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Abstract

Building on ideas from [DT98; DS11; Wal17; Hay17], we outline a proposal for constructing Floer

homology groups associated with a G2–manifold. These groups are generated by associative

submanifolds and solutions of the ADHM Seiberg–Witten equations. The construction is

motivated by the analysis of various transitions which can change the number of associative

submanifolds. We discuss the relation of our proposal to Pandharipande and Thomas’ stable

pair invariant of Calabi–Yau 3–folds.

1 Introduction

Donaldson and Thomas [DT98, Section 3] put forward the idea of constructing enumerative

invariants of G2–manifolds by counting G2–instantons. The principal difficulty in pursuing

this program stems from non-compactness issues in higher-dimensional gauge theory [Tia00;

TT04]. In particular, G2–instantons can degenerate by bubbling along associative submanifolds.

Donaldson and Segal [DS11] realized that this phenomenon can occur along 1–parameter families

ofG2–metrics. Therefore, a naive count ofG2–instantons cannot lead to a deformation invariant of

G2–metrics; see also [Wal17]. Donaldson and Segal proposed to compensate for this phenomenon

with a counter-term consisting of a weighted count of associative submanifolds. However, they

did not elaborate on how to construct a suitable coherent system of weights. Haydys and Walpuski

proposed to define such weights by counting solutions to the Seiberg–Witten equations associated

with the ADHM construction of instantons on R4
[HW15, paragraphs following Remark 1.7; Hay17;

DW19, Introduction; DW18, Appendix B].

The construction of these weights depends on the choice of the structure group of G2–

instantons, an obvious choice being SU(r ). If one specializes to r = 1, that is, to trivial line

bundles, then there are no non-trivialG2–instantons and their naive count is, trivially, an invariant.

However, according to the Haydys–Walpuski proposal one should still count associatives weighted
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by the count of solutions to the Seiberg–Witten equation on them. It is known that counting

associatives by themselves does not lead to an invariant, because the following situations may

arise along a 1–parameter family of G2–metrics:

1. An embedded associative submanifold develops a self-intersection. Out of this self-intersection

a new associative submanifold is created, as shown by Nordström [Nor13]. Topologically,

this submanifold is a connected sum.

2. By analogy with special Lagrangians in Calabi–Yau 3–folds [Joy02, Section 3], it has been

conjectured that it is possible for three distinct associative submanifolds to degenerate into

a singular associative submanifold with an isolated singularity modeled on the cone over T 2

[Wal13, p.154; Joy17, Conjecture 5.3]. Topologically, these three submanifolds form a surgery

triad.

Wewill argue that known vanishing results and surgery formulae for the Seiberg–Witten invariants

of 3–manifolds [MT96, Proposition 4.1 and Theorem 5.3], show that the count of associatives

weighted by solutions to the Seiberg–Witten equation is invariant under transitions (1) and (2),

assuming that all connected components of the associative submanifolds in question have b1 > 1.

This restriction is needed in order to be able to avoid reducible solutions and obtain a well-defined

Seiberg–Witten invariant as an integer.1 We know of no natural assumption that would ensure

that this restriction holds for all relevant associative submanifolds. Hence, the Haydys–Walpuski

proposal cannot yield an invariant which is just an integer.

One can define a topological invariant using the Seiberg–Witten equation for any compact,

oriented 3–manifold. This invariant, however, is not a number but rather a homology group,

called monopole Floer homology [MW01; Man03; KM07; Frø10]. The behavior of monopole Floer

homology under connected sum and in surgery triads is well-understood [KMOS07, Theorem 2.4;

BMO; Lin15, Theorem 5]. We will explain how to construct a chain complex associated with a

G2–manifold using the monopole chain complexes of associative submanifolds. The homology of

this chain complex might be invariant under transitions (1) and (2).

The discussion so far only involved the classical Seiberg–Witten equation. There is a further

transition that might spoil the invariance of the proposed homology group:

3. Along generic 1–parameter families of G2–metrics, somewhere injective immersed associa-

tive submanifolds can degenerate by converging to a multiple cover.

We will explain why this phenomenon occurs and that it can change the number of associatives,

even when weighted by counts of solutions to the Seiberg–Witten equation. This is where ADHM
monopoles, solutions to the Seiberg–Witten equations related to the ADHM construction, enter the

picture. Counting ADHM monopoles does not lead to a topological invariant of 3–manifolds. We

will provide evidence for the conjecture that the change in the count of ADHM monopoles exactly

1Using spectral counter-terms, Chen [Che97; Che98] and Lim [Lim00] were able to define Seiberg–Witten invariants

of 3–manifolds with b1 ⩽ 1. These, however, are rational and cannot satisfy the necessary vanishing theorem.
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compensates the change in the number of associatives weighted by the Seiberg–Witten invariant.

Based on this we will give a tentative proposal for how to construct an invariant ofG2–manifolds:

a homology group generated by associatives and ADHM monopoles.

This paper is organized as follows. After reviewing in Section 2 the basics ofG2–geometry, we

discuss in Section 3 and Section 4 the three problems with counting associatives described above.

The core of the paper are: Section 5 where we introduce ADHM monopoles and relate them to

multiple covers of associatives, and Section 6 where we outline a construction of a Floer homology

group associated with a G2–manifold. In Section 7 we argue that a dimensional reduction of our

proposal should lead to a symplectic analogue of Pandariphande and Thomas’ stable pair invariant

known in algebraic geometry [PT09]. Appendix A contains the proof of a transversality theorem

for somewhere injective associative immersions. Appendix B and Appendix C develop a general

theory of the Haydys correspondence with stabilizers for Seiberg–Witten equations associated

with quaternionic representations. Appendix D summarizes the linear algebra of the ADHM

representation.

Finally, we would like to point out that an alternative approach to counting associative

submanifolds has been proposed recently by Joyce [Joy17]. His proposal does not lead to a number

or a homology group, but rather a more complicated object: a super-potential up to quasi-identity

morphisms.
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questions about stable pairs.

This material is based upon work supported by the National Science Foundation under Grant

No. 1754967 and the Simons Collaboration “Special Holonomy in Geometry, Analysis and Physics”.

2 Counting associative submanifolds

We begin with a review of G2–manifolds and associative submanifolds with a focus towards

explaining what we mean by “counting associative submanifolds”.

2.1 G2–manifolds

The exceptional Lie group G2 is the automorphism group of the octonions O, the unique 8–

dimensional normed division algebra:

G2 = Aut(O).

Since any automorphism of O preserves the unit 1 ∈ O and its 7–dimensional orthogonal comple-

ment ImO ⊂ O, we can think of G2 as a subgroup of SO(7).
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Definition 2.1. A G2–structure on a 7–dimensional manifold Y is a reduction of the structure

group of the frame bundle of Y from GL(7) to G2. An almost G2–manifold is a 7–dimensional

manifold Y equipped with a G2–structure.

The multiplication on O endows ImO with:

• an inner product, д : S2
ImO → R satisfying

д(u,v) = −Re(uv),

• a cross-product · × · : Λ2
ImO → ImO defined by

(u,v) ↦→ u ×v B Im(uv)

and a corresponding 3–form ϕ ∈ Λ3
ImO∗

defined by

ϕ(u,v,w) B д(u ×v,w),

as well as

• an associator [·, ·, ·] : Λ3
Im Oc → ImO defined by

(2.2) [u,v,w] B (u ×v) ×w + ⟨v,w⟩u − ⟨u,w⟩v

and a corresponding 4–formψ ∈ Λ4
ImO∗

defined by

ψ (u,v,w, z) B д([u,v,w], z).

These are related by the identities

i(u)ϕ ∧ i(v)ϕ ∧ ϕ = 6д(u,v)volд and

∗дϕ = ψ
(2.3)

for a unique choice of an orientation on ImO. We refer the reader to [HL82, Chapter IV; SW17]

for a more detailed discussion.

A G2–structure on Y endows TY with analogous structures:

• a Riemannian metric д,

• a cross-product · × · : Λ2TY → TY ,

• a 3–form ϕ ∈ Ω3(Y ),

• an associator [·, ·, ·] : Λ3TY → TY , and

• a 4–formψ ∈ Ω4(Y ),
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satisfying the same relations as above. From (2.3) it is apparent that from ϕ one can reconstruct

д and thus also ψ , the cross-product, and the associator. Similarly, one can reconstruct д from

ψ together with the orientation. The condition for a 3–form ϕ or a 4–form ψ to arise from a

G2–structure is that the form be definite; see [Hit01, Section 8.3; Bry06, Section 2.8]. We say that a

3–form ϕ is definite if the bilinear form Gϕ ∈ Γ(S2T ∗Y ⊗ Λ7T ∗Y ) defined by

Gϕ (u,v) B i(u)ϕ ∧ i(v)ϕ ∧ ϕ

is definite. We say that a 4–form ψ is definite if the bilinear form G∗
ψ ∈ Γ

(
S2TY ⊗ (Λ7T ∗Y )⊗2

)
defined by

G∗
ψ (α , β) B i(α)ψ ∧ i(β)ψ ∧ψ

is definite. Here we identify Λ4T ∗Y � Λ3TY ⊗ Λ7T ∗Y . Therefore, a G2–structure can be specified

either by a definite 3–form ϕ, or by a definite 4–formψ together with an orientation.

A G2–structure on a 7–manifold induces a spin structure through the inclusion G2 ⊂ Spin(7).

In fact, a 7–manifold admits aG2–structure if and only if it is spin, see [Gra69, Theorems 3.1 and 3.2]

and [LM89, p. 321]. This means that the existence of aG2–structure is a soft, topological condition.

More rigid notions are obtained by imposing conditions on the torsion of the G2–structure, in the

sense of G–structures, see [Joy00, Section 2.6]. The most stringent and most interesting condition

to impose is that the torsion vanishes.

Definition 2.4. A G2–manifold is a 7–manifold equipped with a torsion-free G2–structure.

Theorem 2.5 (Fernández and Gray [FG82, Theorem 5.2]). A G2–structure on a 7–manifold Y is
torsion-free if and only the associated 3–form ϕ as well as the associated 4–formψ are closed:

dϕ = 0 and dψ = 0.

The Riemannian metric induced by a torsion-free G2–structure has holonomy contained in

G2—one of two exceptional holonomy groups in Berger’s classification [Ber55, Theorem 3]. If Y is

compact, then equality holds if and only if π1(Y ) is finite [Joy00, Proposition 10.2.2]. We refer the

reader to [Joy00, Section 10] for a thorough discussion of the properties of G2–manifolds.

Example 2.6. If Z is a Calabi–Yau 3–fold with a Kähler form ω and a holomorphic volume form Ω,
and if t denotes the coordinate on S1

, then S1 × Z is a G2–manifold with

ϕ = dt ∧ ω + Re Ω and ψ =
1

2

ω ∧ ω + dt ∧ Im Ω.

In this case the holonomy group is contained in SU(3) ⊂ G2.

Example 2.7. The first local, complete, and compact examples of manifolds with holonomy equal

to G2 are due to Bryant [Bry87], Bryant and Salamon [BS89], and Joyce [Joy96a; Joy96b; Joy00]

respectively. Joyce’s examples arise from a generalized Kummer construction based on smoothing

flat G2–orbifolds of the form T 7/Γ where Γ is a finite group of isometries of the 7–torus. This

5



method has recently been extended to more general G2–orbifolds by Joyce and Karigiannis [JK17].

The most fruitful construction method for G2–manifolds to this day is the twisted connected

sum construction, which was pioneered by Kovalev [Kov03] and improved by Kovalev and Lee

[KL11] and Corti, Haskins, Nordström, and Pacini [CHNP13; CHNP15]. It is based on gluing, in a

twisted fashion, a pair of asymptotically cylindricalG2–manifolds which are products of S1
with

asymptotically cylindrical Calabi–Yau 3–folds. Using this construction, Corti, Haskins, Nordström,

and Pacini [CHNP15] produced tens of millions of examples of compact G2–manifolds.

2.2 Associative submanifolds

Definition 2.8. Let Y be an almostG2–manifold, let P be an oriented 3–manifold, and let ι : P → Y
be an immersion. We say that ι is associative if

(2.9) ι∗[·, ·, ·] = 0 ∈ Ω3(P , ι∗TY ) and ι∗ϕ is positive.

An immersed associative submanifold is an equivalence class [ι] of an associative immersion

ι ∈ Imm(P ,Y )/Diff+(P) for some oriented 3–manifold P . Here Imm(P ,Y ) is the space of immersions

P → Y and Diff+(P) is the group of orientation-preserving diffeomorphisms of P .

Harvey and Lawson [HL82, Chapter IV, Theorem 1.6] proved the identity

(2.10) ϕ(u,v,w)2 + |[u,v,w]|2 = |u ∧v ∧w |2.

This shows that ϕ is a semi-calibration and that associative submanifolds are calibrated by ϕ. We

refer to [HL82, Introduction] and [Joy00, Section 3.7] for an introduction to calibrated geometry;

we recall only the following simple but fundamental fact.

Proposition 2.11. If ι : P → Y is associative, then

ι∗ϕ = volι∗д .

In particular, ifϕ is closed and P is compact, then the immersed submanifold ι(P) is volume-minimizing
in the homology class ι∗[P] and

vol(P , ι∗д) = ⟨[ϕ], ι∗[P]⟩.

Proposition 2.12 (see, e.g., [SW17, Lemma 4.7]). If ι : P → Y is an immersion, then the following
are equivalent:

1. ι∗[·, ·, ·] = 0,

2. for all u,v ∈ ι∗TxP , u ×v ∈ ι∗TP , and

3. for all u ∈ ι∗TxP and v ∈ (ι∗TxP)
⊥, u ×v ∈ (ι∗TxP)

⊥.

Example 2.13. Let Z be a Calabi–Yau 3–fold. Equip S1 ×Z with theG2–structure from Example 2.6.

If Σ ⊂ Z is a holomorphic curve, then S1 × Σ is associative. If L ⊂ Z is a special Lagrangian

submanifold, then, for any t ∈ S1
, {t} × L is associative.
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Example 2.14. Examples of associative submanifolds which arise as fixed points of involutions

have been given by Joyce [Joy96b, Section 4.2]. Examples of associative submanifolds arising from

holomorphic curves and special Lagrangians in asymptotically cylindrical Calabi–Yau 3–folds

were constructed by Corti, Haskins, Nordström, and Pacini [CHNP15, Section 5]

2.3 The L functional

Associative submanifolds can be formally thought of as critical points of a functional L on the

infinite-dimensional space of submanifolds. In contrast to many other functionals studied in

differential geometry (for example, the Dirichlet functional), the Hessian of L at a critical point is

not positive definite. As we will see, it is a first order elliptic operator whose spectrum is discrete

and unbounded in both positive and negative directions. Morse theory of functionals with this

property, most notably the Chern–Simons functional in gauge theory, was first developed by Floer

[Flo88; Don02]. The existence of such L already hints at the possibility of constructing Floer
homology groups from a chain complex formally generated by associative submanifolds.

Definition 2.15. Define the 1–form δL = δLψ ∈ Ω1(Imm(P ,Y )) by2

διL(n) =

ˆ
P
ι∗i(n)ψ =

ˆ
P
⟨ι∗[·, ·, ·],n⟩

for n ∈ Tι Imm(P ,Y ) = Γ(P , ι∗TY ).

Proposition 2.16.

1. ι is associative if and only if διL = 0 and ι∗ϕ is positive.

2. δL is Diff+(P)–invariant.

3. If dψ = 0, then δL is a closed 1–form. In fact, there is a Diff+(P)–equivariant covering space
π : ˜Imm(P ,Y ) → Imm(P ,Y ) and a Diff+(P)–equivariant function ˜L : ˜Imm(P ,Y ) → R whose
differential is π ∗δL.3

Proof. Assertions (1) and (2) are both trivial. For β ∈ H3(Y ,R), let Immβ (P ,Y ) denote the set of

immersions ι : P → Y such that ι∗[P] = β . Fix P0 ∈ Immβ (P ,Y ) and denote by ˜Immβ (P ,Y ) the
space of pairs (ι, [Q]) with ι ∈ Immβ (P) and [Q] an equivalence class of 4–chains in Y such that

∂Q = P − P0 with [Q] = [Q ′] if and only if [Q −Q ′] = 0 ∈ H4(Y ,Z). Define ˜L : ˜Immβ (P ,Y ) → R
by

˜L(ι, [Q]) =

ˆ
Q
ψ .

The function
˜L has the desired properties; see also [DT98, Section 8]. □

2Although n is not a vector field on Y , by slight abuse of notation we denote by ι∗i(n)ψ the 3–form on P given by

(u,v,w) ↦→ ψ (ι∗u, ι∗v, ι∗w,n).

3This justifies the notation δL since locally it is the differential of a function.
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2.4 The moduli space of associatives

Definition 2.17. Let P be a compact, oriented 3–manifold and let β ∈ H3(Y ,Z). Denote by

Immβ (P ,Y ) the space of immersions ι : P → Y with ι∗[P] = β . The group Diff+(P) acts on
Immβ (P ,Y ). The moduli space of immersed associative submanifolds is

A(ψ ) =
∐

β ∈H3(Y ,Z)

Aβ (ψ ) =
∐

β ∈H3(Y ,Z)

∐
P

AP,β (ψ )

with

AP,β (ψ ) B
{
[ι] ∈ Immβ (P ,Y )/Diff+(Y ) : (2.9)

}
.

Here P ranges over all diffeomorphism types of compact, oriented 3–manifolds.

Denote by D4(Y ) the space of definite 4–forms on Y . If P is a subspace of D4(Y ), then the

P–universal moduli space is
A(P) =

⋃
ψ ∈P

A(ψ ).

The moduli space A(P) inherits a topology from the C∞
–topology on Immβ (P ,Y ). As we

will explain in the following, the infinitesimal deformation theory of associatives submanifolds is

controlled by a first-order elliptic operator and A(P) admits corresponding Kuranishi models.

Definition 2.18. Let ι : P → Y be an associative immersion. Denote by

Nι B ι∗TY/TP � TP⊥ ⊂ ι∗TY

its normal bundle and by ∇ the connection on Nι induced by the Levi-Civita connection. The

Fueter operator associated with ι is the first order differential operator Fι = Fι,ψ : Γ(Nι) → Γ(Nι)
defined by

Fι(m) B
3∑
i=1

ι∗ei × ∇eim.

Here (e1, e2, e3) is an orthonormal frame of P .

This operator arises as follows. Identify Nι with TP⊥ ⊂ ι∗TY and, given a normal vector field

m ∈ Γ(Nι), define ιm : P → Y by

ιm(x) B exp(m(x)).

The condition for ιεm to be associative to first order in ε is that

0 =
d

dε

����
ε=0

[(ιεm)∗e1, (ιεm)∗e2, (ιεm)∗e3]

= (ι∗e1 × ι∗e2) × ∇e3
m + cyclic permutations

=

3∑
i=1

ι∗ei × ∇eim.
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Here we have used the definition of the associator (2.2) and the fact that ι : P → Y is associative

so we have ι∗e1 × ι∗e2 = ι∗e3 (as well as all of its cyclic permutations).

Proposition 2.19 (Joyce [Joy17, paragraph after Theorem 2.12]). If dψ = 0, then

Hess
˜L(n,m) =

ˆ
P
⟨n, Fιm⟩

with ˜L as in Proposition 2.16(3). In particular, Fι is self-adjoint.

Theorem 2.20 (McLean [McL98] and Joyce [Joy17, Theorem 2.12]). Let [ι : P → Y ] ∈ Aβ (ψ0).
Denote by Aut(ι) the stabilizer of ι in Diff+(P).

The group Aut(ι) is finite. The Fueter operator Fι is equivariant with respect to the action of Aut(ι)
on Γ(Nι). IfP is a submanifold of the space of definite 4–forms containingψ0, then there are:

• an Aut(ι)–invariant open subsetU ⊂ P × ker Fι ,

• a smooth Aut(ι)–equivariant map ob : P × U → coker Fι with ob(ψ0, ·) and its derivative
vanishing at 0,

• an open neighborhood V of ([ι],ψ0) in Aβ (P), and

• a homeomorphism x : ob
−1(0)/Aut(ι) → V .

Moreover, if (p,n) ∈ ob
−1(0), then the stabilizer of any immersion representing x(p,n) is the stabilizer

of n in Aut(ι).

