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UNCOUNTABLE n-DIMENSIONAL EXCELLENT REGULAR

LOCAL RINGS WITH COUNTABLE SPECTRA

S. LOEPP AND A. MICHAELSEN

Abstract. We prove that, for any n ≥ 0, there exists an uncountable, n-dimensional,

excellent, regular local ring with countable spectrum.

1 Introduction

A remarkable result by M. Hochster in [3] gave exact conditions under which a

partially ordered set (poset) could be realized as the spectrum of a commutative ring.

Little is known on this question, however, when we place further restrictions on the

resulting ring. For instance, the question is open when we require the ring to be

Noetherian. Previous work done by R. Wiegand, S. Wiegand, and C. Colbert, among

others, has provided specific examples of posets that can be realized as the spectra

of Noetherian rings [1, 6]. For instance, C. Colbert recently proved, for any n ≥ 2,

the existence of an uncountable, n-dimensional, Noetherian ring with a countable

spectrum. While this is clear for dimensions 0 and 1, it was unknown in higher

dimensions until Colbert proved his result. In this paper, we prove a similar result to

Colbert’s but with stronger conditions on the ring. In particular, our main result is

as follows:

Theorem 1.1. For any n ≥ 0, there exists an uncountable, n-dimensional, excellent,

regular local ring with a countable spectrum.

In the case of n = 0 and n = 1, C and C[[x]], respectively, are examples of such

rings. In the case that n ≥ 2, we prove the existence of such a ring constructively.

The construction takes place between the polynomial ring Q[x1, . . . , xn] and the cor-

responding power series ring Q[[x1, . . . , xn]] and consists of two major steps. In the

first step, we construct a local (Noetherian) countable base ring, S, with completion

Q[[x1, . . . , xn]] such that S is both excellent and has the property that it contains (up

to units) every prime element in the power series ring that divides any element in S.

In the second step, we algorithmically adjoin uncountably elements to this ring S so
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that every ideal of the resulting ring, B, is extended from S. We use this to show

that B has completion Q[[x1, . . . , xn]] and is an excellent regular local ring.

In section 2 we present preliminaries. In section 3 we construct the base ring, S. In

section 4 we introduce some useful definitions for the remainder of the construction.

In section 5 we construct the final ring, B, and then prove that B is an uncountable,

n-dimensional, excellent, regular local ring with a countable spectrum in section 6.

2 Preliminaries

For the rest of this paper assume n ≥ 2, and define R0 = Q[x1, . . . , xn], T =

Q[[x1, . . . , xn]] and M = (x1, . . . , xn)T the maximal ideal of T . We will use quasi-

local to refer to a ring with a unique maximal ideal and local to refer to a Noetherian

quasi-local ring. When R is a local ring, R̂ indicates the completion of R at its

maximal ideal M .

In this paper we will be constructing many rings with completion T . To show that

they have this property, we make use of the following proposition.

Proposition 2.1 ([2, Proposition 1]). If (R,R ∩ M) is a quasi-local subring of a

complete local ring (R,M), the map M → R/M2 is onto and IR∩R = IR for every

finitely generated ideal I of R, then R is Noetherian and the natural homomorphism

R̂ → R is an isomorphism.

Applied to a subring of T = Q[[x1, . . . , xn]], this yields the following corollary.

Corollary 2.2. Let (R,R∩M) be a quasi-local subring of T such that R0 ⊆ R, and,

assume that, for every finitely generated ideal I of R, IT ∩ R = IR. Then R is

Noetherian, R̂ = T and R is a regular local ring (RLR).

Proof. We will use Proposition 2.1 to show that R has completion T . To do this, we

will show that the map R → T/M2 is onto. Given t + M2 ∈ T/M2, we know that

t = s + m for s ∈ R0 and m ∈ M2. Then, t − s = m ∈ M2, so s + M2 = t + M2.

Thus the map is onto. Since, for any finitely generated ideal I of R we have that

IT ∩R = IR, by Proposition 2.1, R is Noetherian with completion T . Furthermore,

since T is a RLR, so is R. �

Note that if (R,R ∩ M) is a local ring with R̂ = R, then R is a faithfully flat

extension of R and so any finitely generated ideal I of R satisfies IR ∩ R = IR.

The following definitions and lemmas pertain to excellent rings. Define, for any

P ∈ SpecA, k(P ) = AP/PAP .
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Definition 2.1 ([5, Definition 1.4]). Given a local ring (A,A ∩M), A is excellent if

(a) For all P ∈ SpecA, Â⊗AL is regular for every finite field extension L of k(P ),

and

(b) A is universally catenary.

As noted in [5], we can consider only the purely inseparable finite field extensions

L of k(P ). The following is a consequence of Theorem 31.6 and the definition of

formally equidimensional in [4, pp. 251].

Theorem 2.3. Let (A,M) be a local ring such that its completion, Â, is equidimen-

sional. Then A is universally catenary.

We will now give sufficient criteria for excellent for rings with completion T .

Lemma 2.4. Given a local ring (A,A ∩M) with Â = T , A is excellent if, for every

P ∈ SpecA and for any Q ∈ Spec T with Q ∩A = P , (T/PT )Q is a RLR.

