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ISOPERIMETRY IN SURFACES OF REVOLUTION
WITH DENSITY

ELIOT BONGIOVANNI, ALEJANDRO DIAZ, ARJUN KAKKAR,
AND NAT SOTHANAPHAN

ABSTRACT. The isoperimetric problem with a density or weight-
ing seeks to enclose prescribed weighted volume with minimum
weighted perimeter. According to Chambers’ recent proof of the
log-convex density conjecture, for many densities on R™ the answer
is a sphere about the origin. We seek to generalize his results to
some other spaces of revolution or to two different densities for
volume and perimeter. We provide general results on existence
and boundedness and a new approach to proving circles about the
origin isoperimetric.

1. INTRODUCTION

The log-convex density theorem proved by Gregory Chambers [Ch]
asserts that on R™ with log-convex density, an isoperimetric surface is a
sphere centered at the origin. We seek to generalize his results to some
other spaces of revolution and to two different densities for volume and
perimeter.

Our Theorems 3.2 and 3.4 provide general results on existence and
boundedness after Morgan and Pratelli [MP]. The existence proof
shows that in the limit no volume is lost to infinity. The bounded-
ness proof uses comparisons to derive a differential equation on volume
growth.

Sections 4 and 5 focus on 2-dimensional surfaces of revolution with
perimeter density and volume density equal. Our main Theorem 1.1
shows under the assumption that the product of the density and the
metric factor is eventually log-convex that, for large volumes, if the
component farthest from the origin contains the origin, then an isoperi-
metric curve is a circle centered at the origin:
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Theorem 1.1 (Corollary 5.8). Consider R? in polar coordinates (r,6)
with metric

ds® = dr* + h(r)*db?
and radial density f(r). Suppose that fh has positive derivatives and
is eventually log-conver and (log fh) diverges to infinity. Then, for
large volumes, if the origin is interior to the component farthest from
the origin, an isoperimetric curve is a circle centered at the origin.

The idea of the proof, aided by Figure 1, is as follows. We first show
that if an isoperimetric curve is not a circle centered at the origin, then
it must go near the origin (Prop. 5.3). By using estimates on the
generalized curvature formula, we prove that in the region where fh
is log-convex and nondecreasing, the angle o from the radial vector to
the tangent vector at each point of the isoperimetric curve increases
(Lemma 5.5) at an accelerating rate (Lemma 5.6). Then we observe
that in order for the isoperimetric curve to go near the origin, it must
travel a long distance, and the angle a would have to increase too
much by what we have shown. Putting these estimates together gives
a contradiction (Thm. 5.7).

“\\Q

o

FiGure 1. The angle o from the radial vector to the
tangent vector along the isoperimetric curve v increases
at an accelerating rate, leading to a contradiction.
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Similar results have been proven by Kolesnikov and Zhdanov [KZ]
for R™ with Euclidean metric and Howe [Ho| for a warped product of
an interval with a Riemannian manifold, without assuming that the
component of an isoperimetric region farthest from the origin contains
the origin. For details see Remark 5.9.

Finally, unless otherwise specified, when we mention perimeter and
volume, we mean perimeter and volume weighted by the density. We
also adopt the convention that A < B if there is some positive dimension-
dependent constant ¢, such that A < ¢, B.

2. COORDINATES AND FIRST VARIATION

Let H denote R™ in polar coordinates (r, ©) with metric
ds® = dr* + h(r)*d©?
and radial density f(r) = e¥("). Define
B(r):={x e H:|z|<r}

as the ball of radius r. For any region E C H, let |F| denote the
measure of E.

The following first variation formula tells how perimeter varies as a
region is deformed:

Proposition 2.1. (First Variation Formula [RCBM, 3.1, 3.2]). Let
f = e¥ be a C' density on H. Then the initial first derivatives of
volume and perimeter of a C* region E with boundary OF, outward
unit normal v, and inward mean curvature Hy, moving each boundary
point x with continuous normal velocity u(x), are given by

V’:/ u, P’:/ uHy(x),
oF OF

Hy(a) = Ho(x) + 20 (a).

