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Abstract

The core-collapse supernova (CCSN) mechanism is fundamentally 3D, with instabilities, convection, and
turbulence playing crucial roles in aiding neutrino-driven explosions. Simulations of CCNSe including accurate
treatments of neutrino transport and sufficient resolution to capture key instabilities remain among the most
expensive numerical simulations in astrophysics, prohibiting large parameter studies in 2D and 3D. Studies
spanning a large swath of the incredibly varied initial conditions of CCSNe are possible in 1D, though such
simulations must be artificially driven to explode. We present a new method for including the most important
effects of convection and turbulence in 1D simulations of neutrino-driven CCSNe, called Supernova Turbulence In
Reduced-dimensionality, or STIR. Our new approach includes crucial terms resulting from the turbulent and
convective motions of the flow. We estimate the strength of convection and turbulence using a modified mixing-
length theory approach, introducing a few free parameters to the model that are fit to the results of 3D simulations.
For sufficiently large values of the mixing-length parameter, turbulence-aided neutrino-driven explosions are
obtained. We compare the results of STIR to high-fidelity 3D simulations and perform a parameter study of CCSN
explosion using 200 solar-metallicity progenitor models from 9 to 120M . We find that STIR is a better predictor
of which models will explode in multidimensional simulations than other methods of driving explosions in 1D. We
also present a preliminary investigation of predicted observable characteristics of the CCSN population from STIR,
such as the distributions of explosion energies and remnant masses.

Unified Astronomy Thesaurus concepts: Core-collapse supernovae (304); Supernovae (1668); Hydrodynamical
simulations (767); Supernova neutrinos (1666); Massive stars (732); Stellar convective zones (301)

1. Introduction

Core-collapse supernovae (CCSNe) are the explosive deaths
of stars more massive than about 8M . The connection
between massive stars and CCSNe is now well established.
Scores of direct progenitor identifications have been made from
archival imaging (Smartt 2009, 2015; Van Dyk et al. 2012a,
2012b, 2013) dating back to the famous case of SN 1987A
(Sonneborn et al. 1987). While there is increasing observational
certainty that CCSNe arise from massive stars, our theoretical
understanding of the mechanism that drives these explosions is
still incomplete.

Massive stars reach temperatures and densities in their cores
sufficient to synthesize iron. These iron cores are inert and,
thus, the end point of stellar nuclear fusion. Continued nuclear
“burning” builds up the iron cores to the effective Chandra-
sekhar mass (Baron & Cooperstein 1990), and gravitational
instability and collapse ensue. The collapse accelerates until
nuclear density is exceeded, at which point the strong nuclear
force becomes, quite suddenly, repulsive. The collapse is halted
in a matter of milliseconds, launching a strong shock wave into
the still-collapsing mantle of the core in a process known as
core “bounce.” Electron captures on iron-group nuclei during
the collapse leave the now-quasi-hydrostatic inner core
composed mostly of neutrons, a proto-neutron star (PNS).
Neutrinos are also ubiquitous after core bounce, being
produced by both electron and positron captures, as well as

thermal processes like electron–positron annihilation. They
ultimately carry away the vast majority of the gravitational
binding energy released in the collapse, well over 1053 erg.
The shock created by core bounce moves out quickly at first

but loses energy to dissociation of iron nuclei and precipitous
neutrino cooling of the post-shock medium. The shock
ultimately stalls, typically around 150 km in radius, above
the nascent PNS transitioning into an accretion shock. Under-
standing the mechanism that revives the outward motion of the
shock and supplies the energy necessary to unbind the envelope
of the progenitor star has been a long-standing problem in
theoretical astrophysics. For reviews of the quest to understand
the CCSN mechanism, see Bethe (1990), Janka et al. (2007,
2012, 2016), Janka (2012), Burrows (2013), Müller (2016), and
Couch (2017).
The modern paradigm for the CCSN explosion mechanism is

the neutrino-heating mechanism (Bethe & Wilson 1985; Bruenn
1985), first proposed by Colgate & White (1966) and Arnett
(1966). The key idea is that neutrinos liberated during the post-
bounce accretion phase can heat the region behind the shock
sufficiently to initiate shock re-expansion and explosion.
Neutrino heating in the so-called “gain” layer behind the shock,
where neutrino heating exceeds neutrino cooling, is very
inefficient, and neutrino-driven explosions have been notoriously
hard to come by, particularly in spherical symmetry (see Arnett
1966; Bruenn 1985; Liebendörfer et al. 2001). Throughout its
history the neutrino mechanism has been beset by significant
uncertainties in key physics, such as the equation of state (EOS)
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of nuclear material and neutrino–matter interactions. Our
physical understanding of both the nuclear EOS (Lattimer 2012;
Hebeler et al. 2013; Steiner et al. 2013) and key neutrino
interactions (Horowitz 2002; Burrows et al. 2006, 2018; Roberts
et al. 2012a; Bollig et al. 2017), however, has advanced
significantly, clearing the way for a modern, predictive theory of
the neutrino mechanism.