Proof. We know that A is a local ring, and so we must show both conditions of

Definition 2.1 hold. By Theorem 2.3 A is universally catenary. We must then consider

T ⊗AL for every purely inseparable finite field extension of k(P ) for each P ∈ SpecA.

Since Z ⊂ A and all nonzero integers are units, we have that Q ⊂ k(P ), and so k(P )

has characteristic 0. Every finite field extension with characteristic 0 is separable.

Since it is sufficient to check only purely inseparable field extensions, this leaves only

the trivial field extension so we need only show that T ⊗A k(P ) is regular for every

P ∈ SpecA. Note that T ⊗A k(P ) localized at Q⊗ k(P ) is isomorphic to (T/PT )Q.

Hence, it suffices to show that (T/PT )Q is a RLR. �

We end with a lemma regarding the structure of Sing(R) of excellent rings.

Lemma 2.5 ([5, Corollary 1.6]). If R is excellent, then Sing(R) is closed in the

Zariski topology, i.e. Sing(R) = V (I) for some ideal I of R.

3 Construction of The Base Ring

We first construct a countable local excellent ring (S, S ∩M), where R0 ⊆ S ⊆ T ,

Ŝ = T , and, for any nonzero s ∈ S with s ∈ pT for some prime element p of T ,

pu ∈ S for a unit u ∈ T .

Lemma 3.1. Let R be a countable ring with R0 ⊆ R ⊆ T . Then there exists a

countable ring R′ such that R ⊂ R′ ⊂ T and, if I is a finitely generated ideal of R,

then IT ∩ R ⊆ IR′.
3



Proof. Consider the set Ω = {(I, c) : I is a finitely generated ideal of R, c ∈ IT ∩R}.

Since R is countable, so is Ω. Enumerate Ω with 0 denoting its first element. We will

inductively define countable subrings for each (I, c) ∈ Ω. First let S0 = R. Notice

that S0 is countable. Given the kth element, (I, c), with the countable ring Sk defined,

we will construct Sk+1. Let I = (a1, . . . , aℓ)R for ai ∈ R. Then, since c ∈ IT ∩R, we

have that c = a1t1 + · · · + aℓtℓ for ti ∈ T . Now let Sk+1 = Sk[t1, . . . , tℓ]. Since Sk is

countable, so too is Sk+1. Furthermore, notice that c ∈ ISk+1.

Then define R′ =
⋃

∞

i=0 Si. We will show that IT ∩ R ⊆ IR′ for any finitely

generated ideal I of R. Given a finitely generated ideal I of R, and c ∈ IT ∩R, then

(I, c) ∈ Ω. If (I, c) is the jth element of Ω, then c ∈ ISj+1. Notice ISj+1 ⊆ IR′, so

then IT ∩R ⊆ IR′. �

Lemma 3.2. Let R be a countable ring with R0 ⊆ R ⊆ T . Then there exists a

countable local ring (R′′, R′′ ∩ M) such that, R ⊆ R′′ ⊆ T , and, for every finitely

generated ideal I of R′′, IT ∩ R′′ = IR′′. Hence, R′′ is Noetherian, R̂′′ = T , and R′′

is a RLR.

Proof. Let S0 = R. Note that S0 is countable. Given the ring Si, let Si+1 be the

countable ring obtained from Lemma 3.1, such that, if I is a finitely generated ideal

of Si, we have IT ∩ Si ⊆ Si+1.

Now, define R′ =
⋃

∞

i=0 Si. We will show that, for every finitely generated ideal I of

R′, IT∩R′ = I. Consider some finitely generated ideal I of R′. Clearly IR′ ⊆ IT∩R′,

so suppose c ∈ IT ∩ R′. Let I = (a1, . . . , am)R
′. For some k, ai ∈ Sk for all i, and

c ∈ Sk. Then c ∈ (a1, . . . , am)T ∩ Sk ⊆ (a1, . . . , am)Sk+1 ⊆ IR′. Thus we have that

IT ∩R′ = IR′.

Then define R′′ = R′

R′∩M ; we will show that R′′ will also have the property that,

for any finitely generated ideal I of R′′, IT ∩ R′′ = IR′′. If I = R′′ this holds. If I

is a proper finitely generated ideal of R′′, then I =
(
a1
b1
, . . . , am

bm

)
R′′ = (a1, . . . , am)R

′′

for ai ∈ R′. Since I is proper, we know that ai ∈ R′ ∩ M . Suppose x ∈ IT ∩ R′′.

Then since x ∈ R′′, x = ab−1 for a ∈ R′ and b /∈ R′ ∩ M . Since x = ab−1 ∈ IT ,

xb = a ∈ IT ∩ R′ = (a1, . . . , am)R
′ ⊆ IR′′. Since b is invertible in R′′, this means

that x = ab−1 ∈ IR′′, so IT ∩ R′′ = IR′′, as desired. Thus by Corollary 2.2, R′′ is

Noetherian, has completion T , and is a RLR. �

Since our base ring, (S, S∩M), will have completion T , by Lemma 2.4, to show that

S is excellent it is sufficient to show for each P ∈ SpecS and Q ∈ SpecT lying over

P , (T/PT )Q is a RLR. Given some intermediate ring R with completion T , and some
4



P ∈ SpecR, the next lemma shows that there are only countably many Q ∈ SpecT

lying over P in R such that Q is minimal in Sing(T/PT ).