Consequently, for a smooth isoperimetric region, Hs(x) is constant.

where

The quantity H(x) is called the generalized mean curvature. By Propo-
sition 2.1, it is the change of perimeter with respect to change in vol-
ume. (We are using the convention that the mean curvature is the sum
rather than the mean of the principal curvatures.)
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3. EXISTENCE AND BOUNDEDNESS

Existence and boundedness of isoperimetric regions for a single den-
sity for volume and perimeter on R™ were treated by Morgan and
Pratelli [MP]. Separate radial densities for volume and perimeter were
treated by Di Giosia et al. [DHKPZ]. We further allow certain radial
metrics. More recently, other metrics have been treated by Pratelli and
Saracco [PS].

To prove existence of isoperimetric regions, we begin with a lemma
that puts a bound on the perimeter by using projection onto spheres.

Lemma 3.1. Let H be R™ with metric
ds® = dr* + h(r)*d©?

and with nondecreasing density f(r), where fh is nondecreasing. If
E C H has finite volume, then for all r > 0,

[0E\ B(r)| = 5(r),

where S(r) is the area of the section of a sphere of radius r sliced by
the region E, ENOB(r).

Proof. The idea of the proof is to use projection. Let 7 : OE \ B(r) —
0B(r) be the radial projection of the boundary of E outside of B(r)
onto the sphere 0B(r). Since fh is nondecreasing, 7 is measure non-
increasing;:
[m (OE\ B(r))| < |9E\ B(r)| -

It remains to show that the left-hand side is greater than or equal
to S(r). For this, it is sufficient to show that 7 (OE \ B(r)) covers
ENOB(r) up to a set of measure zero.

Suppose the contrary. Then there exists a subset X C EN0B(r) of
positive measure that is disjoint from 7 (OF \ B(r)). So the product
of (r,00) x X in polar coordinates must be disjoint from the boundary
OFE. Since X C F, we must also have that (r,00) x X is contained in
E. But this would imply that |E] is infinite (because X has positive
measure and fh is nondecreasing), which is a contradiction. 0

The following theorem shows the existence of isoperimetric regions
by generalizing arguments of Morgan and Pratelli [MP].

Theorem 3.2. Let H be R™ with metric
ds® = dr® + h(r)*de?,

volume density f(r), and perimeter density g(r). Suppose that h is
nondecreasing, g diverges to infinity, and f < cg for some constant c.
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Then an isoperimetric region exists for every positive volume less than
the volume of the space H.

Proof. The proof closely follows Morgan and Pratelli [MP, Thm. 3.3].
The idea is to take a sequence of sets with perimeters converging to
the infimum and extract a convergent subsequence. The concern is
that in the limit, some volume may be lost to infinity. We suppose
that there is some volume lost to infinity and show that it contradicts
our assumption that perimeter density diverges to infinity.

Let V' be the prescribed (weighted) volume. Consider a sequence of
smooth sets E; of volume V and |0E;| converges to the infimum. By
compactness, we may assume the sequence converges to a limit set F.

Suppose that some volume is lost to infinity. Then there exists € > 0
such that, for all R > 0,

(3.1) B\ B(R)| > ¢

for all j large enough. Inequality (3.1) then becomes

/OO Si(r)f(r)dr > ¢,

R

where S;(r) is the unweighted area under the metric ds of the slice of
E; by the sphere of radius r. Define

M; :==sup S;(r), g-:= niing(r).
r>R r>R

Notice that g_ exists because g is continuous and diverges to infinity.
Then by Lemma 3.1 (for unweighted volume) we have, for all » > R,

0E;| = |0E; \ B(r)| = |0E; \ B(r)ly9- = 5;(r)9-,
where the subscript 0 denotes the unweighted version. Therefore,
(3.2) 0E;| = M;g-.
For large R, since g diverges, M; is small (uniformly for all j), and

hence S;(r) is small. Thus by the isoperimetric inequality on a sphere,
for all r > R,

2

pi(r) = S;(r)»=r,
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where p;(r) is the unweighted perimeter of the slice of E; by the sphere
of radius r. Therefore, by the coarea formula,

WEAZ/Wm@MwMTEE/wm@UVMT
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(3.3) > — =

By (3.2) and (3.3),

|(9Ej|% > gt
Since the left-hand side is uniformly bounded, ¢g_ is bounded indepen-
dent of R. This contradicts that assumption that g goes to infinity.