Tremendous progress has been made in our understanding of
the CCSN mechanism in recent years, spurred largely by the
emerging capability for high-fidelity simulations in 3D (see
Lentz et al. 2015; Janka et al. 2016; Andresen et al. 2017;
Müller et al. 2017; Summa et al. 2018; O’Connor &
Couch 2018b; Vartanyan et al. 2019). Such simulations are
extremely challenging, requiring high-resolution (magneto)
hydrodynamics, general relativistic gravity, a complex micro-
physical EOS, and accurate neutrino transport. The latter
requirement is typically the stiffest challenge, and greatest
expense, in modern CCSN mechanism simulations. 3D CCSN
simulations using nonparametric approaches to neutrino
transport can cost millions of node-hours on modern super-
computers per simulation. This limits our ability to carry out
large parameter studies of the CCSN mechanism in 3D.

CCSNe arise from an enormous variety of initial conditions.
The parameter space for CCSN progenitors includes dimen-
sions of zero-age main-sequence (ZAMS) mass, metallicity,
rotation rate, and even binary system parameters such as
companion mass and separation. Each of these variables can
have a significant impact on the progenitor structure and,
hence, CCSN simulations and the resulting predictions for key
observables. Additionally, uncertainties in key microphysical
inputs, such as the nuclear EOS and neutrino–matter interac-
tions, may also lead to significant impacts on the results of
CCSN simulations. This parameter space is certainly too large
to explore in 3D at present, and so population studies of
CCSNe have only really been carried out in 1D (e.g., Ugliano
et al. 2012; Pejcha & Thompson 2015; Müller et al. 2016a;
Sukhbold et al. 2016; Fischer et al. 2018; Ebinger et al. 2019).
The drawback, however, is that we know that the CCSN
mechanism is fundamentally multidimensional (e.g., Marek &
Janka 2009; Müller et al. 2012; Bruenn et al. 2013, 2016;
Summa et al. 2016; Burrows et al. 2018; O’Connor & Couch
2018a, 2018b), and the notorious difficulty of obtaining
explosions in 1D necessitates some artificial means of driving
explosions for such studies.

Some of the earliest, and still popular, means for exploding
massive stars in 1D were “pistons” (e.g., Woosley et al. 1995)
and “thermal bombs” (e.g., Nomoto et al. 2006). In the former,
an inner Lagrangian boundary is contracted, simulating the
collapse of the iron core, and then quickly expanded, launching
a strong shock into the collapsing star that drives explosions.
The motion of this inner boundary, which is set by hand,
determines the character of the explosions and resulting
observables, including the nucleosynthesis. In the case of
thermal bombs, the explosions are driven by artificially heating
the matter in the core of the star over a brief period of time. In
both models, the “mass cut,” or equivalently the mass of the
compact remnant neglecting fallback, is set by hand and can
impact the results significantly. Critically, both of these popular
approaches to driving 1D explosions neglect physics we know
to be crucial to the CCSN mechanism, specifically neutrino
transport and a microphysical EOS.

Recently, a few groups have developed models for driving
1D CCSN explosions that do include neutrino physics and
realistic EOSs. In Ugliano et al. (2012), the authors present a
1D explosion model that utilizes gray neutrino transport (see
Scheck et al. 2006) and a contracting inner boundary that
mimics the contracting PNS. The rapidity of the PNS
contraction, and hence the rate of gravitational binding energy
liberated, sets the neutrino luminosity and therefore heating in
the gain layer behind the stalled shock. For sufficiently rapid
contraction of this inner boundary, 1D neutrino-driven
explosions are obtained. Studies using this approach (Ertl
et al. 2016; Sukhbold et al. 2016) show encouraging agreement
with certain features of the observed CCSN population. As
with pistons and thermal bombs, the character of these
explosions is sensitive to the nature of the imposed parameters
of the model. One concern with this approach is that the
electron-type neutrino luminosities may be enhanced relative
to, or at least substantially different from, those in multi-
dimensional simulations. This could have a significant impact
on the resulting nucleosynthesis since the electron-type
neutrino luminosities set the electron fraction in the ejecta.
An alternative means of simulating neutrino-driven explo-

