained from Lemma 5.4, such that, for any principal ideal
12



Iof B;, ITNB; CIB;;;. Then let B’ = U°;B;. As each B; is an uncountable S*-
subring, so is B’. Next, consider some principal ideal I of B’. We have that I = bB
for some b € B'. Given ¢ € bT'N B’, ¢ € B, so for some ¢, we have that b,c € B;.
By construction, ¢ € ¥T'N B; C bB;;1 C IB’, so then IT N B" C IB’. The other
direction follows trivially, and so we have shown that [T N B’ = IB’. Now define
B = B}~ By the same argument as in the proof of Lemma 3.2, for every finitely
generated ideal I of B, I'T'N B = IB. Thus (B, B N M) is the desired uncountable,
quasi-local S*-subring of T O

6 PROPERTIES OF THE FINAL RING

In this section, B refers to the ring constructed in Theorem 5.5 of the previous
section. Recall that (B, BN M) is an uncountable, quasi-local S*-subring of 7" such
that, for every principal ideal I of B, IT N B = IB. In this section we will use
the properties of B to show that B is Noetherian and has completion 7', and then
demonstrate that B is excellent and a RLR.

Lemma 6.1. Finitely generated ideals of B are extended from S, i.e. for any finitely
generated ideal I of B, I = (p1,...,px)B forp; € S.

Proof. Let I be a finitely generated ideal of B. Then I = (by,...,b;)B for b; € B. If
I =B,then I =1B and 1 € S. Thus suppose that [ is a proper ideal and so the b;’s
are non-units.

Since the b;’s are not units, b; € BN (x1,...,x,)T. By Lemma 4.2, b; = p;u; where
pi € (1,...,2,)S and w; is a unit in 7T for all i = 1,2,..., k. We will show that u;
is also a unit in B. Notice that b; = p;u; € p;/T N B, and since p;T" is a principal
ideal, p;7 N B = p; B. Hence p;u; € p; B, which shows that u; € B. Since the p;’s and
b;’s are associates in B, [ = (by,...,bx)B = (p1,...,pr)B, where p; € S, and so [ is
extended from S. 0

Theorem 6.2. For every finitely generated ideal I of B, ITN B = IB.

Proof. Consider some finitely generated ideal I of B. We know by Lemma 6.1 that
I = (p1,...,px)B for p;, € S. Let ¢ € IT N B. We will show that ¢ € IB. If
I =B, then ITNB =BTNB =B = 1B as desired. Otherwise IT C M, and so
ce ITNBC MnNB. Then, by Lemma 4.2, ¢ = qu for q € (z1,...,2,)S and unit u
in T'. Thus qu = c € ¢1T'N B = ¢B since ¢B is a principal ideal of B. Since qu € ¢B,
u € B and since u ¢ M, u ¢ BN M, and thus u is a unit in B. Observe,

Cu_l =qc€ (plaapk)TmS: (pla>pk)S C (p1>apk)B:[B
13



Since u is a unit in B, this implies that ¢ € I B as well, as desired. O

As a consequence of Theorem 6.2, BN M = (x1,...,2,)B, and so the maximal
ideal of B is (x1,...,2,)B.

Theorem 6.3. The ring (B, BN M) is Noetherian with completion T and is a RLR.

Proof. We have that (B, BN M) is a quasi-local subring of the complete local ring T
with Ry C B. By Theorem 6.2, for every finitely generated ideal I of B, I'TNB = I B.
Thus by Corollary 2.2, B is Noetherian with completion 7" and B is a RLR. 0

In our final theorem we will show that B is excellent with a countable spectrum.

Theorem 6.4. For any n > 2, there exists an uncountable n-dimensional, excellent,

reqular local ring, with countable spectrum.

Proof. We will show that B is the desired ring. We already have that B is an un-
countable RLR with B = T, and so dim(B) = dim(T) = n. Thus, all that remains
to be shown is that B is excellent with a countable spectrum. Since (B, BN M) is
local with B = T, by Lemma 2.4, to show that B is excellent it is sufficient to show
that, for every P € Spec B and () € SpecT where QN B = P, (T/PT)q is a RLR.
Let P € Spec B and ) € SpecT such that ) " B = P. Notice that

QNS=(@NB)NS=PnNS.

Since B is Noetherian, every ideal is finitely generated. Furthermore, by Lemma 6.1,
every finitely generated ideal of B is extended from .S, that is, it can be generated by
elements in S. Let P = (py,...,px)B for p; € S. Then

PNS=({p,...,p06)BNSC (p1,...,pr) T NS = (p1,...,pr)S

where the last equality follows because I'T'NS = IS, for every finitely generated ideal
I of S. Clearly, (p1,...,px)S € P NS, so then we have that (p1,...,px)BNS =
(p1,---,pK)S, and thus Q NS = (p1,...,pk)S.

Since S is excellent with completion 7', we know that (T'/(p1,...,pr)T)g is a
RLR. Since (p1,...,px)T = PT, we have that (T/(p1,...,px)T)g = (T'/PT)g and so
(T'/PT)q is a RLR, as desired. Thus by Lemma 2.4, B is excellent.

Finally, we will prove that Spec B is countable. Let Ir be the set of ideals of a ring
R. We will show first that I is countable. Define f : Is — Ip by (ay,...,ax)S —
(aq,...,ax)B. Since S is Noetherian this function is well-defined. We will show that

f is surjective. Let I be an ideal of B. By Lemma 6.1, [ = (p1,...,px)B for p; € S.
14



Then J = (p1,...,px)S is an ideal of S, and f(J) = I, so f is surjective. Note that
Ig is countable since S is Noetherian and countable. Thus Iz is countable. Since

Spec B C Ig, B has a countable spectrum. O
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