On counting associative submanifolds and Seiberg-Witten
monopoles

Aleksander Doan Thomas Walpuski

2018-09-17
Dedicated to Simon Donaldson on the occasion of his 60" birthday

Abstract

Building on ideas from [DT98;|DS11;Wali7; Hay17], we outline a proposal for constructing Floer
homology groups associated with a G,—manifold. These groups are generated by associative
submanifolds and solutions of the ADHM Seiberg-Witten equations. The construction is
motivated by the analysis of various transitions which can change the number of associative
submanifolds. We discuss the relation of our proposal to Pandharipande and Thomas’ stable
pair invariant of Calabi-Yau 3-folds.

1 Introduction

Donaldson and Thomas [DT98, Section 3] put forward the idea of constructing enumerative
invariants of Gy—manifolds by counting G,-instantons. The principal difficulty in pursuing
this program stems from non-compactness issues in higher-dimensional gauge theory [Tiaoo;
TTo4]. In particular, G,—instantons can degenerate by bubbling along associative submanifolds.
Donaldson and Segal [DS11] realized that this phenomenon can occur along 1-parameter families
of Gy—metrics. Therefore, a naive count of Gy—instantons cannot lead to a deformation invariant of
G,—-metrics; see also [Wal17]. Donaldson and Segal proposed to compensate for this phenomenon
with a counter-term consisting of a weighted count of associative submanifolds. However, they
did not elaborate on how to construct a suitable coherent system of weights. Haydys and Walpuski
proposed to define such weights by counting solutions to the Seiberg-Witten equations associated
with the ADHM construction of instantons on R* [HW1s), paragraphs following Remark 1.7;|Hay17;
DW1o9| Introduction; DW18, Appendix B].

The construction of these weights depends on the choice of the structure group of G,-
instantons, an obvious choice being SU(r). If one specializes to r = 1, that is, to trivial line
bundles, then there are no non-trivial G,-instantons and their naive count is, trivially, an invariant.
However, according to the Haydys-Walpuski proposal one should still count associatives weighted



by the count of solutions to the Seiberg-Witten equation on them. It is known that counting
associatives by themselves does not lead to an invariant, because the following situations may
arise along a 1-parameter family of G,—metrics:

1. Anembedded associative submanifold develops a self-intersection. Out of this self-intersection
a new associative submanifold is created, as shown by Nordstrém [Nor13]. Topologically,
this submanifold is a connected sum.

2. By analogy with special Lagrangians in Calabi-Yau 3-folds [Joyoz2l Section 3], it has been
conjectured that it is possible for three distinct associative submanifolds to degenerate into
a singular associative submanifold with an isolated singularity modeled on the cone over T?
[Wali3, p.154; Joy17, Conjecture 5.3]. Topologically, these three submanifolds form a surgery
triad.

We will argue that known vanishing results and surgery formulae for the Seiberg-Witten invariants
of 3—-manifolds [MT96l Proposition 4.1 and Theorem 5.3], show that the count of associatives
weighted by solutions to the Seiberg-Witten equation is invariant under transitions (1) and (2),
assuming that all connected components of the associative submanifolds in question have b; > 1.
This restriction is needed in order to be able to avoid reducible solutions and obtain a well-defined
Seiberg-Witten invariant as an integer[T| We know of no natural assumption that would ensure
that this restriction holds for all relevant associative submanifolds. Hence, the Haydys—Walpuski
proposal cannot yield an invariant which is just an integer.

One can define a topological invariant using the Seiberg-Witten equation for any compact,
oriented 3—manifold. This invariant, however, is not a number but rather a homology group,
called monopole Floer homology [MWo1; Mano3; KMo7; Fre10]. The behavior of monopole Floer
homology under connected sum and in surgery triads is well-understood [KMOSo7, Theorem 2.4;
BMO; Linis, Theorem 5]. We will explain how to construct a chain complex associated with a
G;—-manifold using the monopole chain complexes of associative submanifolds. The homology of
this chain complex might be invariant under transitions (1) and (2).

The discussion so far only involved the classical Seiberg-Witten equation. There is a further
transition that might spoil the invariance of the proposed homology group:

3. Along generic 1-parameter families of Gy—metrics, somewhere injective immersed associa-
tive submanifolds can degenerate by converging to a multiple cover.

We will explain why this phenomenon occurs and that it can change the number of associatives,
even when weighted by counts of solutions to the Seiberg-Witten equation. This is where ADHM
monopoles, solutions to the Seiberg-Witten equations related to the ADHM construction, enter the
picture. Counting ADHM monopoles does not lead to a topological invariant of 3—manifolds. We
will provide evidence for the conjecture that the change in the count of ADHM monopoles exactly

1Using spectral counter-terms, Chen [Cheg7;/Cheg8]] and Lim [Limoo| were able to define Seiberg-Witten invariants
of 3—-manifolds with b; < 1. These, however, are rational and cannot satisfy the necessary vanishing theorem.



compensates the change in the number of associatives weighted by the Seiberg-Witten invariant.
Based on this we will give a tentative proposal for how to construct an invariant of G,—manifolds:
a homology group generated by associatives and ADHM monopoles.

This paper is organized as follows. After reviewing in[Section 2|the basics of G,-geometry, we
discuss in[Section 3land [Section 4| the three problems with counting associatives described above.
The core of the paper are: where we introduce ADHM monopoles and relate them to
multiple covers of associatives, and [Section 6| where we outline a construction of a Floer homology
group associated with a G,—manifold. In[Section 7| we argue that a dimensional reduction of our
proposal should lead to a symplectic analogue of Pandariphande and Thomas’ stable pair invariant
known in algebraic geometry [PTog]. contains the proof of a transversality theorem
for somewhere injective associative immersions. [Appendix B|and [Appendix C|develop a general
theory of the Haydys correspondence with stabilizers for Seiberg-Witten equations associated
with quaternionic representations. summarizes the linear algebra of the ADHM
representation.

Finally, we would like to point out that an alternative approach to counting associative
submanifolds has been proposed recently by Joyce [Joy17]]. His proposal does not lead to a number
or a homology group, but rather a more complicated object: a super-potential up to quasi-identity
morphisms.
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2 Counting associative submanifolds

We begin with a review of G,—-manifolds and associative submanifolds with a focus towards
explaining what we mean by “counting associative submanifolds”.
2.1 Gy—manifolds

The exceptional Lie group G, is the automorphism group of the octonions O, the unique 8-
dimensional normed division algebra:

G, = Aut(O).

Since any automorphism of O preserves the unit 1 € O and its 7-dimensional orthogonal comple-
ment Im O C O, we can think of G, as a subgroup of SO(7).
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Definition 2.1. A G,—structure on a 7-dimensional manifold Y is a reduction of the structure
group of the frame bundle of Y from GL(7) to G,. An almost G,—manifold is a 7-dimensional
manifold Y equipped with a G,—structure.

The multiplication on O endows Im O with:

. an inner product, g: $?Im O — R satisfying

91, v) = —Re(uv),

« across-product - X -: A2Im O — Im O defined by
(u,v) — u X v = Im(uv)
and a corresponding 3—form ¢ € A® Im O* defined by
d(u,v,w) = glu X v, w),
as well as
« an associator [, -,-]: A*Im Oc — Im O defined by
(2.2) [u,v,w] = (uXv)Xw+ {(v,w)u — (u, w)v
and a corresponding 4-form / € A*Im O* defined by
v(u,v,w,z) = g([u,v,wl], z).

These are related by the identities

i(u)p Ni(v)p A ¢ = 6g(u,v)vol;, and
kg =¢
for a unique choice of an orientation on Im O. We refer the reader to [HL82, Chapter IV;[SW17]]

for a more detailed discussion.
A G,-structure on Y endows TY with analogous structures:

(2:3)

« a Riemannian metric g,

« across-product - X -: A’TY — TY,

« a3-form ¢ € Q3(Y),

« an associator [-,-,-]: A’TY — TY, and

+ a4-form ¢y € Q4(Y),



satisfying the same relations as above. From it is apparent that from ¢ one can reconstruct
g and thus also ¢, the cross-product, and the associator. Similarly, one can reconstruct g from
 together with the orientation. The condition for a 3—form ¢ or a 4-form i to arise from a
G,-structure is that the form be definite; see [Hito1, Section 8.3; Bryo6, Section 2.8]. We say that a
3—form ¢ is definite if the bilinear form G4 € T'(S*T*Y ® A’T*Y) defined by

Gy(u,v) = i(u)p Ni(v)p A §

is definite. We say that a 4—form ¢ is definite if the bilinear form G; € I (S*TY ® (A'T*Y)%?)
defined by

Gyla. p) = ila)y Ni(B)Y A

is definite. Here we identify A*T*Y = A3TY ® A’T*Y. Therefore, a G,-structure can be specified
either by a definite 3-form ¢, or by a definite 4-form ¢ together with an orientation.

A G,-structure on a 7-manifold induces a spin structure through the inclusion G, C Spin(7).
In fact, a 7-manifold admits a G,-structure if and only if it is spin, see [Gra69, Theorems 3.1 and 3.2]
and [LM8o| p. 321]. This means that the existence of a G,-structure is a soft, topological condition.
More rigid notions are obtained by imposing conditions on the torsion of the G,-structure, in the
sense of G-structures, see [Joyoo, Section 2.6]. The most stringent and most interesting condition
to impose is that the torsion vanishes.

Definition 2.4. A G,—manifold is a 7-manifold equipped with a torsion-free G,-structure.

Theorem 2.5 (Fernandez and Gray [FG82| Theorem 5.2]). A Gy—structure on a 7-manifold Y is
torsion-free if and only the associated 3—form ¢ as well as the associated 4—form y are closed:

dp=0 and dy =0.

The Riemannian metric induced by a torsion-free G,—structure has holonomy contained in
G,—one of two exceptional holonomy groups in Berger’s classification [Berss, Theorem 3]. If Y is
compact, then equality holds if and only if 7;(Y) is finite [Joyoo, Proposition 10.2.2]. We refer the
reader to [Joyoo, Section 10] for a thorough discussion of the properties of G,—manifolds.

Example 2.6. If Z is a Calabi-Yau 3-fold with a K&hler form » and a holomorphic volume form Q,
and if t denotes the coordinate on S!, then S! X Z is a G,—manifold with

1
p=dtANw+ReQ and ¢:5wAw+dt/\ImQ.

In this case the holonomy group is contained in SU(3) C G,.

Example 2.7. The first local, complete, and compact examples of manifolds with holonomy equal
to G, are due to Bryant [Bry87], Bryant and Salamon [BS89], and Joyce [Joy96a; Joy96b; Joyoo|
respectively. Joyce’s examples arise from a generalized Kummer construction based on smoothing
flat G,—orbifolds of the form T7T where T is a finite group of isometries of the 7-torus. This



method has recently been extended to more general G;—orbifolds by Joyce and Karigiannis [JK17].
The most fruitful construction method for G,—manifolds to this day is the twisted connected
sum construction, which was pioneered by Kovalev [Kovo3] and improved by Kovalev and Lee
[KL11] and Corti, Haskins, Nordstrom, and Pacini [CHNP13; CHNP15]. It is based on gluing, in a
twisted fashion, a pair of asymptotically cylindrical G,—manifolds which are products of S! with
asymptotically cylindrical Calabi—Yau 3-folds. Using this construction, Corti, Haskins, Nordstrém,
and Pacini [CHNP15]] produced tens of millions of examples of compact G,—manifolds.

2.2 Associative submanifolds

Definition 2.8. Let Y be an almost Gy—manifold, let P be an oriented 3-manifold, andlet:: P —» Y
be an immersion. We say that 1 is associative if

(2.9) -] =0€ Q3(P,*TY) and ("¢ is positive.

An immersed associative submanifold is an equivalence class [¢] of an associative immersion
1 € Imm(P, Y)/Diff . (P) for some oriented 3—manifold P. Here Imm(P, Y) is the space of immersions
P — Y and Diff, (P) is the group of orientation-preserving diffeomorphisms of P.

Harvey and Lawson [HL82, Chapter IV, Theorem 1.6] proved the identity
(2.10) d(u, v, w)* + |[u, 0, w]|* = [u A v A wl?

This shows that ¢ is a semi-calibration and that associative submanifolds are calibrated by ¢. We
refer to [HL82, Introduction] and [Joyool Section 3.7] for an introduction to calibrated geometry;
we recall only the following simple but fundamental fact.

Proposition 2.11. Ifi: P — Y is associative, then
"¢ = volpyg.

In particular, if ¢ is closed and P is compact, then the immersed submanifold i(P) is volume-minimizing
in the homology class 1.[P] and

vol(P, 1" g) = ([], 1| P]).

Proposition 2.12 (see, e.g., [SW17, Lemma 4.7]). Ifi: P — Y is an immersion, then the following
are equivalent:

. [ ] =0,
2. forallu,v € ,L.T,P,uxv € 1,TP, and
3. forallu € 1,ToP andv € (L.TxP)*,u X v € (1. T P)*.

Example 2.13. Let Z be a Calabi-Yau 3-fold. Equip S! x Z with the G,-structure from[Example 2.6]
If ¥ C Z is a holomorphic curve, then S! X 3 is associative. If L C Z is a special Lagrangian
submanifold, then, for any ¢t € S L {t} x L is associative.



Example 2.14. Examples of associative submanifolds which arise as fixed points of involutions
have been given by Joyce [Joyg6b, Section 4.2]. Examples of associative submanifolds arising from
holomorphic curves and special Lagrangians in asymptotically cylindrical Calabi-Yau 3-folds
were constructed by Corti, Haskins, Nordstrom, and Pacini [CHNP15, Section 5]

2.3 The ¢ functional

Associative submanifolds can be formally thought of as critical points of a functional £ on the
infinite-dimensional space of submanifolds. In contrast to many other functionals studied in
differential geometry (for example, the Dirichlet functional), the Hessian of € at a critical point is
not positive definite. As we will see, it is a first order elliptic operator whose spectrum is discrete
and unbounded in both positive and negative directions. Morse theory of functionals with this
property, most notably the Chern-Simons functional in gauge theory, was first developed by Floer
[Flo88; Dono2]. The existence of such & already hints at the possibility of constructing Floer
homology groups from a chain complex formally generated by associative submanifolds.

Definition 2.15. Define the 1-form §¢ = 62, € Q'(Imm(P, Y)) b

s = [ vity = [ Wl
p P
forn € T,Imm(P,Y) = T'(P, *TY).
Proposition 2.16.
1. 1 is associative if and only if 6,2 = 0 and 1" ¢ is positive.
2. 6% is Diff, (P)—invariant.

3. Ifdy = 0, then 6¢ is a closed 1-form. In fact, there is a Diff . (P)—equivariant covering space
7 Imm(P,Y) — Imm(P, Y) and a Diff , (P)—equivariant function £ : Imm(P,Y) — R whose
differential is 7* 5L [3]

Proof. Assertions (1) and (2) are both trivial. For f € H3(Y,R), let Immg(P, Y) denote the set of
immersions t: P — Y such that 1.[P] = f. Fix Py € Immg(P,Y) and denote by I?nTrw(P, Y) the
space of pairs (1, [Q]) with 1 € Immg(P) and [Q] an equivalence class of 4-chains in Y such that
8Q = P — P with [Q] = [Q’] if and only if [Q — Q'] = 0 € Hy(Y,Z). Define £: Immg(P,Y) — R
by
flon= [ v
Q

The function € has the desired properties; see also [DT98, Section 8]. O

2Although n is not a vector field on Y, by slight abuse of notation we denote by :*i(n)y the 3—form on P given by
(u, v, w) > Y(Lu, 1,0, LW, n).
3This justifies the notation §€ since locally it is the differential of a function.



2.4 The moduli space of associatives

Definition 2.17. Let P be a compact, oriented 3—manifold and let § € H3(Y,Z). Denote by
Immg(P,Y) the space of immersions :: P — Y with ,[P] = . The group Diff,(P) acts on
Immyg (P, Y). The moduli space of immersed associative submanifolds is

apy= || ww= [] [[eesw

BeH5(Y,Z) BeHs(Y,Z) P

with
Ap p(y) = {[1] € Immg(P,Y)/Diff.(Y) : 2-9)}.
Here P ranges over all diffeomorphism types of compact, oriented 3—manifolds.

Denote by 2*(Y) the space of definite 4—forms on Y. If & is a subspace of 2*(Y), then the
P—universal moduli space is

u) = wuw).

yepP

The moduli space A(Z) inherits a topology from the C*-topology on Immg(P,Y). As we
will explain in the following, the infinitesimal deformation theory of associatives submanifolds is
controlled by a first-order elliptic operator and (%) admits corresponding Kuranishi models.