sions in 1D is presented by Perego et al. (2015). These authors
present the “PUSH” model for explosions that relies on an
artificial additional neutrino-heating source that depends on the
luminosities of the heavy-lepton neutrinos, which realistically
contribute negligibly to the neutrino heating. This model
includes the full core of the PNS and so is better able to address
questions regarding the impact of the microphysical EOS and,
since it avoids directly altering the luminosities of the electron-
type neutrinos, is better suited to studies of nucleosynthesis
from 1D CCNSe (Curtis et al. 2019; Ebinger et al. 2019).
Explosions achieved with PUSH are also, however, sensitive to
the free parameters of the artificial heating model used, and the
predicted observables will vary according to the character of
the artificially augmented neutrino heating. PUSH uses the
isotropic diffusion source approximation (IDSA; Liebendörfer
et al. 2009) for electron-type neutrino transport and a
parameterized leakage scheme (O’Connor & Ott 2010) for
the heavy-lepton neutrinos. Recent controlled code-to-code
comparisons in 1D (O’Connor et al. 2018) and 2D (Pan et al.
2019) have shown that IDSA gives slightly different answers as
compared to higher-fidelity transport methods. For both PUSH
and the models of Ugliano et al. (2012) and Sukhbold et al.
(2016), the free parameters of the explosion model are chosen
on the basis of fitting certain observational parameters of real
CCSNe, such as SN 1987A or the Crab.
Approximate methods for driving 1D explosions have

tremendous value in allowing the exploration of simulated
CCSN populations, as well as the specific details of individual
models. Still, it is not clear how faithfully these 1D models
reproduce the results of high-fidelity multidimensional simula-
tions, even when population statistics such as the mean
explosion energy and remnant masses compare well to that
of the observed population. In particular, there is some tension
between the predicted explodability of progenitors from the 1D
models of Sukhbold et al. (2016) and the 2D high-fidelity
simulations of O’Connor & Couch (2018a). In O’Connor &
Couch (2018a), we present 2D simulations of progenitor stars
with ZAMS masses of 12, 15, 20, 21, 22, 23, 24, and 25M .
All of these progenitors explode in those simulations except for
the 12 and 21M stars. This is precisely the opposite behavior
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to that found in Sukhbold et al. (2016) for these same
progenitor masses.7 While it is possible that the artificially
imposed axisymmetry and the concomitant incorrect dynamics
as compared with 3D simulations (Hanke et al. 2012;
Couch 2013; Dolence et al. 2013; Couch & O’Connor 2014)
are to blame for this difference, more likely is that these 1D
models for artificially driving the explosions are missing some
important aspect of the CCSN mechanism.

An obvious candidate for a key piece of CCSN physics that
is missing from previous models for 1D explosions is
turbulence. A number of recent works, many based on 3D
simulations, have pointed out the key role that turbulence plays
in the CCSN mechanism (Murphy & Meakin 2011; Hanke
et al. 2012; Couch 2013; Murphy et al. 2013; Couch &
Ott 2015; Radice et al. 2016, 2018; Mabanta & Murphy 2018).
Turbulence, through the chaotic motion of eddies, provides an
effective pressure that supports shock expansion (Murphy et al.
2013; Couch & Ott 2015), plays a key role in the transport of
energy and composition (Radice et al. 2016), and results in the
significant dissipation of kinetic energy to heat (Mabanta &
Murphy 2018). Using parameterized neutrino leakage simula-
tions in 1D, 2D, and 3D, Couch & Ott (2015) show that the
amount of neutrino energy absorbed in the CCSN gain layer is
not that different between a successful 3D explosion and a
failed 1D explosion. Indeed, driving neutrino-driven explosions
in 1D simulations required artificially enhancing the neutrino
heating to levels far beyond what was observed in 3D
explosions. The difference, Couch & Ott (2015) argue, is
made up by the action of turbulence in aiding shock expansion.
This raises concerns about the accuracy of 1D parameteriza-
tions that rely on enhancing neutrino heating to drive
explosions.