Definition 2.21. We say that an associative immersion ι : P → Y is unobstructed (or rigid) if Fι
is invertible.

2.5 Transversality

It follows from Theorem 2.20 that if all associative immersions are rigid, then the moduli space

Aβ (ψ ) is a collection of isolated points—in other words, the functional L is a Morse function. While

this is not always true, below we show that it does hold for a large class of immersions and for a

generic choice of a closed positive 4–formψ .

Definition 2.22. An immersion ι : P → Y is called somewhere injective if each connected com-

ponent of P contains a point x such that ι−1(ι(x)) = {x}. Denote by

A
si

β (ψ )

the open subset of somewhere injective immersions with respect toψ . Given a submanifold P of

the space of definite 4–forms, set

A
si

β (P) =
⋃
ψ ∈P

A
si

β (ψ ).
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Proposition 2.23. Denote byD4

c (Y ) the space of closed, definite 4–forms.

1. There is a residual subsetD4

c,reg
⊂ D4

c (Y ) such that for everyψ ∈ D4

c,reg

(a) the moduli space Asi

β (ψ ) is a 0–dimensional manifold and consists only of unobstructed
associative submanifolds, and

(b) Asi

β (ψ ) consists only of embedded associative submanifolds.

2. Ifψ0,ψ1 ∈ D4

c,reg
(Y ), then there is a residual subset D4

c,reg
(ψ0,ψ1) in the space of paths from

ψ0 toψ1 inD4

c (Y ) such that for every (ψt )t ∈[0,1] ∈ D4

c,reg
(ψ0,ψ1)

(a) the universal moduli space Asi

β ({ψt : t ∈ [0, 1]}) is a 1–dimensional manifold, and

(b) for each component {(ψt , [ιt ]) : t ∈ J } with J ⊂ [0, 1] an interval, there is a discrete set
J× ⊂ J such that:

i. for t ∈ J\J× the map ιt is an embedding and
ii. for t× ∈ J× there is a T > 0 and with the property that

P B
⋃

|t−t× |<T

{t} × ιt (P) ⊂ R × Y

has a unique self-intersection and this intersection is transverse.

The proof of this result is deferred to Appendix A. It is similar to that of analogous results about

pseudo-holomorphic curves in symplectic manifolds, cf. McDuff and Salamon [MS12, Sections 3.2

and 3.4]. In fact, our situation is simpler because we assume from the outset that ι is an immersion.

2.6 Compactness and tamed forms

As we have seen, transversality for associative embeddings can be achieved by perturbing ψ .
However, even if the moduli space Aβ (ψ ) consists of isolated points, the number of points can be

infinite. Indeed, for an arbitrary definite 4–formψ there is no reason to expect Aβ (ψ ) to be compact.

The situation is better when one considers a special class of tamed 4–forms. This is analogous to

the notion of a tamed almost complex structure in symplectic topology, which guarantees area

bounds for pseudo-holomorphic curves.

Definition 2.24 (Donaldson and Segal [DS11, Section 3.2], Joyce [Joy17, Definition 2.6]). Let Y be

an almost G2–manifold with 3–form ϕ, 4–form ψ , and associator [·, ·, ·]. We say that τ ∈ Ω3(Y )
tames ψ if dτ = 0 and for all x ∈ Y and u,v,w ∈ TxY with [u,v,w] = 0 and ϕ(u,v,w) > 0, we

have τ (u,v,w) > 0.

Example 2.25. If ψ corresponds to a torsion-free G2–structure, then ψ , as well as any nearby

4–form, is tamed by ϕ = ∗ψ .
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One should think of tamed, closed, definite 4–forms as a softening of the notion of a definite

4–form giving rise to a torsion-free G2–structure. The advantage of working with tamed forms is

that the volume of any associative submanifold in Aβ (ψ ) is bounded and one can, in principle, use

geometric measure theory to compactify Aβ (ψ ).

Proposition 2.26 (Donaldson and Segal [DS11, Section 3.2], Joyce [Joy17, Section 2.5]). Let Y be
a compact almost G2–manifold with 4–form ψ . If ψ is tamed by a closed 3–form τ , then there is a
constant c > 0 such that for every associative immersion ι : P → Y with P compact

vol(P , ι∗д) ⩽ c · ⟨[τ ], ι∗[P]⟩.

2.7 Enumerative invariants from associatives?

Question 2.27. Is there a residual subset of tamed, closed, definite 4–forms for which Aβ (ψ ) is a
compact 0–dimensional manifold (or orbifold)?

If the answer to this question is yes, then for everyψ from this residual subset we can define

(2.28) nβ (ψ ) B #Aβ (ψ ).

Question 2.29. Is nβ (ψ ), or some modification of it, invariant under deformingψ ?

If the answer to this question is also yes, then nβ would give rise to a deformation invariant of

G2–manifolds by defining its value on a torsion-free G2–structureψ to be that on a nearby tamed,

closed, definite 4–form.

It is easy to see that a naive interpretation of #Aβ (ψ ) as the cardinality of Aβ (ψ ) does not lead to
an invariant. Suppose that P = {ψt : t ∈ (−1, 1)} is 1–parameter family of tamed, closed, definite

4–form and [ι0 : P → Y ] ∈ Aβ (ψ0) with dim ker Fι0,ψ0
= 1. By Theorem 2.20, a neighborhood of

([ι0],ψ0) ∈ Aβ (P) is given by ob
−1(0) with ob a smooth map satisfying

ob(t ,δ ) = λt + cδ 2 + higher order terms.

For a generic 1–parameter family we will have λ, c , 0. For simplicity, let us assume that λ = c = 1.

In this situation for −1 ≪ t < 0, there are two associative submanifolds [ι±t : P → Y ] with respect

toψt near [ι0]. As t tends to 0, [ι±t ] tends to [ι0]. For t > 0 there are no associatives near [ι0]. This
means that nβ (ϕ) as defined in (2.28) changes by −2 as t passes through 0.

The origin of this problem is that Aβ (ψ ) should be an oriented manifold and we should count

associative immersions [ι] ∈ Aβ (ψ ) with signs ε([ι],ψ ) ∈ {±1}. These signs should be such that if

{ιt : P → Y : t ∈ [0, 1]} is a 1–parameter family of associative immersions along a 1–parameter

family of closed, definite 4–forms, then

(2.30) ε([ι1],ψ1) = (−1)SF(Fιt ,ψt :t ∈[0,1]) · ε([ι0],ψ0).

In the above situation we have

ε([ι+t ],ψt ) = −ε([ι−t ],ψt ).

11



Therefore, nβ (ψ ) will be be invariant as t passes though 0 if we interpret # as as signed count, that

is,

(2.31) nβ (ψ ) B
∑

[ι]∈Aβ (ψ )

ε([ι],ψ )

with some choice of ε satisfying (2.30). An almost canonical method for determining ε was recently
discovered by Joyce [Joy17, Section 3]. We refer the reader to Joyce’s article for a careful and

detailed discussion.

[ι+]
+

[ι−]
−

[ι0]

ψt

Figure 1: Two associatives submanifold with opposite signs annihilating in an obstructed associative

submanifold.

3 Intersections, T 2–singularities, and the Seiberg–Witten invariant

In what follows we describe in more detail transitions (1) and (2) from Section 1, and explain why

they spoil the deformation invariance of nβ (ψ ). We then argue that the Seiberg–Witten equation

on 3–manifolds might play a role in repairing the deformation invariance. There is, however, a

price to pay: one has to give up on defining a numerical invariant and instead work with more

complicated algebraic objects: chain complexes and homology groups.

3.1 Intersecting associative submanifolds

Let (ψt )t ∈(−T ,T ) be a 1–parameter family of closed, tamed, definite 4–forms on Y and let (ιt : P →

Y )t ∈(−T ,T ) be a 1–parameter family of somewhere injective unobstructed associative immersions.

By Proposition 2.23, if (ψt ) is generic, then we can assume that ιt is an embedding for all t , 0 and ι0
has a unique self-intersection as in Proposition 2.23(2b). This intersection is locally modeled on the

intersection of two transverse associative subspaces of R7
. Given any pair of transverse associative

subspaces of R7
, there is a smooth associative submanifold asymptotic to these subspaces at infinity,

called the Lawlor neck. Nordström proved that out of the unique self-intersection of ι0 a new
1–parameter family of associative submanifolds is created in Y by gluing in a Lawlor neck.

12



Theorem 3.1 (Nordström [Nor13]). Let Y be a compact 7–manifold and let (ψt )t ∈(−T ,T ) be a family
of closed, definite 4–forms on Y . Let P be a compact, oriented 3–manifold. Suppose that (ιt : P →

Y )t ∈(−T ,T ) is a 1–parameter family of unobstructed associative immersions such that

P B
⋃

t ∈(−T ,T )

{t} × ιt (P) ⊂ R × Y

has a unique self-intersection which occurs for t = 0 and is transverse. Let x± denote the preimages in
P of the intersection in Y and denote by P ♯ the connected sum of P at x+ and x−.

There is a constant ε0 > 0, a continuous function t : [0, ε0] → (−T ,T ), and a 1–parameter family
of immersions (ι♯ε : P ♯ → Y )ε ∈(0,ε0] such that, for each ε ∈ (0, ε0], ι

♯
ε is an unobstructed associative

immersion with respect toψt (ε ). Moreover, as ε tends to zero the images of ι♯ε converge to the image of
ι0 in the sense of integral currents.

Remark 3.2. The paper [Nor13] has not yet been made available to a wider audience. A part of what

goes into proving Theorem 3.1 can be found in [Joy17, Section 4.2]. There it is also argued that for

a generic choice of (ψt )t ∈(−T ,T ) the function t is expected to be of the form t(ε) = δε +O(ε2) with

a non-zero coefficient δ whose geometric meaning is also explained therein.

Remark 3.3. Denote by P1, . . . , Pn the connected components of P . Let j± be such that x± ∈ Pj± .
We have

P ♯ �

{∐
j,j± Pj ⊔ (Pj+♯Pj−) for j+ , j− and∐
j,j+ Pj ⊔ (Pj+♯S

1 × S2) for j+ = j−.

[ιt ]
±

[ι♯ε ]±
ψt

Figure 2: An associative being born out of an intersection another associative.

In the situation described in Theorem 3.1 and depicted in Figure 2, nβ (ψt ) as defined in (2.31)

changes by ±1 as t crosses 0. In particular, nβ is not invariant.

3.2 Associative submanifolds with T 2–singularities

Suppose that P̂ is an associative submanifold in (Y ,ψ0) with a point singularity at x ∈ P̂ modelled

on the following cone over T 2
:

L̂ =
{
(0, z1, z2, z3) ∈ R ⊕ C3

: |z1 |
2 = |z2 |

2 = |z3 |
2, z1z2z3 ∈ [0,∞) ∈ C

}
=

{
r · (0, eiθ1 , eiθ2 , e−iθ1−iθ2) : r ∈ [0,∞),θ1,θ2 ∈ S1

}
.
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For a more formal discussion we refer the reader to Joyce [Joy17, Section 5.2]. There, in particular,

it is argued by analogy with the case of special Lagrangians that such singular associatives should

be described by a Fredholm theory of index −1. That is: we should expect them not to exist for a

generic choice ofψ but to appear along generic 1–parameter families (ψt ).
The singularity model L̂ can be resolved in 3 ways:

L1

λ =
{
(0, z1, z2, z3) ∈ R ⊕ C3

: |z1 |
2 − λ = |z2 |

2 = |z3 |
2, z1z2z3 ∈ [0,∞) ∈ C

}
,

L2

λ =
{
(0, z1, z2, z3) ∈ R ⊕ C3

: |z1 |
2 = |z2 |

2 − λ = |z3 |
2, z1z2z3 ∈ [0,∞) ∈ C

}
, and

L3

λ =
{
(0, z1, z2, z3) ∈ R ⊕ C3

: |z1 |
2 = |z2 |

2 = |z3 |
2 − λ, z1z2z3 ∈ [0,∞) ∈ C

}
.

These are asymptotic to L̂ at infinity and smooth, which can be seen by identifying Liλ with
S1 × C via

S1 × C → L1

λ , (eiθ , z) ↦→
(
0, eiθ

√
|z |2 + λ, z, e−iθ z̄

)
,

S1 × C → L2

λ , (eiθ , z) ↦→
(
0, e−iθ z̄, eiθ

√
|z |2 + λ, z

)
, and

S1 × C → L3

λ , (eiθ , z) ↦→
(
0, z, e−iθ z̄, eiθ

√
|z |2 + λ

)
.

(3.4)

Topologically, Liλ can be obtained from L̂ via Dehn surgery.

Definition 3.5. Let P◦
be a 3–manifold with

¯∂P◦ = T 2
. Let µ be a simple closed curve in T 2

. The

Dehn filling of P◦
along µ, denoted by P◦

µ , is the 3–manifold obtained by attaching S1 ×D to P◦
in

such a way that {∗} × S1
is identified with µ.

Remark 3.6. Up to diffeomorphism, P◦
µ depends only on the homotopy class of µ ⊂ T 2

; moreover,

it does not depend on the orientation of µ.

We can identify the boundary of L̂◦ B L̂\B1 with T
2
via

(eiθ1 , eiθ2) ↦→
1

√
3

(
0, eiθ1 , eiθ2 , e−iθ1−iθ2

)
.

Comparing the maps introduced in (3.4) restricted to {∗} × S1
with the above identification, we

see that Liλ is obtained by Dehn filling L̂◦ along loops representing the homology classes

(3.7) µ1 = (0, 1), µ2 = (−1, 0), and µ3 = (1,−1)

where (1, 0) and (0, 1) are the generators of H1(T
2,Z) corresponding to the loops θ ↦→ (eiθ , 0) and

θ ↦→ (0, eiθ ).
We expect that P̂ can be resolved in three ways as well.

Conjecture 3.8 (cf. Joyce [Joy17, Conjecture 5.3]). Let (ψt )t ∈(−T ,T ) be a 1–parameter family of closed,
tamed, definite 4–forms on Y . Let P̂ be an unobstructed singular associative submanifold in (Y ,ψ0)
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with a unique singularity at x which is modeled on L̂. Associated to this data there are constants
δ1,δ2,γ ∈ R. For a generic 1–parameter family (ψt )t ∈(−T ,T ), δ1 , 0, δ2 , 0, δ1 , δ2 and γ , 0. If
this holds, then there is ε0 > 0 and, for i = 1, 2, 3, there are functions ti : [0, ε0] → (−T ,T ), compact,
oriented 3–manifolds P i , and 1–parameter families of immersions (ιiε : P i → Y )ε ∈(0,ε0] such that:

1. ιiε is an unobstructed associative immersion with respect toψti (ε ).

2. ιiε (P
i ) is close to P̂ away from x and close to Liε near x .

3. P i is diffeomorphic to the manifold obtained by Dehn filling P̂◦ = P̂\Bσ (x) along µi where
µi ∈ H1(∂P̂

◦) = H1(T
2) is as in (3.7).

4. We have

t1(ε) = −
δ2

γ
ε +O(ε2), t2(ε) =

δ1

γ
ε +O(ε2),

and t3(ε) =
δ2 − δ1

γ
ε +O(ε2).

[ι1]
±

[ι2]
±

[ι3]
±

P̂

ψt

Figure 3: Three associatives emerging out of a singular associative for δ2 > δ1 > 0.

In the situation described in Conjecture 3.8 and depicted in Figure 3, nβ (ψt ) as defined in (2.31)

changes as t crosses 0. Again, the occurrence of the phenomenon described above would preclude

nβ from being a deformation invariant.

3.3 The Seiberg–Witten invariant of 3–manifolds

If there were a topological invariant w(P) ∈ Z defined for every compact, oriented 3–manifold

and satisfying

w(P1♯P2) = 0 and

ε1w(P◦
µ1

) + ε2w(P◦
µ2

) + ε3w(P◦
µ3

) = 0

(3.9)

with µ1, µ2, µ3 as in (3.7) and some choice of ε1, ε2, ε3 ∈ {±1}, then

(3.10) nβ (ψ ) B
∑

[ι]∈Aβ (ψ )

ε([ι],ψ )w(P)
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would be invariant along the transition discussed in Section 3.1 and also along the transition

discussed in Section 3.2 provided the signs work out correctly.

It is easy to see that the only such invariant defined for all 3–manifolds is trivial sincew(P) =
w(P♯S3) = 0 for all oriented 3–manifolds P . However, for those 3–manifolds P for which b1(Pj ) > 1

for all connected components Pj , there are non-trivial invariants satisfying (3.9). One example of

such an invariant is the Seiberg–Witten invariant SW(P). We refer the reader to [MT96, Section

2] for a detailed discussion of the construction of SW(P). For the moment, it shall suffice to think

of SW(P) as the signed count of all gauge-equivalence classes of solutions to the Seiberg–Witten

equation; that is, pairs of (Ψ,A) ∈ Γ(W ) ×A(det(W )) satisfying

/DAΨ = 0 and

1

2

FA = µ(Ψ).
(3.11)

Here W is the spinor bundle of a spin
c
structure w on P , /DA is the twisted Dirac operator,

and µ(Ψ) = ΨΨ∗ − 1

2
|Ψ|2 idW is identified with an imaginary-valued 2–form using the Clifford

multiplication.

Remark 3.12. The actual definition of SW(P) involves perturbing (3.11) by a closed 2–form η in

order to ensure that the moduli space of solutions is cut-out transversely and contains no reducible

solutions. The necessity to choose η and the fact that H 2(P ,Z) has codimension b1(P) in H 2(P ,R),
where the cohomology class of η lies, is responsible for the restriction b1(P) > 1.

Remark 3.13. SW(P) has a refinement SW(P) defined for oriented 3–manifolds P with b1(P) > 0;

roughly speaking, it is an integer-valued function on the set of the isomorphism classes of spin
c

structures w on P . When b1 > 1, it is zero for all but finitely many w and we can take SW(P) to be

the sum of the invariants over all spin
c
structures. We come back to this point in Section 7.2.

Theorem 3.14 (Meng and Taubes [MT96, Proposition 4.1]). If P1, P2 are two compact, connected,
oriented 3–manifolds with b1(Pi ) ⩾ 1, then

SW(P1♯P2) = 0.

Theorem 3.15 (Meng and Taubes [MT96, Theorem 5.3]). Let P◦ be a compact, connected, oriented
3–manifold with ∂P◦ = T 2. If µ1, µ2, µ3 ∈ H1(∂P

◦) are such that

µ1 · µ2 = µ2 · µ3 = µ3 · µ1 = −1

(with T 2 = ∂P◦ oriented as the boundary of P◦), then

ε1 · SW(P◦
µ1

) + ε2 · SW(P◦
µ2

) + ε3 · SW(P◦
µ3

) = 0

for suitable choices of ε1, ε2, ε3 ∈ {±1}, provided b1(P
◦
µi ) > 1 for all i = 1, 2, 3.
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Remark 3.16. The formulation of [MT96, Theorem 5.3] is in terms of p/q–surgery on a link L
which is rationally trivial in homology. The discussion in [KM07, Section 42.1] explains how this

is related to Dehn filling, and from this it is clear that the surgery formula given by Meng and

Taubes implies the above theorem.

Remark 3.17. The Seiberg–Witten invariant is often defined only for compact, connected, oriented

3–manifolds P . If P has connected components P1, . . . , Pm , then SW(P) B
∏m

j=1
SW(Pj ).

Let us temporarily assume that all associative immersions ι : P → Y with ι∗[P] = β happen

to be such that all connected components Pj satisfy b1(Pj ) > 1. If we defined nβ by (3.10) with

the weight w = SW, then nβ would be invariant in the situations described in Section 3.1 and

Section 3.2, at least if the signs work out correctly, or modulo 2. Defining nβ in this way really

amounts to counting a much larger moduli space than Aβ (ψ ), namely:

A
SW

β (ψ ) =
∐
P

∐
w

A
SW

P,β,w(ψ )

with

A
SW

P,β,w(ψ ) B

⎧⎪⎪⎨⎪⎪⎩(ι,Ψ,A) ∈ Immβ (P ,Y ) × Γ(W ) ×A(detW ) :

ι satisfies (2.9) and
(Ψ,A) satisfies (3.11)
with respect to ι∗дψ

⎫⎪⎪⎬⎪⎪⎭
Diff+(P) ⋉C∞(P ,U(1)).