Lemma 3.3. Let (R,R∩M) be a countable local ring with R0 ⊆ R ⊆ T and R̂ = T .

Then
⋃

P∈SpecR

{Qj ∈ Spec T : Qj ∈ min I for I where Sing(T/PT ) = V (I/PT )} is a

countable set.

Proof. First, since R is countable and Noetherian, SpecR is countable, so it suffices

to show that the set is countable with respect to any fixed P ∈ SpecR. Let P ∈

SpecR. Then, since T is a complete local ring, T/PT is excellent. By Lemma 2.5

Sing(T/PT ) = V (I/PT ) for some ideal I of T . Then consider the set of minimal

prime ideals Qj of I. Since T is Noetherian, this set is finite. �

Definition 3.1. We say a subring R of T contains all its factors, if, for any nonzero

r ∈ R with r ∈ pT for some prime element p of T , pu ∈ R for a unit u ∈ T .

Theorem 3.4. There exists an excellent, countable, RLR, (S, S ∩ M), such that

R0 ⊆ S ⊆ T , Ŝ = T , and S contains all its factors.

Proof. Let S0 = R0R0∩M . Notice that S0 is local, has completion T and is a RLR. We

will define an ascending chain of rings recursively. For each Si we will ensure that it

satisfies the criteria of Lemma 3.3, i.e. that (Si, Si∩M) is a countable local ring with

R0 ⊆ Si ⊆ T and Ŝi = T . Notice that, in the base case, S0 satisfies these conditions.

Assume that (Si, Si ∩M) is a countable local ring with R0 ⊆ Si ⊆ T and Ŝi = T . We

will construct Si+1 to satisfy these as well. First, for each s ∈ Si where s is a nonzero

non-unit, since T is a UFD, choose exactly one factorization of s in T , s = ps1 · · · psm,

for prime elements psj in T . Define P (Si) =
⋃
s∈Si

{psj}. Since each s adds only finitely

many pi and Si is countable, this set is countable.

Next, by Lemma 3.3, the set
⋃

P∈SpecSi

{Qj : Qj ∈ min I for I where Sing(T/PT ) = V (I/PT )}

is countable. Since T is Noetherian, every Qj is finitely generated. Choose exactly

one generating set, {qj1, . . . , qjℓ} ⊆ T for each Qj . Define G(Si) =
⋃

Qj
{qjk}. Each

Qj adds only finitely many qj ’s so G(Si) is countable.

Now given Si, define S ′

i = Si[G(Si), P (Si)]. Notice since Si, G(Si), and P (Si) are

countable, so is S ′

i. Then let (Si+1, Si+1 ∩M) be the countable local ring obtained by

applying Lemma 3.2 to S ′

i, so Ŝi+1 = T and Si+1 is a RLR. Notice that Si+1 satisfies

the conditions of Lemma 3.3 as needed.
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Define S =
⋃

∞

i=0 Si. We will show that S is a countable, excellent, RLR such that

R0 ⊆ S ⊆ T , Ŝ = T , and S contains all its factors. First, since each Si is countable,

their countable union is countable so S is countable, as desired. Furthermore, since

each Si satisfies R0 ⊆ Si ⊆ T , so does S. Next, since each Si has a unique maximal

ideal Si ∩ M , S is is quasi-local with maximal ideal S ∩ M . Note that, for every i,

since Ŝi = T , if I is a finitely generated ideal of Si, then IT ∩Si = ISi. We will show

that this holds for S as well.

Suppose I is some finitely generated ideal of S. It is clear that IS ⊆ IT ∩ S, so

we will show that IT ∩ S ⊆ IS. Since I is finitely generated, I = (a1, . . . , am)S for

ai ∈ S. Let c ∈ IT ∩S. Choose ℓ such that ai, c ∈ Sℓ. Then c ∈ (a1, . . . , am)T ∩Sℓ =

(a1, . . . , am)Sℓ ⊂ IS. Thus IT ∩ S ⊆ IS. Since R0 ⊆ S, by Corollary 2.2, S is

Noetherian, has completion T , and is a RLR.

Next we will show that S contains its own factors. Let r ∈ S and r ∈ pT for some

prime element p in T . Then r ∈ Si for some i. Thus, pu ∈ P (Si) for some unit u in

T . Since P (Si) ⊂ Si+1 ⊆ S, we have that pu ∈ Si+1 ⊆ S and we see that S contains

its own factors.

Finally, we will show that S is excellent by showing that, for P ∈ SpecS, and Q ∈

SpecT such that Q∩S = P , (T/PT )Q is a RLR. Let P ∈ SpecS and Q ∈ SpecT such

that Q ∩ S = P . Suppose for contradiction that Q/PT ∈ Sing(T/PT ) = V (I/PT ).

Then Q ⊇ Qj ⊇ I for some minimal prime ideal Qj ∈ Spec T of I. Since Qj ⊇ I ⊇

PT , Qj/PT ∈ Sing(T/PT ). Furthermore, P = PT ∩ S ⊆ Qj ∩ S ⊆ Q ∩ S = P so

Qj ∩ S = P .