Therefore, there is no volume lost to infinity, £ has the prescribed
volume and realizes the infimum perimeter. O

Remark 3.3. The argument used in Theorem 3.2 can be used to prove
the existence of a perimeter-minimizing n-bubble for any n given vol-
umes. This can be shown by considering a sequence of n-bubbles with
prescribed volumes whose perimeters tend towards the infimum. If some
volume 1s lost to infinity in the limit of the sequence, then the same ar-
gument shows that the bubbles in the sequence have perimeters going to
infinity, which cannot be the case.

Finally, by again generalizing arguments of Morgan and Pratelli
[MP], we prove boundedness of isoperimetric regions.

Theorem 3.4. Let H be R™ with metric
ds* = dr?® + h(r)*de?,

volume density f(r), and perimeter density g(r). Suppose that gh
is nondecreasing, g*/ "V /f is nondecreasing, and fooo 17 diverges.
Then every isoperimetric region is bounded.

Proof. This proof closely follows Morgan-Pratelli [MP, Thm. 5.9]. We
begin by supposing that an isoperimetric region is unbounded. Then
from the isoperimetric inequality and the coarea formaula we derive
that the volume of the region outside the ball of radius r decreases
uniformly and hence becomes negative as r increases, which is a con-
tradiction.
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Suppose that an isoperimetric region E is unbounded. Define

E.:=EnNoB(r),

P(r):=|0E\ B(r)l,, V(r):=|E\B(r)l,

where the subscript denotes the density for the measure. By Lemma
3.1 for density g, since gh is nondecreasing,

(3.4) P(r) > |E,.

For r large, P(r) is small and therefore |E,|, is small, while the g-
weighted volume of the sphere of radius r is not small because gh is
nondecreasing. So the isoperimetric inequality on a sphere applies:

n—2
0|, 2 |Ev]5

where the subscript 0 indicates unweighted measure. Multiplying both
sides by the density g(r) yields

(35) OF, |, 2 g(r) 7 B,

Inequalities (3.4) and (3.5) then imply that

(3.6) OE|, 2 9(r) T P(r)” 7T |E,
Using the coarea formula [Mo, §4.11], we can say that,

(3.7) — P'(r) > |0E,|, .

Meanwhile

(3.5) V() = B,

By inequalities (3.6), (3.7), and (3.8),

~P'(r) 2 g(r)= P(r) 5 | E,|
=L Py V),
which simplifies to
d o 9(7“)ﬁ d
—r (P(T)"‘ ) Z —W%V(T)a

where ¢,, is a new dimensional constant. Since E has finite perimeter
and volume, P(r) and V(r) both go to zero as r goes to infinity. Hence
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integration of both sides of the previous inequality yields

Pz - [ WOy g

~ f(t) dt
g(r)=1 [ d

> — o) /7« dtv(t) dt

_9m)

because ¢/ ("1 /f is nondecreasing (and the right-hand side is posi-
tive).

Choose R so that the interior of the ball of radius R contains part
of the boundary of E. Then, for sufficiently small € > 0, we can define
a set E. by introducing a variation on the boundary of E inside B(R)
to increase the weighted volume by e. Since the (constant) generalized
mean curvature H(E) is dP/dV (Prop. 2.1) we have

|8Ea|g B |0E|g

lim = H(E).
e—0 £
Therefore, for small ¢,
(3.10) 0L, < |0E|, +e(H(E)+1).

Take r > R large enough such that ¢ = V(r) is small enough for
this construction. If we replace E. by E := E. N B(r), discarding the

volume V (1), then E is back to the original volume of E. Since E is
isoperimetric,

(3.11) 0E|, > |0E], .