Here w ranges over all isomorphism classes of spin
c
structures on P andW denotes the spinor

bundle. The non-invariance of nβ as defined in (2.31) can be traced back to the completion of

Aβ ({ψt }) not being a 1–manifold. The moduli space ASW

β ({ψt }) smooths out the singularities in

the completion of Aβ ({ψt }) encountered in the situations described in Section 3.1 and Section 3.2;

see Figure 4.

[ι1, Ψ1,1, A1,1]

[ι2, Ψ2,1, A2,1]

[ι1, Ψ1,2, A1,2]

[ι2, Ψ2,2, A2,2]

[ι1, Ψ1,3, A1,3]

[ι3, Ψ3, A3]

ψt

Figure 4: An example of how counting with Seiberg–Witten solutions can smooth out the situation

depicted in Figure 3.

To sum up: the issue with defining a topological invariant w(P) ∈ Z with the properties

described in (3.9) means that there is indeed no invariant nβ (ψ ) ∈ Z defined by a formula of the

form (3.10). If it happens that for all associatives with ι∗[P] = β all connected components Pj satisfy
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b1(Pj ) > 1, then the invariance of nβ (ψ ) can be rescued by settingw(P) = SW(P). Unfortunately,
there is no reason to believe that this holds for any reasonable class of closed, tamed, definite 4–

formsψ or choice of β . (The situation is somewhat better for associatives arising from holomorphic

curves in Calabi–Yau 3–folds. We discuss this case in Section 7.) However, Seiberg–Witten theory

of 3–manifolds suggests an alternative approach to defining an invariant of G2–manifolds.

3.4 A putative Floer theory

Although there is no topological invariantw(P) ∈ Z defined for all closed, oriented 3–manifolds,

satisfying the properties described in (3.9), there are Seiberg–Witten–Floer homology theories

satisfying analogues of (3.9), see Marcolli andWang [MW01], Manolescu [Man03], Kronheimer and

Mrowka [KM07], and Frøyshov [Frø10]. We focus on one of the variants defined by Kronheimer

and Mrowka. To each closed, oriented 3–manifold P they assign a homology group

ĤM(P) = H
(
ĈM(P ,♣), ˆ∂

)
.

Very roughly, the chain complexes ĈM(P ,♣) are the C∞(P ,U(1))–equivariant Morse complexes of

the Chern–Simons–Dirac functional CSD : Γ(W ) ×A(detW ) → R defined by

(3.18) CSD(Ψ,A) =
1

2

ˆ
P
(A −A0) ∧ FA +

ˆ
P

⟨
/DAΨ,Ψ

⟩
vol

on the configuration space

C(P) =
∐
w

C(P ,w) with C(P ,w) = Γ(W ) ×A(detW ).

(The fact that C∞(P ,U(1)) does not act freely is a significant problem, which Kronheimer and

Mrowka resolve by blowing up C(P) to a manifold with boundary and defining corresponding

Morse complexes adapted to this situation.) The chain complexes ĈM(P ,♣) depend on choices

of additional data ♣, in particular, a Riemannian metric on P as well as the choice of a suitable

perturbation of the equation). Different choices of ♣, however, lead to quasi-isomorphic chain

complexes. We denote by ĈM(P) quasi-isomorphism class of ĈM(P ,♣), or rather its isomorphism

class in the derived category of chain complexes. If Q is a 4–dimensional cobordism with ∂Q =
P1 − P2, then Kronheimer and Mrowka define an induced chain map

ĈM(Q) : ĈM(P1) → ĈM(P2).

If Q = [0, 1] × P , then ĈM(Q) is simply the differential
ˆ∂ on ĈM(P). The construction of ĤM

involves a choice of coefficients. For the upcoming results to hold one needs to work with Z2

coefficients (or suitable local systems). The monopole homology groups are then Z2JU K–modules.

Here one should thinkU as the sameU as in H •(BU(1)) = Z[U ].

The following results are the analogues of the vanishing result from Theorem 3.14 and the

surgery formula from Theorem 3.15.
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Theorem 3.19 (Bloom, Mrowka, and Ozsváth [BMO]; Lin [Lin15, Theorem 5]). Let P+ and P− be
two compact, connected, oriented 3–manifolds. Denote by P+♯P− their connected sum and by Q the
surgery cobordism from P+ ⊔ P− to P+♯P−. Then there is an exact triangle4

ĈM(P+ ⊔ P−)
ĈM(Q )
−−−−−→ ĈM(P+♯P−) → ĈM(P+ ⊔ P−) → ĈM(P+ ⊔ P−)[−1];

in particular,

(3.20) ĤM(P+ ⊔ P−)) � H
(
cone

(
ĈM(P+ ⊔ P−)

ĈM(Q )
−−−−−→ ĈM(P+♯P−)

) )
.

Remark 3.21. In [Lin15, Theorem 5], Theorem 3.19 is stated and proved as an isomorphism

ĤM(P+♯P−) � H
(
cone

(
ĈM(P+) ⊗ ĈM(P−)[1]

id⊗U+U ⊗id

−−−−−−−−−→ ĈM(P+) ⊗ ĈM(P−)
) )

induced by the cobordism Q . This formulation is much more useful for actual computations of

ĤM(P+♯P−), but we need (3.20) for our purposes. The equivalence of these statements follows by

observing that once we identify

ĈM(P+ ⊔ P−) = ĈM(P+) ⊗ ĈM(P−)

the map ĈM(P+ ⊔ P−) → ĈM(P+ ⊔ P−)[−1] is given by id ⊗ U +U ⊗ id and rotating the above

exact triangle.

Remark 3.22. More generally, if P ♯
is obtained by performing a connected sum at two points x± in

P and Q denotes the surgery cobordism from P to P ♯
, then we expect there to be an exact triangle

ĈM(P)
ĈM(Q )
−−−−−→ ĈM(P ♯) → ĈM(P) → ĈM(P)[−1].

Theorem 3.19 asserts that this is holds if the points x± lie in different connected components of P .

Theorem 3.23 (Kronheimer, Mrowka, Ozsváth, and Szabó [KMOS07, Theorem 2.4]; see also

[KM07, Theorem 42.2.1]). Let P◦ be a compact, connected, oriented 3–manifold with ∂P◦ = T 2. Let
µ1, µ2, µ3 ∈ H1(∂P

◦) be such that

µ1 · µ2 = µ2 · µ3 = µ3 · µ1 = −1

(withT 2 = ∂P◦ oriented as the boundary of P◦.) Denote byQi j the surgery cobordism from P◦
µi to P

◦
µ j .

There is an exact triangle

ĈM(P◦
µ2

)
ĈM(Q23)
−−−−−−→ ĈM(P◦

µ3

) → ĈM(P◦
µ1

) → ĈM(P◦
µ2

)[−1];

in particular,

(3.24) ĤM(P◦
µ1

) � H
(
cone

(
ĈM(P◦

µ2

)
ĈM(Q23)
−−−−−−→ ĈM(P◦

µ3

)
) )
.

4We use square brackets to denote the translation C[p]n = Cp+n , see [Wei94, Translation 1.2.8].
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Remark 3.25. While Theorem 3.23 holds for all three version of monopole homology defined by

Kronheimer and Mrowka, Theorem 3.19 only holds form ĤM; see [Lin15, paragraph after (13)].

This is why we restricted ourselves to this version from the outset.

Associative submanifolds are critical points of the functional L defined in Proposition 2.16.

Gradient flow lines of the functionalL can naturally be identified with immersions ι : R×P → R×Y
such that

ι∗(ψ + dt ∧ ϕ) = volι∗д

and πR ◦ ι(t ,x) = t ; see, e.g., [SW17, Lemma 12.6].

Definition 3.26. Let ι± : P± → Y be associative immersionswith respect toψ . ACayley cobordism
in R × Y from ι− to ι+ is an oriented 4–manifold Q together with an immersion ι : Q → R × Y
such that

ι∗(ψ + dt ∧ ϕ) = volι∗д

and there are two open subsetsU± ⊂ Q such that Q\(U+ ∪U−) is compact, constants T± and c > 0,

and diffeomorphisms ϕ+ : (T+,∞) × P+ → U+ and ϕ− : (−∞,T−) × P− → U− such that

dist(ι ◦ ϕ±(t ,x), (t , ι
±(x))) = O(e−c |t |) as t → ±∞.

The truncation of a Cayley cobordism is (the diffeomorphism type of)

Q̄ B Q\ (ϕ−(−∞,T− − 1) ∪ ϕ+(T+ + 1,∞)) .

The functorial behavior of Seiberg–Witten Floer homology groups under cobordisms leads to

the following questions about the existence of Cayley cobordisms.

Question 3.27. In the situation of Theorem 3.1, does there exist a Cayley cobordism ι : Q → R×Y

from ιt (ε ) to ι
♯
ε , for all ε ∈ (0, ε0), whose truncation Q̄ is the surgery cobordism from P to P ♯

?

Question 3.28. In the situation of Conjecture 3.8, if δ2 > δ1 > 0, does there exist a Cayley

cobordism ι : Q → R × Y from ι2t to ι
3

t with Q̄ being the surgery cobordism from P◦
µ2

to P◦
µ3

for

each t ∈ (0,T )? (Similarly for the cases δ1 > δ2 > 0, δ2 < δ1 < 0, and δ1 < δ2 < 0.)

We hope that the answer to these questions is yes. For the sake of argument, let us assume

that this is indeed the case. Define

(3.29) CMAβ (ψ ) B
⨁
P

⨁
[ι]∈AP,β (ψ )

CMAβ,[ι](ψ ) with CMAβ,[ι](ψ ) B ĈM(P)

and define a differential on CMAβ (ψ ) by declaring(
∂ : CMAβ,[ι−](ψ ) → CMAβ,[ι+](ψ )

)
B

∑
[ι]

ĈM(Q̄)
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where [ι : Q → R × Y ] ranges over all equivalence classes of Cayley cobordisms from [ι−] to [ι+].
Since ĈM([0, 1] × P) is just the differential ˆ∂ on ĈM(P), in the situation of Theorem 3.1 with

δ > 0 as in Remark 3.2 (and assuming that there no other Cayley cobordism involving [ιt ] or [ι
♯
t ]),

for t < 0, the chain complex CMAβ (ψt ) contains the contribution

CMA
×
β (ψt ) = ĈM(P) with ∂ = ˆ∂;

for t > 0 this changes to

CMA
×
β (ψt ) = ĈM(P) ⊕ ĈM(P ♯) with ∂ =

(
ˆ∂ 0

ĈM(Q) ˆ∂

)
with Q the surgery cobordism from P to P ♯

. The latter is simply the mapping cone

cone

(
ĈM(P)

ĈM(Q )
−−−−−→ ĈM(P ♯)

)
.

Therefore, it follows from Theorem 3.19, that the homology group

H (CMA
×
β (ψt ), ∂)

does not change as t passes through zero. Similarly, in the situation of Conjecture 3.8, by The-

orem 3.23, the relevant contribution to H (CMAβ (ψt ), ∂) does not change as t passes through
zero.

To conclude: while there seem to be no way of making the weighted count of associatives

nβ (ψ ) invariant under transitions (1) and (2) described in Section 1, we conjecture that a more

refined object, the homology group H (CMA
×
β (ψ )) is invariant under both of these transitions.

4 Multiple covers of associative submanifolds

A further problem with counting associatives arises from multiple covers; namely, transition (3)

from Section 1. This section is concerned with describing the nature of this phenomenon and its

consequences for counting associative submanifolds. In the following we explain how this issue

might be rectified using the ADHM Seiberg–Witten equations, in a similar way that the issues

described in the previous sections were dealt with using the classical Seiberg–Witten equation.

We have already established that, most likely, one cannot guarantee the number nβ (ψ ), or
some other weighted count of associatives, to be invariant under deformations. However, the

problem with multiple covers is independent of the phenomena discussed earlier. Thus, for the

sake of simplicity we will only discuss how multiple covers affect nβ (ψ ) rather than the homology

group H (CMA
×
β (ψ )); see also Remark 4.8 below.
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4.1 Collapsing of immersions of multiple covers

Consider the following situation. Let ι0 : P → Y be an associative immersion with respect to

ψ0 ∈ D4

c (Y ) and with (ι0)∗[P] = β ∈ H3(Y ). Let π : P̃ → P be an orientation preserving k–fold
unbranched normal cover with deck transformation group Aut(π ). The composition

κ0 B ι0 ◦ π : P̃ → Y

is an associative immersion with

(κ0)∗[P̃] = k · β and Aut(π ) ⊂ Aut(κ0).

Suppose that [ι0] is unobstructed but

ker Fκ0
= R⟨n⟩ ⊂ Γ(Nκ0).

We expect that this situation can arise along generic paths (ψt )t ∈(−T ,T ) in D4

c (Y ). A neighborhood

of ([κ0],ψ0) in the 1–parameter family of moduli spaces

⋃
t Mk ·β (ψt ) can be analyzed using

Theorem 2.20.

The stabilizer of κ0 plays an important role in this analysis. Since Aut(κ0) acts on Nκ0 and Fκ0
is

Aut(κ0)–equivariant, Aut(κ0) acts on ker Fκ0
. This yields a homomorphism sign : Aut(κ0) → {±1}

such that

(4.1) f · n = sign(f )n

for all f ∈ Aut(κ0). The homomorphism sign must be non-trivial, for otherwise n would be

Aut(π )–invariant and descend to a non-trivial element of ker Fι0 .
To summarize, κ0 : P → Y is an associative immersion with respect toψ0 ∈ D4

c (Y ) such that:

1. Aut(κ0) is non-trivial,

2. [κ0] is obstructed; more precisely: ker Fκ0
= R⟨n⟩, and

3. the homomorphism sign : Aut(κ0) → {±1} defined by (4.1) is non-trivial.

In this situation, if (ψt )t ∈(−T ,T ) is generic, then the obstruction map ob from Theorem 2.20, whose

zero set models a neighborhood of ([κ0],ψ0) in
⋃

t Mk ·β (ψt ), will be of the form

ob(t ,δ ) = λtδ + cδ 3 + higher order terms.

We can assume that λ = c = 1. Ignoring the higher order terms, ob
−1(0) consists of the line {δ = 0}

and the parabola {t + δ 2 = 0}. Since [ι0] is unobstructed, for each |t | ≪ 1, there is an associative

immersion ιt : P → Y with respect toψt near ι0. The line {δ = 0} corresponds to the unobstructed

associative immersions [κt ] B [ιt ◦ π ] for |t | ≪ 1. By Theorem 2.20, for each −1 ≪ t < 0 there

are also associative immersions [κ±t : P̃ → Y ] with respect toψt near [κ0]. These correspond to
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the two branches of the parabola {t + δ 2 = 0}. As t tends to 0, [κ±t ] tends to [κ0]; and Aut(κ±t ) is
the stabilizer of n in Aut(κ0). Since sign : Aut(κ0) → {±1} is non-trivial, there is an f ∈ Aut(κ0)

such that

f∗n = −n.

Therefore, κ+t and κ−t differ by a diffeomorphism of P̃ and give rise to the same element in the

moduli space of associatives:

[ι̃t ] B [κ+t ] = [κ−t ].

Thus, the neighborhood ob
−1(0)/Aut(κ0) of ([κ0],ψ0) in

⋃
t Mk ·β (ψt ) is homeomorphic to the

figure depicted in Figure 5. Consequently, nk ·β (ψt ) as in (3.10) with the weightw = SW changes

by ±SW(P̃) as t crosses zero. Similarly, if one were to adopt the approach described in Section 3.4,

part of the chain complex CMAk ·β (ψt ) would disappear as t crosses zero.

[ι̃]

[κ]

ψt

Figure 5: A family of associative immersions collapsing to a multiple cover.

4.2 Counting orbifolds points

The standard way to deal with the issue of multiple covers is to count the immersions [κ] and [ι̃]
described before as orbifold points in the moduli space; that is, to define

(4.2) nβ (ψ ) B
∑

[ι]∈Mβ (ψ )

ε([ι],ψ )w(P)

|Aut(ι)|
.

Since [κ0] is obstructed, more precisely, since the Fueter operator associated with κ0 has a 1–

dimensional kernel, (2.30) implies that the sign ε([κt ],ψt ) ∈ {±1} flips as t passes through 0.

Moreover,

Aut(ι̃) = ker sign ⊂ Aut(κ),

where sign : Aut(κ0) → {±1} is the homomorphism introduced above, and thus

|Aut(κ)| = 2 · |Aut(ι̃)|.

Consequently, for 0 < t ≪ 1, we have

ε([κ−t ],ψ−t )w(P̃)

|Aut(κ−t )|
+
ε([ι̃−t ],ψ−t )w(P̃)

|Aut(ι̃)|
=
ε([κ+t ],ψ+t )w(P̃)

|Aut(κ+t )|
∈ Q.
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This works well for unbranched covers, but we believe that similar situations can occur

with branched covers π : P̃ → P . If π is a branched cover (with non-empty branching locus),

then κ B ι ◦ π is not an immersion and thus the theory from Section 2 does not apply. What

exactly replaces this theory is unclear to us; the work of Smith [Smi11] might be a starting point.

Nevertheless, one would need to count [κ] to be able to compensate the jump. The crucial point is

that, for any given 3–manifold P and k ∈ N, infinitely many diffeomorphism types of 3–manifolds

might be realized as k–fold branched covers of P . This is illustrated by the following result.

Theorem 4.3 (Hilden [Hil74; Hil76] and Montesinos [Mon74]). Every compact, connected, orientable
3–manifold is a 3–fold branched cover of S3.

Therefore, if ι : S3 → Y is an associative immersion in (Y ,ψ ), then, for every compact, con-

nected, oriented 3–manifold P̃ , there is a 3–fold branched cover π : P̃ → P , and [ι ◦ π ] would have
to contribute to (4.2). This would lead to an infinite contribution from branched covers.

4.3 Counting embeddings with multiplicty

We believe that the origin of the problem is that all the associative submanifolds [ι ◦ π ] represent
the same geometric object, namely, “k times im(ι)”. Instead of trying to count immersions and their

compositions with branched covers with weights, we should count embeddings with multiplicity.

Embeddings with with multiplicity one should be weighted by the Seiberg–Wittten invariant, as

in Section 3.3 or Section 3.4. Below we briefly outline an approach for defining the weights with

which to count embeddings with multiplicity k larger than one. More details are given in Section 5

and Section 6.

Remark 4.4. Our approach should be compared with holomorphic curve counting via Donaldson–

Thomas/Pandharipande–Thomas theory in algebraic geometry where one counts embedded sub-

schemes, including contributions from thickened subschemes, rather than images of maps. We

elaborate on the relationship of this approach with Pandharipande–Thomas theory in Section 7.

To set the stage, let us go back to the situation described at the beginning of this section; that

is, we have an unobstructed associative embedding ι : P → Y and an orientation preserving k–fold
unbranched cover π : P̃ → P such that

κ B ι ◦ π : P̃ → Y

is an obstructed associative immersion with dim ker Fκ = 1. Denote by ι̃ : P̃ → Y the associative

immersion which is the deformation of κ that does not come from deforming ι. (For simplicity’s

sake, we dropped the subscripts t from the notation.) Consider the bundle of stratified spaces

Sym
k Nι B SO(Nι) ×SO(4) Sym

k H = (Nι)k/Sk .

Here H = R4
is the space of quaternions and Sk is the symmetric group on k elements. To every

normal vector field n ∈ Γ(Nκ) we assign a corresponding section ñ ∈ Γ(Sym
k Nι) defined by

ñ(x) B [n(x̃1), . . . ,n(x̃k )]
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with x̃1, . . . , x̃k denoting the preimages of x with multiplicity. Given such a section ñ ∈ Γ(Sym
k Nι),

set

Pñ B {(x ,v) ∈ Nι : v ∈ ñ(x)}.

If n ∈ Γ(Nκ) is a normal vector field spanning ker Fκ , then Pñ is a model for im(ι̃). In particular,

im(ι̃) and Pñ are diffeomorphic in case they are smooth, which we conjecture be true generically if

π is unbranched.