Definition 2.18. Let:: P — Y be an associative immersion. Denote by
Ni:=*TY/TP = TP+ C /*'TY

its normal bundle and by V the connection on N: induced by the Levi-Civita connection. The
Fueter operator associated with 1 is the first order differential operator F, = F, y, : I'(N1) — T'(N1)

defined by
3

F,(m) = Z 1.e; X Ve, m.

i=1
Here (ey, es, e3) is an orthonormal frame of P.
This operator arises as follows. Identify Ni: with TP+ c /*TY and, given a normal vector field
m € T(N1), define 1,,,: P — Y by
tm(x) = exp(m(x)).
The condition for 1, to be associative to first order in ¢ is that

0_d
T de

(1461 X 1,62) X Ve,m + cyclic permutations

3
= Z 1se; X Ve, m.
i=1

[(lé‘m)*el’ (lgm)*eZ, (lem)*e3]
=0




Here we have used the definition of the associator and the fact that 1: P — Y is associative
so we have 1.e; X 1.e; = 1,.e3 (as well as all of its cyclic permutations).

Proposition 2.19 (Joyce [Joy17, paragraph after Theorem 2.12]). Ifdy = 0, then
Hess €(n, m) = /(n, F.m)
P

with € as in H In particular, F, is self-adjoint.

Theorem 2.20 (McLean [McL98|] and Joyce [Joy17, Theorem 2.12]). Let [1: P — Y] € g(y).
Denote by Aut(1) the stabilizer of 1 in Diff . (P).

The group Aut(1) is finite. The Fueter operator F, is equivariant with respect to the action of Aut(i)
on I'(N1). If P is a submanifold of the space of definite 4—forms containing v, then there are:

e an Aut(i)—invariant open subset U C &P X ker F,,

* a smooth Aut(1)—equivariant map ob: P x U — coker F, with ob(y, ) and its derivative
vanishing at 0,

* an open neighborhood V of ([1], o) in Ap(P), and
* a homeomorphism x: ob (0)/Aut() — V.

Moreover, if (p, n) € ob™(0), then the stabilizer of any immersion representing x(p, n) is the stabilizer
of n in Aut(y).

Definition 2.21. We say that an associative immersion i: P — Y is unobstructed (or rigid) if F,
is invertible.

2.5 Transversality

It follows from [Theorem 2.20| that if all associative immersions are rigid, then the moduli space
Ap (1) is a collection of isolated points—in other words, the functional € is a Morse function. While
this is not always true, below we show that it does hold for a large class of immersions and for a
generic choice of a closed positive 4—form 1.

Definition 2.22. An immersion :: P — Y is called somewhere injective if each connected com-
ponent of P contains a point x such that :7!(i(x)) = {x}. Denote by

Wi(y)

the open subset of somewhere injective immersions with respect to . Given a submanifold & of
the space of definite 4—forms, set

W) = | ww.

YeP



Proposition 2.23. Denote by DX(Y) the space of closed, definite 4—forms.

1. There is a residual subset D? .., C D2(Y) such that for every yy € D2

c,reg c,reg

(a) the moduli space 91;;(1,0) is a 0—dimensional manifold and consists only of unobstructed
associative submanifolds, and

(b) ‘212,‘(1,0) consists only of embedded associative submanifolds.

2. If o, yn € D2 ... (Y), then there is a residual subset gﬁ’reg(%, Yn) in the space of paths from

c,reg

Yo to Y in QZ?(Y) such that for every (¥)sefo,1] € Qﬁ,reg(%, 1)

(a) the universal moduli space ?I;‘ ({¢y : t € [0,1]}) is a 1-dimensional manifold, and

(b) for each component {(y,[1;]) : t € J} with J C [0, 1] an interval, there is a discrete set
Jx C J such that:

i. fort € J\Jx the map i, is an embedding and
ii. forty € Jx thereisaT > 0 and with the property that

P= | | {t}xuP)cRxY

|[t—tx|<T
has a unique self-intersection and this intersection is transverse.

The proof of this result is deferred to[Appendix A] It is similar to that of analogous results about
pseudo-holomorphic curves in symplectic manifolds, cf. McDuff and Salamon [MS12, Sections 3.2
and 3.4]. In fact, our situation is simpler because we assume from the outset that ¢ is an immersion.

2.6 Compactness and tamed forms

As we have seen, transversality for associative embeddings can be achieved by perturbing .
However, even if the moduli space (1) consists of isolated points, the number of points can be
infinite. Indeed, for an arbitrary definite 4-form i there is no reason to expect (i) to be compact.
The situation is better when one considers a special class of tamed 4-forms. This is analogous to
the notion of a tamed almost complex structure in symplectic topology, which guarantees area
bounds for pseudo-holomorphic curves.

Definition 2.24 (Donaldson and Segal [DS11, Section 3.2], Joyce [Joy17, Definition 2.6]). Let Y be
an almost Gy—manifold with 3—-form ¢, 4-form ¢/, and associator [, -, -]. We say that 7 € Q3(Y)
tames ¢ if dr = 0 and for all x € Y and u, v, w € T,Y with [y, v, w] = 0 and ¢(u, v, w) > 0, we
have 7(u, v, w) > 0.

Example 2.25. If i corresponds to a torsion-free G;—structure, then i, as well as any nearby
4—form, is tamed by ¢ = =i/

10



One should think of tamed, closed, definite 4-forms as a softening of the notion of a definite
4-form giving rise to a torsion-free G;—structure. The advantage of working with tamed forms is
that the volume of any associative submanifold in (/) is bounded and one can, in principle, use
geometric measure theory to compactify g (y)).

Proposition 2.26 (Donaldson and Segal [DS11, Section 3.2], Joyce [Joy17, Section 2.5]). Let Y be
a compact almost Go—manifold with 4—form . If { is tamed by a closed 3—form t, then there is a
constant ¢ > 0 such that for every associative immersion 1: P — Y with P compact

vol(P,1*g) < ¢ - {[z], [ P]).

2.7 Enumerative invariants from associatives?

Question 2.27. Is there a residual subset of tamed, closed, definite 4-forms for which Us(¢/) is a
compact 0—dimensional manifold (or orbifold)?

If the answer to this question is yes, then for every ¢ from this residual subset we can define

(2.28) ng(y) = #Wg ().
Question 2.29. Is ng(), or some modification of it, invariant under deforming ?

If the answer to this question is also yes, then ng would give rise to a deformation invariant of
G;-manifolds by defining its value on a torsion-free G,-structure ¢ to be that on a nearby tamed,
closed, definite 4-form.

It is easy to see that a naive interpretation of #2 (1) as the cardinality of (1) does not lead to
an invariant. Suppose that & = {¢; : t € (-1, 1)} is 1-parameter family of tamed, closed, definite

4-form and [1: P — Y] € Ap(y) with dimker F, y, = 1. By[Theorem 2.20] a neighborhood of
([t0], o) € Up(2P) is given by ob™(0) with ob a smooth map satisfying

ob(t, §) = At + ¢6* + higher order terms.

For a generic 1-parameter family we will have A, ¢ # 0. For simplicity, let us assume that A = ¢ = 1.
In this situation for —1 <t < 0, there are two associative submanifolds [} : P — Y] with respect
to i; near [1]. As t tends to 0, [1] tends to [1]. For ¢ > 0 there are no associatives near [io]. This
means that ng(¢) as defined in changes by —2 as t passes through 0.

The origin of this problem is that 24(y/) should be an oriented manifold and we should count
associative immersions [¢] € W(y) with signs e([], /) € {+1}. These signs should be such that if
{t4: P> Y :te[0,1]} is a 1-parameter family of associative immersions along a 1-parameter
family of closed, definite 4—forms, then

(2.30) e([u], ¥1) = ()5 Feepet 01D o], ).

In the above situation we have

e([i7].9e) = —e([i7 1. o).

11



Therefore, ng(y) will be be invariant as t passes though 0 if we interpret # as as signed count, that
is,

(2.31) np) = . el )
[11€Ap()

with some choice of ¢ satisfying (2.30). An almost canonical method for determining ¢ was recently
discovered by Joyce [Joy17, Section 3]. We refer the reader to Joyce’s article for a careful and
detailed discussion.

‘J [20]
[:7]

/
Vi

Figure 1: Two associatives submanifold with opposite signs annihilating in an obstructed associative
submanifold.

3 Intersections, T>-singularities, and the Seiberg-Witten invariant

In what follows we describe in more detail transitions (1) and (2) from [Section 1] and explain why
they spoil the deformation invariance of ng(). We then argue that the Seiberg-Witten equation
on 3-manifolds might play a role in repairing the deformation invariance. There is, however, a
price to pay: one has to give up on defining a numerical invariant and instead work with more
complicated algebraic objects: chain complexes and homology groups.

3.1 Intersecting associative submanifolds

Let (t)re(-1,1) be a 1-parameter family of closed, tamed, definite 4—forms on Y and let (1;: P —
Y);e(-1,1) be a 1-parameter family of somewhere injective unobstructed associative immersions.

By|Proposition 2.23| if (i/;) is generic, then we can assume that 1, is an embedding for all t # 0 and
has a unique self-intersection as in|[Proposition 2.23(2b). This intersection is locally modeled on the

intersection of two transverse associative subspaces of R”. Given any pair of transverse associative
subspaces of R’, there is a smooth associative submanifold asymptotic to these subspaces at infinity,
called the Lawlor neck. Nordstrom proved that out of the unique self-intersection of iy a new
1-parameter family of associative submanifolds is created in Y by gluing in a Lawlor neck.

12



Theorem 3.1 (Nordstrom [Nor13]]). Let Y be a compact 7-manifold and let (Y;);e(-1,1) be a family
of closed, definite 4—forms on Y. Let P be a compact, oriented 3—manifold. Suppose that (1;: P —
Y)te(-1,1) is @ 1-parameter family of unobstructed associative immersions such that

P= | ) {thxu(P)cRxY

te(-T,T)

has a unique self-intersection which occurs fort = 0 and is transverse. Let x* denote the preimages in
P of the intersection in Y and denote by P¥ the connected sum of P at x* and x™.
There is a constant &y > 0, a continuous function t: [0,¢&] — (=T, T), and a 1-parameter family

of immersions (lﬂ R LN Y)ee(o,6,] SUich that, for each e € (0, &], lﬁ is an unobstructed associative

immersion with respect to /;(.). Moreover, as ¢ tends to zero the images of 15 converge to the image of
1y in the sense of integral currents.

Remark 3.2. The paper [Nor13] has not yet been made available to a wider audience. A part of what

goes into proving can be found in [Joy17, Section 4.2]. There it is also argued that for
a generic choice of (;);e(—7, 1) the function t is expected to be of the form t(¢) = §¢ + O(¢®) with

a non-zero coefficient § whose geometric meaning is also explained therein.

Remark 3.3. Denote by Pj, ..., P, the connected components of P. Let j. be such that x, € P;,.
We have
o { 11, Py U (P 4P, ) for j, #j_ and
Hj$j+ Pj U (PjJiSl X 52) forj, =j_.

L+ [

/
Vi

Figure 2: An associative being born out of an intersection another associative.

In the situation described in and depicted in[Figure 2} n(y/;) as defined in (2.31)

changes by +1 as ¢ crosses 0. In particular, ng is not invariant.

3.2 Associative submanifolds with T?-singularities

Suppose that P is an associative submanifold in (Y, 1)) with a point singularity at x € P modelled
on the following cone over T%:

L={(0.21.22.23) e R® C’ : |z1]* = |22|” = |z3]*. 212023 € [0, 0) € C}

= {r -(0,e", €', e 71%) 1 r € [0,00), 01,0, € Sl}'
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For a more formal discussion we refer the reader to Joyce [Joy17, Section 5.2]. There, in particular,
it is argued by analogy with the case of special Lagrangians that such singular associatives should
be described by a Fredholm theory of index —1. That is: we should expect them not to exist for a
generic choice of ¢/ but to appear along generic 1-parameter families (¢/;).

The singularity model L can be resolved in 3 ways:

Ly = {(0,21,22,23) e RO C’ : |z1]* = A = |23]* = |23]%, 212223 € [0, 0) € C},
Li = {(0, 21,22,23) € R® C? 1 |z1|% = |22]* — A = |23%, 212225 € [0, 0) € C}, and
L ={(0.21.22.25) eROC* : 21" = |l = |zs|” = L. 212225 € [0, 0) € C}.
These are asymptotic to L at infinity and smooth, which can be seen by identifying Lil with
S! x C via
S'xC— L;, (eig,z) — (O,ei0 |z|? + A, z, e_iez") ,
(3.4) S!xC— Li, (!9, 2) > (0, e 0z 0|22 + A, z) , and
S'xC - Li, (eig,z) — (0, ,z,e_igz,e"gx/lzl2 + /1) .

Topologically, Lil can be obtained from L via Dehn surgery.

Definition 3.5. Let P° be a 3-manifold with P° = T2. Let y be a simple closed curve in T2. The
Dehn filling of P° along y, denoted by P?, is the 3-manifold obtained by attaching S' x D to P° in
such a way that {*} x S! is identified with p.

Remark 3.6. Up to diffeomorphism, P, depends only on the homotopy class of i C T?; moreover,
it does not depend on the orientation of p.

We can identify the boundary of L° := L\B; with T? via

(eigl, eiez) — eiel, ei<92, e—i91—i92)‘

1 (0
‘\/g B
Comparing the maps introduced in (3.4) restricted to {x} X S' with the above identification, we
see that L; is obtained by Dehn filling L° along loops representing the homology classes

(3.7) pr =(0,1), pp=(-1,0), and p3=(1,-1)

where (1,0) and (0, 1) are the generators of H;(T?, Z) corresponding to the loops 8 > (%%, 0) and
0 (0, e'?).
We expect that P can be resolved in three ways as well.

Conjecture 3.8 (cf. Joyce [Joy17, Conjecture 5.3]). Let (t);e(-1,T) be a 1-parameter family of closed,
tamed, definite 4—forms on Y. Let P be an unobstructed singular associative submanifold in (Y, )
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with a unique singularity at x which is modeled on L. Associated to this data there are constants
61,82,y € R. For a generic 1-parameter family (;);e(-1,1), 61 # 0, 92 # 0,61 # &2 and y # 0. If
this holds, then there is &y > 0 and, fori = 1,2, 3, there are functions t;: [0,&] — (=T, T), compact,
oriented 3—manifolds P', and 1-parameter families of immersions (iL.: P* — Y).¢(,s,] Such that:

1. L is an unobstructed associative immersion with respect to Vty(e)-
2. 1,(P") is close to P away from x and close to L. near x.

3. P! is diffeomorphic to the manifold obtained by Dehn filling P° = P\B,(x) along yi; where
i € Hy(0P°) = Hy(T?) is as in (3.7).

4. We have
he) = -2t 06, ) = e+ o),
Y 14
and ts(e) = 02~ 0 e+ O(?).
P

Vi
Figure 3: Three associatives emerging out of a singular associative for §; > §; > 0.

In the situation described in|Conjecture 3.8|and depicted in [Figure 3} ng(y/;) as defined in (2.31)

changes as t crosses 0. Again, the occurrence of the phenomenon described above would preclude
ng from being a deformation invariant.

3.3 The Seiberg-Witten invariant of 3-manifolds

If there were a topological invariant w(P) € Z defined for every compact, oriented 3—manifold
and satisfying

w(PiiP;) =0 and

(3-9) ° 0 0
ew(P,) + ew(P,,) + ew(P,) =0

with py, pa, g3 as in (3.7) and some choice of €1, 3, €3 € {+1}, then

(3.10) np) = > e(lil.yywP)
[]eAp(¥)

15



would be invariant along the transition discussed in and also along the transition
discussed in provided the signs work out correctly.

It is easy to see that the only such invariant defined for all 3-manifolds is trivial since w(P) =
w(P$S?) = 0 for all oriented 3-manifolds P. However, for those 3-manifolds P for which b;(P;) > 1
for all connected components P;, there are non-trivial invariants satisfying (3.9). One example of
such an invariant is the Seiberg—Witten invariant SW(P). We refer the reader to [MT96, Section
2] for a detailed discussion of the construction of SW(P). For the moment, it shall suffice to think
of SW(P) as the signed count of all gauge-equivalence classes of solutions to the Seiberg-Witten
equation; that is, pairs of (¥, A) € T'(W) X </ (det(W)) satisfying

D,¥=0 and

(1) ~Fx = ().

Here W is the spinor bundle of a spin® structure w on P, D, is the twisted Dirac operator,
and p(¥) = ¥9* - %|‘I’|2 idyy is identified with an imaginary-valued 2-form using the Clifford
multiplication.

Remark 3.12. The actual definition of SW(P) involves perturbing by a closed 2-form 7 in
order to ensure that the moduli space of solutions is cut-out transversely and contains no reducible
solutions. The necessity to choose 7 and the fact that H%(P, Z) has codimension b,(P) in H*(P,R),
where the cohomology class of 7 lies, is responsible for the restriction b (P) > 1.