Note that P is finitely generated, so let P = (p1, . . . , pm)S. Choose i so that pj ∈ Si

for all j. Then define P ′ = P ∩Si and note that P ′ ∈ SpecSi. We will first show that

P ′T = PT . Observe,

P ′ = P ∩ Si = (PT ∩ S) ∩ Si = PT ∩ Si = (p1, . . . , pm)T ∩ Si = (p1, . . . , pm)Si

so then P ′T = ((p1, . . . , pm)Si)T = (p1, . . . , pm)T = PT . Thus T/PT = T/P ′T ,

and so since Qj/PT ∈ Sing(T/PT ), we have Qj/P
′T ∈ Sing(T/P ′T ). Next we will

show that Qj = PT . Since Qj ∩ S = P , we have Qj ∩ Si = P ∩ Si = P ′. So

then, Qj ∈
⋃

P ′∈SpecSi
{Qj : Qj ∈ min I for I where V (I/P ′T ) = Sing(T/P ′T )}. This

means that for some generating set for Qj , {q1, . . . , qℓ} ⊆ T , we have {qk} ⊂ G(Si) ⊆

Si+1. Thus Qj ∩ Si+1 = (q1, . . . , qℓ)T ∩ Si+1 = (q1, . . . , qℓ)Si+1. Since S ⊇ Si+1,

Qj ∩ S ⊇ Qj ∩ Si+1 = (q1, . . . , qℓ)Si+1. Recall that Qj ∩ S = P , so

PT = (Qj ∩ S)T ⊇ ((q1, . . . , qℓ)Si+1)T = (q1, . . . , qℓ)T = Qj .

6



We already know that Qj ⊇ PT , thus Qj = PT . Then (T/PT )Qj
= (T/PT )PT is

a field (and hence a regular local ring). However Qj ∈ Sing(T/PT ), so (T/PT )Qj
is

not a regular local ring, a contradiction. It follows that Q/PT /∈ Sing(T/PT ) and so

(T/PT )Q is a regular local ring. �

4 Definitions and Lemmas

In the previous section we constructed an excellent, countable, RLR, (S, S ∩M),

with completion T that contains all its own factors. For the remainder of this paper,

S refers to this ring. From S, we will construct an uncountable strictly ascending

chain of rings such that, for any prime ideal P ∈ SpecT , P intersects nontrivially

with each ring if and only if P intersects nontrivially with S. To accomplish this,

we introduce the following definitions inspired by the definition of W -subrings by W.

Zhu in her senior thesis at Williams College.

Definition 4.1. A ring R is an S⋆-subring of T if S ⊆ R ⊆ T and, for any P ∈ SpecT ,

if P ∩ S = (0) then P ∩ R = (0).

Definition 4.2. A CS⋆-subring, R, of T , is a countable quasi-local S⋆-subring of T

with maximal ideal R ∩M .

Note that S is an example of a CS⋆-subring of T . Furthermore, we will show that

the union of S⋆-subrings of T is an S⋆-subring as well. Let R = ∪αRα where every

Rα is an S⋆-subring of T . Then clearly S ⊆ R ⊆ T . Suppose P ∈ SpecT such that

P ∩S = (0) and let r ∈ P ∩R. Then r ∈ Rα for some α, so r ∈ P ∩Rα = (0) so r = 0

and thus P ∩ R = (0), as desired. Note if each Rα is quasi-local with maximal ideal

Rα ∩M , then R will be quasi-local with maximal ideal R ∩M . Thus the countable

union of CS⋆-subrings of T is also a CS⋆-subring of T and the uncountable union of

CS⋆-subrings is a quasi-local S⋆-subring.

Lemma 4.1. Let R be an S⋆-subring of T , with q a prime element of T such that

qT ∩R 6= (0). Then, for some unit u in T , qu ∈ S, and qT ∩ S = quS.

Proof. Since R is an S⋆-subring of T and qT ∈ SpecT and qT ∩ R 6= (0), we have

qT∩S 6= (0). Let s ∈ qT∩S with s 6= 0. Since s ∈ qT and S contains all its factors, for

some unit u in T , qu ∈ S. Now since S has completion T , qT∩S = quT∩S = quS. �

Next is a lemma about factorizations of nonzero non-units in S⋆-subrings of T .

Lemma 4.2. Let (R,R ∩M) be an S⋆-subring of T and let r ∈ R ∩M . Then there

exists c ∈ (x1, . . . , xn)S = S ∩M and d is a unit in T satisfying r = cd.
7



Proof. First, if r = 0, then c = 0 and d = 1 satisfy the desired conditions. Next,

suppose r 6= 0. Since r ∈ R ∩M ⊆ M , r is not a unit in T , so we can factor r into

primes in T to obtain r = p1 · · · pk for primes pi in T . For every pi, r ∈ piT ∩ R

and so by Lemma 4.1, for some unit ui in T , piui ∈ S. Let c = p1u1 · · · pkuk and

d = u−1
1 · · ·u−1

k . Then c ∈ (x1, . . . , xn)T ∩S = (x1, . . . , xn)S and d is a unit in T such

that r = cd. �

5 The Construction

In the following lemmas and propositions, we construct an ascending chain of CS⋆-

subrings of T , starting from S, by adjoining power series, u, of the form specified

below. In particular, upon adjoining each u, we not only retain the properties of

CS⋆-subrings of T but add new elements from T . The uncountable union of these

rings, A, will be an uncountable S⋆-subring of T . To A, we adjoin elements so that

the resulting S⋆-subring, B, of T satisfies bT ∩ B = bB for any b ∈ B. Using this

property of B we show that B is an excellent, uncountable, RLR with a countable

spectrum. Several of the definitions and lemmas in this section were inspired by ideas

in W. Zhu’s senior thesis at Williams College and work by C. Colbert in [1].