We can decompose im(ι̃) into components P1, . . . , Pm such that P j is an ℓj–fold cover of P and,

for each x̃ ∈ P j corresponding to (x ,v) ∈ Pñ , v appears in ñ(x) with multiplicity kj . Geometrically,

[ι̃] represents

(4.5) k1 · P
1 + · · · + km · Pm .

Clearly, we have

(4.6)

m∑
j=1

ℓjkj = k .

Henceforth, let us assume that im(ι̃) is smooth. In the simplest case, we havem = 1 and k1 = k .
In this case, ñ is a section of

Sym
k
reg

Nι B
{
(x , [v1, . . . ,vk ]) ∈ Sym

k Nι : v1, . . . ,vk are pairwise distinct

}
,

the top stratum of Sym
k Nι. In general, ñ will be a section of a stratum

Sym
k
λ Nι ⊂ Sym

k Nι

determined by λ, the partition of the natural number k given by (4.6). Each of the strata Sym
k
λ Nι

is a smooth fibre bundle, which is naturally equipped with a connection ∇ and and a Clifford

multiplication γ on its vertical tangent bundle V Sym
k
λ Nι. These can be used to define a Fueter

operator, which assigns to each section ñ ∈ Γ(Sym
k
λ Nι) an element

Fñ ∈ Γ(ñ∗V Sym
k
λ Nι).

The condition that n ∈ Γ(Nκ) is in the kernel of Fκ means that

Fñ B γ (∇ñ) = 0;

that is, ñ is a Fueter section of Sym
k
λ Nι.

The above discussion show that what causes k1 · P
1 + · · · + km · Pm to collapse to k · im(ι̃) is

precisely a Fueter section ñ of Sym
k
λ Nι. For simplicity, let us specialize to the casem = 1 and

k1 = k ; that is:

• for t < 0 there are two embedded associative submanifolds of interest, namely, [ι̃t : P̃ → Y ]
and [ιt : P → Y ];
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• as t tends to zero, ι̃t converges to the associative immersion κ, the k–fold covering of ι0, and
then ceases to exist; and

• for t > 0 we only have the embedded associative submanifold [ιt : P → Y ].

Extending the approach of Section 3.3, we would like to define weightsw such that

(4.7) w(P̃ ,ψ−t ) +w(k · P ,ψ−t ) = w(k · P ,ψ+t )

for 0 < t ≪ 1. From the discussion in Section 3.3 we learn thatw(P̃ ,ψt ) should be ε(P̃ ,ψ−t ) · SW(P̃)
with ε(P ,ψ−t ) ∈ {±1} as in Section 2.7 and SW(P̃) ∈ Z being the Seiberg–Witten invariant of P̃ .
Thus (4.7) means that the weightw(k · P ,ψt ) must jump by ±SW(P̃) as t passes through zero.

We propose thatw(k ·P ,ψt ) should be defined as the signed count of solutions to the ADHM1,k
Seiberg–Witten equation on P . This is the Seiberg–Witten equation associated with the ADHM

construction of Sym
k H. Unlike in the case of the classical Seiberg–Witten equation, compactness

fails for the ADHM1,k Seiberg–Witten equation. As a consequence, the number of solutions can

jump as the geometric background varies. According to the Haydys correspondence, those jumps

occur precisely when (possibly singular) Fueter sections of Sym
k Nι appear. We will argue that in

the above situation the jumps should be precisely by ±SW(P̃).
The next section is concerned with introducing the ADHM1,k Seiberg–Witten equation, stating

and proving the Haydys correspondence with stabilizers, and formally analyzing the failure of

non-compactness for the ADHM1,k Seiberg–Witten equation. After this discussion we will also

explain what replaces (4.7), in general, and why defining w via the ADHM1,k Seiberg–Witten

equation should be consistent with that.

Remark 4.8. Of course, instead of a weighted count of embedded associatives with multiplicities,

one should really try to define a Floer homology generalizing the discussion in Section 3.4. Such

ADHM1,k Seiberg–Witten–Floer homology groups are yet to be defined. It will become clear

from the discussion in the following sections that these groups could only be expected to yield

topological invariants of 3–manifolds in the case k = 1 (classical Seiberg–Witten–Floer homology).

In general, they will depend on various parameters of the equation such as the Riemannian metric.

Remark 4.9. We believe that this approach is also capable of dealing with branched covers. These

should correspond to singular Fueter sections, that is, sections of Sym
k
λ Nι defined outside a subset

of codimension at most one (which corresponds to the branching locus) and extend a continuous

section of the closure of Sym
k
λ Nι in Sym

k Nι. It is known that singular Fueter sections appear in

the compactifications of moduli spaces of solutions to Seiberg–Witten equations, cf. [DW18].

5 ADHM monopoles and their degenerations

The purpose of this section is to introduce ADHM monopoles and to relate their degenerations to

the phenomenon of collapsing of associatives to multiple covers.
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5.1 The ADHM Seiberg–Witten equations

There is a general construction, summarized in Appendix B, which associates with every quater-

nionic representation of a Lie group a generalization of the Seiberg–Witten equation on 3–

manifolds. In a nutshell, the ADHM Seiberg–Witten equations arise from this construction by

choosing particular quaternionic representations which appear in the famous ADHM construction

of instantons on R4
; see Example B.5. However, below we introduce the ADHM Seiberg–Witten

equations directly, without assuming that the reader is familiar with the general construction.

Definition 5.1. LetM be an oriented Riemannian 3–manifold. Consider the Lie group

Spin
U(k )(n) B (Spin(n) × U(k))/Z2.

A spinU(k ) structure onM is a principal Spin
U(k )(3)–bundle together with an isomorphism

(5.2) w ×
Spin

U(k )(3) SO(3) � SO(TM).

The spinor bundle and the adjoint bundle associated with a spin
U(k )

structure w are

W B w ×
Spin

U(k )(3) H ⊗C Ck
and gH B w ×

Spin
U(k )(3) u(k)

respectively. The left multiplication by ImH onH⊗Ck
induces aCliffordmultiplicationγ : TM →

End(W ).

A spin connection on w is a connection A inducing the Levi-Civita connection on TM . Asso-

ciated with each spin connection A there is a Dirac operator /DA : Γ(W ) → Γ(W ).

Denote by As (w) the space of spin connections on w, and by Gs (w) the restricted gauge
group, consisting of those gauge transformations which act trivially onTM . Let ϖ : Ad(w) → gH

be the map induced by the projection spinU(k )(3) → u(k).

Definition 5.3. Let M be an oriented 3–manifold. The geometric data needed to formulate the

ADHMr,k Seiberg–Witten equation are:

• a Riemannian metric д,

• a spin
U(k )

structure w,

• a Hermitian vector bundle E of rank r with a fixed trivialization ΛrE = C and an SU(r )–
connection B,

• an oriented Euclidean vector bundle V of rank 4 together with an isomorphism

(5.4) SO(Λ+V ) � SO(TM)

and an SO(4)–connection C on V with respect to which this isomorphism is parallel.
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Remark 5.5. If ι : P → Y is an associative immersion, then the normal bundle V = Nι admits a

natural isomorphism (5.4) by Proposition 2.12 and we can take C to be the connection induced

by the Levi-Civita connection. In this context, the bundle E should be the restriction to P of a

bundle on the ambient G2–manifold and B should be the restriction of a G2–instanton. Soon we

will specialize to the case r = 1, in which E is trivial and B is the trivial connection.

The above data makes both Hom(E,W ) andV ⊗ gH into Clifford bundles overM ; hence, there

are Dirac operators /DA,B : Γ(Hom(E,W )) → Γ(Hom(E,W )) and /DA,C : Γ(V ⊗ g) → Γ(V ⊗ g). The

ADHMr,k Seiberg–Witten equation involves also two quadratic moment maps defined as follows.

If Ψ ∈ Hom(E,W ), then ΨΨ∗ ∈ End(W ). Since Λ2T ∗M ⊗ gH acts onW , there is an adjoint map

(·)0 : End(W ) → Λ2T ∗M ⊗ gH . Define µ : Hom(E,W ) → Λ2T ∗M ⊗ gH by

µ(Ψ) B (ΨΨ∗)0.

If ξ ∈ V ⊗ g, then [ξ ∧ ξ ] ∈ Λ2V ⊗ gH . Denote its projection to Λ+V ⊗ gH by [ξ ∧ ξ ]+. Identifying
Λ+V � Λ2T ∗M via the isomorphism (5.4), we define µ : V ⊗ g→ Λ2T ∗M ⊗ gH by

µ(ξ ) B [ξ ∧ ξ ]+

Definition 5.6. Given a choice of geometric data as in Definition 5.3, theADHMr,k Seiberg–Witten
equation is the following partial differential equation for (Ψ, ξ ,A) ∈ Γ(Hom(E,W )) × Γ(V ⊗ gH) ×

As (w):

/DA,BΨ = 0,

/DA,Cξ = 0, and

ϖFA = µ(Ψ) + µ(ξ ).

(5.7)

A solution of this equation is called an ADHMr,k monopole.

The moduli space of ADHMr,k monopoles might be non-compact. The reason is that the

L2
norm of the pair (Ψ, ξ ) is not a priori bounded and can diverge to infinity for a sequence of

solutions. To understand this phenomenon, one blows-up the equation by multiplying (Ψ, ξ ) by
ε−1

and studies the equation obtained by taking the formal limit ε → 0. This is explained in greater

detail in Appendix B.

Definition 5.8. The limiting ADHMr,k Seiberg–Witten equation the following partial differential

equation for (Ψ, ξ ,A) ∈ Γ(Hom(E,W )) × Γ(V ⊗ gH) ×As (w)

/DA,BΨ = 0,

/DA,Cξ = 0, and

µ(Ψ) + µ(ξ ) = 0.

(5.9)

together with the normalization ∥(Ψ, ξ )∥L2 = 1.
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The ADHMr,k Seiberg–Witten equation (5.7) and the corresponding limiting equation are

preserved by the action of the restricted gauge groupGs (w).

Remark 5.10. Suppose that r = k = 1. A spin
U(1)

structure is simply a spin
c
structure and

ϖFA =
1

2

FdetA.

Also, gH = iR; hence, /DA,C is independent of A and µ(ξ ) = 0. The ADHM1,1 Seiberg–Witten

equation is thus simply

/DAΨ = 0 and

1

2

FdetA = µ(Ψ),

the classical Seiberg–Witten equation (3.11) for (Ψ,A), together with the Dirac equation

/DCξ = 0.

If ι : P → Y is an associative immersion and M = P and V = Nι, then /DC is essentially the

Fueter operator Fι from Definition 2.18. In particular, ξ must vanish if ι is unobstructed. (There is
a variant of (5.7) in which ξ is taken to be a section of V ⊗ g◦

H
with g◦

H
denoting the trace-free

component of gH . For r = k = 1, this equation is identical to the classical Seiberg–Witten equation.

However, working with this equation somewhat complicates the upcoming discussion of the

following sections.)

5.2 The Haydys correspondence for the ADHM1,k Seiberg–Witten equation

In what follows, we specialize to the case r = 1 and analyze solutions of the limiting ADHM1,k
Seiberg–Witten equation (5.9). This will lead to a conjectural compactification of the moduli

space of ADHM1,k monopoles. Our analysis is based on the general framework of the Haydys

correspondence with stabilizers developed in Appendix C. We will also make use of several

algebraic facts proved in Appendix D. It is helpful but not necessary have read the appendices to

understand the results stated in this section.

Assume the situation of Section 5.1; that is: w is a spin
U(k )

structure onM with spinor bundleW
and adjoint bundle gH , and V is a Dirac bundle of rank 4 overM with connection C . The limiting
ADHM1,k Seiberg–Witten equation for a triple (Ψ, ξ ,A) ∈ Γ(W ) × Γ(V ⊗ gH) ×As (w) is

/DAΨ = 0,

/DA,Cξ = 0, and

µ(Ψ) + µ(ξ ) = 0

(5.11)

as well as ∥(Ψ, ξ )∥L2 = 1.

It follows from the third equation that if (Ψ, ξ ,A) is a solution of (5.11), then

1. Ψ = 0, and
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2. ξ induces a section ñ of the bundle Sym
k V overM whose fiber is Sym

k H.

The first statement is the content of Proposition D.4 and the second statement follows from a special

case of the Haydys correspondence discussed in Appendix C, combined with the observation that

Sym
k H is the hyperkähler quotient of the ADHM1,k representation; see TheoremD.2. Furthermore,

the section ñ satisfies the Fueter equation, as explained in Section C.3.

A more difficult part of the Haydys correspondence deals with the converse problem: given

a section ñ of Sym
k V which satisfies the Fueter equation, can we lift it to a solution (Ψ, ξ ,A) of

(5.11)? If yes, what is the space of all such lifts up to the action of the gauge group?

A technical difficulty that one has to overcome is that ñ takes values in the symmetric product

Sym
k H which is not a manifold. Rather, it is a stratified space whose strata correspond to the

partitions of k .

Definition 5.12. A partition of k ∈ N is a non-increasing sequence of non-negative integers

λ = (λ1, λ2, . . .) which sums to k . The length of a partition is

|λ | B min{n ∈ N : λn = 0} − 1.

For every n ∈ N, denote by Sn the permutation group on n elements. With each partition λ we

associate the groups

Gλ B
{
σ ∈ S |λ | : λσ (n) = λn for all n ∈ {1 . . . , |λ |}

}
and the generalized diagonal

∆ |λ | = {v1, . . . ,v |λ | ∈ H |λ |
: vi = vj for some i , j}.

There is an embedding (H |λ |\∆ |λ |)/Gλ ↪→ Sym
k H defined by

[v1, . . . ,v |λ |] ↦→ [v1, . . . ,v1          
λ1 times

, · · · ,v |λ |, . . . ,v |λ |                  
λ |λ | times

].

The image of this inclusion is denoted by Sym
k
λ H.

Each stratum Sym
k
λ H is a smooth manifold. Let us assume that ñ takes values in such a stratum:

ñ ∈ Γ(Sym
k
λ V ),

for some partition λ of k . This is familiar from Section 4.3.

The next result summarizes the Haydys correspondence for solutions of (5.11). On first reading,

the reader might assume that λ = (1, . . . , 1), the partition yielding the top stratum of Sym
k H,

since this simplifies the situation considerably. For j = 1, . . . ,m, denote by kj the j–th largest

positive number appearing in the partition λ and by ℓj the multiplicity with which it appears.
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Proposition 5.13. Given ñ ∈ Γ(Sym
k
λ V ), set

M̃ B {(x ,v) ∈ V : x ∈ M and v ∈ ñ(x)}

and denote by π : M̃ → M by the projection map.

1. The map π is a |λ |–fold unbranched cover ofM . Moreover, we can decompose M̃ into components
M̃1, . . . , M̃m such that πj B π |M̃j

restricts to a ℓj–fold cover on M̃j .

2. There is a natural bijective correspondence between

(a) gauge equivalence classes of solutions (Ψ, ξ ,A) of (5.11) for which the corresponding
section of Sym

k V takes values in the stratum Sym
k
λ V , and

(b) Fueter sections ñ ∈ Γ(Sym
k
λ V ) together with a spinU(kj ) structure wj on M̃j and a spin

connection Aj on wj for each j = 1, . . . ,m.

Remark 5.14. If λ = (1, . . . , 1), thenm = 1 and w1 is simply a spin
c
structure on M̃ .

Proof. Part (1) follows from the definitions of Sym
k
λ V and M̃ . It is part (2) which requires a proof.

This statement is a special case of the Haydys correspondence with stabilizer proved in Appendix C;

in particular, we will use the notation introduced in there.

We require the following pieces of notation. For every n ∈ N, denote by [n] the set {1, . . . ,n},
and let Sn be the permutation groups on n elements. Denote by Q⋄

the principal

∏m
j=1

Sℓj–bundle
overM , denoted whose fibre over x is

(5.15) Q⋄
x =

m∏
j=1

Bij

(
[lj ],π

−1

j (x)
)
.

Tautologically, M̃ is the fiber bundle with fiber [l1] × · · · × [lm] associated withQ
⋄
using the action

of

∏m
j=1

Sℓj on [l1] × · · · × [lm]. Define

Tλ B

|λ |∏
n=1

U(λn) ⊂ U(k),

WĤ (Tλ) B

(
m∏
j=1

Sℓj

)
× SO(4), and

NĤ (Tλ) B Spin(4) ×Z2

(
m∏
j=1

Sℓj ⋉ U(kj )
ℓj

)
=

(
Spin(3) ×Z2

(
m∏
j=1

Sℓj ⋉ U(kj )
ℓj

))
×SO(3) SO(4).

With this notation the following summarizes the discussion in Appendix C.
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Proposition 5.16. Let Q⋄ be the principal
∏m

j=1
Sℓj–bundle defined by (5.15). Define a principal

WĤ (Tλ)–bundle Q̂
⋄ associated with ñ by

Q̂⋄ = Q⋄ × SO(V ).

1. The choice of a NĤ (Tλ)–bundle Q̂
◦ lifting Q̂⋄ is equivalent to the choice of a spinU(kj ) structure

wj on M̃j for each j = 1, . . . ,m.

2. Given a spinU(kj ) structure wj on M̃j for each j = 1, . . . ,m, there exists a lift (Ψ, ξ ) of ñ. The
space of connectionsAΨ,ξ

C (Q̂), defined in (C.24), is identified with the space

m∏
j=1

As (wj )

and tP , defined in (C.14), is identified with the sum of the push-forward bundles

m⨁
j=1

(πj )∗gHj .

Proof of Proposition 5.16. We prove part (1). Given a spin
U(kj )(3) structure wj on M̃j for each j =

1, . . . ,m, denote by w̃j the corresponding spin
U(kj )(4) structure on π ∗

jV . The principal NĤ (Tλ)–

bundle Q̂◦
with fibre over x given by

Q̂◦
x =

m∏
j=1

{
(f ,д1, . . . ,дℓj ) ∈ Bij

(
{1, . . . , ℓj },π

−1

j (x)
)
× w̃

ℓj
j : дi ∈ (w̃j )f (i)

}
lifts Q̂⋄

. Conversely, given principal NĤ (Tλ)–bundle Q̂
◦
lifting Q̂⋄

its pullback to M̃j contains a

principal Spin
U(kj )(4)–bundle w̃j which yields a spin

U(kj )
structure on π ∗

jV and thus on M̃j . With

this discussion in mind and the discussion in Appendix C, part (2) of this proposition becomes

apparent. □

Once Proposition 5.16 is established, part (2) of Proposition 5.13 follows from the discussion in

Section C.2 and Section C.3 together with Theorem D.2. □

5.3 Formal expansion around limiting solutions

Proposition 5.13 imposes very weak conditions on a connection A ∈ As (w) which is part of a

solution of the limiting equation (5.11). Indeed, given (ξ ,Ψ) and one such connection, all other

choices of A are parametrized by choices of spin connections Aj on wj , for every j , and the spaces

of these spin connections are infinite-dimensional. However, we are only interested in those

solutions of (5.11) which are obtained as limits of rescaled ADHM1,k monopoles. To determine
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further constraints for such limits, let (Ψ0 = 0, ξ
0
,A0) be a solution of (5.11) with ñ ∈ Γ(Sym

k
λ V )

for some partition λ of k , and suppose that

Ψε =
∞∑
i=1

εiΨi , ξ ε =
∞∑
i=0

εiξ i , and Aε = A0 +

∞∑
i=i

εiai

is a formal power series solution of the rescaled ADHM1,k Seiberg–Witten equation:

/DAεΨε = 0,

/DAε ,Cξ ε = 0, and

ε2ϖFAε = µ(Ψε ) + µ(ξ ε ).

(5.17)

Moreover, we can assume the gauge fixing condition ξ
1
⊥ ρ(gP )ξ 0

, that is,

R∗
ξ

0

ξ
1
= 0

in the notation of Proposition D.6. The next proposition imposes constraints on the terms of order

ε in the power series expansions.

LetWj and gHj be, respectively, the spinor bundle and adjoint bundle associated with the

spin
U(kj )

structure wj on the total space of the covering map πj : M̃j → M .

Proposition 5.18. In the above situation, there exist Ψ̃1, j ∈ Γ(Wj ) and ˜ξ j ∈ Γ(V ⊗ gHj ) such that

(5.19) Ψ1 =

m⨁
j=1

(πj )∗Ψ̃1, j and ξ
1
=

m⨁
j=1

(πj )∗ ˜ξ
1, j .