Remark 3.13. SW(P) has a refinement SW(P) defined for oriented 3—-manifolds P with b;(P) > 0;
roughly speaking, it is an integer-valued function on the set of the isomorphism classes of spin®
structures w on P. When by > 1, it is zero for all but finitely many w and we can take SW(P) to be
the sum of the invariants over all spin® structures. We come back to this point in[Section 7.2}

Theorem 3.14 (Meng and Taubes [MT96, Proposition 4.1]). If Py, P, are two compact, connected,
oriented 3—manifolds with by(P;) > 1, then

SW(Plﬁpz) =0.

Theorem 3.15 (Meng and Taubes [MT96, Theorem 5.3]). Let P° be a compact, connected, oriented
3—manifold with OP° = T2, If u1, pia, u3 € H1(OP°) are such that

1 o = po - p3 = pi3 - pp = —1
(with T? = OP° oriented as the boundary of P°), then
€1 SW(PZl) + &9 SW(PZZ) + &3 - SW(PZs) =0

for suitable choices of €1, €3, €5 € {£1}, provided bl(PZi) >1foralli=1,2,3.
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Remark 3.16. The formulation of [MT96, Theorem 5.3] is in terms of p/q—surgery on a link L
which is rationally trivial in homology. The discussion in [KMo7, Section 42.1] explains how this
is related to Dehn filling, and from this it is clear that the surgery formula given by Meng and
Taubes implies the above theorem.

Remark 3.17. The Seiberg-Witten invariant is often defined only for compact, connected, oriented
3-manifolds P. If P has connected components Py, . . ., Py, then SW(P) := [}, SW(F)).

Let us temporarily assume that all associative immersions 1: P — Y with 1,[P] =  happen
to be such that all connected components P; satisfy by(P;) > 1. If we defined ng by with
the weight w = SW, then ng would be invariant in the situations described in and
at least if the signs work out correctly, or modulo 2. Defining ng in this way really
amounts to counting a much larger moduli space than s(1/), namely:

WYy =] [] ][50
P w

with
1 satisfies and
(1, ¥, A) € Immg(P,Y) x (W) x o (det W) : (¥, A) satisfies
with respect to 1*gy
A% o) =

Diff, (P) = C=(P, U(1)).

Here w ranges over all isomorphism classes of spin® structures on P and W denotes the spinor
bundle. The non-invariance of ng as defined in can be traced back to the completion of
Ap({¢+}) not being a 1-manifold. The moduli space QIZW({%}) smooths out the singularities in

the completion of s({y/; }) encountered in the situations described in Section 3.1}and [Section 3.2}

see[Figure 4

[il, wh3, AL3]

(3,93, A3

/
Vi

Figure 4: An example of how counting with Seiberg-Witten solutions can smooth out the situation
depicted in
To sum up: the issue with defining a topological invariant w(P) € Z with the properties

described in means that there is indeed no invariant ng(y) € Z defined by a formula of the
form (3.10). If it happens that for all associatives with 1,[P] = f all connected components P; satisfy

17



b1(Pj) > 1, then the invariance of ng(y/) can be rescued by setting w(P) = SW(P). Unfortunately,
there is no reason to believe that this holds for any reasonable class of closed, tamed, definite 4-
forms i or choice of . (The situation is somewhat better for associatives arising from holomorphic
curves in Calabi-Yau 3—folds. We discuss this case in[Section 7]) However, Seiberg-Witten theory
of 3—manifolds suggests an alternative approach to defining an invariant of G,—manifolds.

3.4 A putative Floer theory

Although there is no topological invariant w(P) € Z defined for all closed, oriented 3—-manifolds,
satisfying the properties described in (3.9), there are Seiberg-Witten-Floer homology theories
satisfying analogues of (3.9), see Marcolli and Wang [MWo1], Manolescu [Mano3], Kronheimer and
Mrowka [KMo7], and Frayshov [Fre1o]. We focus on one of the variants defined by Kronheimer
and Mrowka. To each closed, oriented 3—-manifold P they assign a homology group

HM(P) = H(CM(P, %), ).

Very roughly, the chain complexes W(P, &) are the C*°(P, U(1))—equivariant Morse complexes of
the Chern-Simons-Dirac functional CSD: T'(W) x &/(det W) — R defined by

1
(3.18) CSD(¥, A) = 5 / (A—A)) AFy + / (DAY, ) vol
P P
on the configuration space

G(P) = ]_[ Z(P,w) with B(P,w)=T(W)x o (detW).

(The fact that C*(P,U(1)) does not act freely is a significant problem, which Kronheimer and
Mrowka resolve by blowing up € (P) to a manifold with boundary and defining corresponding
Morse complexes adapted to this situation.) The chain complexes 61\7I(P, &) depend on choices
of additional data &, in particular, a Riemannian metric on P as well as the choice of a suitable
perturbation of the equation). Different choices of &, however, lead to quasi-isomorphic chain
complexes. We denote by CM(P) quasi-isomorphism class of CM(P, &), or rather its isomorphism
class in the derived category of chain complexes. If Q is a 4-dimensional cobordism with dQ =
Py — P,, then Kronheimer and Mrowka define an induced chain map

CM(Q): CM(P;) — CM(Py).

If Q = [0,1] X P, then W(Q) is simply the differential d on 61\7[(P) The construction of HM
involves a choice of coefficients. For the upcoming results to hold one needs to work with Z,
coefficients (or suitable local systems). The monopole homology groups are then Z,[U]-modules.
Here one should think U as the same U as in H*(BU(1)) = Z[U].

The following results are the analogues of the vanishing result from and the

surgery formula from
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Theorem 3.19 (Bloom, Mrowka, and Ozsvath [BMO]; Lin [Linis, Theorem 5]). Let P* and P~ be
two compact, connected, oriented 3—manifolds. Denote by P*§P~ their connected sum and by Q the
surgery cobordism from P* LI P~ to P*§P~. Then there is an exact triangld?]

(Q)

CM(P* L P~ ) ——=, CM(P*$P") » CM(P* L P") — CM(P* L P7)[-1];

in particular,

(3.20) HM(P* U P)) = H(cone(CM(P* L P~ ) MO, EMp P ).

Remark 3.21. In [Linis, Theorem 5], is stated and proved as an isomorphism

ideU+U ®id
_—

HM(P*#P~) = H(cone(CM(P*) ® CM(P™)[1] CM(P*) ® CM(P")))

induced by the cobordism Q. This formulation is much more useful for actual computations of
HM(P*§P~), but we need (3.20) for our purposes. The equivalence of these statements follows by
observing that once we identify

CM(P* LI P) = CM(P*) ® CM(P")

the map CM(P* U P™) = CM(P* LU P)[-1] is given by id ® U + U ® id and rotating the above
exact triangle.

Remark 3.22. More generally, if P# is obtained by performing a connected sum at two points x* in
P and Q denotes the surgery cobordism from P to P¥, then we expect there to be an exact triangle
CM(P) CM(P”) — CM(P) — CM(P)[-1].
asserts that this is holds if the points x* lie in different connected components of P.

Theorem 3.23 (Kronheimer, Mrowka, Ozsvath, and Szab6 [KMOSo7, Theorem 2.4]; see also
[KMo7, Theorem 42.2.1]). Let P° be a compact, connected, oriented 3—manifold with OP° = T2, Let
U1, Ho, i3 € Hi(OP°) be such that

P pa =2 H3 = st fln = =

(with T? = 9P° oriented as the boundary of P°.) Denote by Q;; the surgery cobordism from P, to P .
There is an exact triangle

K/ PO EM(QZS) A/ O 17/ o 77/ ho .
CM(PyZ) EE— CM(PIJ3) - CM(PHI) - CM(PyZ)[_l]!
in particular,
= —— o\ OM(Qz) ——
(3.24) HM(PPI) = H(cone(CM(PHZ) =8 CM(PyS))).

*We use square brackets to denote the translation C[p], = Cp+n, see [Weig4, Translation 1.2.8].
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Remark 3.25. While|[Theorem 3.23|holds for all three version of monopole homology defined by
Kronheimer and Mrowka, [Theorem 3.19| only holds form HM; see [Linis, paragraph after (13)].
This is why we restricted ourselves to this version from the outset.

Associative submanifolds are critical points of the functional £ defined in [Proposition 2.16]
Gradient flow lines of the functional £ can naturally be identified with immersions 1: RXP — RXY
such that

Uy +dt A @) = volpg
and 7y o 1(t, x) = t; see, e.g., [SW17, Lemma 12.6].

Definition 3.26. Let i*: P* — Y be associative immersions with respect to /. A Cayley cobordism
in R X Y from i_ to 1 is an oriented 4-manifold Q together with an immersionz: Q - Rx Y
such that

U +dt A P) = volyy

and there are two open subsets U, C Q such that Q\(U, U U-) is compact, constants T, and ¢ > 0,
and diffeomorphisms ¢, : (T}, 00) X P* — U, and ¢_: (—o0,T_) X P~ — U such that

dist(z 0 ¢ (£, x), (¢, F(x))) = O(e ™!y ast — 0.
The truncation of a Cayley cobordism is (the diffeomorphism type of)

0 = O\ ($_(~00, T- — 1) U g (T + 1, 0)).

The functorial behavior of Seiberg-Witten Floer homology groups under cobordisms leads to
the following questions about the existence of Cayley cobordisms.

Question 3.27. In the situation of does there exist a Cayley cobordism1: Q — RXY

from 1;(,) to lﬁ, for all € € (0, &), whose truncation Q is the surgery cobordism from P to ph?

Question 3.28. In the situation of [Conjecture 3.8 if §; > &; > 0, does there exist a Cayley
cobordism z: Q — R x Y from {f to 1] with Q being the surgery cobordism from P}, to Py, for

each t € (0,T)? (Similarly for the cases §; > 2 > 0, §, < §; < 0, and §; < 5, < 0.)

We hope that the answer to these questions is yes. For the sake of argument, let us assume
that this is indeed the case. Define

(3.29) CMA() = € CMAgu(H) with CMAg(y) = CM(P)
P ey ()

and define a differential on CMA4 (/) by declaring

(9: CMAR 1Y) = CMAg 1)) = ) CM(Q)
[1
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where [1: Q — R X Y] ranges over all equivalence classes of Cayley cobordisms from [i_] to [4].

Since EM([O, 1] X P) is just the differential d on aﬁ(P), in the situation of with
d > 0as in (and assuming that there no other Cayley cobordism involving [¢;] or [lf]),
for t < 0, the chain complex CMAg(i/;) contains the contribution

CMA% () = CM(P) with 4 = d;

for t > 0 this changes to

X - CM CM(PH i = é ’
CMAG (Y1) = CM(P) ® CM(P) - with 0 = (éﬁ(@ é)

with Q the surgery cobordism from P to P¥. The latter is simply the mapping cone

cone (61\7[(P) RGN EM(Pﬁ)) )

Therefore, it follows from that the homology group
H(CMAj(y1), 9)

does not change as t passes through zero. Similarly, in the situation of [Conjecture 3.8 by [The}
the relevant contribution to H(CMAg(y/;), d) does not change as t passes through

Z€ro.

To conclude: while there seem to be no way of making the weighted count of associatives

ng(y) invariant under transitions [(1)] and [(2)] described in we conjecture that a more
refined object, the homology group H (CMA;; (1)) is invariant under both of these transitions.

4 Multiple covers of associative submanifolds

A further problem with counting associatives arises from multiple covers; namely, transition
from [Section 1} This section is concerned with describing the nature of this phenomenon and its
consequences for counting associative submanifolds. In the following we explain how this issue
might be rectified using the ADHM Seiberg-Witten equations, in a similar way that the issues
described in the previous sections were dealt with using the classical Seiberg-Witten equation.
We have already established that, most likely, one cannot guarantee the number ng(y/), or
some other weighted count of associatives, to be invariant under deformations. However, the
problem with multiple covers is independent of the phenomena discussed earlier. Thus, for the
sake of simplicity we will only discuss how multiple covers affect ng(y/) rather than the homology

group H(CMA;(IP)); see also below.
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4.1 Collapsing of immersions of multiple covers

Consider the following situation. Let p: P — Y be an associative immersion with respect to
Yo € DY) and with (19).[P] = f € H3(Y). Let 7: P — P be an orientation preserving k—fold
unbranched normal cover with deck transformation group Aut(r). The composition

Ko := 1o O TT: PoY
is an associative immersion with
(ko)«[P]=k-p and Aut(r) C Aut(ko).
Suppose that [1] is unobstructed but
ker F, = R(n) € T(Nky).

We expect that this situation can arise along generic paths (;);¢(-7,7) in Z2(Y). A neighborhood
of ([ko], o) in the 1-parameter family of moduli spaces |J; Mx.5(}/;) can be analyzed using
Theorem 2.20]

The stabilizer of k, plays an important role in this analysis. Since Aut(k,) acts on Nxy and Fy, is
Aut(kg)-equivariant, Aut(k,) acts on ker Fy,. This yields a homomorphism sign: Aut(xo) — {1}
such that

(4.1) f-n=sign(f)n

for all f € Aut(xy). The homomorphism sign must be non-trivial, for otherwise n would be
Aut(rr)-invariant and descend to a non-trivial element of ker F,.
To summarize, ko: P — Y is an associative immersion with respect to 1y € 22(Y) such that:

1. Aut(kp) is non-trivial,
2. [xo] is obstructed; more precisely: ker F, = R(n), and
3. the homomorphism sign: Aut(xy) — {1} defined by is non-trivial.

In this situation, if (;); (-1, 1) is generic, then the obstruction map ob from [Theorem 2.20] whose
zero set models a neighborhood of ([xo], o) in U; Mi.5(¢:), will be of the form

ob(t, §) = AtS + ¢5° + higher order terms.

We can assume that A = ¢ = 1. Ignoring the higher order terms, ob™*(0) consists of the line {5 = 0}
and the parabola {t + 6% = 0}. Since [1,] is unobstructed, for each |t| < 1, there is an associative
immersion 1, : P — Y with respect to i/, near . The line {§ = 0} corresponds to the unobstructed

associative immersions [k;] := [1; o 7] for |¢| < 1. By[Theorem 2.20| for each -1 < t < 0 there

are also associative immersions [k} : P — Y] with respect to {; near [ko]. These correspond to
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the two branches of the parabola {t + §* = 0}. As ¢ tends to 0, [kF] tends to [k,]; and Aut(x¥) is
the stabilizer of n in Aut(ky). Since sign: Aut(xyg) — {*1} is non-trivial, there is an f € Aut(x,)
such that

fin = —n.

Therefore, k; and «; differ by a diffeomorphism of P and give rise to the same element in the
moduli space of associatives:

[i:] = [x; ] =[x, ].
Thus, the neighborhood ob™*(0)/Aut(k,) of ([ko], o) in U, Mi.p(Y:) is homeomorphic to the

figure depicted in Consequently, ng.g(y;) as in (3.10) with the weight w = SW changes
‘

by +SW(P) as t crosses zero. Similarly, if one were to adopt the approach described in
part of the chain complex CMA.4(y/;) would disappear as t crosses zero.

[x]

/
Vi

Figure 5: A family of associative immersions collapsing to a multiple cover.

4.2 Counting orbifolds points

The standard way to deal with the issue of multiple covers is to count the immersions [k] and [7]
described before as orbifold points in the moduli space; that is, to define

([e], ¥)w(P)
(4.2) np() = 2 rw
! me%aw |Aut()]

Since [xg] is obstructed, more precisely, since the Fueter operator associated with xy has a 1-
dimensional kernel, implies that the sign e([x;], ;) € {1} flips as t passes through 0.
Moreover,

Aut(i) = ker sign C Aut(k),

where sign: Aut(xy) — {+1} is the homomorphism introduced above, and thus
|Aut(x)| = 2 - |Aut(?)].

Consequently, for 0 < t < 1, we have

e([_t], Y- )w(P) N e([i-e], y-)W(P) _ e(licse], Y )w(P)
|Aut(x_, )| lAut@®] |Aut(ky,)|

€ Q.
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This works well for unbranched covers, but we believe that similar situations can occur
with branched covers 7: P — P. If 7 is a branched cover (with non-empty branching locus),
then k := 1 o 7 is not an immersion and thus the theory from does not apply. What
exactly replaces this theory is unclear to us; the work of Smith [Smi11] might be a starting point.
Nevertheless, one would need to count [k] to be able to compensate the jump. The crucial point is
that, for any given 3-manifold P and k € N, infinitely many diffeomorphism types of 3-manifolds
might be realized as k—fold branched covers of P. This is illustrated by the following result.

Theorem 4.3 (Hilden [Hil74;Hil76|] and Montesinos [Mon74]]). Every compact, connected, orientable
3—manifold is a 3—fold branched cover of S°.

Therefore, if 1: S — Y is an associative immersion in (Y, /), then, for every compact, con-
nected, oriented 3—-manifold P, there is a 3-fold branched cover 7: P — P, and [1 o ] would have
to contribute to (4.2)). This would lead to an infinite contribution from branched covers.