On the other hand, since E loses the perimeter P(r) outside the ball
and creates new perimeter F,, it follows that

0E|, = |0E.|, — P(r) +|E.],

n—1
n

(3.12) <[0E|,+e(H(E)+1)— cnﬂg()r) et 4 |Er|,

by inequalities (3.10) and (3.9), where ¢, is a dimension-dependent
constant.

For r large, ¢ is small, and so et asymptotically dominates €. From
(3.11) and (3.12),

(3.13) B, 2 9(715"73 - ﬂwr)%‘l.
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Note that i)
-
’Er’f = ’ET’g PR
g(r)
Therefore by (3.8) and (3.13), for r sufficiently large,

n—1

V() 2 f(r)2V ()T
which is equivalent to
d 1 1
— w) < — n
— (vr) £ —fo).
Integrating both sides and using the fact that fooo f1/™ diverges, we find

that V(r) — —oo as r — oo, which is a contradiction. Therefore E is
bounded. O

4. CONSTANT GENERALIZED CURVATURE CURVES IN 2D

In this section, we consider the 2D case, R? in polar coordinates (7, 0)

with metric

ds® = dr® + h(r)*d6*

and radial density f(r) = e¥"). Following Chambers [Ch, Sect. 2], let
A be an isoperimetric set spherically symmetrized. Let v : [, 8] —
R? be the arclength paramaterization of the most distant component
of the boundary of A from the leftmost point on the z-axis back to
itself, counterclockwise. Then v is symmetric about the z-axis, v(0)
and (%) are on the z-axis, v is above the z-axis on (0, 3), and = is
below the z-axis on (—f,0). By known regularity [Mo], v is a smooth
curve. )

Let 7(t) and 6(t) be the orthonormal basis vectors of the tangent
space at 7(t) in the radial and tangential directions (unless 7(¢) is the
origin). Let «(t) be the counter-clockwise angle measured from 7(t) to
7' (t) at y(t). Note that the angles are measured with respect to the
defined metric and not the standard metric in R?.

Observe that

~

v =7t + h(r)0'e,
(4.1) r=cosa, h(r)d =sina.

Let k(t) be the inward (leftward) curvature of v at v(¢). The general-
ized curvature is

oY
t) = Kk(t —-—
where v is the unit outward normal at (¢). Recall that f = e?.

By the first variation formula (Prop. 2.1) and the fact that A is an
isoperimetric region, x(t) is constant for all ¢.
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We seek to analyze the constant generalized curvature curve 7. First
we need an explicit formula for the curvature.

Lemma 4.1. The curvature of v at t is
k(t) = h(r)*h' (r)0? + 2K (r)r?0" + h(r) (r'0" — §'v"),
where the polar coordinates (r,0) of v are functions of t.

Proof. In polar coordinates, R? with the given metric has first funda-

mental form
E F\ (1 0
F G) \0 h(r)2 )

The curvature of v at ¢ is the geodesic curvature, which is given by
K(t) = VEG — F2[I5,r"® — Th,0® + (207, — T'},) r°0'
— (20, = TL) 0 — "0 + 6"] ) (B + 2Fr0 + Go?)*/*
where Ffj are the Christoffel symbols of the second kind. Since F' = 0,
E, 1 Ey G,

Mh=55=0 Tp=55=0 Th=-2=-h)
o G. W(r) Go
FQZ——:O FQZ ~ = FZZ_:O
11 e ) 127 97 h(r) ’ 27 9¢
Therefore

H(t) = [h(r)Qh/(r)ng + 2h/(7“)7’/29, + h(r)(r’&” _ 9’7“”)] / (7’/2 + h(T)29/2)3/2,

The denominator is 1 due to arclength parametrization, implying the
desired formula. U

By using « (the angle from 7(t) to 4/(¢)), the curvature formula can
be further simplified:

Proposition 4.2. The curvature of v at t is

h/
K(t) = h(<11:)> sina + o
Proof. Recall from (4.1) that ' = cosa and ¢ = sina/h(r). The
desired formula follows from Lemma 4.1 by direct computation. 0

The generalized curvature can now be explicitly computed.
Proposition 4.3. The generalized curvature of v at t is
ke(t) = (log fh)'(r)sina + o'

Note that f and h are functions of r but « is a function of ¢.
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Proof. By Proposition 4.2 and the definition of generalized curvature,
it suffices to prove that

g—:f = ];/((:)) sina = 9¢'(r) sin ..