Consider u of the form

(5.1) u = 1 + A1z1 + A2z1z2 + · · ·+ Akz1z2 · · · zk + · · · ,

where Ai ∈ (x1, . . . , xn)R and zi ∈ (x1, . . . , xn)S, for some CS⋆-subring, R, of T .

Notice that, since Ai, zi ∈ M , the kth term in the series is in Mk for k ≥ 2, so this

series converges in T . So u is, in fact, a unit in T . Now define,

Mk = 1+A1z1+· · ·+Ak−1z1 · · · zk−1 and Kk = Akz1 · · · zk−1+Ak+1z1 · · · zk−1zk+1+· · · .

We can then express u as Mk + zkKk for any k ≥ 1. The next lemma demonstrates

how we adjoin such an element u to a CS⋆-subring, R, of T so that the resulting ring

is a CS⋆-subring of T . We do this by algorithmically choosing the values of zi.

Lemma 5.1. Let R be a CS⋆-subring of T . Then for any Ai ∈ (x1, . . . , xn)R satisfy-

ing the property that whenever i > j there exists k such that Ai ∈ Mk and Aj /∈ Mk,

there exist zi ∈ (x1, . . . , xn)S such that, if u ∈ T is of the form,

u = 1 + A1z1 + A2z1z2 + · · ·+ Akz1z2 · · · zk + · · · ,

then R[u]R[u]∩M is a CS⋆-subring of T .
8



Proof. First we define the zi’s and then show that the resulting ring is a CS⋆-subring

of T . Define R′′ = R[X ] where X is an indeterminate. Since R is a CS⋆-subring of T ,

R is countable. Then R′′, polynomials in X over R, is also countable. Given this, we

can enumerate the nonzero elements of R′′ using the nonnegative integers. Consider

the ith element in the well-order, Gi(X). Substituting any u of the form in equation

5.1, we have, for any k ≥ 1,

Gi(u) = rℓ,iu
ℓ + · · ·+ r1,iu+ r0,i = rk,i(Mk + zkKk)

ℓ + · · ·+ r1,i(Mk + zkKk) + r0,i

for rm,i ∈ R. By binomial expansion, this becomes

(5.2) Gi(u) = Gi(Mk) + zk

(
ℓ∑

m=1

rm,i

m∑

j=1

(
m

j

)
zj−1
k Kj

kM
m−j
k

)
.

We will define the zi’s recursively using Gj(Mi) so that zi ∈ (x1, . . . , xn)S. Notice

that, since each zi will be in (x1, . . . , xn)S, the second term in (5.2) is an element of

(x1, . . . , xn)T . This means that Gi(u) ∈ (x1, . . . , xn)T ⇐⇒ Gi(Mk) ∈ (x1, . . . , xn)T .

Equivalently, Gi(u) is a unit in T if and only if Gi(Mk) is a unit in T for all k ≥ 1.

Since Ai ∈ (x1, . . . , xn)R, we have that Mi ∈ R and so Gj(Mi) ∈ R for all i, j ∈ N.

Starting with j = 1 and i = 1, we will use Gj(Mi) to define zi as follows:

(1) If Gj(Mi) is a unit, then let zi = x1 and use to Gj+1(Mi+1) to define zi+1.

(2) If Gj(Mi) = 0, then let zi = x1 and use to Gj(Mi+1) to define zi+1.

(3) If Gj(Mi) is nonzero and not a unit, then since Gj(Mi) ∈ R, by Lemma 4.2

Gj(Mi) = cd where c ∈ (x1, . . . , xn)S and d is a unit in T . Since Gj(Mi) 6= 0,

c 6= 0. Let zi = c and use Gj+1(Mi+1) to define zi+1.

One consequence of the above definition is that zi 6= 0 for all i and that zi ∈

(x1, . . . , xn)S for all i. Now that u has been defined by specifying each zi, define

R′ = R[u]. We will now show that R′

R′∩M is a CS⋆-subring of T . Notice that R′ is

countable, and S ⊆ R ⊆ R′. Let P be a prime ideal of T with P ∩ S = (0). We will

show that P ∩ R′ = (0) by showing that, for any nonzero r ∈ R′, r /∈ P . First, since

r is nonzero, r = Gi(u) for some i. If Gi(u) a unit in T , then Gi(u) /∈ P .

Next, suppose that Gi(u) is not a unit. Then Gi(Mk) is not a unit for all k ∈ N.