4.3 Counting embeddings with multiplicty

We believe that the origin of the problem is that all the associative submanifolds [: o 7] represent
the same geometric object, namely, “k times im(1)”. Instead of trying to count immersions and their
compositions with branched covers with weights, we should count embeddings with multiplicity.
Embeddings with with multiplicity one should be weighted by the Seiberg-Wittten invariant, as
in[Section 3.3/ or|Section 3.4| Below we briefly outline an approach for defining the weights with
which to count embeddings with multiplicity k larger than one. More details are given in[Section 5|
and

Remark 4.4. Our approach should be compared with holomorphic curve counting via Donaldson-
Thomas/Pandharipande-Thomas theory in algebraic geometry where one counts embedded sub-
schemes, including contributions from thickened subschemes, rather than images of maps. We
elaborate on the relationship of this approach with Pandharipande-Thomas theory in

To set the stage, let us go back to the situation described at the beginning of this section; that
is, we have an unobstructed associative embedding :: P — Y and an orientation preserving k—fold
unbranched cover 7: P — P such that

K=1om: P—Y

is an obstructed associative immersion with dim ker F, = 1. Denote by i: P — Y the associative
immersion which is the deformation of k that does not come from deforming 1. (For simplicity’s
sake, we dropped the subscripts t from the notation.) Consider the bundle of stratified spaces

Sym* Ni := SO(N1) Xso(s) Sym* H = (N1)¥/Sk.

Here H = R* is the space of quaternions and Sy, is the symmetric group on k elements. To every
normal vector field n € T(Nk) we assign a corresponding section 7 € ['(Sym* N1) defined by

i(x) = [n(x%y), . .., n(xg)]
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with X1, . . ., X denoting the preimages of x with multiplicity. Given such a section i € T'(Sym* N),
set
P; :={(x,v) € Ni:v € fi(x)}.

If n € T(Nk) is a normal vector field spanning ker F, then P; is a model for im(7). In particular,
im(7) and P; are diffeomorphic in case they are smooth, which we conjecture be true generically if
7 is unbranched.

We can decompose im(i) into components P!, . .., P™ such that P/ is an ¢ i—fold cover of P and,
for each x € P/ corresponding to (x,v) € Py, v appears in 7i(x) with multiplicity k;. Geometrically,
[7] represents

(45) ky-P'+-- +kp-P™

Clearly, we have

(4.6) Z tik; = k.

Jj=1

Henceforth, let us assume that im(7) is smooth. In the simplest case, we have m = 1 and k; = k.
In this case, 7 is a section of

k

Symreg N = {(x, [v1,...,0]) € Symk Ni:vy,..., v are pairwise distinct},

the top stratum of Sym* N. In general, i will be a section of a stratum
Sym’)LC N: C Symk N

determined by A, the partition of the natural number k given by (4.6). Each of the strata Sym’j N
is a smooth fibre bundle, which is naturally equipped with a connection V and and a Clifford
multiplication y on its vertical tangent bundle V Symlj N1. These can be used to define a Fueter

operator, which assigns to each section 71 € F(Symﬁ N1) an element
i € T(A*V Sym’ Nu).
The condition that n € I'(Nk) is in the kernel of F, means that
&n = y(Vn) = 0;

that is, n is a Fueter section of Sym’/{ N

The above discussion show that what causes k; - P! + - - - + kp,, - P™ to collapse to k - im(7) is
precisely a Fueter section 7 of Sym’/{ N1. For simplicity, let us specialize to the case m = 1 and
ki = k; that is:

« for t < 0 there are two embedded associative submanifolds of interest, namely, [i; : P— Y]
and [1,: P> Y];
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« ast tends to zero, I; converges to the associative immersion «, the k—fold covering of 1, and
then ceases to exist; and

« for t > 0 we only have the embedded associative submanifold [¢;: P — Y].

Extending the approach of we would like to define weights w such that
(4.7) w(P,_y) + w(k - P,y_¢) = w(k - P, )

for 0 < t < 1. From the discussion in|Section 3.3/we learn that w(P, ;) should be (P, y/_;) - SW(P)
with (P, _;) € {1} as in|Section 2.7and SW(P) € Z being the Seiberg-Witten invariant of P.
Thus means that the weight w(k - P, ;) must jump by +SW(P) as t passes through zero.

We propose that w(k - P, ;) should be defined as the signed count of solutions to the ADHM;
Seiberg-Witten equation on P. This is the Seiberg—Witten equation associated with the ADHM
construction of Sym* H. Unlike in the case of the classical Seiberg-Witten equation, compactness
fails for the ADHM; j Seiberg-Witten equation. As a consequence, the number of solutions can
jump as the geometric background varies. According to the Haydys correspondence, those jumps
occur precisely when (possibly singular) Fueter sections of Sym* N appear. We will argue that in
the above situation the jumps should be precisely by +SW(P).

The next section is concerned with introducing the ADHM; ; Seiberg-Witten equation, stating
and proving the Haydys correspondence with stabilizers, and formally analyzing the failure of
non-compactness for the ADHM;, j Seiberg-Witten equation. After this discussion we will also
explain what replaces (4.7), in general, and why defining w via the ADHM, ; Seiberg-Witten
equation should be consistent with that.

Remark 4.8. Of course, instead of a weighted count of embedded associatives with multiplicities,
one should really try to define a Floer homology generalizing the discussion in Such
ADHM,;  Seiberg-Witten-Floer homology groups are yet to be defined. It will become clear
from the discussion in the following sections that these groups could only be expected to yield
topological invariants of 3-manifolds in the case k = 1 (classical Seiberg-Witten-Floer homology).
In general, they will depend on various parameters of the equation such as the Riemannian metric.

Remark 4.9. We believe that this approach is also capable of dealing with branched covers. These
should correspond to singular Fueter sections, that is, sections of Sym’/{ N defined outside a subset
of codimension at most one (which corresponds to the branching locus) and extend a continuous
section of the closure of Sym’j Nt in Sym* N It is known that singular Fueter sections appear in
the compactifications of moduli spaces of solutions to Seiberg-Witten equations, cf. [DW18].

5 ADHM monopoles and their degenerations

The purpose of this section is to introduce ADHM monopoles and to relate their degenerations to
the phenomenon of collapsing of associatives to multiple covers.
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5.1 The ADHM Seiberg-Witten equations

There is a general construction, summarized in[Appendix B} which associates with every quater-
nionic representation of a Lie group a generalization of the Seiberg-Witten equation on 3-
manifolds. In a nutshell, the ADHM Seiberg-Witten equations arise from this construction by
choosing particular quaternionic representations which appear in the famous ADHM construction

of instantons on R*; see [Example B.5| However, below we introduce the ADHM Seiberg-Witten
equations directly, without assuming that the reader is familiar with the general construction.

Definition 5.1. Let M be an oriented Riemannian 3—-manifold. Consider the Lie group
Spin"®(n) := (Spin(n) x U(k))/Z,.

A spin’®) structure on M is a principal SpinY*)(3)-bundle together with an isomorphism

(5.2) 10 X g Uk) (3) SO(3) = SO(TM).

u(k)

The spinor bundle and the adjoint bundle associated with a spin~'*) structure w are

W=w X5 pint(k)(3) H ®c ck and Qg7 = W Xgpnuik)(3) u(k)

respectively. The left multiplication by Im H on H® C* induces a Clifford multiplication y : TM —
End(W).

A spin connection on w is a connection A inducing the Levi-Civita connection on TM. Asso-
ciated with each spin connection A there is a Dirac operator )4 : T(W) — T(W).

Denote by o/*(w) the space of spin connections on w, and by &*(w) the restricted gauge
group, consisting of those gauge transformations which act trivially on TM. Let @: Ad(w) — gg
be the map induced by the projection spinV®)(3) - u(k).

Definition 5.3. Let M be an oriented 3—manifold. The geometric data needed to formulate the
ADHM, \ Seiberg-Witten equation are:

« a Riemannian metric g,

U(k)

« aspin-"*/ structure w,

 a Hermitian vector bundle E of rank r with a fixed trivialization A"E = C and an SU(r)-
connection B,

« an oriented Euclidean vector bundle V of rank 4 together with an isomorphism
(5.4) SO(A*V) = SO(TM)

and an SO(4)-connection C on V with respect to which this isomorphism is parallel.
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Remark 5.5. If 1: P — Y is an associative immersion, then the normal bundle V = N admits a
natural isomorphism by [Proposition 2.12|and we can take C to be the connection induced
by the Levi-Civita connection. In this context, the bundle E should be the restriction to P of a
bundle on the ambient G,—manifold and B should be the restriction of a G,—instanton. Soon we
will specialize to the case r = 1, in which E is trivial and B is the trivial connection.

The above data makes both Hom(E, W) and V ® gg into Clifford bundles over M; hence, there
are Dirac operators D4 g: ['(Hom(E, W)) — I'(Hom(E, W)) and D4 c: T(V®g) — I'(V ®g). The
ADHM, i Seiberg-Witten equation involves also two quadratic moment maps defined as follows.
If ¥ € Hom(E, W), then ¥¥* € End(W). Since A’T*M ® gg acts on W, there is an adjoint map
()o: End(W) — A*T*M ® gg. Define y: Hom(E, W) — A’T*M ® gg by

H(¥) = (¥¥* ).

If £ € V®g, then [£ A €] € A®V ® gg. Denote its projection to A*V ® go by [€ A £]T. Identifying
AYV = A’T*M via the isomorphism (5.4), we define p: V ® g — A’T*M ® g by

pE) =g nel

Definition 5.6. Given a choice of geometric data as in[Definition 5.3} the ADHM,. ; Seiberg-Witten
equation is the following partial differential equation for (¥, €, A) € I'(Hom(E, W)) X T'(V ® gg¢) X
o5 (w):

Dap? =0,

(5.7) IDA,cf =0, and
oFq = p(¥) + p().

A solution of this equation is called an ADHM, ; monopole.

The moduli space of ADHM, ; monopoles might be non-compact. The reason is that the
L? norm of the pair (¥, £) is not a priori bounded and can diverge to infinity for a sequence of
solutions. To understand this phenomenon, one blows-up the equation by multiplying (¥, £) by
¢! and studies the equation obtained by taking the formal limit ¢ — 0. This is explained in greater

detailin [Sppendix B}

Definition 5.8. The limiting ADHM, ;. Seiberg—Witten equation the following partial differential
equation for (¥, £, A) € T(Hom(E, W)) X T(V ® g9 ) X &/ *(w)

Dap¥ =0,
(5.9) lﬁA,cf =0, and
p(Y) + p(&) = 0.

together with the normalization ||(¥, &)||;2 = 1.
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The ADHM, . Seiberg-Witten equation and the corresponding limiting equation are
preserved by the action of the restricted gauge group Z*(w).

U(1)

Remark 5.10. Suppose that r = k = 1. A spin~'" structure is simply a spin® structure and

1
oFy = EFdetA-

Also, g = iR; hence, D4 ¢ is independent of A and p(€) = 0. The ADHM; ; Seiberg-Witten
equation is thus simply

1
Da¥ =0 and EFdetA = pu(¥P),

the classical Seiberg-Witten equation (3.11) for (¥, A), together with the Dirac equation
Dcg =o.

If i: P — Y is an associative immersion and M = P and V = Ny, then I)¢ is essentially the
Fueter operator F, from Definition 2.18] In particular, £ must vanish if  is unobstructed. (There is
a variant of in which £ is taken to be a section of V ® 9oy with Gop denoting the trace-free
component of gg. For r = k = 1, this equation is identical to the classical Seiberg—Witten equation.
However, working with this equation somewhat complicates the upcoming discussion of the
following sections.)

5.2 The Haydys correspondence for the ADHM, ; Seiberg-Witten equation

In what follows, we specialize to the case r = 1 and analyze solutions of the limiting ADHM;,
Seiberg-Witten equation (5.9). This will lead to a conjectural compactification of the moduli
space of ADHM; ; monopoles. Our analysis is based on the general framework of the Haydys
correspondence with stabilizers developed in We will also make use of several
algebraic facts proved in[Appendix D} It is helpful but not necessary have read the appendices to
understand the results stated in this section.

Assume the situation of|Section 5.1} that is: w is a spin"®) structure on M with spinor bundle W
and adjoint bundle gg, and V is a Dirac bundle of rank 4 over M with connection C. The limiting
ADHM, \ Seiberg-Witten equation for a triple (¥, £, A) e I'(W) X I'(V ® g ) X &*(w) is

Da¥ =0,
(5.11) IZ5A,C§ =0, and
H(¥) + p(&) =0

as well as ||(, &)||;2 = 1.
It follows from the third equation that if (¥, £, A) is a solution of (5.11), then

1. ¥ =0, and
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2. & induces a section 7 of the bundle Sym* V over M whose fiber is Sym* H.

The first statement is the content of]| and the second statement follows from a special
case of the Haydys correspondence discussed in[Appendix C| combined with the observation that
Sym* H is the hyperkahler quotient of the ADHM, j representation; see Furthermore,
the section 7 satisfies the Fueter equation, as explained in [Section C.3|

A more difficult part of the Haydys correspondence deals with the converse problem: given
a section 7 of Sym* V which satisfies the Fueter equation, can we lift it to a solution (¥, £, A) of
(5.11)? If yes, what is the space of all such lifts up to the action of the gauge group?

A technical difficulty that one has to overcome is that 7 takes values in the symmetric product
Sym* H which is not a manifold. Rather, it is a stratified space whose strata correspond to the
partitions of k.

Definition 5.12. A partition of k € N is a non-increasing sequence of non-negative integers
A = (A1, Az, . ..) which sums to k. The length of a partition is

Al =min{neN:A, =0} - 1.

For every n € N, denote by S, the permutation group on n elements. With each partition A we
associate the groups

G, = {O‘ €S /15(,1) =A,forallne{l..., Ml}}
and the generalized diagonal

4]

App={v1,...,v3 € H" 1 v; = v; for some i # j}.

There is an embedding (HW\AW)/GA < Sym* H defined by

[Ul,.. .,Z)|,1|] = [Ul,. c UL L O - .,Z)|,1|].
——— ~— ———
A1 times A1) times

The image of this inclusion is denoted by Sym]/{ H.
Each stratum Sym’; H is a smooth manifold. Let us assume that n takes values in such a stratum:
fi € I(Sym’ V),

for some partition A of k. This is familiar from

The next result summarizes the Haydys correspondence for solutions of (5.11). On first reading,
the reader might assume that A = (1,..., 1), the partition yielding the top stratum of Symk H,
since this simplifies the situation considerably. For j = 1,...,m, denote by k; the j-th largest
positive number appearing in the partition A and by ¢; the multiplicity with which it appears.
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Proposition 5.13. Givenii € I‘(Sym’; V), set
M={(x,v)eV:xeM and veilx)}
and denote by w: M — M by the projection map.

1. The map r is a|A|~fold unbranched cover of M. Moreover, we can decompose M into components
M, ..., M, such that j := Jl'le restricts to a {j—fold cover on M;.

2. There is a natural bijective correspondence between

(a) gauge equivalence classes of solutions (¥, €, A) of (5.11) for which the corresponding
section of Sym* V takes values in the stratum Sym’/{ V, and

(b) Fueter sections i € I“(Sym’/{ V) together with a spin’%)

connection Aj on w; foreachj=1,...,m.

structure w; on M; and a spin

Remark 5.14. If A = (1,...,1), then m = 1 and w; is simply a spin® structure on M.

Proof. Part m follows from the definitions of Sym’lc V and M. It is part which requires a proof.
This statement is a special case of the Haydys correspondence with stabilizer proved in[Appendix C}
in particular, we will use the notation introduced in there.

We require the following pieces of notation. For every n € N, denote by [n] the set {1,...,n},
and let S, be the permutation groups on n elements. Denote by Q° the principal []}Z, S¢,~bundle
over M, denoted whose fibre over x is

(5.15) 0 = | | Bii(l1. 7' ().
j=1

Tautologically, M is the fiber bundle with fiber [I;] X - - - X [I,»] associated with Q° using the action
of [T7Z; S¢; on [l1] X - - - X [I;]. Define

[A]
T = |Uta) € UGK),
n=1

Wy (Ty) = (1_[ St,| X SO(4), and
j=1
Ny (T)) := Spin(4) Xz, 1_[ Se, < U(k;)'
j=1
= (Spll’l(3) Xz, (1_[ ng X U(kj)fj ) XSO(S) 50(4)
j=1

With this notation the following summarizes the discussion in
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Proposition 5.16. Let Q° be the principal [17., S¢;~bundle defined by Define a principal
Wy (Ty)—bundle Q° associated with i by

0° = Q° x SO(V).

1. The choice of a N (T, )—-bundle Q° lifting QO° is equivalent to the choice of a spin®*)) structure
w; on M; foreachj=1,...,m.