Furthermore,A0 arises from a collection of spin connectionsA0, j ∈ As (wj ), and each triple (A0, j , ξ 1, j , Ψ̃1, j )

satisfies the ADHM1,kj equation

/DA0, j Ψ̃1, j = 0,

/DA0, j ,Cξ 1, j = 0, and

ϖFA0, j = µ(Ψ̃1, j ) + µ( ˜ξ
1, j )

(5.20)

on M̃j for j = 1, . . . ,m.

Proof. From Proposition 5.16, we know that

ξ
0
= (ξ

0,1, · · · , ξ 0,m) ∈ Γ(V ⊗ tP ) with tP =

m⨁
j=1

(πj )∗gHj

and A0 arises from spin connections A0, j ∈ As (wj ).
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The coefficient in front of ε on the right-hand side of the third equation of (5.17) must vanish;

hence,

(dξ
0

µ)ξ
1
= 0.

By Proposition D.6 it follows that [ξ
0
∧ ξ

1
] = 0. Therefore,

µ(ξ
1
) ∈ Ω2(M, [tP , tP ])

by the following self-evident observation combined with Theorem D.2.

Proposition 5.21. If ξ
0
, ξ

1
∈ H ⊗ g, [ξ

0
∧ ξ

1
] = 0, and the stabilizer of ξ

0
∈ U(k) is precisely

Tλ =
∏ |λ |

n=1
U(λn), then ξ

1
∈ H ⊗ tλ with tλ =

⨁ |λ |
n=1
u(λn). In particular,

[ξ
1
∧ ξ

1
] ∈ H ⊗ [tλ , tλ] ⊂ H ⊗ tλ .

Remark 5.22. If λ = (1, . . . , 1), then [tP , tP ] = 0; cf. Remark 5.10.

The third equation in (5.17) to order ε2
is thus equivalent to

(5.23) ϖFA0
= µ(ξ

1
) + (dξ

0

µ)ξ
2
+ µ(Ψ1).

In terms of the spin connections A0, j ∈ As (wj ), we have

ϖFA0
=

m⨁
j=1

(πj )∗ϖFA0, j ∈ Ω2(M, tP ).

By (C.9), we have

(dξ
0

µ)ξ
2
∈ Ω2(M, t⊥P ).

Thus, if we denote by µq(Ψ1) the component of µ(Ψ1) in tP and by µ⊥(Ψ1) the component of µ(Ψ1)

in t⊥P ⊂ gP , then (5.23) is equivalent to

ϖFA0
= µ(ξ

1
) + µq(Ψ1) and

(dξ
0

µ)ξ
2
= −µ⊥(Ψ1).

(5.24)

Since tP is parallel with respect to A0 and V ⊗ tP is perpendicular to γ̄ (T ∗M ⊗ gP )ξ 0
, the first and

the second equation of (5.17) to order ε are equivalent to

/DA0
Ψ1 = 0,

/DA0,Cξ 1
= 0, and

γ (a1)ξ 0
= 0.

(5.25)

Let Ψ̃1, j ∈ Γ(Wj ) and ˜ξ j ∈ Γ(V ⊗ gHj ) be such that (5.19) holds. The first equation of (5.24) and

the first two equations of (5.25) are precisely equivalent to the ADHM1,kj Seiberg–Witten equation

(5.20) for the triple (A0, j , ξ 1, j , Ψ̃1, j ). □
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5.4 A compactness conjecture for ADHM1,k monopoles

The discussion in the preceding sections together with known compactness results for Seiberg–

Witten equations [Tau13a; Tau13b; HW15; Tau16; Tau17] lead to the following conjecture.

Conjecture 5.26. Let (εi ,Ψi , ξ i ,Ai ) be a sequence of solutions of the blown-up ADHM1,k Seiberg–
Witten equation

/DAiΨi = 0,

/DAi ,Cξ i = 0,

ε2

iϖFAi = µ(Ψi ) + µ(ξ i ), and

∥(Ψi , ξ i )∥L2 = 1

with εi → 0. After passing to a subsequence the following hold:

1. There is a closed subset Z ⊂ M of Hausdorff dimension at most one, such that outside of Z and
up to gauge transformations (Ψi , ξ i ,Ai ) converges to a limit (0, ξ∞

0
,A∞

0
) and ε−1

i (Ψi , ξ i − ξ∞
0
)

converges to a limit (Ψ∞
1
, ξ∞

1
).

2. The triple (0, ξ∞,A∞) is a solution of the limiting ADHM1,k Seiberg–Witten equation (5.11).

3. There is a section ñ ∈ Γ(M\Z , Sym
k
λ V ) for some partition λ of k induced by ξ∞

0
. The section ñ

extends to to a continuous section of Sym
k V on all ofM .

4. Denote by M̃\Z̃ the unbranched cover ofM\Z induced by ñ. If kj , M̃j\Z̃ j , wj are as in Proposi-
tion 5.13 and A0, j ∈ As (wj ) denote the spin connections giving rise to A∞

0
, and Ψ̃1, j and ˜ξ

1, j
are such that

Ψ∞
1
=

m⨁
j=1

(πj )∗Ψ̃1, j and ξ∞
1
=

m⨁
j=1

(πj )∗ ˜ξ
1, j ,

then, for each j = 1, . . . ,m, (Ψ̃1, j , ˜ξ 1, j ,A0, j ) is a solution of the ADHM1,kj Seiberg–Witten
equation on M̃j\Z̃ j .

Remark 5.27. The reader should observe that while M̃j in M̃j\Z̃ j does exist, it need not be a smooth

manifold.

Remark 5.28. If Ψ = 0, V = TM ⊕ R and (a, ξ ) ∈ Ω1(M, gH) ⊕ Ω0(M, gH) = Γ(V ⊗ gH), then the

ADHM1,k Seiberg–Witten equation becomes the equation

FA+ia − ∗[ξ ,a] + ∗idAξ = 0 and

d
∗
Aa = 0

(5.29)

with

FA+ia = FA −
1

2

[a ∧ a] + idAa.
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If (a, ξ ,A) is a solution of (5.29) and M is closed, then a simple integration by parts argument

shows that dAξ = 0; hence, FA+ia = 0. That is, (5.29) is effectively the condition that condition

that A + ia is a flat GLk (C)–connection together with the moment map equation d
∗
Aa = 0.

Conjecture 5.26 thus predicts that as limits of flat GLk (C)–connections we should see data

consisting of a closed subset Z ⊂ M of Hausdorff dimension at most one, m ∈ N and, for

each j = 1, . . . ,m, a ℓj–fold cover M̃\Z̃ j of M\Z , and solutions of (5.29) on M̃j\Z̃ j such that∑m
j=1
ℓjkj = k .

6 A tentative proposal

We are ready to outline how ADHM monopoles can be used to deal with the problem of multiple

covers described in Section 4.

Letψ be a tamed, closed, definite 4–form, let P be a compact, connected, oriented 3–manifold,

let P ⊂ Y be an unobstructed associative embedding. Set

M
1,k (P ,ψ ) B

∐
w

M
1,k
w (P ,ψ )

with the disjoint union taken over all spin
U(k )

structures w on P and

M
1,k
w (P ,ψ ) B

{
(Ψ, ξ ,A) ∈ Γ(W ) × Γ(NP ⊗ gH) ×As (w) :

(Ψ, ξ ,A) satisfies (5.7)
with respect to дψ |P

}
Gs (w)

.

Ignoring issues to do with reducible solutions, one should be able to extract a number

w(kP ,ψ ) ∈ Z

by countingM1,k (P ,ψ ), at least, for genericψ and possibly after slightly perturbing the ADHM

Seiberg–Witten equation (5.7). More generally, if P has connected components P1, . . . , Pm and

k1, . . . ,km ∈ N, we set

w(k1 · P
1 + · · · + km · Pm ,ψ ) B

k∏
j=1

w(kj · P
j ,ψ ).

For k = 1, this number is the Seiberg–Witten invariant SW(P) ∈ Z mentioned in Section 3.3

For k > 0, this number should be independent of the choice of perturbation but it will depend on

ψ . Assume the situation of Section 4.1; that is, we have:

• a generic 1–parameter family of tamed, closed, definite 4–forms (ψt )t ∈(−T ,T ),

• a 1–parameter family of compact, connected, unobstructed embedded associative submani-

folds (Pt )t ∈(−T ,T ) with respect to (ψt )t ∈(−T ,T ), and
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• for every j = 1, . . . ,m a 1–parameter family of compact, connected, unobstructed embedded

associative submanifolds (P jt )t ∈(−T ,0) with respect to (ψt )t ∈(−T ,0) such that

P jt → ℓj · P0

as integral currents as t tends to zero for some ℓj ∈ {2, 3, . . .}.

Given k1, . . . ,km , set

k B
m∑
j=1

ℓjkj .

From the discussion in preceding three sections we expect that, for 0 < t ≪ 1,

(6.1) w(k · P−t ,ψ−t ) +w(k1 · P
1

−t + · · · + km · Pm−t ,ψ−t ) = w(k · P+t ,ψ+t )

because Conjecture 5.26 suggests that as t passes through zerow(k1 ·P
1

0
+ · · ·+km ·P1

0
,ψ0)ADHM1,k

monopoles on Pt degenerate and disappear (if counted with the correct sign).

Suppose that one can indeed define a weightw as above satisfying (6.1) as well as analogues of

(3.9). Define

(6.2) nβ (ψ ) =
∑

w(k1 · P
1 + · · · + km · Pm ,ψ )

with the summation ranging over allm ∈ N, k1, . . . ,km ∈ N and all compact, connected, unob-

structed embedded associative submanifolds P1, . . . , Pm ⊂ Y such that

m∑
j=1

kj [P
j ] = β .

This number would be invariant under the transitions described in Section 3.1, Section 3.2, and

Section 4.1.

From Section 3.3 we know that reducible solutions will prevent us from definingw in general.

However, the above can serve as a first approximation. To deal with reducibles one likely has to

develop ADHM1,k analogues of Kronheimer and Mrowka’s monopole homology and construct a

chain complex extending (3.29) which does depend onψ but whose homology does not.

Remark 6.3. By analogy with monopole Floer homology, one can envision also a corresponding 8–

dimensional version of the invariant proposed in this article. Such an invariant would be obtained

by counting Cayley submanifolds inside a closed Spin(7)–manifold, weighted by solutions of the

4–dimensional ADHM Seiberg–Witten equations. A relative version of this theory would associate

with every cylindrical Spin(7)–manifold X whose end is asymptotic to a compact G2–manifold

Y a distinguished element of the Floer homology group associated with Y . In order to develop

such a 7 + 1 dimensional theory, one has to deal with higher-dimensional moduli spaces of Cayley

submanifolds and ADHM monopoles, which poses additional technical complications. Note that

in order to define G2 Floer homology, one has to consider only Spin(7)–manifolds of the form

Y × (−∞,∞), and only zero-dimensional moduli spaces.
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7 Counting holomorphic curves in Calabi–Yau 3–folds

Let Z be a Calabi–Yau 3–fold with Kähler form ω and holomorphic volume form Ω. The product
S1 × Z is naturally a G2–manifold with the G2–structure given by

ϕ = dt ∧ ω + Re Ω.

Every holomorphic curve Σ ⊂ Z gives rise to an associative submanifold S1 × Σ ⊂ S1 × Z .

Proposition 7.1. Let β ∈ H2(Z ) be a homology class. Every associative submanifold in S1 × Z
representing the class [S1] × β is necessarily of the form S1 × Σ with Σ ⊂ Z a holomorphic curve.

Proof. The argument is similar to the one used to prove an analogous statement for instantons

[Lew98, Section 3.2]. Let P ⊂ S1 × Z be an associative submanifold representing [S1] × β . Since

ϕ |P = (dt ∧ ω + Re Ω)|P = volP ,

there is a smooth function f on P such that

dt ∧ ω |P = f volP and Re Ω |P = (1 − f )volP

By Wirtinger’s inequality [Wir36], f ⩽ 1. We need to prove that f = 1, since this implies that ∂t
is tangent to P and, therefore, P is of the form S1 × Σ, with Σ ⊂ Z calibrated by ω.

One the one hand we haveˆ
P

volP = ⟨[ϕ], [P]⟩ = ⟨[dt ∧ ω] + [Reω], [S1] × β⟩ = ⟨[dt ∧ ω], [S1] × β⟩,

while on the other handˆ
P
f volP =

ˆ
P

dt ∧ ω = ⟨[dt ∧ ω], [P]⟩ = ⟨[dt ∧ ω], [S1] × β⟩.

It follows that f has mean-value 1 and thus f = 1 because f ⩽ 1. □

The deformation theory of the associative submanifold S1 × Σ in S1 × Z coincides with that of

the holomorphic curve Σ inY [CHNP15, Lemma 5.11]. In particular, the putative enumerative theory

for associative submanifolds discussed in this paper should give rise to an enumerative theory

for holomorphic curves in Calabi–Yau 3–folds. Algebraic geometry abounds in such theories and

various interplays between them; see [PT14] for an introduction to this rich subject. Our approach

is closer in spirit to the original proposal by Donaldson and Thomas [DT98]. We will argue that it

should lead to a symplectic analogue of a theory already known to algebraic geometers.
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7.1 The Seiberg–Witten invariants of Riemann surfaces

In the naive approach of Section 3.3 each associative submanifold is counted with its total Seiberg–

Witten invariant. The Seiberg–Witten equation (3.11) over the 3–manifoldM = S1 × Σ was studied

extensively [MST96; MOY97; MW05]. The equation admits irreducible solutions only for the

spin
c
–structures pulled-back from Σ. Such a spin

c
structure corresponds to a Hermitian line

bundle L → Σ; the induced spinor bundle isW = L ⊕ T ∗Σ0,1 ⊗ L. Up to gauge transformations, all

irreducible solutions of the Seiberg–Witten equation are pulled-back from triples (A,ψ1,ψ2) on Σ,
where (ψ1, ¯ψ2) ∈ Γ(L) ⊕ Ω0,1(Σ,L), A ∈ A(det(W )) and

¯∂Aψ1 = 0, ¯∂∗A
¯ψ2 = 0,

⟨ψ1, ¯ψ2⟩ = 0, and

i

2

∗ FA + |ψ1 |
2 − | ¯ψ2 |

2 = 0.

(7.2)

Here ⟨ψ1, ¯ψ2⟩ is the (0, 1)–form obtained from pairingψ1 and
¯ψ2 using the Hermitian inner product.

The second equation implies that eitherψ1 or
¯ψ2 must vanish identically—which one, depends

on the sign of the degree

2d B ⟨c1(W ), Σ⟩.

Since det(W ) = L2 ⊗ K−1

Σ , we have

deg(L) = д − 1 + d .

Suppose that d < 0. It follows from integrating the third equation thatψ1 , 0 and so
¯ψ2 = 0.

The pair (A,ψ1) corresponds to an effective divisor of degree д − 1 + d on Σ: the zero set of ψ1

counted with multiplicities. This corresponds to an element of the symmetric product Sym
д−1+d Σ.

If d > 0, then a similar argument and Serre duality associates with every solution of (7.2) an

element of Sym
д−1−d Σ. The above correspondence, in fact, goes both ways:

Theorem 7.3 (Noguchi [Nog87], Bradlow [Bra90], and García-Prada [Gar93]). Let λ ∈ R\{d}. The
moduli space of solutions to the perturbed vortex equation

¯∂Aψ1 = 0, ¯∂∗A
¯ψ2 = 0,

⟨ψ1, ¯ψ2⟩ = 0, and
i

2

∗ FA + |ψ1 |
2 − | ¯ψ2 |

2 =
2π

vol(Σ)
· λ

(7.4)

is homeomorphic to {
Sym

д−1+d (Σ) if d − λ < 0 and
Sym

д−1−d (Σ) if d − λ > 0.

39



The Seiberg–Witten invariant can be obtained by integrating the Euler class of the obstruction

bundle, in this case the cotangent bundle, over the moduli space. As a consequence, if Σ , S2
, then

the total Seiberg–Witten invariant is

SW(S1 × Σ) =
∑
d ∈Z

(−1)д−1+d χ (Sym
д−1+d Σ).

Here we can sum over all d ∈ Z since for |d | > д − 1 we have χ (Sym
д−1+d Σ) = 0.

7.2 Rational curves and the Meng–Taubes invariant

For Σ = S2
, the above series is not summable. This is consistent with the general theory alluded

to in Section 3.3: we have b1(S
1 × S2) = 1 and, due to the appearance of reducible solutions, the

total Seiberg–Witten invariant is defined only for 3–manifolds with b1 ⩾ 2. In full generality, this

problem can be solved within the framework of Floer homology. However, if one considers only

closed, oriented 3–manifolds with b1 ⩾ 1 there is also a middle ground approach due to Meng and

Taubes [MT96]. For every such a 3–manifoldM they define an invariant

SW(M) ∈ ZJHK/H .

Here H is the torsion-free part of H 2(M,Z), ZJHK is the set of Z–valued functions on H , and H
acts on ZJHK by pull-back.

The Meng–Taubes invariant takes a particularly simple form for M = S1 × Σ. In this case,

there is a distinguished spin
c
structure, corresponding to the line bundle L being trivial, and the

invariant can be naturally lifted to an element SW(M) ∈ ZJHK. Moreover, the support of SW(M)

is Z = H 2(Σ,Z) ⊂ H , reflecting the fact that the Seiberg–Witten equation has solutions only for

the spin
c
structures pulled-back from Σ. Thus, SW(M) can be interpreted as an element of the ring

of formal Laurent series in a single variable, q say,

SW(M) ∈ Z((q)).

For д ⩾ 1, this is the Laurent polynomial whose coefficients are the Seiberg–Witten invariants:

(7.5) SW(S1 × Σ) =
∑
d ∈Z

(−1)д−1+d χ (Sym
д−1+d Σ)qd

and we see that SW(S1 × Σ) is obtained by evaluating SW(S1 × Σ) at q = 1. It is easy to see from

the definition of the Meng–Taubes invariant that the same formula is true for Σ = S2
, although

now the series has infinitely many non-zero terms. One cannot evaluate SW(S1 × S2) at q = 1 and

is forced to work with the refined invariant.
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7.3 Stable pair invariants of Calabi–Yau 3–folds

Pandharipande and Thomas introduced a numerical invariant counting holomorphic curves in

Calabi–Yau 3–folds together with points on them; see [PT14, Section 4
1

2
] for a brief introduction

and [PT09; PT10] for more technical accounts. Since the space of curves and points on them is

not necessarily compact, one considers the larger moduli space of stable pairs, consisting of a

coherent sheaf F on Z together with a section s ∈ H 0(Z , F ) which, thought of as a sheaf morphism

s : OZ → F , is surjective outside a zero-dimensional subset of Z . The sheaf is required to be

supported on a (possibly singular and thickened) holomorphic curve Σ ⊂ Z .5

Example 7.6. The simplest examples arise when Σ is smooth and (F , s) is the pushforward of a

pair (L,ψ ) on Σ consisting of a holomorphic line bundle and a non-zero section. Conversely, all

stable pairs whose support is a smooth, unobstructed curve are of this form [PT09, Section 4.2].

The topological invariants of a stable pair are the homology class [Σ] ∈ H2(Z ) and the Euler

characteristic χ (X , F ) ∈ Z. For instance, in Example 7.6, with Σ of genus д, we have

(7.7) χ (X , F ) = 1 − д + deg(F ).

For every β ∈ H2(Z ) and d ∈ Z, Pandharipande and Thomas use virtual fundamental class

techniques to define an integer PTd,β which counts stable pairs with homology class β and Euler

characteristic d . These numbers for different values of d can be conveniently packaged into the

generating function

PTβ =
∑
d

PTβ,dq
d .

For a holomorphic curve Σ ⊂ Z with [Σ] = β , denote by PTΣ(q) the contribution to PTβ (q) coming

from stable pairs whose support is Σ. (It makes sense to talk about such a contribution even for

non-isolated curves [PT10, Section 3.1].)