The gradient of v is
_ 81/1 ~ 1 8'¢ n__ A
Vw = ET + %%9 = w (7“)7"

because v is radial. The unit outward normal is
v = h(r)0'r —r'é.

Hence

20— (Vi) = W) = ¥(r)sina,

as asserted. U
From spherical symmetrization, some properties of o can be deduced.

Lemma 4.4. Assuming v avoids the origin, the angle o satisfies
a(0) =7/2,
a(=B) =a(B) =m/2 or 3w/2, and
/2 < «at) < 37/2,
for all t €0, ).

Proof. From spherical symmetrization, cosa = 7/(t) < 0 for all t €
0, 5], implying the third assertion. Because r(0) is maximum, cos a(0) =
r(0) = 0. So a(0) = /2 because 7 has counter-clockwise parametriza-
tion. The second assertion follows from the fact that (/) is minimum,
so cosa(f) =1'(B) = 0. O

Remark 4.5. The results of this section hold for any component of
an isoperimetric region, not only for the farthest component v. More-
over, by Proposition 2.1, the generalized curvature (Prop. 4.3) of each
component has to be equal.

5. CIRCLES ISOPERIMETRIC

In this section, with the assumption that the product fh of the
density and the metric factor is eventually log-convex, we will prove
that for large volume, an isoperimetric curve whose farthest component
~ encloses the origin is a circle centered at the origin. The notation
carries over from Section 4. In particular, a(t) denotes the angle from
the radial to the tangent at v(¢). First we need a lemma.
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Lemma 5.1. If &/(0) = 0, then v is a circle centered at the origin.

Proof. Notice that a circle centered at the origin satisfies the constant
generalized curvature equation (Prop. 4.3) and has «(0) = 7/2 and
o/(0) = 0. Therefore, by the uniqueness of solutions of ODEs, v is a
circle centered at the origin. U

The next lemma shows that the fact that v is a circle about the
origin is enough to conclude that an isoperimetric curve has only one
component.

Lemma 5.2. Suppose that fh has positive derivatives. If the farthest
component vy of an isoperimetric curve is a circle centered at the origin,
then the whole isoperimetric curve is that circle centered at the origin.

Proof. The isoperimetric curve cannot have other components outside
of its farthest component v because 7 is a circle about the origin. Sup-
pose that there are other components inside 7; then some component
~ must have clockwise orientation. By Proposition 4.3 and the hypoth-
esis on fh, v has positive generalized curvature. Similarly, by Remark
4.5, the oppositely-oriented ¥ has negative generalized curvature. This
contradicts the fact that an isoperimetric curve has constant gener-
alized curvature (Prop. 2.1). Therefore v is the whole isoperimetric
curve. U

The following proposition shows that if fh is eventually log-convex
and v is not a circle centered at the origin, then it must go near the
origin when it crosses the z-axis at (/). Recall that () is the distance
from the origin to ().

Proposition 5.3. If fh is log-conver on the interval [ro,00) and the
origin is interior to vy, then either v is a circle centered at the origin

orr(B) <ro.

Proof. Suppose that r(5) > ro. We must show that ~ is a circle cen-
tered at the origin. Since v encloses the origin, Lemma 4.4 applies,
a(f) =m/2, and 7/2 < a(t) < 37/2 for all ¢t € [0, 5]. Hence /(0) > 0
and o/(f) < 0. The generalized curvature formula (Prop. 4.3) implies
that
(log fR)'(r(0)) + o(0) = (log fh)'(r(B)) + &/ (B).
By spherical symmetrization, r(0) > r(8) > ro, so by log-convexity of
fh,
(log f1)(r(0)) > (log f1)'(r(8)).