2. Given a spin”®) structure w; on Mj foreachj=1,...,m, there exists a lift (¥, &) of n. The
space of connections .Qig’g(QA), defined in (C.24), is identified with the space

ﬁ oA (w;)
j=1

and tp, defined in (C.14), is identified with the sum of the push-forward bundles
@(ﬂj)*gy/j.
=1

Proof of[Proposition 5.16 We prove part|(1)} Given a spinVk/)(3) structure w; on M; for each j =

1,..., m, denote by 1; the corresponding spinV%/)(4) structure on 7;V. The principal Ny(T))-
bundle Q° with fibre over x given by

m

Q; = l_[{(f’gh s ’gfj) € BIJ({L s 9€j}9”j_1(x)) X ﬁ)f] 1gi € (ﬁ)j)f(l)}

j=1

lifts O°. Conversely, given principal N 7(Tr)-bundle Qe lifting Q¢ its pullback to M ; contains a
principal SpinV*/)(4)-bundle ; which yields a spinV%/) structure on 7V and thus on M;. With
this discussion in mind and the discussion in[Appendix C] part|(2)| of this proposition becomes
apparent. O

Once [Proposition 5.16|is established, part|(2)|of [Proposition 5.13|follows from the discussion in
[Section C.2]and [Section C.3|together with|[Theorem D.2] i

5.3 Formal expansion around limiting solutions

[Proposition 5.13 imposes very weak conditions on a connection A € &/°(w) which is part of a
solution of the limiting equation (5.11). Indeed, given (£, ¥) and one such connection, all other
choices of A are parametrized by choices of spin connections A; on w;, for every j, and the spaces
of these spin connections are infinite-dimensional. However, we are only interested in those
solutions of which are obtained as limits of rescaled ADHM, ; monopoles. To determine
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further constraints for such limits, let (¥, = 0, &,, Ao) be a solution of (5.11) with n € F(Sym’; V)
for some partition A of k, and suppose that

Y, = iei‘lﬁ-, g, = isifi, and A, = Ay + ifiai
i=1 i=0 i=i

is a formal power series solution of the rescaled ADHM; ; Seiberg-Witten equation:

IDAS\IIE = 0’
(5.17) Da,.cE =0, and
e @Fa, = p(¥,) + p(E,).

Moreover, we can assume the gauge fixing condition &, L p(gp)&,, that is,

Re £1=0

in the notation of[Proposition D.6| The next proposition imposes constraints on the terms of order
¢ in the power series expansions.

Let W; and gy, be, respectively, the spinor bundle and adjoint bundle associated with the

spin’®) structure w ; on the total space of the covering map 7;: M; — M.

Proposition 5.18. In the above situation, there exist ‘i‘l,j e I'(W;) and ;fj € I'(V ® a%,) such that
m m N

(5.19) \Ill = @(ﬂ'j)*\yl’j and fl = @(nj)*gl,j‘
Jj=1 j=1

Furthermore, Ay arises from a collection of spin connections Ay, j € &°(w;), and each triple (Ao j, &1 ;, ¥, ;)
satisfies the ADHM, ,; equation

U)Ao,,-‘i'l,j =0,
(5'20) DAO,jaCEI,j = 0, and
®Fa,, = p(¥y;) + p(€y ;)

onMjforjzl,...,m.

Proof. From [Proposition 5.16, we know that

m

&o=(&01» s &om) ET(Vetp) with tp= @(”j)*g%

Jj=1

and A arises from spin connections Ay ; € &/°(wj).
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The coefficient in front of ¢ on the right-hand side of the third equation of (5.17) must vanish;
hence,

(dgoﬂ)fl = 0'
By it follows that [£, A &;] = 0. Therefore,
H(E) € Q°(M, [tp, tp])

by the following self-evident observation combined with[Theorem D.2]
Proposition 5.21. If£),&;, € H® g, [£, A &;] = 0, and the stabilizer of €, € U(k) is precisely
T) = Hlnllzll U(A,), then &, e H® t) witht) = @L’!l u(A,). In particular,

[, A& leHe[t ]l cHet,.

Remark 5.22. If A = (1, ..., 1), then [tp, tp] = 0; cf. Remark 5.10]
The third equation in (5.17) to order & is thus equivalent to

(5-23) @Fs, = p(&y) + (dg p)&, + p(¥1).

In terms of the spin connections A, ; € &*(w;), we have

m

@Fy, = @(”j)*(DFAOJ € QZ(M,tp).
j=1

By (C.9), we have
(dg, &, € QX (M, tp).

Thus, if we denote by p,(¥;) the component of u(¥;) in tp and by u, (¥;) the component of u(¥;)
in t; C gp, then (5.23) is equivalent to

oFa, = p(&) + p(¥1) and
(dg, )€, = —po (F1).

Since tp is parallel with respect to Ay and V ® tp is perpendicular to y(T*M ® gp)&, the first and
the second equation of (5.17) to order ¢ are equivalent to

(5.24)

Da, ¥ =0,
(5.25) Da,c€ =0, and
Y(al)go =0.

Let ‘ifl,j e I'(W;) and é’j € T'(V ® ga;) be such that (5.19) holds. The first equation of (5.24) and
the first two equations of (5.25) are precisely equivalent to the ADHM, ; Seiberg-Witten equation

(5.20) for the triple (Ao j, &1 ;, ¥, ). ]
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5.4 A compactness conjecture for ADHM; ; monopoles

The discussion in the preceding sections together with known compactness results for Seiberg—
Witten equations [Tauisa; [Tauisb; [ HW1s5; [Taui6; [Tauiy| lead to the following conjecture.

Conjecture 5.26. Let (¢;, ¥;, &;, A;) be a sequence of solutions of the blown-up ADHM, i Seiberg—
Witten equation

DAY =0,

E)Ai,cfi =0,
eloFa, = p(¥) + p(&;), and

(%5, Ellzz = 1

with e; — 0. After passing to a subsequence the following hold:

1. There is a closed subset Z C M of Hausdor{f dimension at most one, such that outside of Z and
up to gauge transformations (¥;, &;, A;) converges to a limit (0, £y, AY) and &' (¥;, &; — &7)
converges to a limit (¥:°, £7°).

2. The triple (0, £, A®) is a solution of the limiting ADHM, j Seiberg—Witten equation (5.11).

3. There is a section n € T(M\Z, Sym’j V) for some partition A of k induced by & . The section i
extends to to a continuous section of Sym* V on all of M.

4. Denote by M\Z the unbranched cover of M\Z induced by n. If k;, Mj\Zj, w; are as in
and Ay j € o°(wj) denote the spin connections giving rise to Ay, and ‘ifl,j and &, ;

are such that
m m

¥ = P ¥, and &7 = P).E,

Jj=1 Jj=1
then, foreachj = 1,...,m, (‘i’l,j, él’j,Ao,j) is a solution of the ADHM, g, Seiberg—Witten
equation on ]\;IJ\ZJ
Remark 5.27. The reader should observe that while M ; in M i \Z ' does exist, it need not be a smooth
manifold.

Remark 5.28. If ¥ =0,V =TM @R and (a, &) € Q'(M, %) ® Q°(M, g%) = ['(V ® g), then the
ADHM, i Seiberg-Witten equation becomes the equation

Favia —*[&,a] + xidaé =0 and

2
(5-29) “a=0

with )
Fayia =Fa— 5[61 A a] + idga.
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If (a, &, A) is a solution of and M is closed, then a simple integration by parts argument
shows that d4¢& = 0; hence, Fa4iq = 0. That is, is effectively the condition that condition
that A + ia is a flat GL;(C)-connection together with the moment map equation d’a = 0.

[Conjecture 5.26| thus predicts that as limits of flat GLi(C)-connections we should see data
consisting of a closed subset Z C M of Hausdorff dimension at most one, m € N and, for
each j = 1,...,m, a {;~fold cover M\Z] of M\Z, and solutions of on Mj\Zj such that
Zjnil fjkj = k.

6 A tentative proposal

We are ready to outline how ADHM monopoles can be used to deal with the problem of multiple
covers described in

Let ¢/ be a tamed, closed, definite 4-form, let P be a compact, connected, oriented 3—-manifold,
let P C Y be an unobstructed associative embedding. Set

WP y) = | |t ey)

U(k)

with the disjoint union taken over all spin~'*’ structures w on P and

s (¥, & A) satisfies
{(‘I’, £,A) eT(W) XT(NP ® g) X & *(w) : with respect to 9y lp

1,k .
MLK(P, ) = )

Ignoring issues to do with reducible solutions, one should be able to extract a number
w(kP,y) € Z

by counting MK (P, ), at least, for generic i and possibly after slightly perturbing the ADHM
Seiberg-Witten equation (5.7). More generally, if P has connected components P!, ..., P™ and
ki,...,km € N, we set

k
wlky P 4ot k- P ) = ]_[w(kj Pl ).
j=1

For k = 1, this number is the Seiberg-Witten invariant SW(P) € Z mentioned in
For k > 0, this number should be independent of the choice of perturbation but it will depend on

. Assume the situation of|Section 4.1} that is, we have:

+ a generic 1-parameter family of tamed, closed, definite 4-forms (¢;);e(-1, 1)

« a l1-parameter family of compact, connected, unobstructed embedded associative submani-
folds (P;);e(-1,1) With respect to ();e(-1, 1), and
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« forevery j =1,...,ma l1-parameter family of compact, connected, unobstructed embedded
associative submanifolds (P )te(~T,0) With respect to (;);e(-1,0) such that

J
Pt — fj . PO
as integral currents as t tends to zero for some £; € {2,3,...}.

Given kq, . .., kn, set
k= ijkj
j=1

From the discussion in preceding three sections we expect that, for 0 < t <« 1,
(61) W(k . P—ta ¢—t) + W(kl : Pit +oe+ km : Pinta ¢—t) = W(k : P+t7 ¢+t)

because(Conjecture 5.26/suggests that as ¢ passes through zero w(ky - Py +- - -+ k- Py, /o) ADHM; i

monopoles on P; degenerate and disappear (if counted with the correct sign).
Suppose that one can indeed define a weight w as above satisfying as well as analogues of

(3.9). Define

(6.2) np(p) = D wiky - P+ + k- P, 1))
with the summation ranging over all m € N, kq, ..., k; € N and all compact, connected, unob-
structed embedded associative submanifolds P!,. .., P™ c Y such that

> kPl = p.

j=1

This number would be invariant under the transitions described in[Section 3.1 [Section 3.2} and

From [Section 3.3/ we know that reducible solutions will prevent us from defining w in general.
However, the above can serve as a first approximation. To deal with reducibles one likely has to
develop ADHM,; i analogues of Kronheimer and Mrowka’s monopole homology and construct a
chain complex extending which does depend on ¢ but whose homology does not.

Remark 6.3. By analogy with monopole Floer homology, one can envision also a corresponding 8-
dimensional version of the invariant proposed in this article. Such an invariant would be obtained
by counting Cayley submanifolds inside a closed Spin(7)-manifold, weighted by solutions of the
4-dimensional ADHM Seiberg-Witten equations. A relative version of this theory would associate
with every cylindrical Spin(7)-manifold X whose end is asymptotic to a compact G,—manifold
Y a distinguished element of the Floer homology group associated with Y. In order to develop
such a 7 + 1 dimensional theory, one has to deal with higher-dimensional moduli spaces of Cayley
submanifolds and ADHM monopoles, which poses additional technical complications. Note that
in order to define G, Floer homology, one has to consider only Spin(7)-manifolds of the form
Y X (=00, 0), and only zero-dimensional moduli spaces.
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7 Counting holomorphic curves in Calabi-Yau 3—folds

Let Z be a Calabi-Yau 3-fold with Kéhler form « and holomorphic volume form Q. The product
S! x Z is naturally a G,—manifold with the G,-structure given by

¢ =dt Nw+ReQ.

Every holomorphic curve ¥ C Z gives rise to an associative submanifold S' x 3 c S! x Z.

Proposition 7.1. Let B € Hy(Z) be a homology class. Every associative submanifold in S' x Z
representing the class [S'] X B is necessarily of the form S' X 3 with ¥ C Z a holomorphic curve.

Proof. The argument is similar to the one used to prove an analogous statement for instantons
[Lewo8, Section 3.2]. Let P C S! X Z be an associative submanifold representing [S'] X f. Since

¢|p = (dt A w +Re Q)|p = volp,
there is a smooth function f on P such that
dt Awlp = fvolp and ReQlp =(1- f)volp

By Wirtinger’s inequality [Wir36], f < 1. We need to prove that f = 1, since this implies that J,
is tangent to P and, therefore, P is of the form S! x ¥, with ¥ C Z calibrated by .
One the one hand we have

/onlp = ([¢].[P]) = ([dt A ] + [Re ], [S'] x B) = ([dt A w],[S'] X B),
while on the other hand
/fvolp = / dt A w = {[dt A w],[P]) = {[dt A ©],[S"] X B).
P P

It follows that f has mean-value 1 and thus f = 1 because f < 1. O

The deformation theory of the associative submanifold S* X 3 in S! x Z coincides with that of
the holomorphic curve X in Y [CHNP15, Lemma 5.11]. In particular, the putative enumerative theory
for associative submanifolds discussed in this paper should give rise to an enumerative theory
for holomorphic curves in Calabi—Yau 3-folds. Algebraic geometry abounds in such theories and
various interplays between them; see [PT14] for an introduction to this rich subject. Our approach
is closer in spirit to the original proposal by Donaldson and Thomas [DT98]]. We will argue that it
should lead to a symplectic analogue of a theory already known to algebraic geometers.
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7.1 The Seiberg-Witten invariants of Riemann surfaces

In the naive approach of each associative submanifold is counted with its total Seiberg-
Witten invariant. The Seiberg-Witten equation over the 3-manifold M = S x 3 was studied
extensively [MST96; MOY97; MWos||. The equation admits irreducible solutions only for the
spin®—structures pulled-back from . Such a spin® structure corresponds to a Hermitian line
bundle L — 3; the induced spinor bundle is W = L ® T*3%! ® L. Up to gauge transformations, all
irreducible solutions of the Seiberg—Witten equation are pulled-back from triples (A, {1, ») on 3,
where (1,1,) € T(L) ® Q%(2, L), A € o/(det(W)) and

6_A¢1 = 0, 321}2 = 0,
(7.2) (Y1,9,) =0, and

i _
3 *Fa+ [Val* = [¥l* = 0.

Here (i1, ) is the (0, 1)-form obtained from pairing 1/; and ¢/, using the Hermitian inner product.
The second equation implies that either ; or /; must vanish identically—which one, depends
on the sign of the degree
2d = (c;(W),2).

Since det(W) = L* ® K', we have
deg(L)=g—-1+d.

Suppose that d < 0. It follows from integrating the third equation that ; # 0 and so y, = 0.
The pair (A, 1) corresponds to an effective divisor of degree g — 1 + d on X: the zero set of
counted with multiplicities. This corresponds to an element of the symmetric product Sym9=+¢ 5.
If d > 0, then a similar argument and Serre duality associates with every solution of an
element of Sym9~'7¢ 5. The above correspondence, in fact, goes both ways:

Theorem 7.3 (Noguchi [Nog87], Bradlow [Brago|], and Garcia-Prada [Garg3]]). Let A € R\{d}. The
moduli space of solutions to the perturbed vortex equation
3A¢1 = O’ 52‘}2 = 0’

(Y1.92) =0, and

i - 2r
— % Fa+ |Yn]?* = |tol* = .
2 *I'A |¢1| |¢2| VOI(Z)

(7.4)

is homeomorphic to
Sym9~1*4(3) ifd—A<0 and
SymI~174(3) ifd—A1>0.
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The Seiberg-Witten invariant can be obtained by integrating the Euler class of the obstruction
bundle, in this case the cotangent bundle, over the moduli space. As a consequence, if > # S, then
the total Seiberg-Witten invariant is

SW(S' x %) = ) (~1)9 71 y(SymI 1+ 3),
deZ

Here we can sum over all d € Z since for |d| > g — 1 we have y(Sym? 1+ %) = 0.

7.2 Rational curves and the Meng-Taubes invariant

For ¥ = S?, the above series is not summable. This is consistent with the general theory alluded
to in we have b;(S! X $?) = 1 and, due to the appearance of reducible solutions, the
total Seiberg-Witten invariant is defined only for 3—-manifolds with b; > 2. In full generality, this
problem can be solved within the framework of Floer homology. However, if one considers only
closed, oriented 3-manifolds with b; > 1 there is also a middle ground approach due to Meng and
Taubes [MTg6]]. For every such a 3-manifold M they define an invariant

SW(M) € Z[H]/H.

Here H is the torsion-free part of H(M, Z), Z[H] is the set of Z-valued functions on H, and H
acts on Z[H] by pull-back.