In the situation of Example 7.6, the moduli space of stable pairs with support on Σ and Euler

characteristic d is simply the space of effective divisors whose degree, computed using (7.7), is

д − 1 + d . From the deformation theory of such stable pairs one concludes that in this case,

(7.8) PTΣ(q) =
∑
d

(−1)д−1+d χ (Sym
д−1+d Σ)qd ;

see [PT09, Equation (4.4)] for details. As a result, we obtain the following.

Proposition 7.9. If Σ ⊂ Z is a smooth, unobstructed holomorphic curve, then

PTΣ = SW(S1 × Σ).

5More precisely, F is pure of dimension one and s has zero-dimensional cokernel.
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Remark 7.10. From the 3–dimensional perspective, the symmetry between d and −d is a special

case of the involution in Seiberg–Witten theory induced from the involution on the space of spin
c

structures [Mor96, Section 6.8]; from the 2–dimensional viewpoint, it is a manifestation of the

Serre duality between H 1(L) and H 0(KΣ ⊗ L∗).

Remark 7.11. The fact that the stable pair invariant is partitioned into an integers worth of invariants
corresponding to the degrees of the spin

c
structures on curves suggests that something similar

could be true for associative submanifolds. However, unlike in the dimensionally reduced setting,

where a spin
c
corresponds in a natural way to an integer, for two distinct associatives P1 and P2

we are not aware of any way to relate the spin
c
structures on them.

In general, the stable pair invariant includes also more complicated contributions from singular

and obstructed curves representing the given homology class. For irreducible classes, Pandhari-

pande and Thomas proved that such a contribution is a finite sum of Laurent series of the form

(7.8) [PT10, Theorem 3 and Section 3].

7.4 ADHM bundles over Riemann surfaces

The stable pair invariant includes also contributions from thickened curves. If a homology class

β ∈ H2(Z ,Z) is divisible by k and β/k is represented by a holomorphic curve Σ ⊂ Z , then there

exist stable pairs having kΣ as their support. Thinking of S1 × kΣ as a multiple cover of the

associative S1 × Σ in S1 × Z , we are led by the discussion of Section 4.3 to the conclusion that

the contribution of such a thickened curve should be in some way related to the solutions of the

ADHM1,k Seiberg–Witten equation on the 3–manifold S1 × Σ. We will argue that this is indeed

the case.

Consider the more general ADHMr,k Seiberg–Witten equation introduced in Section 5.1 under

the following assumptions:

Hypothesis 7.12. Let Σ be a closed Riemann surface andM = S1 × Σ with the geometric data as in
Definition 5.3 such that:

1. д is a product Riemannian metric,

2. E and the connection B are pulled-back from Σ, and

3. V and the connection C are pulled-back from a U(2)–bundle with a connection on Σ such that
Λ2

CV � KΣ as bundles with connections.

Proposition 7.13. If Hypothesis 7.12 holds and (Ψ, ξ ,A) is an irreducible solution of the ADHMr,k
Seiberg–Witten equation (5.7), then the spinU(k ) structure w is pulled-back from a spinU(k ) structure
on Σ and (Ψ, ξ ,A) is gauge-equivalent to a configuration pulled-back from Σ, unique up to gauge
equivalence on Σ.

This is a special case of [Doa17, Theorem 3.8]. In the situation of Proposition 7.13, (5.7) reduces

to a non-abelian vortex equation on Σ. Recall that a choice of a spinU(k )
structure on Σ is equivalent
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to a choice of a U(k)–bundle H → Σ. Consequently, A can be seen as a connection on H . The

corresponding spinor bundles are

gH = u(H ) and W = H ⊕ T ∗Σ0,1 ⊗ H .

Proposition 7.14. Let (A,Ψ, ξ ) be a configuration pulled-back from Σ. Under the splittingW =

H ⊕ T ∗Σ0,1 ⊗ H we have Ψ = (ψ1,ψ
∗
2
) where

ψ1 ∈ Γ(Σ,Hom(E,H )),

ψ2 ∈ Ω1,0(Σ,Hom(H ,E)), and

ξ ∈ Γ(Σ,V ⊗ End(H )).

Equation (5.7) for (A,Ψ, ξ ) is equivalent to

¯∂A,Bψ1 = 0, ¯∂A,Bψ2 = 0, ¯∂A,Cξ = 0,

[ξ ∧ ξ ] +ψ1ψ2 = 0, and

i ∗ FA + [ξ ∧ ξ ∗] +ψ1ψ
∗
1
− ∗ψ ∗

2
ψ2 = 0.

(7.15)

In the second equation we use the isomorphism Λ2

CV � KΣ so that the left-hand side is a section of
Ω1,0(Σ,End(H )). In the third equation we contract V with V ∗ so that the left-hand side is a section of
iu(H ).

This follows from [Doa17, Proposition 3.6, Remark 3.7] and the complex description (D.7) of

the hyperkähler moment map appearing in the ADHM construction.

We can also perturb (7.15) by τ ∈ R and θ ∈ H 0(Σ,KΣ):

¯∂A,Bψ1 = 0, ¯∂A,Bψ2 = 0, ¯∂A,Cξ = 0,

[ξ ∧ ξ ] +ψ1ψ2 = θ ⊗ id, and

i ∗ FA + [ξ ∧ ξ ∗] −ψ1ψ
∗
1
+ ∗ψ ∗

2
ψ2 = τ id.

(7.16)

There is a Hitchin–Kobayashi correspondence between gauge-equivalence classes of solutions

of (7.16) and isomorphism classes of certain holomorphic data on Σ. Let E = (E, ¯∂B) and V =

(V , ¯∂C ) be the holomorphic bundles induced from the unitary connections on E and V .

Definition 7.17. An ADHM bundle with respect to (E,V,θ ) is a quadruple

(H,ψ1,ψ2, ξ )

consisting of:

• a rank k holomorphic vector bundleH → Σ,

• ψ1 ∈ H 0(Σ,Hom(E,H)),
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• ψ2 ∈ H 0(Σ,KΣ ⊗ Hom(H,E)), and

• ξ ∈ H 0(Σ,V ⊗ End(H))

such that

[ξ ∧ ξ ] +ψ1ψ2 = θ ⊗ id ∈ H 0(Σ,KΣ ⊗ End(H)).

Definition 7.18. For δ ∈ R, the δ–slope of an ADHM bundle (H,ψ1,ψ2, ξ ) is

µδ (H) B
2π

vol(Σ)

degH

rkH
+

δ

rkH
.

The slope ofH is µ(H) B µ0(H).

Definition 7.19. Let δ ∈ R. An ADHM bundle (H,ψ1,ψ2, ξ ) is δ stable if it satisfies the following
conditions:

1. If δ > 0, thenψ1 , 0 and if δ < 0, thenψ2 , 0.

2. If G ⊂ H is a proper ξ–invariant holomorphic subbundle such that imψ1 ⊂ G, then

µδ (G) < µδ (H).

3. If G ⊂ H is a proper ξ–invariant holomorphic subbundle such that G ⊂ kerψ2, then

µ(G) < µδ (H).

We say that (H,ψ1,ψ2, ξ ) is δ–polystable if there exists a ξ–invariant decomposition H =⨁
i Gi

⨁
j Ij such that:

1. µδ (Gi ) = µδ (H) for every i and the restrictions of (ψ1,ψ2, ξ ) to each Gi define a δ stable

ADHM bundle, and

2. µ(Ij ) = µδ (H) for every j, the restrictions ofψ1,ψ2 to each Ij are zero, and there exist no

ξ–invariant proper subbundle J ⊂ Ii with µ(J) < µ(Ij ).

In the proposition below we fix δ and the topological type ofH, and set τ = µδ (H).

Proposition 7.20. Let (A,ψ1,ψ2, ξ ) be a solution of (7.16). Denote by H the holomorphic vector
bundle (H , ¯∂A). Then (H,ψ1,ψ2, ξ ) is a δ–polystable ADHM bundle. Conversely, every δ–polystable
ADHM bundle arises in this way from a solution to (7.16) which is unique up to gauge equivalence.

Proof. A standard calculation going back to [Don83] shows that (7.16) implies δ–polystability.
The difficult part is showing that every δ–polystable ADHM bundle admits a compatible unitary

connection solving the third equation of (7.16), unique up to gauge equivalence. This is a special

case of the main result of [ÁG03, Theorem 31], with the minor difference that the connections on

the bundles E and V are fixed and not part of a solution. The necessary adjustment in the proof is

discussed in a similar setting in [BGM03]. □
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Stable ADHM bundles on Riemann surfaces were studied extensively by Diaconescu [Dia12b;

Dia12a] in the case when n = 1, E is a trivial line bundle, and V is the direct sum of two line

bundles. Thus, we have a splitting ξ = (ξ1, ξ2) and [ξ ∧ ξ ] = [ξ1, ξ2], so the holomorphic equation

[ξ ∧ ξ ] +ψ1ψ2 = θ ⊗ id

is preserved by the C∗
–action t(ψ1,ψ2, ξ1, ξ2) = (tψ1, t

−1ψ2, tξ1, t
−1ξ2). Moreover, if the perturbing

form θ is chosen to be zero, there is an additionalC∗
symmetry given by rescaling every the sections.

Assuming that the stability parameter δ is sufficiently large, Diaconescu shows the fixed-point

locus of the resulting C∗ × C∗
–action on the moduli space of δ stable ADHM bundles is compact.

Furthermore, the moduli space is equipped with a C∗ × C∗
–equivariant perfect obstruction theory.

This can be used to define a numerical invariant via equivariant virtual integration. This number

is then shown to be equal to the local stable pair invariant of the non-compact Calabi–Yau 3–fold

V. This invariant counts, in the equivariant and virtual sense, stable pairs whose support is a

k–fold thickening of the zero section Σ ⊂ V. Here k is the rank ofH so that the stable ADHM

bundles in question correspond, by Proposition 7.20, to solutions to the ADHM1,k Seiberg–Witten

equation on S1 × Σ. This suggests that the relation between Seiberg–Witten monopoles and stable

pairs discussed in the previous section could extend to the case of multiple covers.

7.5 Towards a numerical invariant

Due to the appearance of reducible solutions, one does not expect to be able to count solutions to

the ADHM1,k Seiberg–Witten equation on a general 3–manifold. Instead, the enumerative theory

for associatives in tamed almost G2–manifolds should incorporate a version of equivariant Floer

homology, as explained in Section 3.4 and Section 6. However, the existence of the stable pair

invariant and the discussion of the previous sections indicate that we can hope for a differential-

geometric invariant counting pseudo-holomorphic curves in a symplectic Calabi–Yau 6–manifold

Z which in the projective case would recover the stable pair invariant. It is expected that such

an invariant would encode the same symplectic information as the Gromov–Witten invariants

by the conjectural GW/PT correspondence, known also as the MNOP conjecture [PT14, Sections

3
1

2
and 4

1

2
]. The algebro-geometric version of this conjecture is at present widely open. Like the

Gromov–Witten invariant, the putative symplectic stable pair invariant is given by a weighted

count of simple J–holomorphic maps. Thus, we expect that a symplectic definition of the stable

pair invariant will shed new light on the MNOP conjecture.

For a homology class β ∈ H2(Z ,Z) the invariant would take values in the ring of Laurent series

Z((q)) and be defined by

nβ (Z ) =
∑

Σ1, ...,Σm

m∏
j=1

SW
1,kj (S

1 × Σj ) sign(Σj ).

Some explanation is in order:
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1. The sum is taken over all collections of embedded, connected pseudo-holomorphic curves

Σ1, . . . , Σm such that

m∑
j=1

kj [Σ
j ] = β .

We assume here that we can choose a generic tamed almost-complex structure such that

there are finitely many such curves and all of them are unobstructed.

2. sign(Σ) = ±1 comes from an orientation on the moduli space of pseudo-holomorphic curves.

3. SW
1,k (S

1 × Σ) is a generalization of the Meng–Taubes invariant defined using the moduli

spaces of solutions to the ADHM1,k Seiberg–Witten equation on S1 × Σj . This is yet to be

defined, but if it exists, it should be naturally an element of Z((q)) because of the identification
of the set of the spin

U(k )
structures on Σ with the integers, as in Section 7.2.

4. We use here crucially that b1(S
1 × Σ) ⩾ 1; otherwise even the classical Meng–Taubes

invariant SW
1,1 is ill-defined. For k > 1, the ADHM1,k Seiberg–Witten equation, admits in

general, reducible solutions: for example, flat connections or solutions to the ADHM1,k−1

Seiberg–Witten equation. A good feature of the dimensionally-reduced setting is that if

the perturbing holomorphic 1–form θ in (7.16) is non-zero, then we automatically avoid

reducible solutions. Indeed, a simple algebraic argument shows that in this case the triple

(ξ ,ψ1,ψ2) has trivial stabilizer in U(k) at every point where θ is non-zero.

A Transversality for associative embeddings

The goal of this section is to prove Proposition 2.23. The proof relies on the following observations.

The tangent space TψD
4

c (Y ) ⊂ Ω4(Y ) is the space of closed 4–forms. Define

Xι,ψ : TψD
4

c (Y ) → Γ(Nι)

by

(A.1) ⟨Xι,ψη,n⟩L2 B
d

dε

����
ε=0

δLψ+εη(n) =

ˆ
P
ι∗i(n)η

for every closed 4–form η on Y .

Proposition A.2. If ι : P → Y is a somewhere injective associative immersion, then for every non-zero
n ∈ ker Fι ⊂ Γ(Nι), there exists α ∈ Ω3(Y ) such that

⟨Xι,ψ dα ,n⟩ , 0.
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Proof. We can assume that P is connected. Pick a point x such that ι−1(ι(x)) = {x}. Since P is

compact, there is a neighborhoodU of x ∈ P which is embedded via ι and satisfies ι(U )∩ι(P\U ) = �.

Choose a tubular neighborhoodV of ι(U ) and ρ > 0 such thatBρ (Nι(U ))
exp

−−→ V is a diffeomorphism.

By unique continuation, n cannot vanish identically onU . Thus we can find a function f supported

in V such that df (n) ⩾ 0 and df (n) > 0 somewhere. Let ν be a 3–form on Y with ν |U = (volP )|U
and i(n)dν |V = 0. With

α = f ν

we have ˆ
P
ι∗(i(n)dα) =

ˆ
P

df (n)volP > 0. □

For a somewhere injective immersed associative [ι : P → Y ], Aut(ι) must be trivial. Denote

by πImm : Immβ (P ,Y ) ×D4

c (Y ) → Immβ (P ,Y ) the canonical projection. By Proposition A.2, the

linearization of the section

δL ∈ Γ(π ∗
Imm

T ∗
Immβ (P ,Y ))

is surjective. Hence, it follows from the Regular Value Theorem, and the fact that there are only

countably many diffeomorphism types of 3–manifolds [CK70], that the universal moduli space of

immersed associatives

A
si

β = A
si

β (D
4

c (Y ))

is a smooth manifold. This directly implies (1a) and (2a) by the Sard–Smale Theorem.

Consider the moduli space of immersed associative submanifolds with n marked points

A
si

β,n(ψ ) B
∐
P

{
(ι,x1, . . . ,xn) ∈ Immβ (P ,Y ) × Pn : [ι] ∈ Asi

β (ψ )
}/

Diff+(P)

as well as the corresponding universal moduli space

A
si

β,n B
⋃

ψ ∈D4

c (Y )

A
si

β,n(ψ ).

Define the map ev : Asi

β,n → Yn
by

ev([ι,x1, . . . ,xn],ψ ) B (ι(x1), . . . , ι(xn)).

Proposition A.3. For each ([ι,x1, . . . ,xn],ψ ) ∈ A
si

β,n , the derivative of ev,

d([ι,x1, ...,xn ],ψ )ev : T([ι,x1, ...,xn ],ψ )A
si

β,n →

n⨁
i=1

Tι(xi )Y ,

is surjective.
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Proof. We will show that if (v1, . . . ,vn) ∈
⨁n

i=1
Nxi ι, then there exist n ∈ Γ(Nι) and η ∈ TψD

4

c (Y )
such that

n(xi ) = vi and (n,η) ∈ T[ι],ψA
si

β .

This immediately implies the assertion.

Denote by evx1, ...,xn : Γ(Nι) →
⨁n

i=1
Nxi ι the evaluation map and define

Fk B
(
Fι ⊕ Xι,ψ : W k,2

ker evx1, ...,xn ⊕ TψD
4

c (Y ) →W k−1,2Γ(Nι)
)
,

where Fι is the Fueter operator and Xι,ψ is defined in (A.1). We prove that the operator F1
is

surjective, cf. McDuff and Salamon [MS12, Proof of Lemma 3.4.3]. To see this note that its image is

closed and thuswe need to show only that ifν ⊥ im F1
, thenν = 0. Sinceν ⊥ Fι(W

1,2
ker evx1, ...,xn ),

on P\{x1, . . . ,xn}, ν is smooth and satisfies Fιν = 0. We also know that ν ⊥ imXι,ψ . The argument

from the Proof of Proposition A.2 shows that ν = 0, because the set of points x ∈ P satisfying

ι−1(ι(x)) = {x} is open in P so we can choose such a point x belonging to P\{x1, . . . ,xn}). That
Fk is surjective follows from the fact that F1

is surjective by elliptic regularity.

Pick n0 ∈ Γ(Nι) with
n0(xi ) = vi

and pick (n1,η) ∈ ker evx1, ...,xn ⊕ TψD
4

c (Y ) such that

Fιn1 + Xι,ψ (η) = −Fιn0.

The pair (n0 + n1,η) ∈ T[ι],ψA
si

β has the desired properties. □

Finally, we are in a position to prove (1b) and (2b) of Proposition 2.23. Denote by π : Asi

β,2 → A
si

β
the forgetful map and denote by ∆ = {(x ,x) ∈ Y × Y : x ∈ Y } the diagonal in Y . Proposition A.3

The universal moduli space of non-injective but somewhere injective immersed associatives is

precisely

π (ev
−1(∆)).

By Proposition A.3, ev
−1(∆) ⊂ Asi

β is a codimension 7 submanifold. Since π is a Fredholm map of

index 6 and ρ : Asi → D4

c (Y ) is a Fredholm map of index 0, it follows that ρ(π (ev
−1(∆))) ⊂ D4

c (Y )
is residual. This proves (1b) because an injective immersion of a compact manifold is an embedding.

The proof of (2b) is similar. This completes the proof of Proposition 2.23. □

B Seiberg–Witten equations in dimension three

We very briefly review how to associate a Seiberg–Witten equation to a quaternionic representation.

More detailed discussions can be found in [Tau99; Pidstrigach2004; Hay08; Sal13, Section 6; Nak16,

Section 6(i)]; we follow [DW19, Section 1] closely. The first ingredient is a choice of algebraic data.
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Definition B.1. A quaternionic Hermitian vector space is a real vector space S together with a

linear map γ : ImH → End(S) and an inner product ⟨·, ·⟩, such that γ makes S into a left module

over the quaternions H = R⟨1, i, j,k⟩, and i, j,k act by isometries. The unitary symplectic group
Sp(S) is the subgroup of GL(S) preserving γ and ⟨·, ·⟩. A quaternionic representation of a Lie

group G on S is a homomorphism ρ : G → Sp(S).

Let ρ : G → Sp(S) be a quaternionic representation. Denote by g the Lie algebra ofG . There is
a canonical hyperkähler moment map µ : S → (g ⊗ ImH)∗ defined as follows. By slight abuse of

notation denote by ρ : g→ sp(S) the Lie algebra homomorphism induced by ρ. Combine ρ and γ
into the map γ̄ : g ⊗ ImH → End(S) given by

γ̄ (ξ ⊗ v)Φ B ρ(ξ )γ (v)Φ.

The map γ̄ takes values in the space of symmetric endomorphisms of S . Denote by γ̄ ∗ : End(S) →
(g ⊗ ImH)∗ the adjoint of γ̄ . Define

µ(Φ) B
1

2

γ̄ ∗(ΦΦ∗).

Definition B.2. The canonical permuting actionθ : Sp(1) → O(S) is defined by left-multiplication

by unit quaternions. It satisfies

θ (q)γ (v)Φ = γ (Ad(q)v)θ (q)Φ

for all q ∈ Sp(1) = {q ∈ H : |q | = 1}, v ∈ ImH, and Φ ∈ S .