This implies that o/(0) < o/(8), so that o/(0) = o/(8) = 0. Hence by
Lemma 5.1, 7 is a circle centered at the origin. 0
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Lemma 5.4. If fh is nondecreasing at r(0) and the origin is interior
to 7y, then a(t) € [7/2, 7] for allt € [0, 3.

Proof. Suppose to the contrary that «(t) > 7 for some t € [0, 5]. By
Lemma 4.4, «(0) = 7/2 and, because 7y encloses the origin, a(8) = m/2.
Thus there are ¢y < t < t; such that a(ty) = a(ty) = m, '(tg) > 0,
and o(t;) < 0. If v has constant generalized curvature ¢, then by the
generalized curvature formula (Prop. 4.3)

c=d(ty) = d(ty),
so all three quantities have to be zero. So at t = 0,

0 = (log fh)'(r(0)) + a/(0).
The first term on the right-hand side is nonnegative by hypothesis,
and the second term is nonnegative because o/(0) > 0 (Lemma 4.4).
Therefore o/(0) = 0. By Lemma 5.1, v is a circle centered at the origin,
and «(t) = 7/2 for all t € [0, 5], a contradiction. Hence a(t) < 7 for
all t € [0, 3]. O

We now show that « is nondecreasing (Lemma 5.5) and that its
rate of increase is accelerating (Lemma 5.6) in the region where fh is
log-convex.

Lemma 5.5. If fh is nondecreasing and log-convex on the interval
(10, 00), and the origin is interior to 7y, then for any t € [0, 5] such that
r(t) > 1o, &/(t) > 0.

Proof. Assume that r(0) > ry, otherwise the statement is trivial. By
Lemma 5.4, a(t) € [r/2,7] for all t € [0, 5]. By Lemma 4.4, &/(0) > 0.
If &/(0) = 0, then Lemma 5.1 implies that v is a circle centered at
the origin, and the lemma holds. So suppose /(0) > 0. Assume for
contradiction that there is a ¢ for which r(t) > ro and o/(t) < 0. Let
to > 0 be the smallest value of ¢ such that such that r(¢) > ry and
a/(t) = 0. For t < ty, the generalized curvature formula (Prop. 4.3)
gives

(log fh) (r(t))sina(t) + &' (t) = (log fh) (r(to)) sin a(ty).
Because o/(t) > 0, it must be that
(5.1) (log fh) (r(t))sina(t) < (log fh)'(r(te)) sin a(ty).
Note that 7/2 < «(t) < a(typ) < 7 by construction, so sina(t) >
sin a(ty) > 0. Moreover, because r(t) > r(tg) > ro, by hypothesis,
(log f1)'(r(t)) = (log fh)'(r(to)) = 0.

So the left-hand side of (5.1) is greater than or equal to its right-hand
side, a contradiction. Therefore the lemma holds. O
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Lemma 5.6. If fh is nondecreasing and log-convex on the interval
(19, 00) and the origin is interior to v, then for any t € [0, B such that
r(t) > ro, &"(t) > 0.

Proof. Fix t € [0, 5] such that r(t) > ro. By Lemma 5.5, o/(t) > 0,
so « is nondecreasing. By Lemma 5.4, «(t) € [r/2,7]. Recall the
generalized curvature formula (Prop. 4.3):

ke(t) = (log fh)'(r)sina + o'

Because (log fh)'(r) is nonnegative and nonincreasing as a function of ¢
and sin « is nonnegative and nonincreasing, «’ is nondecreasing. Hence
a’(t) > 0. O

The next theorem proves the circle isoperimetric, replacing the hy-
pothesis on close approach to the origin of Proposition 5.3 with a lower
bound M on (log fh)" at the point farthest from the origin.