The Meng-Taubes invariant takes a particularly simple form for M = S! x . In this case,
there is a distinguished spin® structure, corresponding to the line bundle L being trivial, and the
invariant can be naturally lifted to an element SW(M) € Z[H]. Moreover, the support of SW(M)
is Z = H%(2,Z) C H, reflecting the fact that the Seiberg—Witten equation has solutions only for
the spin® structures pulled-back from ¥. Thus, SW(M) can be interpreted as an element of the ring
of formal Laurent series in a single variable, g say,

SW(M) € Z(q)-
For g > 1, this is the Laurent polynomial whose coefficients are the Seiberg-Witten invariants:

(7-5) M(Sl X Z) — Z(_l)g—1+d)((symg—l+d Z)qd
deZ

and we see that SW(S! x %) is obtained by evaluating SW(S! x %) at g = 1. It is easy to see from
the definition of the Meng-Taubes invariant that the same formula is true for 3 = S?, although
now the series has infinitely many non-zero terms. One cannot evaluate SW(S! x S?) at ¢ = 1 and
is forced to work with the refined invariant.
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7.3 Stable pair invariants of Calabi—Yau 3—folds

Pandharipande and Thomas introduced a numerical invariant counting holomorphic curves in
Calabi-Yau 3-folds together with points on them; see [PT14, Section 4%] for a brief introduction
and [PTog; PT10] for more technical accounts. Since the space of curves and points on them is
not necessarily compact, one considers the larger moduli space of stable pairs, consisting of a
coherent sheaf F on Z together with a section s € H%(Z, F) which, thought of as a sheaf morphism
s: Oz — F, is surjective outside a zero-dimensional subset of Z. The sheaf is required to be
supported on a (possibly singular and thickened) holomorphic curve ¥ ¢ Z

Example 7.6. The simplest examples arise when ¥ is smooth and (F, s) is the pushforward of a
pair (&, ¥) on X consisting of a holomorphic line bundle and a non-zero section. Conversely, all
stable pairs whose support is a smooth, unobstructed curve are of this form [PTog| Section 4.2].

The topological invariants of a stable pair are the homology class [X] € H3(Z) and the Euler
characteristic y(X, F) € Z. For instance, in|[Example 7.6, with ¥ of genus g, we have

(7.7) XX, F) =1- g+ deg(F).

For every f € Hy(Z) and d € Z, Pandharipande and Thomas use virtual fundamental class
techniques to define an integer PTy s which counts stable pairs with homology class  and Euler
characteristic d. These numbers for different values of d can be conveniently packaged into the
generating function

PTp = ) PTpaq".
d

For a holomorphic curve ¥ C Z with [X£] = 8, denote by PT5(q) the contribution to PTz(q) coming
from stable pairs whose support is 3. (It makes sense to talk about such a contribution even for
non-isolated curves [PT10} Section 3.1].)

In the situation of the moduli space of stable pairs with support on ¥ and Euler
characteristic d is simply the space of effective divisors whose degree, computed using (7.7), is
g — 1+ d. From the deformation theory of such stable pairs one concludes that in this case,

(7.8) PTs(q) = ) (~1)7* x(Sym?~ ! 5)q*;
d

see [PTog, Equation (4.4)] for details. As a result, we obtain the following.

Proposition 7.9. IfX C Z is a smooth, unobstructed holomorphic curve, then

PTy = SW(S' x X).

SMore precisely, F is pure of dimension one and s has zero-dimensional cokernel.
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Remark 7.10. From the 3—dimensional perspective, the symmetry between d and —d is a special
case of the involution in Seiberg-Witten theory induced from the involution on the space of spin®
structures [Morg6} Section 6.8]; from the 2-dimensional viewpoint, it is a manifestation of the
Serre duality between H!(#) and H*(Ks ® £*).

Remark 7.11. The fact that the stable pair invariant is partitioned into an integers worth of invariants
corresponding to the degrees of the spin® structures on curves suggests that something similar
could be true for associative submanifolds. However, unlike in the dimensionally reduced setting,
where a spin® corresponds in a natural way to an integer, for two distinct associatives P; and P,
we are not aware of any way to relate the spin® structures on them.

In general, the stable pair invariant includes also more complicated contributions from singular
and obstructed curves representing the given homology class. For irreducible classes, Pandhari-
pande and Thomas proved that such a contribution is a finite sum of Laurent series of the form
[PT10, Theorem 3 and Section 3].

7.4 ADHM bundles over Riemann surfaces

The stable pair invariant includes also contributions from thickened curves. If a homology class
B € Hy(Z,Z) is divisible by k and f/k is represented by a holomorphic curve X C Z, then there
exist stable pairs having k¥ as their support. Thinking of S' X kX as a multiple cover of the
associative S! x ¥ in S! x Z, we are led by the discussion of to the conclusion that
the contribution of such a thickened curve should be in some way related to the solutions of the
ADHM, ; Seiberg-Witten equation on the 3-manifold S' X . We will argue that this is indeed
the case.

Consider the more general ADHM,. ;. Seiberg-Witten equation introduced in [Section 5.1 under
the following assumptions:

Hypothesis 7.12. Let 3. be a closed Riemann surface and M = S' X 3 with the geometric data as in

such that:

1. g is a product Riemannian metric,
2. E and the connection B are pulled-back from ¥, and

3. V and the connection C are pulled-back from a U(2)-bundle with a connection on ¥ such that
Af:V = Ks: as bundles with connections.

Proposition 7.13. If|[Hypothesis 7.12{ holds and (¥, &, A) is an irreducible solution of the ADHM,

Seiberg—Witten equation|(5.7), then the spin®®) structure w is pulled-back from a spin"® structure
on ¥ and (¥, &, A) is gauge-equivalent to a configuration pulled-back from X, unique up to gauge

equivalence on .

This is a special case of [Doai7, Theorem 3.8]. In the situation of [Proposition 7.13}(5.7)| reduces
to a non-abelian vortex equation on 3. Recall that a choice of a spin’®) structure on 3, is equivalent
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to a choice of a U(k)-bundle H — 3. Consequently, A can be seen as a connection on H. The
corresponding spinor bundles are

gg=u(H) and W=HaT3"'®H.

Proposition 7.14. Let (A, ¥, &) be a configuration pulled-back from 3. Under the splitting W =
HoT*3"! ® H we have ¥ = (Y1, ;) where

lpl € r(z:? Hom(E’ H))a
¥, € Q°(2,Hom(H, E)), and
£ € T(S,V ® End(H)).
Equation (5.7) for (A, ¥, ) is equivalent to

OaY1 =0, dapPr=0, Jdact=0,
(7.15) [EAE]+ U1 =0, and
i* Fo+[ENET+Unyy —xfyin = 0.

In the second equation we use the isomorphism ALV = Ky so that the left-hand side is a section of
QL0(3, End(H)). In the third equation we contract V with V* so that the left-hand side is a section of
iu(H).

This follows from [Doai7, Proposition 3.6, Remark 3.7] and the complex description (D.7) of
the hyperkahler moment map appearing in the ADHM construction.
We can also perturb (7.15) by 7 € R and 6 € H(3, K5):

OapY1 =0, OapYo=0, dacf=0,
(7.16) [EANE]+ Y, =0®id, and
ixFa+[EANE) =Yy + =Yy p = 7id.

There is a Hitchin-Kobayashi correspondence between gauge-equivalence classes of solutions
of and isomorphism classes of certain holomorphic data on 3. Let & = (E,dp) and 7" =
(V, 8c) be the holomorphic bundles induced from the unitary connections on E and V.

Definition 7.17. An ADHM bundle with respect to (&, 7", 0) is a quadruple

(.2, §)

consisting of:
« arank k holomorphic vector bundle 7 — 3,

« Y1 € H'(C,Hom(&, %)),
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. U € H'(3, Ky ® Hom(#, &)), and
. £ e H'(3, 7 ® End(%))

such that
[EAE]+Yryp = 0®id € H' (3, Ks ® End(%)).

Definition 7.18. For § € R, the d—slope of an ADHM bundle (%, Y1, i, &) is

2 degZ )

W) = ) ko Tk

The slope of % is u(#') = po(F).

Definition 7.19. Let § € R. An ADHM bundle (%, {1, ¥, &) is § stable if it satisfies the following
conditions:

1. If§ > 0, then ¢; # 0 and if § < 0, then ¢, # 0.

2. If & c # is a proper é-invariant holomorphic subbundle such that imy; c &, then
1s() < ps(Z).

3. f & C # is a proper é-invariant holomorphic subbundle such that & c ker¢,, then
W(Z) < ps(2).

We say that (#, Y1, s, £) is S—polystable if there exists a {-invariant decomposition # =
P, % @j J; such that:

1. us(&;) = us(#) for every i and the restrictions of (1, 2, &) to each &; define a § stable
ADHM bundle, and

2. p(Fj) = ps() for every j, the restrictions of i, Y, to each .#; are zero, and there exist no
&-invariant proper subbundle # C .%; with u(#) < pu(%).

In the proposition below we fix  and the topological type of %, and set t = ps(Z).

Proposition 7.20. Let (A, Y1, Y», &) be a solution of (7.16). Denote by # the holomorphic vector
bundle (H,34). Then (¥, Y1, Y, £) is a 5—polystable ADHM bundle. Conversely, every 5—polystable
ADHM bundle arises in this way from a solution to which is unique up to gauge equivalence.

Proof. A standard calculation going back to [Don83|] shows that implies §—polystability.
The difficult part is showing that every §—polystable ADHM bundle admits a compatible unitary
connection solving the third equation of (7.16), unique up to gauge equivalence. This is a special
case of the main result of [AGo3, Theorem 31], with the minor difference that the connections on
the bundles E and V are fixed and not part of a solution. The necessary adjustment in the proof is
discussed in a similar setting in [BGMo3]]. O
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Stable ADHM bundles on Riemann surfaces were studied extensively by Diaconescu [Dia1i2b;
Diaizal] in the case when n = 1, & is a trivial line bundle, and 7" is the direct sum of two line
bundles. Thus, we have a splitting & = (&1, &) and [€ A €] = [£1, &], so the holomorphic equation

[EANEl+ Y, =0®id

is preserved by the C*~action t(y/1, Y2, &1, &) = (tyn, t 'y, t&), t1&,). Moreover, if the perturbing
form 6 is chosen to be zero, there is an additional C* symmetry given by rescaling every the sections.
Assuming that the stability parameter ¢ is sufficiently large, Diaconescu shows the fixed-point
locus of the resulting C* X C*~action on the moduli space of § stable ADHM bundles is compact.
Furthermore, the moduli space is equipped with a C* X C*—equivariant perfect obstruction theory.
This can be used to define a numerical invariant via equivariant virtual integration. This number
is then shown to be equal to the local stable pair invariant of the non-compact Calabi-Yau 3-fold
7. This invariant counts, in the equivariant and virtual sense, stable pairs whose support is a
k—fold thickening of the zero section ¥ C 7. Here k is the rank of # so that the stable ADHM
bundles in question correspond, by [Proposition 7.20l to solutions to the ADHM, j Seiberg-Witten
equation on S! x 3. This suggests that the relation between Seiberg—Witten monopoles and stable
pairs discussed in the previous section could extend to the case of multiple covers.

7.5 Towards a numerical invariant

Due to the appearance of reducible solutions, one does not expect to be able to count solutions to
the ADHM; ; Seiberg-Witten equation on a general 3-manifold. Instead, the enumerative theory
for associatives in tamed almost G;—manifolds should incorporate a version of equivariant Floer
homology, as explained in [Section 3.4/ and [Section 6] However, the existence of the stable pair
invariant and the discussion of the previous sections indicate that we can hope for a differential-
geometric invariant counting pseudo-holomorphic curves in a symplectic Calabi-Yau 6-manifold
Z which in the projective case would recover the stable pair invariant. It is expected that such
an invariant would encode the same symplectic information as the Gromov-Witten invariants
by the conjectural GW/PT correspondence, known also as the MNOP conjecture [PT14, Sections
3% and 4%]. The algebro-geometric version of this conjecture is at present widely open. Like the
Gromov-Witten invariant, the putative symplectic stable pair invariant is given by a weighted
count of simple /-holomorphic maps. Thus, we expect that a symplectic definition of the stable
pair invariant will shed new light on the MNOP conjecture.

For a homology class € Hy(Z, Z) the invariant would take values in the ring of Laurent series

Z(q) and be defined by

ng(Z) = Z nwl,kj(slej)sign(Zj).

L., zm j=1

Some explanation is in order:
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. The sum is taken over all collections of embedded, connected pseudo-holomorphic curves

>1 ..., 3™ such that

m
D ki3] = B,
j=1
We assume here that we can choose a generic tamed almost-complex structure such that

there are finitely many such curves and all of them are unobstructed.

. sign(X) = +1 comes from an orientation on the moduli space of pseudo-holomorphic curves.

- SW, (S I'x ¥) is a generalization of the Meng—-Taubes invariant defined using the moduli

spaces of solutions to the ADHM, ; Seiberg-Witten equation on S! x ¥/. This is yet to be
defined, but if it exists, it should be naturally an element of Z((¢)) because of the identification
of the set of the spinU®) structures on X with the integers, as in

. We use here crucially that b;(S! x =) > 1; otherwise even the classical Meng—Taubes

invariant SW, | is ill-defined. For k > 1, the ADHM, j Seiberg-Witten equation, admits in
general, reducible solutions: for example, flat connections or solutions to the ADHM; _;
Seiberg-Witten equation. A good feature of the dimensionally-reduced setting is that if
the perturbing holomorphic 1-form 6 in is non-zero, then we automatically avoid
reducible solutions. Indeed, a simple algebraic argument shows that in this case the triple
(&, 11, ¥) has trivial stabilizer in U(k) at every point where 8 is non-zero.

A Transversality for associative embeddings

The goal of this section is to prove [Proposition 2.23} The proof relies on the following observations.
The tangent space T¢93(Y) c Q*4(Y) is the space of closed 4-forms. Define

by

(Aa)

X,y TyDHY) > T(Ny)

d
Xl 5 2 = —
( Rl n)p de

Byl = [ i

£

for every closed 4—formyon Y.

Proposition A.2. Ifi: P — Y is a somewhere injective associative immersion, then for every non-zero
n € ker F, C T'(N1), there exists « € Q*(Y) such that

(X, yda,n) #0.
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Proof. We can assume that P is connected. Pick a point x such that :"!(«(x)) = {x}. Since P is
compact, there is a neighborhood U of x € P which is embedded via i and satisfies «(U)Ni(P\U) = 2.

Choose a tubular neighborhood V of (U) and p > 0 such that B,,(N«(U)) 2, Visa diffeomorphism.
By unique continuation, n cannot vanish identically on U. Thus we can find a function f supported
in V such that df(n) > 0 and df(n) > 0 somewhere. Let v be a 3—form on Y with v|y = (volp)|y
and i(n)dv|y = 0. With

a=fv

we have

/P (i(n)de) = /P df(n)volp > 0. O

For a somewhere injective immersed associative [1: P — Y], Aut(:) must be trivial. Denote
by Zimm: Immg(P, Y) X DLY) > Immg(P, Y) the canonical projection. By [Proposition A.zl, the
linearization of the section

02 € T'(mpy,,, T" Immg(P, Y))

is surjective. Hence, it follows from the Regular Value Theorem, and the fact that there are only
countably many diffeomorphism types of 3—-manifolds [CK7ol], that the universal moduli space of
immersed associatives

3 = WHDAY))

is a smooth manifold. This directly implies (1a) and (2a) by the Sard—-Smale Theorem.
Consider the moduli space of immersed associative submanifolds with n marked points

i =1 (i, %) € Tmmp(P.¥) X P s [1] € W3(y)} [ Diffu(P)

as well as the corresponding universal moduli space

u = U u W),

YEDLY)

Define the map ev: QI;i,n — Y" by

ev([t, x1,. .., xn], ¥) = (Ux1), - . ., Uxn)).

Proposition A.3. For each ([1,x1,...,x,],¥) € st 0 the derivative of ev,

n
At el )€V T e ™, = 6D T Y-
i=1

is surjective.
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Proof. We will show that if (vy, .. .,v,) € D], Ny, then there exist n € T(Ni) and 57 € Ty DY)
such that '
n(x;)=v; and (n,n)e€ T[,]’l/,?lz,l.

This immediately implies the assertion.
Denote by evy, .. x,: T(N1) — @?:1 Ny, 1 the evaluation map and define

Fi= (R o X,y Whlkerevy, v, ® TyDHY) - WEHI(N),

where F, is the Fueter operator and X, ; is defined in (A.1). We prove that the operator F! is
surjective, cf. McDuff and Salamon [MS12, Proof of Lemma 3.4.3]. To see this note that its image is
closed and thus we need to show only thatif v 1 im F!, thenv = 0. Since v 1L F,(W'? ker eV ..xn )
on P\{x1,...,x,}, vis smooth and satisfies F,v = 0. We also know that v L im X, ;. The argument
from the Proof of [Proposition A.2|shows that v = 0, because the set of points x € P satisfying
" }(i(x)) = {x} is open in P so we can choose such a point x belonging to P\{xy, ..., x,}). That
F¥ is surjective follows from the fact that F! is surjective by elliptic regularity.
Pick ny € I'(N1) with

no(x;) = v;

and pick (n1,n) € kerevy, . x, ® T,/,QZ;‘(Y) such that
Finy + X, y(n) = =Fing.