Definition B.3. A set of algebraic data consists of:

• a quaternionic Hermitian vector space (S,γ , ⟨·, ·⟩),

• a compact, connected Lie groupH , an injective homomorphismZ2 → Z (H ), an Ad–invariant

inner product on Lie(H ),

• a closed, connected, normal subgroup G ◁ H , and

• a quaternionic representation ρ : H → Sp(S) such that −1 ∈ Z2 ⊂ Z (H ) acts as −idS .

Definition B.4. Given a set of algebraic data, set

Ĥ B (Sp(1) × H )/Z2, K B H/(G × Z2).

The group K is called the flavor group.

Example B.5. The ADHMr,k Seiberg–Witten equation arise by choosing

S = Sr,k B HomC(Cr ,H ⊗C Ck ) ⊕ H ⊗R u(k)
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with

G = U(k) ◁ H = SU(r ) × Sp(1) × U(k)

where SU(r ) acts on Cr
in the obvious way, U(k) acts on Ck

in the obvious way and on u(k)
by the adjoint representation, and Sp(1) acts on the first copy of H trivially and on the second

copy by right-multiplication with the conjugate. The homomorphism Z2 → Z (H ) is defined by

−1 ↦→ (idCr ,−idH,−idCk ). In particular,

Ĥ = SU(r ) × Spin
U(k )(4)

with

Spin
U(k )(n) B (Spin(n) × U(k))/Z2.

Although notationally cumbersome, we usually prefer to think of Ĥ as

Ĥ = SU(r ) × Spin
U(k )(3) ×SO(3) SO(4).

Here the second factor is the fiber product of Spin
U(k )(3) with SO(4) with respect to the obvious

homomorphism Spin
U(k )(3) → SO(3) and the homomorphism SO(4) → SO(3) is given by the

action on Λ+R4
.

In addition to a set of algebraic data has been chosen one also needs to fix the geometric data

for which the Seiberg–Witten equation will be defined.

Definition B.6. LetM be a closed, connected, oriented 3–manifold. A set of geometric data onM
compatible with a set of algebraic data as in Definition B.3 consists of:

• a Riemannian metric д onM ,

• a principal Ĥ–bundle Q̂ → M together with an isomorphism

(B.7) Q̂ ×Ĥ SO(3) � SO(TM),

and

• a connection B on the principal K–bundle

R B Q̂ ×Ĥ K .

Definition B.8. Given a choice of geometric data, the spinor bundle and the adjoint bundle are
the vector bundles6

S B Q̂ ×θ×ρ S and gP B Q̂ ×Ad g.

Because of (B.7) the maps γ and µ induce maps

γ : T ∗M → End(S) and µ : S → Λ2T ∗M ⊗ gP .

Here we take µ to be the moment map corresponding to the action of G ◁ H .

6If H = G × K , then there is a principal G–bundle P → M associated with Q̂ and gP is the adjoint bundle of P . In
general, P might not exist but traces of it remain, e.g., its adjoint bundle gP and its gauge groupG(P).
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Definition B.9. Set

AB(Q̂) B

{
A ∈ A(Q̂) :

A induces B on R and the

Levi-Civita connection on TM

}
.

Any A ∈ AB(Q̂) defines a covariant derivative ∇A : Γ(S) → Ω1(M, S). The Dirac operator associ-
ated with A is the linear map /DA : Γ(S) → Γ(S) defined by

/DAΦ B γ (∇AΦ).

AB(Q̂) is an affine space modeled on Ω1(M, gP ). Denote byϖ : Ad(Q̂) → gP the projection induced

by Lie(Ĥ ) → Lie(G).

Finally, we are in a position to define the Seiberg–Witten equation.

Definition B.10. The Seiberg–Witten equation associatedwith the chosen algebraic and geometric

data is the following system of partial differential equations for (Φ,A) ∈ Γ(S) ×AB(Q̂):

/DAΦ = 0 and

ϖFA = µ(Φ).
(B.11)

The Seiberg–Witten equation is invariant with respect to gauge transformations which preserve

the flavor bundle R and SO(T ∗M).

Definition B.12. The group of restricted gauge transformations is

G(P) B
{
u ∈ G(Q̂) : u acts trivially on R and SO(TM)

}
.

G(P) can be identified with the space of sections of Q̂×ĤG with Ĥ acting onG via [(q,h)]·д = hдh−1
.

If µ−1(0) = {0}, then one proves in the same way as for the classical Seiberg–Witten equation

that solutions of (B.11) obey a priori bounds on Φ. In many cases of interest µ−1(0) , {0} and in

these cases a priori bounds fail to hold. Anticipating this, we blow-up the Seiberg–Witten equation.

Definition B.13. The blown-up Seiberg–Witten equation is the following partial differential

equation for (ε,Φ,A) ∈ [0,∞) × Γ(S) ×AB(Q̂):

/DAΦ = 0,

ε2ϖFA = µ(Φ), and

∥Φ∥L2 = 1.

(B.14)

The limiting Seiberg–Witten equation is the following partial differential equation for (Φ,A) ∈
[0,∞) ∈ Γ(S) ×AB(Q̂):

/DAΦ = 0 and

µ(Φ) = 0

(B.15)

as well as ∥Φ∥L2 = 1.
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The phenomenon of Φ tending to infinity for (B.11) corresponds to ε tending to zero for (B.14)

Formally, the compactifiction of the moduli space of solutions of (B.11) should thus be given by

adding solution of the limiting equation. Taubes [Tau13a] and Haydys and Walpuski [HW15]

proved that—up to allowing for codimension on singularities in the limiting solutions—this is true

for the flat PSL(2,C)–connections and the Seiberg–Witten equation with multiple spinors, which

are particular instances of equation (B.11). Although one might initially hope that it is unnecessary

to allow for singularities in solutions of the limiting equation, it has been shown in [DW18] that

this phenomenon cannot be avoided.

C The Haydys correspondence with stabilizers

Throughout this appendix we assume that algebraic data and geometric data as in Definition B.3

and Definition B.6 have been chosen. Denote by

X B S///G = µ−1(0)/G

the hyperkähler quotient of X by G , and denote by p : µ−1(0) → X the canonical projection. The

action of Ĥ on S induces an action of K̂ = Ĥ/G on X . Set

X B R̂ ×K̂ X .

If Φ ∈ Γ(S) satisfies µ(Φ) = 0, then

(C.1) s B p ◦ Φ ∈ Γ(X).

The Haydys correspondence [Hay12, Section 4.1] relates solutions of the limiting Seiberg–Witten

equation (B.15) with certain sections of X. The discussions of the Haydys correspondence available
in the literature so far [Hay12, Section 4.1; DW19, Section 3] assume that the action of G on µ−1(0)

is generically free. This hypothesis does not hold in Example B.5 with r = 1, which leads to

the ADHM1,k Seiberg–Witten equation. This appendix is concerned with extending the Haydys

correspondence to the case when G acts on µ−1(0) with a non-trivial generic stabilizer.

C.1 Decomposition of hyperkähler quotients

Denote by S {e } the subset of S on which G acts freely. By [HKLR87, Section 3(D)], the quotient

(S {e } ∩ µ−1(0))/G

can be given the structure of hyperkähler manifold of dimension 4(dimH S − dimG) such that, for

Φ ∈ S {e } ∩ µ−1(0),

(C.2) p∗ : (ρ(g)Φ)⊥ ∩TΦµ
−1(0) → T[Φ]X

is a quaternionic isometry. If G acts on µ−1(0) with trivial generic stabilizer (that is: S {e } is dense
and open), then this makes an dense open subset of X into a hyperkähler manifold. In general, X
can be decomposed as a union of hyperkähler manifolds according to orbit type as follows.
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Definition C.3. For Φ ∈ S , denote by GΦ the stabilizer of Φ in G. Let T < G be a subgroup. Set

ST B {Φ ∈ S : GΦ = T } and S(T ) B {Φ ∈ S : дGΦд
−1 = T for some д ∈ G}.

Definition C.4. Given a subgroup T < G, set

WG (T ) B NG (T )/T .

Here NG (T ) denotes the normalizer of T in G.

Remark C.5. This notation is motivated by the example S = H ⊗ g, with G acting via the adjoint

representation. In this case, the stabilizer T of a generic point in µ−1(0) is a maximal torus and

WG (T ) is the Weyl group of G; cf. Appendix D for the case G = U(k).

Theorem C.6 (Dancer and Swann [DS97, Theorem 2.1]; Sjamaar and Lerman [SL91], Nakajima

[Nak94, Section 6]). For each T < G, the quotient

X(T ) B (µ−1(0) ∩ S(T ))/G

is a hyperkähler manifold, and

(C.7) X =
⋃
(T )

X(T )

where (T ) runs through all conjugacy classes of subgroups of G.7 More precisely, for each T < G:

1. ST is a hyperkähler submanifold of S and S(T ) is a submanifold of S .

2. We have
(µ−1(0) ∩ S(T ))/G = (µ−1(0) ∩ ST )/WG (T ).

3. Denote by S0

T denotes the union of the components of ST intersecting µ−1(0). ThenWG (T ) acts
freely on S0

T and
µ(S0

T ) ⊂ (w ⊗ ImH)∗

with w B Lie(WG (T )). In particular, the restriction of µ to S0

T induces a hyperkähler moment
map on S0

T for the action ofWG (T ).

4. X(T ) can be given the structure of a hyperkähler manifold such that, for each Φ ∈ µ−1(0) ∩ S(T ),

p∗ : (ρ(g)Φ)⊥ ∩ ker dΦµ ∩TΦS(T ) → T[Φ]X(T )

is a quaternionic isometry.

7There can be subgroups T < G with S(T ) , 0, but µ−1(0) ∩ S(T ) = �.
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Proof. We recall Dancer and Swann’s argument, since some aspects of it will play a role later on.

To prove (1), denote by

ST B {Φ ∈ S : GΦ ⊃ T }

the fixed-point set of the action of T . ST is an H–linear subspace of S and ST is an open subset

of ST (by the Slice Theorem). Therefore, ST is a hyperkähler submanifold of S . The group action

induces a bijection

ST ×WG (T ) G/T � S(T ), [Φ,дT ] ↦→ ρ(д)Φ.

This shows that S(T ) is a submanifold of S . For future reference, we also observe that

(C.8) TΦST = ST and TΦS(T ) = ST + ρ(g)Φ �
ST ⊕ ρ(g)Φ

ρ(w)Φ
.

The assertion made in (2) follows directly from the definitions.

To prove (3), observe that by the definition of ST , the groupWG (T ) = NG (T )/T acts freely on

ST . Since µ is G–equivariant, µ(ST ) ⊂ (g∗)T ⊂ n∗ with n B Lie(NG (T )). Let t = Lie(T ). If Φ ∈ ST ,
then

(C.9) dΦµ ∈ Anng∗ t ⊗ (ImH)∗,

because, for ξ ∈ t, v ∈ ImH, and ϕ ∈ S , we have

⟨(dΦµ)ϕ, ξ ⊗ v⟩ = ⟨γ (v)ρ(ξ )Φ,ϕ⟩ = 0.

Since w∗ = n∗ ∩ Anng∗ t, we have µ(S
0

T ) ⊂ (w ⊗ ImH)∗. This proves (3).
Finally, we prove (4). Since

X(T ) = (µ−1(0) ∩ S(T ))/G = (µ−1(0) ∩ S(T ))/WG (T ) = S0

T ///WG (T ),

X(T ) can be given a hyperkähler structure by the construction in [HKLR87, Section 3(D)]. If Φ ∈ ST ,
then

(ρ(g)Φ)⊥ ∩TΦS(T ) = (ρ(w)Φ)⊥ ∩TΦST

by (C.8); hence, by the discussion before Definition C.3,

p∗ : (ρ(g)Φ)⊥ ∩ ker dΦµ ∩TΦS(T ) = (ρ(w)Φ)⊥ ∩ ker dΦµ ∩TΦST → T[Φ]X(T )

is a quaternionic isometry. This finishes the proof of (4). □

In general, the action of K̂ = Ĥ/G need not preserve the strata X(T ). The following hypothesis,

which holds for all the examples considered in this article, guarantees that the action of Ĥ on S
preserves S(T ) and that the action of K̂ on X preserves X(T ) ⊂ X .

Hypothesis C.10. Given T < G, assume that, for all h ∈ H , there is a д ∈ G such that

hTh−1 = дTд−1.
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Proposition C.11. If Hypothesis C.10 holds for T < G, then the action of Ĥ on S preserves the
submanifold S(T ) and the action of K̂ on X preserves X(T ). □

Proof. For h ∈ H and Φ ∈ S(T ), we have Gρ(h)Φ = hGΦh
−1 = hTh−1 = дTд−1

for some д ∈ G.
Thus, ρ(h)Φ ∈ S(T ) and the action of H preserves S(T ). The action of Sp(1) commutes with that

of H and so it also preserves S(T ). We conclude that S(T ) is preserved by the action of Ĥ . Since

X(T ) = (µ−1(0) ∩ S(T ))/G, the action of K̂ preserves X(T ). □

Proposition C.12. For anyT < G , NG (T ) is a normal subgroup of NH (T ), and the identity K = H/G
induces an injective homomorphism NH (T )/NG (T ) ↪→ K . If Hypothesis C.10 holds for T < G, then
this map is an isomorphism

NH (T )/NG (T ) � K .

Proof. If д ∈ NG (T ) and h ∈ NH (T ), then д̃ B hдh−1 ∈ G since G ◁ H ; hence, д̃ ∈ NG (T ). Since
NH (T ) ∩G = NG (T ), we have an injective homomorphism NH (T )/NG (T ) ↪→ K .

Assuming Hypothesis C.10 and given k = hG ∈ K , there is a д ∈ G such that

hTh−1 = дTд−1.

It follows that
˜h B д−1h ∈ NH (T ) and ˜hG = k ; hence, NH (T )/NG (T ) ↪→ K is an isomorphism. □

Assuming Hypothesis C.10 forT < G , we can define fiber bundles overM whose fibers are the

strata S(T ) and X(T ):

S(T ) B Q̂ ×Ĥ S(T ) and X(T ) B R̂ ×K̂ X(T ).

If it holds for all T < G with non-empty ST , we decompose S and X as

S =
⋃
(T )

S(T ) and X(T ) =
⋃
(T )

X(T ).

C.2 Lifting sections of X(T )

For the remainder of this section we will assume Hypothesis C.10 for T < G. The first part of the
Haydys correspondence is concerned with the questions:

When can a section s ∈ Γ(X(T )) be lifted a section of Φ ∈ Γ(S(T )) with µ(Φ) = 0 for

some choice of Q̂?

and

To what extend is the principal Ĥ–bundle Q̂ determined by s?

Proposition C.13. If Φ ∈ Γ(S(T )), then

Q̂◦ = Q̂◦
Φ B

{
q ∈ Q̂ : Φ(q) ∈ ST

}
8

8Here we think of Φ as a Ĥ–equivariant map Φ : Q̂ → S .
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is a principalNĤ (T )–bundle overM whose associated principal Ĥ–bundle is isomorphic to Q̂ . Moreover,
the stabilizer of Φ inG(P) = Γ(Q̂ ×Ĥ G) is

Γ(Q̂◦ ×NĤ (T ) T ) ⊂ G(P),

and the kernel of ρ(·)Φ : gP → S is

(C.14) tP B Q̂◦ ×NĤ (T ) Lie(T ) ⊂ gP .

Proof. If Φ ∈ ST , ˆh = [(q,h)] ∈ Ĥ = (Sp(1) × H )/Z2 and Ψ B θ (q)ρ(h)Φ, then

GΨ = hGΦh
−1 = hTh−1.9

Therefore, Ψ ∈ ST if and only if
ˆh ∈ NĤ (T ) = (Sp(1) × NH (T ))/Z2. Moreover, for each Φ ∈ S(T )

there is a д ∈ G ⊂ Ĥ such that ρ(д)Φ(q) ∈ ST . This implies that Q̂◦
is a principal NĤ (T )–bundle.

The isomorphism Q̂◦ ×NĤ (T ) Ĥ � Q̂ is given by [(q̂, ˆh)] ↦→ q̂ · ˆh. In particular,

G(P) � Γ(Q̂◦ ×NĤ (T ) G)

where NĤ (T ) acts onG by conjugation. The last two assertions follow from the fact that, for every

q ∈ Q̂◦
, the G–stabilizer of Φ(q) is T . □

Definition C.15. Given any Φ ∈ Γ(S(T )), theWeyl group bundle associated with Φ is

Q̂⋄ = Q̂⋄
Φ B Q̂◦

Φ/T .

Proposition C.16. Suppose that two choices of geometric data have been made such that R̂1 = R̂2.
Suppose that Φi ∈ Γ(SQ̂i ,(T )) satisfy µ(Φi ) = 0. Denote by Q̂⋄

i the associated Weyl group bundles.
If p ◦ Φ1 = p ◦ Φ2 ∈ Γ(X(T )), then there is an isomorphism Q̂⋄

1
� Q̂⋄

2
compatible with the

isomorphism
Q̂⋄

1
/WG (T ) � R̂1 = R̂2 � Q̂⋄

2
/WG (T ).

Remark C.17. The principal NG (T )–bundles Q̂
◦
1
and Q̂◦

2
need not be isomorphic.

Proof of Proposition C.16. Since Q̂i/G � R̂i , we have Q̂
◦
i /NG (T ) � R̂i . The sections Φi restrict to

NG (T )–equivariant maps Φ◦
i : Q̂◦

i → µ−1(0) ∩ ST , which in turn induceWG (T )–equivariant maps

Φ⋄
i : Q̂⋄

i = Q̂
◦
i /T → µ−1(0) ∩ ST . The resulting commutative diagrams

Q̂⋄
i µ−1(0) ∩ ST

R̂i X(T )

q⋄i

Φ⋄
i

p

s

are pullback diagrams; hence, the assertion follows from the universal property of pullbacks. □

9Hypothesis C.10 ensures that hTh−1 ⊂ G.
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Proposition C.18. Let R̂ be a principal K̂–bundle. Given s ∈ Γ(X(T )), there exists a principalWĤ (T )–
bundle Q̂⋄ together with an isomorphism

Q̂⋄/WG (T ) � R̂

and a section
Φ⋄ ∈ Γ(Q̂⋄ ×WĤ (T ) ST )

satisfying
µ(Φ⋄) = 0 and p ◦ Φ⋄ = s .

The section Φ⋄ is unique up to the action of the restricted gauge group Γ(Q̂⋄ ×WĤ (T )WG (T )).

Proof. We can think of the section s as a K̂–equivariant map s : R̂ → X(T ). The quotient map

p : µ−1(0) ∩ ST → X(T ) defines a principalWG (T )–bundle. Set

Q̂⋄ B s∗(µ−1(0) ∩ ST )

= {(r ,Φ) ∈ R × (µ−1(0) ∩ ST ) : s(r ) =WG (T ) · Φ}

and denote by Φ⋄
: Q̂⋄ → µ−1(0) ∩ ST the projection to the second factor. The projection to the

first factor q⋄ : Q̂⋄ → R makes Q̂⋄
into a principalWG (T )–bundle over R̂. We have the following

diagram with the square being a pullback:

Q̂⋄ µ−1(0) ∩ ST

R̂ X(T )

M .

q⋄

Φ⋄

p

s

Q̂⋄
can be given the structure of a principalWĤ (T )–bundle over M as follows. By Proposi-

tion C.12 we have a short exact sequence

0 WG (T ) WĤ (T ) K̂ 0.
π

Define an right-action ofWĤ (T ) on Q̂⋄
by

(r ,Φ) · [ ˆh] B (r · π ([ ˆh]), (θ × ρ)( ˆh−1)Φ)

for [ ˆh] ∈WĤ (T ) and (r ,Φ) ∈ Q̂⋄
and with θ as in Definition B.2. A moment’s thought shows that

this action is free and

Q̂⋄/WĤ (T ) = (Q̂⋄/WG (T ))/K̂ = R̂/K̂ = M .

Since s is K̂–equivariant, Φ⋄
isWĤ (T )–equivariant and thus defines the desired section. The

assertion about the uniqueness of Φ⋄
is clear. □
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Proposition C.19. Assume the situation of Proposition C.18. Suppose that Q̂◦ is a principal NĤ (T )–
bundle with an isomorphism

Q̂◦/T � Q̂⋄
;

that is: Q̂◦ is a lift of the structure group fromWĤ (T ) to NĤ (T ). Set

Q̂ B Q̂◦ ×NĤ (T ) Ĥ .