We will show that every Mi is distinct. Suppose not, and that Mj = Mi, for some

i 6= j. Without loss of generality, assume i > j. Then

Mi −Mj = Ajz1 · · · zj + Aj+1z1 · · · zj+1 + · · ·+ Ai−1z1 · · · zi−1 = 0
9



Since every zi is nonzero,

Aj + Aj+1zj+1 + · · ·+ Ai−1zj+1 · · · zi−1 = 0

Now choose k such that Aj+1 ∈ Mk but Aj /∈ Mk. Then

Aj+1zj+1 + · · ·+ Ai−1zj+1 · · · zi−1 = −Aj /∈ Mk

However Aj+1 ∈ Mk, so Aℓ ∈ Mk for every ℓ ≥ j + 1, thus

Aj+1 + · · ·+ Ai−1zj+2 · · · zi−1 ∈ Mk

a contradiction. Thus Mi 6= Mj whenever i 6= j and all the Mi’s are distinct.

Since 0 6= Gi(u) ∈ R[u], Gi(u) has at most deg(Gi) roots in R because R is an

integral domain. Each Mi ∈ R and all the Mi’s are distinct, thus there exists some

k ∈ N such that Gi(Mk) 6= 0. Thus by case (3) in the algorithm above, Gi(Mk) = zkd

where d is a unit. Substituting into (5.2), we have

(5.3) Gi(u) = zk

(
d+

ℓ∑

m=1

rm,i

m∑

j=1

(
m

j

)
zj−1
k Kj

kM
m−j
k

)
.

Notice that zk ∈ S and zk 6= 0, so then zk /∈ P since P ∩ S = (0). Furthermore,

since Kk ∈ M and d is a unit, d +
∑k+1

m=1 rm,i

∑m

j=1

(
m

j

)
zj−1
k Kj

kM
m−j
k is a unit and

thus not in P . Since P is prime, this means that Gi(u) /∈ P . Thus we have shown

that P ∩ R′ = (0). Finally, localizing R′ at R′ ∩ (x1, . . . , xn)T yields a CS⋆-subring

of T . �

The next lemma shows that there exists a choice of Ai ∈ (x1, . . . , xn)R such that

the ring, R[u]R[u]∩M , from Lemma 5.1 is not equal to R. We would like to thank C.

Colbert for discussions that led to the main idea in this proof.

Lemma 5.2. Given a CS⋆-subring, R, of T , there exists a CS⋆-subring, R′, of T ,

where R ( R′ ⊂ T .

Proof. First, by Lemma 5.1, for any Ai ∈ (x1, . . . , xn)R satisfying the property that

whenever i > j there exists k ∈ N such that Ai ∈ Mk but Aj /∈ Mk, there exists a

u ∈ T with u = 1+A1z1+A2z1z2+· · · , with zi ∈ (x1, . . . , xn)S, such that R[u]R[u]∩M is

a CS⋆-subring of T . Let Ai = x
q(i)
1 where q : Z+ → Z+ is a strictly increasing function.

Notice that Ai ∈ (x1, . . . , xn)R and that, for i > j, Ai ∈ M q(i) but Aj /∈ M q(i). We will

show that there are uncountably many possible u’s. First, notice that by a diagonal

argument there are uncountably many choices for the function q. We will show that

distinct choices for the function q yield distinct u’s. Let u1 = 1 + A1z1 + · · · and
10



u2 = 1 + B1z
′

1 + · · · , where Ai = x
q(i)
1 and Bi = x

p(i)
1 where p, q : Z+ → Z+ are both

strictly increasing. Suppose that u1 = u2. We will show that Ai = Bi and zi = z′i for

all i.

First, notice that M1 = 1. Since z1 and z′1 are both defined by the algorithm in

the proof of Lemma 5.1 using G1(M1) = G1(1), they will be the same and nonzero.

Then equating u1 and u2, we have A1 + A2z2 + · · · = B1 +B2z
′

2 + · · · , so then

x
q(1)
1 + x

q(2)
1 z2 + · · · = x

p(1)
1 + x

p(2)
1 z′2 + · · ·

Without loss of generality, suppose q(1) ≤ p(1), then

1 + x
q(2)−q(1)
1 z2 + · · · = x

p(1)−q(1)
1 + x

p(2)−q(1)
1 z′2 + · · ·

Since zi ∈ (x1, . . . , xn)S for all i and 1 /∈ M , the left hand side is not in M . Thus

the right hand side is not in M either, however all but the first term are in M , since

z′i ∈ (x1, . . . , xn)S. Thus x
p(1)−q(1)
1 /∈ M , which implies p(1) = q(1) and so A1 = B1.

Since the definition of zi (respectively z′i) depends only on Aj and zj (respectively Bj

and z′j) for all j < i, and we have shown that z1 = z′1 and A1 = B1, we can show

inductively that zi = z′i and Ai = Bi for all i ≥ 1. Since there are uncountably many

choices for the function q, there are uncountably many units u such that R[u]R[u]∩M

is a CS⋆-subring of T . Since R is a CS⋆-subring of T , it is countable, and thus there

exists a u ∈ T\R such that R[u]R[u]∩M is a CS⋆-subring of T . Hence R′ = R[u]R[u]∩M

is the desired CS⋆-subring of T . �

Theorem 5.3. There exists an uncountable, quasi-local S⋆-subring of T , (A,A∩M).

Proof. There exists a well-ordered, uncountable set, C, such that every element of

C has only countably many predecessors. Let 0 denote the minimal element of C.