The pair (ng + ny, 1) € T[l],lp‘llsﬁi has the desired properties. O

Finally, we are in a position to prove (ib) and (2b) of[Proposition 2.23} Denote by x : ‘211, , = U
the forgetful map and denote by A = {(x,x) € Y XY : x € Y} the diagonal in Y. [Proposition A.3
The universal moduli space of non-injective but somewhere injective immersed associatives is

precisely
z(evi(A)).

By [Proposition A.3, ev }(A) C ‘21;‘ is a codimension 7 submanifold. Since 7 is a Fredholm map of

index 6 and p: A — P4(Y) is a Fredholm map of index 0, it follows that p(z(ev™1(A))) C D(Y)
is residual. This proves because an injective immersion of a compact manifold is an embedding.
The proof of is similar. This completes the proof of [Proposition 2.23} O

B Seiberg-Witten equations in dimension three

We very briefly review how to associate a Seiberg-Witten equation to a quaternionic representation.
More detailed discussions can be found in [Taugg; Pidstrigach2004; Hayo8; Sal13, Section 6; Naki6,
Section 6(i)]; we follow [DW1g, Section 1] closely. The first ingredient is a choice of algebraic data.
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Definition B.1. A quaternionic Hermitian vector space is a real vector space S together with a
linear map y: ImH — End(S) and an inner product (, -), such that y makes S into a left module
over the quaternions H = R(1, i, j, k), and i, j, k act by isometries. The unitary symplectic group
Sp(S) is the subgroup of GL(S) preserving y and (:,-). A quaternionic representation of a Lie
group G on S is a homomorphism p: G — Sp(S).

Let p: G — Sp(S) be a quaternionic representation. Denote by g the Lie algebra of G. There is
a canonical hyperkahler moment map p: S — (g ® ImH)* defined as follows. By slight abuse of
notation denote by p: g — sp(S) the Lie algebra homomorphism induced by p. Combine p and y
into the map y: g ® ImH — End(S) given by

7(& ® ) = p(&)y(v)D.

The map jy takes values in the space of symmetric endomorphisms of S. Denote by y*: End(S) —
(6 ® ImH)* the adjoint of y. Define

H(@) = 27 (@),

Definition B.2. The canonical permuting action §: Sp(1) — O(S) is defined by left-multiplication
by unit quaternions. It satisfies

0(q)y (0)® = y(Ad(¢q)0)0(q)®
forallqge Sp(1)={qeH:|q|=1},veImH, and ® € S.
Definition B.3. A set of algebraic data consists of:
« a quaternionic Hermitian vector space (S, y, (-, -)),

« acompact, connected Lie group H, an injective homomorphism Z, — Z(H), an Ad-invariant
inner product on Lie(H),

« a closed, connected, normal subgroup G < H, and
- a quaternionic representation p: H — Sp(S) such that —1 € Z, ¢ Z(H) acts as —ids.
Definition B.4. Given a set of algebraic data, set
H:=(Sp(1) x H)/Z,, K :=H/(GXZy,).
The group K is called the flavor group.
Example B.5. The ADHM, ; Seiberg-Witten equation arise by choosing

S = Sr,k = HomC(Cr, H ®c Ck) ® H ®g u(k)
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with
G =U(k) <H = SU(r) x Sp(1) x U(k)

where SU(r) acts on C” in the obvious way, U(k) acts on C¥ in the obvious way and on u(k)
by the adjoint representation, and Sp(1) acts on the first copy of H trivially and on the second
copy by right-multiplication with the conjugate. The homomorphism Z, — Z(H) is defined by
-1+ (idcr, —idy, —idgk). In particular,

H = SU(r) x Spin"®)(4)

with
Spin"®(n) := (Spin(n) x U(k))/Z,.

Although notationally cumbersome, we usually prefer to think of H as
H = SU(r) x Spin"®(3) xs0(3) SO(4).

Here the second factor is the fiber product of SpinV*)(3) with SO(4) with respect to the obvious
homomorphism Spin’®)(3) — SO(3) and the homomorphism SO(4) — SO(3) is given by the
action on ATR?,

In addition to a set of algebraic data has been chosen one also needs to fix the geometric data
for which the Seiberg-Witten equation will be defined.

Definition B.6. Let M be a closed, connected, oriented 3-manifold. A set of geometric data on M
compatible with a set of algebraic data as in [Definition B.3|consists of:

» a Riemannian metric g on M,

« a principal H-bundle Q — M together with an isomorphism
(B.7) Q Xy SO(3) = SO(TM),
and

« a connection B on the principal K-bundle

R:=QxyK.

Definition B.8. Given a choice of geometric data, the spinor bundle and the adjoint bundle are
the vector bundled?|

S = Q Xoxp S and gp = Q Xad 8.
Because of (B.7) the maps y and y induce maps
y: T*M — End(S) and p: S — A*T*M ® gp.

Here we take p to be the moment map corresponding to the action of G < H.

SIf H = G x K, then there is a principal G-bundle P — M associated with Q and gp is the adjoint bundle of P. In
general, P might not exist but traces of it remain, e.g., its adjoint bundle gp and its gauge group Z(P).
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Definition B.g9. Set

A ~. Ainduces B on R and the
Ap(Q) = {A e 4(0): }

Levi-Civita connection on TM

Any Ae o 5(0Q) defines a covariant derivative V4: T(S) — Q!(M, S). The Dirac operator associ-
ated with A is the linear map D4 : T(S) — I'(S) defined by

Ba® = (VD).

A5(Q)is an affine space modeled on Q!(M, gp). Denote by @ Ad(Q) — ap the projection induced
by Lie(H) — Lie(G).

Finally, we are in a position to define the Seiberg-Witten equation.

Definition B.10. The Seiberg—Witten equation associated with the chosen algebraic and geometric
data is the following system of partial differential equations for (®, A) € I'(S) x #5(Q):

Ds®=0 and

(B.11) oF; = 4(®).

The Seiberg-Witten equation is invariant with respect to gauge transformations which preserve
the flavor bundle R and SO(T*M).

Definition B.12. The group of restricted gauge transformations is
Z(P) = {u € 2(0) : u acts trivially on R and SO(TM)}.
& (P) can be identified with the space of sections onXﬁG with H acting on G via[(q, h)]-g = hgh™'.

If 4~1(0) = {0}, then one proves in the same way as for the classical Seiberg—Witten equation
that solutions of (B.11) obey a priori bounds on ®. In many cases of interest z~1(0) # {0} and in
these cases a priori bounds fail to hold. Anticipating this, we blow-up the Seiberg-Witten equation.

Definition B.13. The blown-up Seiberg-Witten equation is the following partial differential
equation for (¢, D, A) € [0, 00) X T'(S) X Ap(0):

Pa® =0,
(B.14) e?@F4 = p(®), and
®llz2 = 1.

The limiting Seiberg-Witten equation is the following partial differential equation for (@, A) €
[0, 00) € T(S) X AB(Q):

Ds®=0 and

(B.15) (@) = 0

as well as ||®||;2 = 1.
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The phenomenon of ® tending to infinity for corresponds to ¢ tending to zero for
Formally, the compactifiction of the moduli space of solutions of should thus be given by
adding solution of the limiting equation. Taubes [Taui3a] and Haydys and Walpuski [HW15]
proved that—up to allowing for codimension on singularities in the limiting solutions—this is true
for the flat PSL(2, C)-connections and the Seiberg—Witten equation with multiple spinors, which
are particular instances of equation (B.11). Although one might initially hope that it is unnecessary
to allow for singularities in solutions of the limiting equation, it has been shown in [DW18]] that
this phenomenon cannot be avoided.

C The Haydys correspondence with stabilizers

Throughout this appendix we assume that algebraic data and geometric data as in
and have been chosen. Denote by
X :=S))G = p}0)/G

the hyperkihler quotient of X by G, and denote by p: ~1(0) — X the canonical projection. The
action of H on S induces an action of K = H/G on X. Set

X = R Xg X.
If ® € T'(S) satisfies u(®) = 0, then
(Ca) si=podel(X).

The Haydys correspondence [Hay12, Section 4.1] relates solutions of the limiting Seiberg-Witten
equation (B.15) with certain sections of X. The discussions of the Haydys correspondence available
in the literature so far [Hay12} Section 4.1; DW19, Section 3] assume that the action of G on p~1(0)
is generically free. This hypothesis does not hold in with r = 1, which leads to
the ADHM;  Seiberg-Witten equation. This appendix is concerned with extending the Haydys
correspondence to the case when G acts on p~1(0) with a non-trivial generic stabilizer.

C.1  Decomposition of hyperkihler quotients
Denote by S¢.) the subset of S on which G acts freely. By [HKLR87, Section 3(D)], the quotient
(Stey N p71(0))/G

can be given the structure of hyperkéhler manifold of dimension 4(dimy S — dim G) such that, for
® € Siey N p(0),

(C.2) pet (PP N To™(0) = TraX

is a quaternionic isometry. If G acts on p~!(0) with trivial generic stabilizer (that is: S, is dense
and open), then this makes an dense open subset of X into a hyperkéihler manifold. In general, X
can be decomposed as a union of hyperkahler manifolds according to orbit type as follows.
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Definition C.3. For ® € S, denote by Gg the stabilizer of ® in G. Let T < G be a subgroup. Set
S ={®€S:Gp=T} and Si)={PeS: gGog~' = T for some g € G}.
Definition C.4. Given a subgroup T < G, set
We(T) = No(T)/T.
Here Ng(T) denotes the normalizer of T in G.

Remark C.5. This notation is motivated by the example S = H ® g, with G acting via the adjoint
representation. In this case, the stabilizer T of a generic point in z~1(0) is a maximal torus and

Ws(T) is the Weyl group of G; cf. for the case G = U(k).

Theorem C.6 (Dancer and Swann [DS97, Theorem 2.1]; Sjamaar and Lerman [SLog1], Nakajima
[Nakog, Section 6]). Foreach T < G, the quotient

Xy = (' (0) N Si1)/G

is a hyperkdhler manifold, and

(C7) X =X
@D

where (T) runs through all conjugacy classes of subgroups of G["| More precisely, for each T < G:
1. St is a hyperkdhler submanifold of S and S(r) is a submanifold of S.

2. We have
(1'(0) N S(1))/G = (u™'(0) N S7)/Wo(T).

3. Denote by S. denotes the union of the components of St intersecting ji~*(0). Then Ws(T) acts
freely on S and
#(S%) € (w ® ImH)*

with w := Lie(Wg(T)). In particular, the restriction of i to SJ. induces a hyperkdihler moment
map on S3. for the action of Wg(T).

4. X(r) can be given the structure of a hyperkdhler manifold such that, for each ® € p=(0) N S(7),
D (p(g)CD)J' Nkerdgp N Tq>5(T) — T[@]X(T)

is a quaternionic isometry.

"There can be subgroups T < G with S(7) # 0, but po)n Sr) = 2.
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Proof. We recall Dancer and Swann’s argument, since some aspects of it will play a role later on.
To prove (1), denote by
ST :={®deS:Gy DT}

the fixed-point set of the action of T. ST is an H-linear subspace of S and St is an open subset
of ST (by the Slice Theorem). Therefore, St is a hyperkihler submanifold of S. The group action
induces a bijection

ST XWg(T) G/T = S(T), [CI), gT] (g p(g)(I).

This shows that S(r) is a submanifold of S. For future reference, we also observe that

ST @ p(g)®

(C.8) ToSt = ST and TpSir) = ST + p(g)® = —————.
o p(w)d

The assertion made in (2) follows directly from the definitions.

To prove (3), observe that by the definition of St, the group W(T) = Ng(T)/T acts freely on
St. Since y is G-equivariant, u(St) € (g*)7 ¢ n* with n := Lie(Ng(T)). Let t = Lie(T). If ® € Sy,
then

(C.9) dop € Anng- t ® ImH)",
because, for £ € t,v € ImH, and ¢ € S, we have

((dep)g. & ® v) = (y(v)p(5)P, ) = 0.

Since w* = n* N Ann,, t, we have p(S%) C (w ® Im H)*. This proves (3).
Finally, we prove (g). Since

Xty = (1 (0) N S1))/G = (u™(0) N S1y)/Wo(T) = S3JfWe(T),

X(r) can be given a hyperkihler structure by the construction in [HKLR87, Section 3(D)]. If ® € S7,
then

(p(8)®)*" N ToScr) = (p(w)®)*" N TpSt
by (C.8); hence, by the discussion before [Definition C.3}
pe: (p(a)®)" Nkerdep N TeSiry = (p(w)®)" Nker dop N ToSt — Tjo X(1)
is a quaternionic isometry. This finishes the proof of (g). O

In general, the action of K = H/G need not preserve the strata X(1). The following hypothesis,
which holds for all the examples considered in this article, guarantees that the action of H on S
preserves S(1) and that the action of K on X preserves X(r) C X.

Hypothesis C.10. Given T < G, assume that, for all h € H, there is a g € G such that

hTh™ = gTg™".
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Proposition C.11. If|Hypothesis C.10 holds for T < G, then the action of H on S preserves the
submanifold S(ry and the action of K on X preserves X(r). O

Proof. For h € H and ® € S(r), we have G o = hGoh™ = hTh™' = gTg™! for some g € G.
Thus, p(h)® € S1) and the action of H preserves S(ry. The action of Sp(1) commutes with that
of H and so it also preserves S(7). We conclude that Sy is preserved by the action of H. Since
X1y = (1(0) N S¢1)) /G, the action of K preserves X(r). |

Proposition C.12. Forany T < G, Ng(T) is a normal subgroup of Ny(T), and the identity K = H/G
induces an injective homomorphism Ng(T)/Ng(T) — K. [ holds for T < G, then

this map is an isomorphism
Nu(T)/Ng(T) = K.

Proof. If g € Ng(T) and h € Ng(T), then § := hgh™! € G since G < H; hence, § € Ng(T). Since
Nu(T) N G = Ng(T), we have an injective homomorphism N (T)/Ng(T) — K.
Assuming [Hypothesis C.10land given k = hG € K, there is a g € G such that

hTh™ = gTg™".

It follows that h := g 'h € Ny(T) and hG = k; hence, Ny(T)/Ng(T) — K is an isomorphism. O

Assuming [Hypothesis C.10/for T < G, we can define fiber bundles over M whose fibers are the

strata S and X(r):
Sy =0 Xp Sy and  X(7) = R Xz X(1).

If it holds for all T < G with non-empty St, we decompose S and X as

s=|Jsa and X =| )X
(T) (T)

C.2 Lifting sections of X(7)

For the remainder of this section we will assume [Hypothesis C.10|for T < G. The first part of the
Haydys correspondence is concerned with the questions:

When can a section s € I'(X(7)) be lifted a section of ® € I'(S(7)) with p(®) = 0 for
some choice of Q?

and
To what extend is the principal H-bundle O determined by s?
Proposition C.13. If® € I'(S(r)), then
0° =05 ={geQ: g € Srlf]

8Here we think of ® as a H-equivariant map ®: Q — §.
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is a principal Ny (T )~bundle over M whose associated principal H-bundle is isomorphic to Q. Moreover,
the stabilizer of ® in (P) = T(Q xp G) is

T(Q° Xn,, 1) T) € &(P),

and the kernel of p(-)®: gp — S is

(C1g) tp := 0° X, 1) Lie(T) C gp.

Proof. If® € St, h = [(¢,h)] € H = (Sp(1) X H)/Z3 and ¥ := 0(q)p(h)®, then
Gy = hGoh™ = hTh™'[Y]

Therefore, ¥ € St if and only ifh e Ng(T) = (Sp(1) x NH(T))/ZZ Moreover, for each ® € Sy
there is a g € G C H such that p(g)CD(q) € St. This 1mphes that Q° is a principal Ng(T)-bundle.
The isomorphism Q° x N (T) H = Q is given by [(§, h)] — q- h.In particular,

Z(P) = T(Q° Xn,, 1) O)

where Ny (T) acts on G by conjugation. The last two assertions follow from the fact that, for every
q € Q°, the G-stabilizer of ®(q) is T. O

Definition C.15. Given any ® € I'(S(7)), the Weyl group bundle associated with @ is
Q° = Qg = Q/T-

Proposition C.16. Suppose that two choices of geometric data have been made such that R; = Ry.
Suppose that ®; € T(Sy, (7)) satisfy p(®;) = 0. Denote by Q7 the associated Weyl group bundles.

Ifpo® = pod; € I'(X(r)), then there is an isomorphism Qf = QAZo compatible with the
isomorphism

Q7 /Ws(T) = Ry = Ry = Q; /Wo(T).

Remark C.17. The principal Ng(T)-bundles Qf and Qg need not be isomorphic.

Proof of[Proposition C.16 Since 0i/G = R;, we have Qf/Ng(T) = R;. The sections ®@; restrict to
Ng(T)-equivariant maps ®S: QF — p~'(0) N Sy, which in turn induce Wg(T)-equivariant maps
®¢: Q7 = Q7 /T — p~*(0) N St. The resulting commutative diagrams

Qf —— p1(0)N Sy
lq‘i lp
R; X(n)

are pullback diagrams; hence, the assertion follows from the universal property of pullbacks. O

IHypothesis C.10|ensures that A”Th™! C G.
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Proposition C.18. Let R be a principal K-bundle. Given s € I'(X(7)), there exists a principal Wy, (T)-
bundle Q° together with an isomorphism

Q°/We(T) = R

and a section
®° € T(Q° Xw, (1) S1)

satisfying
uw(@)=0 and pod° =s.