In this situation, there is a section Φ of S(T ) B Q̂ ×Ĥ S(T ) satisfying

µ(Φ) = 0 and p ◦ Φ = s;

moreover, there is an isomorphism
Q̂◦
Φ � Q̂◦.

Any other section satisfying these conditions is related to Φ by the action ofG(P).

Proof. With Φ⋄
as in Proposition C.18 define Φ : Q̂ → µ−1(0) ⊂ S by

Φ([q, ˆh]) B (θ × ρ)( ˆh−1)Φ⋄(qT ).

This is well-defined because Φ⋄(qT ) is T–invariant; moreover, Φ is manifestly Ĥ–equivariant and,

hence, defines the desired section. The assertion about the uniqueness of Φ is clear. □

To summarize the preceeding discussion and answer the questions raised at the beginning of

this section:

1. s determines the Weyl group bundle Q̂⋄
uniquely,

2. every s lifts to a section Φ⋄
of Q̂⋄ ×WĤ (T ) ST , and

3. if Q̂◦
is a lift of the structure group of Q̂⋄

fromWĤ (T ) to NĤ (T ) and we set Q̂ B Q̂◦×NĤ (T ) Ĥ ,

then Φ⋄
induces a section Φ of S(T ) = Q̂ ×Ĥ S(T ) lifting s .

C.3 Projecting the Dirac equation

The second part of the Haydys correspondence is concerned with the question

To what extend is the Dirac equation for a section Φ ∈ Γ(S(T )) equivalent to a

differential equation for s B p ◦ Φ ∈ Γ(X(T ))?

Definition C.20. The vertical tangent bundle of X(T )
π
−→ M is

VX(T ) B R̂ ×K̂ TX(T ).

The hyperkähler structure on X(T ) induces a Clifford multiplication

γ : π ∗
ImH → End(VX(T )).
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Given B ∈ A(R̂) we can assign to each s ∈ Γ(S) its covariant derivative ∇Bs ∈ Ω1(M, s∗VX). A
section s ∈ Γ(X) is called a Fueter section if it satisfies the Fueter equation

(C.21) F(s) = FB(s) B γ (∇Bs) = 0 ∈ Γ(s∗VX(T )).

The map s ↦→ F(s) is called the Fueter operator.

Proposition C.22. Given Φ ∈ Γ(S(T )) satisfying µ(Φ) = 0, set

s B p ◦ Φ ∈ Γ(X(T )).

The following hold:

1. A ∈ AB(Q̂) satisfies /DAΦ = 0 if and only if

(C.23) FB(s) = 0 and ∇AΦ ⊥ ρ(gP )Φ.

2. Let tP be as in (C.14). The space of connections

(C.24) AΦ
B (Q̂) B

{
A ∈ AB(Q̂) : ∇AΦ ⊥ ρ(gP )Φ

}
is an affine space modeled on Ω1(M, tP ) with tP as in (C.14). In particular, if FB(s) = 0, there
exists an A ∈ AB(Q̂) such that /DAΦ = 0; A is unique up to Ω1(M, tP ).

3. Any connection A ∈ AΦ
B (Q̂) reduces to a connection on Q̂◦. Conversely, any connection on Q̂◦

induces a connection inAΦ
B (Q̂).

4. The subbundle tP ⊂ gP is parallel with respect to any A ∈ AΦ
B (Q̂).

Proof. We prove (1). If /DAΦ = 0, then it follows from p∗(∇AΦ) = ∇Bs thatFB(s) = 0. Let (e1, e2, e3)

be an orthonormal basis of T ∗
xM . The equations /DAΦ = 0 and ∇Aµ(Φ) = 0 can be written as

∇A,eiΦ = −ε k
i j γ (e

j )∇A,ekΦ and ⟨γ (e j )∇A,ekΦ, ρ(ξ )Φ⟩ = 0

for all ξ ∈ gP,x . This proves that ∇AΦ ⊥ ρ(gP )Φ. By Theorem C.6(4), (C.23) implies /DAΦ = 0

We prove (2). If A ∈ AΦ
B (Q̂) and a ∈ Ω1(M, gP ) are such that A + a ∈ AΦ

B (Q̂), then

ρ(a)Φ ⊥ ρ(gP )Φ;

hence, ρ(a)Φ = 0 and it follows that a ∈ Ω1(M, tP ) by Proposition C.13. It remains to show that

AΦ
B (Q̂) is non-empty. To see this, note that if A ∈ AΦ

B (Q̂), then one can find a ∈ Ω1(M, gP ) such
that ∇AΦ + ρ(a)Φ is perpendicular to ρ(gP )Φ.

We prove (3). If A ∈ AΦ
B (Q̂) and HA denote its horizontal distribution, then we need to show

that for q ∈ Q̂◦
we have HA,q ⊂ TqQ̂

◦
. This, however, is an immediate consequence of the

definitions ofAΦ
B (Q̂) and Q̂

◦
.
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We prove (4). Suppose τ ∈ Γ(tP ), that is, ρ(τ )Φ = 0. Differentiating this identity along v yields

ρ(∇A,vτ )Φ = −ρ(τ )∇A,vΦ;

Set σ = ∇A,vτ . We need to show that ρ(σ )Φ = 0. We compute

|ρ(σ )Φ|2 = −⟨ρ(σ )Φ, ρ(τ )∇A,vΦ⟩

= ⟨ρ(τ )ρ(σ )Φ,∇A,vΦ⟩

= ⟨ρ([τ ,σ ])Φ,∇A,vΦ⟩ = 0

because ∇AΦ ⊥ ρ(gP )Φ. □

To summarize:

1. The Dirac equation /DAΦ = 0 implies the Fueter equation FBs = 0.

2. Given a solution s of the Fueter equation and Q̂◦
as at the end of the last subsection, there is

a connection A ∈ AB(Q̂) such that the lift Φ satisfies /DAΦ = 0.

3. A is unique up to Ω1(M, tP ) with tP as in (C.14).

D The ADHM representation

We now focus on the case r = 1 in Example B.5. We will see that in this case the hyperkähler

quotient of the representation is the symmetric product Sym
k H. This fact is the basis of the

relationship between multiple covers of associatives and ADHM monopoles.

Identifying H ⊗C Cr = HomC(Ck ,H), we can write the quaternionic vector space S from

Example B.5 with r = 1 as

S = HomC(Ck ,H) ⊕ H ⊗R u(k).

The group U(k) acts on S via

ρ(д)(Ψ, ξ ) B (Ψд−1,Ad(д)ξ )

preserving the hyperkähler structure. We will now determine the hyperkähler quotient S///U(k)
and its decomposition into hyperkähler manifolds described in Theorem C.6.

Definition D.1. A partition of k ∈ N is a non-increasing sequence of non-negative integers

λ = (λ1, λ2, . . .) which sums to k . The length of a partition is

|λ | B min{n ∈ N : λn = 0} − 1.

With each partition λ we associate the groups

Gλ B
{
σ ∈ S |λ | : λσ (n) = λn for all n ∈ {1 . . . , |λ |}

}
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and

Tλ B

|λ |∏
n=1

U(λn) ⊂ U(k).

For each partition λ of k , consider the generalized diagonal

∆ |λ | = {v1, . . . ,v |λ | ∈ H |λ |
: vi = vj for some i , j}

There is an embedding (H |λ |\∆ |λ |)/Gλ ↪→ Sym
k H defined by

[v1, . . . ,v |λ |] ↦→ [v1, . . . ,v1          
λ1 times

, · · · ,v |λ |, . . . ,v |λ |                  
λ |λ | times

].

The image of this inclusion is denoted by Sym
k
λ H.

Theorem D.2 (Nakajima [Nak99, Proposition 2.9]). We have

S///G =
⋃
λ

STλ///WU (k )(Tλ) =
⋃
λ

Sym
k
λ H = Sym

k H.

Here we take the union over all partitions λ of k .

The proof of Theorem D.2 occupies the remaining part of this section. Various algebraic

identities derived in the course of proving the theorem are also used in the discussion of the

Haydys correspondence for ADHM monopoles.

PropositionD.3. The canonical moment map µ : S → (u(k)⊗ImH)∗ for the action ρ : U(k) → Sp(S)
is given by

µ(Ψ, ξ ) B µ(Ψ) + µ(ξ )

with10

µ(Ψ) B
1

2

(
(Ψ∗iΨ) ⊗ i + (Ψ∗jΨ) ⊗ j + (Ψ∗kΨ) ⊗ k

)
and

µ(ξ ) B ([ξ
0
, ξ

1
] + [ξ

2
, ξ

3
]) ⊗ i

+ ([ξ
0
, ξ

2
] + [ξ

3
, ξ

1
]) ⊗ j

+ ([ξ
0
, ξ

3
] + [ξ

1
, ξ

2
]) ⊗ k .

Proof. We can compute the moment maps for the action of U(k) on Hom(Ck ,H) and H ⊗ u(k)
separately. If v = v1i +v2j +v3k ∈ ImH and η ∈ u(k), then

2⟨µ(Ψ),v ⊗ η⟩ = ⟨Ψ,γ (v)ρ(η)Ψ⟩ = −⟨Ψ,γ (v)Ψ ◦ η⟩ = ⟨Ψ∗γ (v)Ψ,η⟩

10We identify (u(k) ⊗ ImH)∗ = u(k) ⊗ ImH.
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and

2⟨µ(ξ ),v ⊗ η⟩ = ⟨ξ ,γ (v)ρ(η)ξ ⟩

= v1

(
−⟨ξ

0
, [η, ξ

1
]⟩ + ⟨ξ

1
, [η, ξ

0
]⟩ − ⟨ξ

2
, [η, ξ

3
]⟩ + ⟨ξ

3
, [η, ξ

2
]⟩
)

+v2

(
−⟨ξ

0
, [η, ξ

2
]⟩ + ⟨ξ

1
, [η, ξ

3
]⟩ + ⟨ξ

2
, [η, ξ

0
]⟩ − ⟨ξ

3
, [η, ξ

2
]⟩
)

+v3

(
−⟨ξ

0
, [η, ξ

3
]⟩ − ⟨ξ

1
, [η, ξ

2
]⟩ − ⟨ξ

2
, [η, ξ

1
]⟩ + ⟨ξ

3
, [η, ξ

0
]⟩
)

= 2v1⟨[ξ 0
, ξ

1
] + [ξ

2
, ξ

3
],η⟩

+ 2v2⟨[ξ 0
, ξ

2
] + [ξ

3
, ξ

1
],η⟩

+ 2v3⟨[ξ 0
, ξ

3
] + [ξ

1
, ξ

2
],η⟩

using that ⟨ξ , [η, ζ ]⟩ = −⟨[ξ , ζ ],η⟩ for ξ ,η, ζ ∈ u(k). □

The key to proving Theorem D.2 is the following result.

Proposition D.4. If µ(Ψ, ξ ) = 0, then Ψ = 0.

One can derive this result using Geometric Invariant Theory [Nak99, Section 2.2]. We provide

a proof at the end of this section. It essentially follows Nakajima’s reasoning but avoids the use of

GIT and comparison results between GIT and Kähler quotients.

It follows from Proposition D.4 that

S///U(k) = H ⊗ g///U(k).

The latter can be computed in a straight-forward fashion using the following observation.

Proposition D.5. We have

|µ(ξ )|2 =
1

2

3∑
α,β=0

|[ξ α , ξ β ]|
2.

Proof. A direct computation shows that

|µ(ξ )|2 −
1

2

3∑
α,β=0

|[ξ α , ξ β ]|
2 = −2⟨ξ

0
, [ξ

1
, [ξ

2
, ξ

3
]] + [ξ

2
, [ξ

3
, ξ

1
]] + [ξ

3
, [ξ

1
, ξ

2
]]⟩.

This expression vanishes by the Jacobi Identity. □

Proof of Theorem D.2. From Proposition D.4 and Proposition D.5 it follows that we have µ(Ψ, ξ ) = 0

if and only if Ψ = 0 and ξ ∈ H ⊗ t for some maximal torus t ⊂ u(k). Therefore, for a fixed maximal

torus T ⊂ U(k) and t B Lie(T ),

S///G = (H ⊗ t)/WU(k )(T ) � Hk/Sk = Sym
k H,

using that the Weyl group of U(k) is the permutation group Sk .
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The map S///G → Sym
k H can be described more directly as the joint spectrum. Since µ(ξ ) = 0

implies [ξ , ξ ] = 0 ∈ Λ2H ⊗ g, we can find a basis e1, . . . , ek of Ck
and elements v1, . . . ,vk ∈ H

such that

ξ (ei ) = vi ⊗ ei .

Up to ordering, the vi are independent of the choice of basis ei . The isomorphism S///G → Sym
k H

is the map

ξ ↦→ spec(ξ ) B {v1, . . . ,vk }.

From this description the decomposition of Sym
k H into its strata Sym

k
λ H is clear. □

The following result, which can be viewed as the linearization of Proposition D.5, plays an

important role in Section 5.3.

Proposition D.6. Denote by Rξ : u(k) → H⊗ u(k) the linearization of the action of U(k) onH⊗ u(k)
at ξ and by R∗

ξ : H ⊗ u(k) → u(k) its adjoint. If µ(ξ ) = 0, then

|(dξ µ)η |
2 +

1

2

|R∗
ξη |

2 =

3∑
α,β=0

|[ξ α ,ηβ ]|
2 +

1

2

3∑
α=0

|[ξ α ,ηα ]|
2.

Proof. If µ(ξ ) = 0, then on the one hand

|µ(ξ + tη)|2 = t2 |(dξ µ)η |
2 +O(t3);

while on the other hand

|µ(ξ + tη)|2 =
1

2

3∑
α,β=0

|[ξ α + tηα , ξ β + tηβ ]|
2

=
1

2

3∑
α,β=0

|[ξ α , tηβ ] + [tηα , ξ β ]|
2 +O(t3)

= t2

3∑
α,β=0

|[ξ α ,ηβ ]|
2 + ⟨[ξ α ,ηβ ], [ηα , ξ β ]⟩ +O(t

3).

We also have

|R∗
ξη |

2 =

����� 3∑
α=0

[ξ α ,ηα ]

�����2
= 2

3∑
α,β=0

⟨[ξ α ,ηα ], [ξ β ,ηβ ]⟩ +
3∑

α=0

|[ξ α ,ηα ]|
2.
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By the Jacobi identity

⟨[ξ α ,ηβ ], [ηα , ξ β ]⟩ = −⟨ηβ , [ξ α , [ηα , ξ β ]]⟩

= ⟨ηβ , [ηα , [ξ β , ξ α ]]⟩ + ⟨ηβ , [ξ β , [ξ α ,ηα ]]⟩

= ⟨ηβ , [ξ β , [ξ α ,ηα ]]⟩

= −⟨[ξ β ,ηβ ], [ξ α ,ηα ]⟩.

Putting everything together, yields the asserted identity. □

Proof of Proposition D.4. For the proof it is convenient to write S asCk ⊕ jCk ⊕End(Ck )⊕ j End(Ck ).

A direct computation shows that with respect to this identification the moment map is given by

(D.7) µ(v,w,A∗,B) =
1

2

(vv∗ −ww∗ − [A,A∗] − [B,B∗]) + j(wv∗ − [A,B]).

Therefore, if (Ψ, ξ ) = (v + jw,A∗ + jB) ∈ µ−1(0), then

(D.8) vv∗ −ww∗ = [A,A∗] + [B,B∗] and wv∗ = [A,B].

Set T B [A,A∗] + [B,B∗]. Taking traces and inner products with v andw , (D.8) implies

|v | = |w | C λ, ⟨v,w⟩ = 0,(D.9)

⟨Tv,v⟩ = λ4, and ⟨Tw,w⟩ = −λ4.(D.10)

Proposition D.11 ([Nak99, Lemma 2.8]). Denote byV1 the smallest subspace of Ck which containsw
and is preserved by both A and B. We have v ⊥ V1.

Proof. Let C be a product of As and Bs. We need to show that ⟨v,Cw⟩ = 0. The proof is by

induction on k , the number of factors of C . If k = 0, then C = id and we have ⟨v,w⟩ = 0 by (D.9).

By induction we can assume that ⟨v, C̃w⟩ = 0 for all C̃ with fewer than k factors. IfC = ClBACr ,

then

Cw = ClBACrw = ClABCrw −Cl [A,B]Crw

= ClABCrw −Clwv
∗Crw = ClABCrw

because v∗Crw = ⟨v,Crw⟩ and Cr has fewer than k factors. Henceforth, we can assume that

C = Ak1Bk2
. For such C , we have

⟨v,Ak1Bk2w⟩ = tr(Ak1Bk2wv∗) = tr(Ak1Bk2[A,B])

= tr([Ak1Bk2 ,A]B) = tr(Ak1[Bk2 ,A]B)

=

k2−1∑
ℓ=0

tr(Ak1Bℓ[B,A]Bk2−ℓ) =

k2−1∑
ℓ=0

tr(Bk2−ℓAk1Bℓ[B,A])

= −

k2−1∑
ℓ=0

⟨v,Bk2−ℓAk1Bℓw⟩ = −k2⟨v,A
k1Bk2w⟩.

This concludes the proof. □
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As a warm up consider the case k = 2. If λ > 0, then

(w/λ,v/λ)

is an orthonormal basis for C2
. With respect to this basisA and B are given by matrices of the form

A =

(
a11 a12

0 a22

)
and B =

(
b11 b12

0 b22

)
.

Consequently, the first diagonal entry of T = [A,A∗] + [B,B∗] is

T11 = |a12 |
2 + |b12 |

2 > 0.

However, since ⟨Tw,w⟩ = −λ4
according to (D.10), we have

T11 = −λ2 < 0.

It follows that λ = 0; that is, Ψ = v + jw = 0.

In general, let V1 be as in Proposition D.11 and set V2 B V⊥
1
. With respect to the splitting

Ck = V1 ⊕ V2, we have

A =

(
A11 A12

0 A22

)
and B =

(
B11 B12

0 B22

)
.

It follows fromwv∗ = [A,B] and v ∈ V2, that

[A11,B11] = [A,B]11 = 0;

Moreover, we have

T11 = ([A,A∗] + [B,B∗])11 = [A11,A
∗
11
] + [B11,B

∗
11
] +A12A

∗
12
+ B12B

∗
12

;

hence,

[A11,A
∗
11
] + [B11,B

∗
11
] +A12A

∗
12
+ B12B

∗
12
+ww∗ = 0.

Thus [A11,A
∗
11
] + [B11,B

∗
11
] ⩽ 0. By Proposition D.12, it follows that [A11,A

∗
11
] = [B11,B

∗
11
] = 0.

Since A12A
∗
12
+ B12B

∗
12
+ww∗

is a sum of non-negative definite matrices, we must have |w | = 0;

hence, Ψ = v + jw = 0 by (D.9).

Proposition D.12. If [A,B] = 0 and [A,A∗] + [B,B∗] ⩽ 0, then A and B can be simultaneously
diagonalized and [A,A∗] = [B,B∗] = 0.

Proof. Since A and B commute, we can simultaneously upper triagonalize them; that is, after

conjugating A and B with a unitary matrix we can assume that

A = Λ +U and B = M +V

65



where Λ,M are diagonal andU ,V are strictly upper triangular. We have

[A,A∗] = [Λ,Λ∗] + [Λ,U ∗] − [Λ∗,U ] + [U ,U ∗].

The first term vanishes, and the second and third terms have vanishing diagonal entries. Writing

U = (umn), them–th diagonal of [A,A∗] is

k∑
n=1

|umn |
2 − |unm |2;

and similarly for B with V = (vmn).

The first diagonal entry of [A,A∗] + [B,B∗] is

k∑
n=1

|u1n |
2 + |v1n |

2.

Being non-positive, this term vanishes. The second diagonal entry is

k∑
n=1

|u2n |
2 + |v2n |

2 − |u12 |
2 − |v12 |

2 =

k∑
n=1

|u2n |
2 + |v2n |

2

Being non-positive, this term vanishes as well. Repeating this argument eventually shows that

U = V = 0. □

This completes the proof of Proposition D.4. □
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