We will inductively define a CS⋆-subring of T , Sc, for every element c ∈ C. Define

S0 = S. Let 0 < c ∈ C and assume that Sb has been defined for every b < c. If c has

a predecessor, b ∈ C, then define Sc to be the CS⋆-subring obtained from Lemma 5.2

with R = Sb, so that Sb ( Sc ⊆ T . If c is a limit ordinal, define Sc = ∪b<cSb. Then

every Sc is a CS⋆-subring of T .

Let A = ∪c∈CSc. Since each Sc is a CS⋆-subring of T , A is a quasi-local S⋆ subring

of T with unique maximal ideal A ∩M . Finally, notice that, for uncountably many

c ∈ C, c has a predecessor b such that Sb ( Sc, so then A is uncountable. Thus

(A,A ∩M) is an uncountable, quasi-local S⋆-subring of T . �

11



Next, we adjoin elements to the ring A such that, for the resulting ring, B, bT ∩B =

bB for all b ∈ B.

Lemma 5.4. Given an uncountable S⋆-subring, A, of T , there exists an uncountable

S⋆-subring, A′, of T , with A′ ⊃ A, such that, for any principal ideal I of A, IT ∩A ⊆

IA′.

Proof. Consider the set Ω = {(I, c) : I is a principal ideal of A, c ∈ IT ∩ A}. Well-

order Ω with 0 denoting its minimal element. We will inductively define subrings for

each (I, c) ∈ Ω. Let S0 = A. Given 0 < α ∈ Ω, where Sβ has been defined to be a

CS⋆-subring of T for every β < α, we will define Sα as follows. If α is a successor

ordinal with predecessor β = (I, c), then, since I is a principal ideal of A, I = aA for

some a ∈ A. If a = 0, then define Sα = Sβ. Otherwise, c ∈ IT ∩A = aT ∩ A implies

that c = at for some t ∈ T . Define Sα = Sβ[t]. Notice that c ∈ ISα. If α is a limit

ordinal, define Sα = ∪β<αSβ.

We will now show inductively that Sα is a S⋆-subring for every α ∈ Ω. Notice that

S0 = A is an S⋆-subring by assumption. Next, suppose that Sβ is a S⋆-subring for

every β < α. We will show that Sα is as well. By construction, S ⊆ A ⊆ Sα ⊆ T for

every α ∈ Ω so Sα is uncountable and S ⊆ Sα ⊆ T . Thus we need only check that,

for any P ∈ Spec T such that P ∩ S = (0), we have P ∩ Sα = (0).

If α is a successor ordinal with predecessor β = (I, c), either I = (0) or I = aA for

a 6= 0. In the case where I = (0), Sα = Sβ and so Sα is an S⋆-subring of T . In the

case where I = aA for some nonzero a ∈ A, then Sα = Sβ[t] with t ∈ T such that

c = at ∈ IT = aT . Consider P ∈ Spec T such that P ∩ S = (0). Let g ∈ P ∩ Sα.

Then g = rkt
k + · · · + r1t + r0 for ri ∈ Sβ. Then akg ∈ P ∩ Sβ = (0). Since a 6= 0,

this implies that g = 0 and so P ∩ Sα = (0) as desired. Next, if α is a limit ordinal,

then Sα = ∪β<αSβ. Since each Sβ is an S⋆-subring of T , so is Sα. Thus Sα is an

S⋆-subring of T for every α ∈ Ω.

Now define A′ = ∪α∈ΩSα. We will show that this is the desired ring. First, note

that S ⊂ A ⊂ A′ ⊂ T . Since A is uncountable, so is A′. Next, since each Sα is an

S⋆-subring of T , so is A′. Finally, consider some principal ideal I of A. Let c ∈ IT ∩A.

Then α = (I, c) ∈ Ω and so c ∈ ISα+1 ⊆ IA′. Thus IT ∩A ⊆ IA′ as desired. �

Theorem 5.5. There exists an uncountable, quasi-local S⋆-subring, (B,B∩M), such

that, for every principal ideal I of B, IT ∩ B = IB.

Proof. Beginning with B0 = A, the ring obtained from Theorem 5.3, inductively

define Bi+1 as the ring obtained from Lemma 5.4, such that, for any principal ideal
12



I of Bi, IT ∩ Bi ⊆ IBi+1. Then let B′ = ∪∞

i=0Bi. As each Bi is an uncountable S⋆-

subring, so is B′. Next, consider some principal ideal I of B′. We have that I = bB

for some b ∈ B′. Given c ∈ bT ∩ B′, c ∈ B′, so for some i, we have that b, c ∈ Bi.

By construction, c ∈ bT ∩ Bi ⊆ bBi+1 ⊆ IB′, so then IT ∩ B′ ⊆ IB′. The other

direction follows trivially, and so we have shown that IT ∩ B′ = IB′. Now define

B = B′

B′∩M . By the same argument as in the proof of Lemma 3.2, for every finitely

generated ideal I of B, IT ∩ B = IB. Thus (B,B ∩M) is the desired uncountable,

quasi-local S⋆-subring of T . �

6 Properties of the Final Ring

In this section, B refers to the ring constructed in Theorem 5.5 of the previous

section. Recall that (B,B ∩M) is an uncountable, quasi-local S⋆-subring of T such

that, for every principal ideal I of B, IT ∩ B = IB. In this section we will use

the properties of B to show that B is Noetherian and has completion T , and then

demonstrate that B is excellent and a RLR.