The section ®° is unique up to the action of the restricted gauge group T(Q° Xwy, (1) Wo(T)).

Proof. We can think of the section s as a K-equivariant map s: R — X(1). The quotient map
p: 5 1(0) NSt — X(r) defines a principal W (T)-bundle. Set

Q% =5"(u"'(0) N S7)
= {(r,®) € Rx (u7(0) N S1) : 5(r) = Ws(T) - @}

and denote by d°: Q° > p 1(O) N St the projection to the second factor. The projection to the
first factor ¢°: O° — R makes Q° into a principal Wg(T)-bundle over R. We have the following
diagram with the square being a pullback:

Q° —— 471(0) N St
lrf lp
T — X(1)

Q¢ can be given the structure of a principal Wy (T)-bundle over M as follows. By
we have a short exact sequence

0 —— Wo(T) —— Wy(T) > K — 0.
Define an right-action of Wy (T) on 0° by

(r. ®) - [A] := (r - m([A]). (0 X p)(h™")®)
for [A] € Wy(T) and (r, @) € O° and with 0 as in A moment’s thought shows that

this action is free and
Q°/W(T) = (Q°/Ws(T))/K = R/K = M.
Since s is K—equivariant, ®° is Wy (T)-equivariant and thus defines the desired section. The
assertion about the uniqueness of ®° is clear. O
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Proposition C.19. Assume the situation o Suppose that Q° is a principal Ng(T)-

bundle with an isomorphism
Q°/T = Q%
that is: Q° is a lift of the structure group from Wy (T) to Ng(T). Set
Q = QO XNH(T) FI
In this situation, there is a section ® of S() = 0 Xg S(r) satisfying
(@) =0 and pod=s;

moreover, there is an isomorphism
Ao Ao
o = Q.

Any other section satisfying these conditions is related to ® by the action of E(P).

Proof. With ®° as in[Proposition C.18define ®: Q — ;~(0) C S by
®((g. h)) := (0 x p)(A™)@°(qT).

This is well-defined because ®°(qT) is T-invariant; moreover, ¢ is manifestly A —equivariant and,
hence, defines the desired section. The assertion about the uniqueness of @ is clear. O

To summarize the preceeding discussion and answer the questions raised at the beginning of
this section:

1. s determines the Weyl group bundle O° uniquely,
2. every s lifts to a section ®° of Q° Xw,,(1) ST, and
3. if Q° is a lift of the structure group of O° from Wy (T) to Ny (T) and we set 0 :=0° XN (T) H,

then ®° induces a section ® of S(7) = Q X Scry lifting s.

C.3 Projecting the Dirac equation
The second part of the Haydys correspondence is concerned with the question

To what extend is the Dirac equation for a section ® € I'(S(r)) equivalent to a
differential equation for s := p o ® € I'(X(7))?

Definition C.20. The vertical tangent bundle of Xr) 5 Mis
VX(T) = R Xg TX(T).
The hyperkahler structure on X(7) induces a Clifford multiplication

y: 7" ImH — End(VX(p)).
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Given B € o/(R) we can assign to each s € T'(S) its covariant derivative Vgs € Q1(M, s*VX). A
section s € I'(X) is called a Fueter section if it satisfies the Fueter equation

(C.21) §(s) = B(s) = y(Vas) = 0 € T(s"VXer)).
The map s — F(s) is called the Fueter operator.
Proposition C.22. Given ® € I'(S(r)) satisfying u(®) = 0, set
s:=podeT(Xr)).
The following hold:
1. A€ Ap(0) satisfies Po® = 0 if and only if

(C.23) Sp(s) =0 and Vad L p(gp)®.

2. Lettp be as in (C.14). The space of connections
(C29) A5(Q) = {A € dp(Q): Vad L p(ap)?}

is an affine space modeled on Q' (M, tp) with tp as in (C14). In particular, if Fg(s) = 0, there
exists an A € Ag(Q) such that ID,® = 0; A is unique up to Q' (M, tp).

. [0 A . Ao . Ao
3. Any connection A € g (Q) reduces to a connection on Q°. Conversely, any connection on Q
. . . O/ A
induces a connection in o5 (Q).

4. The subbundle tp C gp is parallel with respect to any A € dg(Q).

Proof. We prove (1). If D4® = 0, then it follows from p.(V4®) = Vps that Fg(s) = 0. Let (e', €%, &°)
be an orthonormal basis of T;M. The equations [P4® = 0 and V4u(®) = 0 can be written as

Vae®= —eijky(ej)VA,ekd) and  (y(e/)Va e @, p(£)®) = 0

for all £ € gp . This proves that V4@ L p(gp)®. By [Theorem C.6(4), (C.23) implies D4® = 0
We prove (2). If A € .Qfg(Q) and a € Q(M, gp) are such that A+ a € .Qfg(Q), then

p(a)® L p(gp)®;

hence, p(a)® = 0 and it follows that a € Q!(M, tp) by [Proposition C.13| It remains to show that
.QYE’(Q) is non-empty. To see this, note that if A € Q/E(Q), then one can find a € Q'(M, gp) such
that V4@ + p(a)® is perpendicular to p(gp)®.

We prove (3). If A € ME(Q) and H4 denote its horizontal distribution, then we need to show
that for q € Q° we have Hy 4 C TqQ°. This, however, is an immediate consequence of the

definitions of dg(Q) and 0°.
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We prove (4). Suppose 7 € T'(tp), that is, p(7)® = 0. Differentiating this identity along v yields
P(VauT)® = —p(1)V 4,0 D;

Set 0 = V4, ,7. We need to show that p(c)® = 0. We compute

p(0)@I* = ~(p(0)®, p(7)V 4, )
= (p(1)p(0) P, VA,0DP)
= (p([r,0])®, VA, D) =0

because V4@ L p(gp)d. m]
To summarize:
1. The Dirac equation Ip4® = 0 implies the Fueter equation §gs = 0.

2. Given a solution s of the Fueter equation and QO as at the end of the last subsection, there is
a connection A € &g(Q) such that the lift ® satisfies 4@ = 0.

3. Ais unique up to Q!(M, tp) with tp as in (C.14).

D The ADHM representation

We now focus on the case r = 1 in We will see that in this case the hyperkihler
quotient of the representation is the symmetric product Sym* H. This fact is the basis of the
relationship between multiple covers of associatives and ADHM monopoles.

Identifying H ®c C" = Homc(CK, H), we can write the quaternionic vector space S from

Example B.s|with r = 1 as

S = Home(CK, H) @ H ®g u(k).

The group U(k) acts on S via
p(g)(¥. &) = (¥g ', Ad(9)¢)

preserving the hyperkéhler structure. We will now determine the hyperkahler quotient S J/U(k)
and its decomposition into hyperkahler manifolds described in

Definition D.1. A partition of k € N is a non-increasing sequence of non-negative integers
A = (A1, Az, ...) which sums to k. The length of a partition is

[A| =min{n e N: A, =0} - 1.
With each partition A we associate the groups

G, = {O‘ € 5|,1| :/15(,1) =A,forallne {1 .. ,Ml}}
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and
A

Ty i= ]_[ U(A,) € U(K).
n=1
For each partition A of k, consider the generalized diagonal
App=A{v1,...,op € H o, = v; for some i # j}

There is an embedding (H'M\AM|)/G,1 < Sym* H defined by

[vl’- . -’U|ﬂ|] = [Ula- N RN i A P -,U|/1|]'
— [ —
Ay times A|x) times

The image of this inclusion is denoted by Syml/{ H.

Theorem D.2 (Nakajima [Nakgo, Proposition 2.9]). We have

SIG =) St Wi (Tn) = || Sym! H = Sym* H.
A A

Here we take the union over all partitions A of k.

The proof of occupies the remaining part of this section. Various algebraic
identities derived in the course of proving the theorem are also used in the discussion of the
Haydys correspondence for ADHM monopoles.

Proposition D.3. The canonical moment map yi: S — (u(k)®ImH)* for the action p: U(k) — Sp(S)
is given by
p(Y, &) = p(¥) + p(€)

witH1]
(W) = %((‘P*i‘l’) ®i+ (¥ j¥)®)+(Tk¥)®k) and

&) = ([€p, 1]+ [£2. &3] @i
+([&p, &2+ [£5. 81D ®J
+([&p, &3]+ [£1,.ED) ® k.

Proof. We can compute the moment maps for the action of U(k) on Hom(C*,H) and H ® u(k)
separately. If v = v;i + v5j + vsk € ImH and n € u(k), then

2(u(¥),ven = (¥, y()pm¥) = (¥, y(0)¥ on) = (¥y(v)¥,n)

10We identify (u(k) ® ImH)* = u(k) ® ImH.

61



and

2(u(&),v@n) = (€, y(©)p(n)E)
= (‘(fo’ [, &) + (&1, [m, Eol) — (&an [, E3]) + (&3, (1, 'fz]))
+ 0 (—(&, [0, Eo1) + (€1, [ E3]) + (& [, Eo]) = (€5, [0, D))
+ U3 (—<§o’ [, &3]) — (€1, [, &) — (€. [, E1]) + (&5, [, ‘fo]))
= 2v1([&o, &1] + [£2, &51.m)
+205([&, £2] + [£5. E11. )
+203([&o, &3] + [£1. E21.m)

using that (&, [n, (1) = =([¢, {1, n) for &, 1, € u(k). o
The key to proving is the following result.
Proposition D.4. If u(¥, &) = 0, then ¥ = 0.

One can derive this result using Geometric Invariant Theory [Nakgg, Section 2.2]. We provide
a proof at the end of this section. It essentially follows Nakajima’s reasoning but avoids the use of
GIT and comparison results between GIT and Kéhler quotients.

It follows from that
S//U(k) = H® g//U(k).
The latter can be computed in a straight-forward fashion using the following observation.

Proposition D.5. We have

3
W@ =2 D lEw EI1

a, =0

Proof. A direct computation shows that

3
|u(&)I° _% Z |[§aa§ﬁ]|2 = —2(&, [£1,[£2, E3]] + [&5, [€5, €111 + [€3, [£1, £211)-

a, =0

This expression vanishes by the Jacobi Identity. O

Proof of[Theorem D.2, From[Proposition D.4|and[Proposition D.s|it follows that we have p(¥, €) = 0
ifand only if ¥ = 0 and £ € H® for some maximal torus t C u(k). Therefore, for a fixed maximal
torus T € U(k) and t := Lie(T),

S/IG = (H®t)/Wyw)(T) = H*/S;, = Sym* H,

using that the Weyl group of U(k) is the permutation group Sk.
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The map S//G — Sym* H can be described more directly as the joint spectrum. Since p(£€) = 0
implies [£,&] =0 € A’H ® g, we can find a basis ey, . . ., ex of C¥ and elements vy, ..., € H
such that

E(e)) =v; ®e;.

Up to ordering, the v; are independent of the choice of basis e;. The isomorphism S /G — Sym* H
is the map

& — spec(&) = {vy,..., v}

From this description the decomposition of Sym* H into its strata Sym’; H is clear. O

The following result, which can be viewed as the linearization of [Proposition D.5} plays an

important role in [Section 5.3

Proposition D.6. Denote by Rg : 1u(k) — H®u(k) the linearization of the action of U(k) on H® u(k)
at & and by RE: H ® u(k) — u(k) its adjoint. If u(€) = 0, then

3
|(dgnl* + IRgnIZ Z|fa,nﬁ E;I[fa’ﬂa]lz-

a#p=0

Proof. If p(&€) = 0, then on the one hand
(€ + t)” = £*|(dguinl* + O(F);
while on the other hand

3
W+ i)l = - ; 1€, + g €5 + ]l
a, f=0

Z (€ - tng) + [tn,. £511° + O()
a, =0

3
=12 3" |[Eangll* + (Ear Mgl [N E5D) + OE).
a#f=0

We also have

2
IRgnE

3
D [Ean,]
a=0
3

=2 Z (£ e (£ mD) + D M€ g1

a¢ﬂ=0 a=0
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By the Jacobi identity
(€0 Mg (Mo E51) = ~ (Mg [E s [ €511
= (Mg [Na> €5 ED) + Mg [£5: [E 0> M 1]
= (ng. [£p. 1€ 11D

= _<[§ﬁ’ nﬁ]’ [ga’ rla])'
Putting everything together, yields the asserted identity. O

Proof of[Proposition D.4, For the proof it is convenient to write S as C* @ jCK @ End(C*)®j End(C¥).
A direct computation shows that with respect to this identification the moment map is given by

() (o, A, B) = (00" — ww” = [A, 4] = [B,B') + (w0 — [A, B]).
Therefore, if (¥, €) = (v + jw, A* + jB) € y~1(0), then
(D.8) vv" —ww" = [A A"] +[B,B"] and wuv" =[A B].

Set T := [A, A*] + [B, B*]. Taking traces and inner products with v and w, implies
(D.9) ol = |wl =4, (v,w) =0,
(D.10) (To,v) =A%, and (Tw,w)=-)%

Proposition D.11 ([Nakgg, Lemma 2.8]). Denote by V; the smallest subspace of CK which contains w
and is preserved by both A and B. We havev L V.

Proof. Let C be a product of As and Bs. We need to show that (v,Cw) = 0. The proof is by
induction on k, the number of factors of C. If k = 0, then C = id and we have (v, w) = 0 by (D.9g).

By induction we can assume that (v, Cw) = 0 for all C with fewer than k factors. If C = C;BAC,,
then

Cw = C;BAC,w = C;ABC,w — C/[A, B]C,w
= CJABC,w — Cywv*C,w = C;ABC,w

because v*C,w = (v,C,w) and C, has fewer than k factors. Henceforth, we can assume that
C = Ak B*2_ For such C, we have

(v, AR BR2w) = tr(AF BR2wo*) = tr(AF BR[ A, B))
= tr([A B*2, A]B) = tr(A¥'[B*2, A]B)

ky—1 ky—1
= Z tr(AF BB, A]B* () = Z tr(B*~{ AR BY[B, A])
=0 £=0
ky—1
. Z (v, BR AR By = —ky (v, A BF2).
£=0
This concludes the proof. O
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As a warm up consider the case k = 2. If 1 > 0, then
(w/4,v/4)

is an orthonormal basis for C?. With respect to this basis A and B are given by matrices of the form

_ ai; aiz _ bll blZ
A—(O azz) and B—(O bzz)'

Consequently, the first diagonal entry of T = [A, A*] + [B, B*] is
Ti1 = lapz|” + |b1a| > 0.
However, since (Tw, w) = —A* according to , we have
Ty = A2 < 0.

It follows that A = 0; that is, ¥ = v + jw = 0.
In general, let V; be as in [Proposition D.11|and set V, := V;*. With respect to the splitting

Ck = V; ® V,, we have
_[Ann Agp _[Bi1 Biz
A= ( 0 Azz) and B= ( 0 Bzz) .

It follows from wov* = [A, B] and v € V,, that
[A11, Bu] = [A, Bl = 0;
Moreover, we have
Ty = ([A, A"] + [B, B )11 = [A11, A};] + [B11, By;] + A12A, + BiaBy;

hence,
[All,Ajl] + [B]l,Bikl] + A12A4£2 + BlzBTZ + 1/\1\/\;‘< = 0.

Thus [A11, A}, ] + [B11, Bj;] < 0. By |Proposition D.12} it follows that [A;y, A};] = [B11,Bj;] = 0.
Since A;A7], + B12Bj, + ww” is a sum of non-negative definite matrices, we must have |w| = 0;

hence, ¥ = v + jw = 0 by (D.9).

Proposition D.12. If[A,B] = 0 and [A, A*] + [B,B*] < 0, then A and B can be simultaneously
diagonalized and [A, A*] = [B, B*] = 0.

Proof. Since A and B commute, we can simultaneously upper triagonalize them,; that is, after
conjugating A and B with a unitary matrix we can assume that

A=A+U and B=M+V
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where A, M are diagonal and U, V are strictly upper triangular. We have

[A,A"] = [A,A"] + [A, U] - [A" U]+ [U,U"].

The first term vanishes, and the second and third terms have vanishing diagonal entries. Writing
U = (umn), the m—th diagonal of [A, A*] is

k

z:lumnl2 - |unm|2§

n=1

and similarly for B with V = (v,,,).
The first diagonal entry of [A, A*] + [B, B] is

k
Z|u1n|2 + Ivln|z-
n=1

Being non-positive, this term vanishes. The second diagonal entry is

k k
Dzl + oanl* = ol = o2l = > Juanl* + 020
n=1 n=1

Being non-positive, this term vanishes as well. Repeating this argument eventually shows that

U=V=0. o
This completes the proof of |[Proposition D.4 O
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