Theorem 5.7. Consider R? in polar coordinates (r,0) with metric
ds® = dr* + h(r)*d6?

and radial density f(r). Suppose that fh has positive derivatives and
that, on the interval [rg,00), it is log-conver. Let

T
M = inf |(log fh)’ —
rlilro ( gf ) (T) + 2(7“ — TO)
Suppose that the origin is interior to the component of an isoperimetric
curve farthest from the origin and the farthest distance from the origin
Tmax Salisfies
Tmax > To,  (1og fh) (rmax) > M.

Then the isoperimetric curve is a circle centered at the origin.

Proof. The idea of the proof is that if the farthest component v goes
near the origin, then it has to travel a long distance to reach the region
near the origin, and o would have to increase too much. See Figure 1.
By Lemma 5.2, it suffices to show that 7 is a circle centered at the
origin. Suppose the contrary. By Proposition 5.3, r(8) < ry. Since
r(0) > rg, there is a to such that r(ty) = 9. By Lemmas 5.5 and 5.6,
o/(t) > 0 and o”(t) > 0 for all t € [0,%,]. Since (log fh)'(r(0)) > M,

there is an r; > ry such that
(log fh)'(r(0)) > (log fh)'(r1) +

s
2(7’1 — 7“0) .
Log-convexity of fh implies that r; < r(0), so there is t; < o such that
r(t1) = 1. Because we are using arclength parametrization, it must be
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that tg —t; > r1 — 9. Because a(t;) > n/2 and a(ty) < 7 (Lemma
5.4),

> a(to) — alty) = / oS (t— 1) () > (1 — o) (1),

t1

bo |

so that

o) < g -
Q(Tl TQ)
By the constant generalized curvature formula (Prop. 4.3),
(log f1)'(r(0)) < (log fh)'(r(0)) + /(0)
(log fh)'(r1) sina(ty) + o' (1)
(log fh)'(r1) + a (tl)
(log fh)'(r1) +

IN

IA

2(r —7”0)

a contradiction. Therefore v is a circle centered at the origin. By
Lemma 5.2, the whole isoperimetric curve is that circle centered at the
origin. 0

The hypothesis of Theorem 5.7 can be satisfied for large volumes
whenever fh is eventually log-convex and (log fh) diverges to infinity,
as shown in the following corollary.

Corollary 5.8. Suppose that fh has positive derivatives and is even-
tually log-convexr and (log fh)" diverges to infinity. Then, for large
volumes, if the origin is interior to the component farthest from the
origin, an isoperimetric curve is a circle centered at the origin.

Proof. Apply Theorem 5.7. For large volumes, r(0) is large, so (log fh)'(r(0)) >
M. Hence 7 is a circle centered at the origin. 0

Remark 5.9. Similar results to Corollary 5.8 are proven by Kolesnikov
and Zhdanov [KZ| and Howe [Ho|, without assuming that the compo-
nent farthest from the origin of an isoperimetric region contains the
origin. Kolesnikov and Zhdanov use the divergence theorem to show
that isoperimetric surfaces in R™ for large volumes are spheres about the
origin [KZ, Prop. 6.7]. Howe uses vertical area to prove that isoperi-
metric regions in a warped product of an interval with a Riemannian
manifold for large volumes are vertical fibers [Ho, Cor. 2.10].

The following corollary applies Theorem 5.7 to the example of the
Borell density e on the hyperbolic plane.
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Corollary 5.10. Consider the hyperbolic plane H? with density e’
Let ro = sinh ™' (1/+/2), M be as in Theorem 5.7, 7* > rq be such that
(log fh)' (r*) = M, and

Vo = 2m(coshr* — 1) ~ 31.098.

Then for any volume larger than Vg, if the origin is interior to the
component farthest from the origin, an isoperimetric curve is a circle
centered at the origin.

Proof. The product fh = e sinhr is log-convex and nondecreasing
on [rg,00), so we can apply Theorem 5.7. Since V; is the area of
the hyperbolic circle with radius r*, for any volume larger than V,
r(0) > r* > ro, so that (log fh)'(r(0)) > M. Therefore, by Theorem
5.7, v is a circle centered at the origin. 0
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