Lemma 6.1. Finitely generated ideals of B are extended from S, i.e. for any finitely

generated ideal I of B, I = (p1, . . . , pk)B for pi ∈ S.

Proof. Let I be a finitely generated ideal of B. Then I = (b1, . . . , bk)B for bi ∈ B. If

I = B, then I = 1B and 1 ∈ S. Thus suppose that I is a proper ideal and so the bi’s

are non-units.

Since the bi’s are not units, bi ∈ B ∩ (x1, . . . , xn)T . By Lemma 4.2, bi = piui where

pi ∈ (x1, . . . , xn)S and ui is a unit in T for all i = 1, 2, . . . , k. We will show that ui

is also a unit in B. Notice that bi = piui ∈ piT ∩ B, and since piT is a principal

ideal, piT ∩B = piB. Hence piui ∈ piB, which shows that ui ∈ B. Since the pi’s and

bi’s are associates in B, I = (b1, . . . , bk)B = (p1, . . . , pk)B, where pi ∈ S, and so I is

extended from S. �

Theorem 6.2. For every finitely generated ideal I of B, IT ∩B = IB.

Proof. Consider some finitely generated ideal I of B. We know by Lemma 6.1 that

I = (p1, . . . , pk)B for pi ∈ S. Let c ∈ IT ∩ B. We will show that c ∈ IB. If

I = B, then IT ∩ B = BT ∩ B = B = IB as desired. Otherwise IT ⊆ M , and so

c ∈ IT ∩ B ⊆ M ∩ B. Then, by Lemma 4.2, c = qu for q ∈ (x1, . . . , xn)S and unit u

in T . Thus qu = c ∈ qT ∩B = qB since qB is a principal ideal of B. Since qu ∈ qB,

u ∈ B and since u /∈ M , u /∈ B ∩M , and thus u is a unit in B. Observe,

cu−1 = q ∈ (p1, . . . , pk)T ∩ S = (p1, . . . , pk)S ⊂ (p1, . . . , pk)B = IB.
13



Since u is a unit in B, this implies that c ∈ IB as well, as desired. �

As a consequence of Theorem 6.2, B ∩ M = (x1, . . . , xn)B, and so the maximal

ideal of B is (x1, . . . , xn)B.

Theorem 6.3. The ring (B,B ∩M) is Noetherian with completion T and is a RLR.

Proof. We have that (B,B ∩M) is a quasi-local subring of the complete local ring T

with R0 ⊂ B. By Theorem 6.2, for every finitely generated ideal I of B, IT ∩B = IB.

Thus by Corollary 2.2, B is Noetherian with completion T and B is a RLR. �

In our final theorem we will show that B is excellent with a countable spectrum.

Theorem 6.4. For any n ≥ 2, there exists an uncountable n-dimensional, excellent,

regular local ring, with countable spectrum.

Proof. We will show that B is the desired ring. We already have that B is an un-

countable RLR with B̂ = T , and so dim(B) = dim(T ) = n. Thus, all that remains

to be shown is that B is excellent with a countable spectrum. Since (B,B ∩ M) is

local with B̂ = T , by Lemma 2.4, to show that B is excellent it is sufficient to show

that, for every P ∈ SpecB and Q ∈ SpecT where Q ∩ B = P , (T/PT )Q is a RLR.

Let P ∈ SpecB and Q ∈ SpecT such that Q ∩ B = P . Notice that

Q ∩ S = (Q ∩ B) ∩ S = P ∩ S.

Since B is Noetherian, every ideal is finitely generated. Furthermore, by Lemma 6.1,

every finitely generated ideal of B is extended from S, that is, it can be generated by

elements in S. Let P = (p1, . . . , pk)B for pi ∈ S. Then

P ∩ S = (p1, . . . , pk)B ∩ S ⊆ (p1, . . . , pk)T ∩ S = (p1, . . . , pk)S

where the last equality follows because IT ∩S = IS, for every finitely generated ideal

I of S. Clearly, (p1, . . . , pk)S ⊆ P ∩ S, so then we have that (p1, . . . , pk)B ∩ S =

(p1, . . . , pk)S, and thus Q ∩ S = (p1, . . . , pk)S.

Since S is excellent with completion T , we know that (T/(p1, . . . , pk)T )Q is a

RLR. Since (p1, . . . , pk)T = PT , we have that (T/(p1, . . . , pk)T )Q = (T/PT )Q and so

(T/PT )Q is a RLR, as desired. Thus by Lemma 2.4, B is excellent.

Finally, we will prove that SpecB is countable. Let IR be the set of ideals of a ring

R. We will show first that IB is countable. Define f : IS → IB by (a1, . . . , ak)S 7→

(a1, . . . , ak)B. Since S is Noetherian this function is well-defined. We will show that

f is surjective. Let I be an ideal of B. By Lemma 6.1, I = (p1, . . . , pk)B for pi ∈ S.
14



Then J = (p1, . . . , pk)S is an ideal of S, and f(J) = I, so f is surjective. Note that

IS is countable since S is Noetherian and countable. Thus IB is countable. Since

SpecB ⊆ IB, B has a countable spectrum. �
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