In this article, we present a new parameterized method for
driving CCSN explosions in 1D that includes the most salient
features of convection and turbulence. We call our new
approach Supernova Turbulence In Reduced-dimensionality, or
STIR. Inspired by the works of Murphy & Meakin (2011),
Murphy et al. (2013), and Mabanta & Murphy (2018), we
begin with a Reynolds decomposition of the fluid equations
that separates the flow variables into background, mean

components and perturbed, turbulent components. Extending
these previous works, we use the fully time-dependent, non-
steady-state forms of the equations. We then angle-average the
full Reynolds-decomposed equations, reducing them to a set of
1D evolution equations. After making certain simplifying
assumptions appropriate for the CCSN context, the equations
include terms that depend essentially on a single turbulent
parameter: the characteristic speed of turbulent eddies. Since
CCSN turbulence is driven primarily by convection, we use a
modified, time-dependent version of mixing-length theory
(MLT) to estimate the evolution of this typical turbulent speed.
We compare this model to full, high-fidelity 3D simulations of
the CCSN mechanism taken from O’Connor & Couch (2018b).
We find that STIR is able to reproduce the strength and locality
of turbulent motions, in an angle-averaged sense, extremely
well, and it is also able to better model gross features of the
dynamics such as the evolution of the shock far better than 1D
simulations that neglect turbulence.

STIR makes no ad hoc modifications to the neutrino
transport or microphysics of the CCSN simulations. We
include full, two-moment, energy-dependent neutrino transport
(O’Connor 2015), precisely as we use in multidimensional
simulations (O’Connor & Couch 2018a, 2018b), without any
modifications to, e.g., the neutrino interactions, cross sections,
or heating rates. We include the full PNS and do not excise any
portion of the inner core, allowing us to directly explore the
sensitivity of our 1D CCSN simulations to, e.g., the nuclear
EOS and other nuclear physics properties of the PNS. The
small number of free parameters that enter our model are
chosen on the basis of comparison to full 3D simulations of the
CCSN mechanism, and not chosen in order to reproduce any
particular observed feature of CCSNe. In general, we find that
STIR reproduces the features of multidimensional CCSN
simulations quite well, including which stars explode and
which fail, resulting in collapse of the PNS to a black hole
(BH). We perform a parameter study with STIR in solar-
metallicity progenitor stars from 9 to 120M . We find
reasonable agreement with observed statistics of the CCSN
population such as explosion fraction and remnant mass
distributions.
Very recently, Mabanta et al. (2019) have presented a

model for driving CCSN explosions in 1D, including the
effects of turbulent convection, that is similar in many
respects to STIR. They also start from a Reynolds decom-
position of the flow variables, but their final model is distinct
from ours in a number of key ways. We briefly compare their
model and STIR.
This paper is organized as follows. In Section 2 we present

the derivation of the STIR model and discuss our use of
MLT as a closure. In Section 3 we discuss our numerical
implementation and inclusion of STIR in our CCSN mech-
anism code. We compare the results of STIR simulations for a
20M progenitor to the 3D simulations of O’Connor & Couch
(2018b) in Section 4. In Section 5 we present a first parameter
study using STIR for the same progenitor set employed by
Sukhbold et al. (2016) and compare our results to theirs and
other similar parameter studies. We conclude and discuss the
future outlook for this new model for 1D CCSN explosions in
Section 6.

2. Turbulent Convection in 1D

2.1. Turbulent Correlation Terms

The presence of turbulence and convection changes the
dynamics of stars and supernovae fundamentally. In this
section we describe the salient equations governing these
dynamics and our model for incorporating turbulent convection
into 1D CCSN simulations. Our approach is related to that of
Bruenn et al. (1995) and, more distantly, Wilson & Mayle
(1988) and Böhm-Vitense (1958), though modified signifi-
cantly. We have drawn inspiration for our approach from the
work of, e.g., Meakin & Arnett (2007), Murphy & Meakin
(2011), Murphy et al. (2013), Arnett et al. (2015), and Mabanta
& Murphy (2018).
The compressible Euler equations describing the conserva-

tion of mass, momentum, and energy for a self-gravitating
system are

u 0, 1t · ( ) ( )

u u u I gP , 2t( ) · ( ) ( )

7 We note that in O’Connor & Couch (2018a) the progenitor models of
Woosley & Heger (2007) were used, whereas in Sukhbold et al. (2016) the
model set of Sukhbold & Woosley (2014) was employed, though for the
referenced progenitor masses the models are very similar between the two sets.
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u u ge e P , 3t( ) · [ ( )] · ( )

where ρ is the mass density, u is the velocity vector, P is

the pressure, e e ui
1

2

2 is the total specific energy, ei is the

internal energy, g is the gravitational acceleration, and I is the
identity tensor. The impact of turbulence on the dynamics of
compressible flows can be modeled by decomposing the
flow variables into a background, mean component and a
perturbed, or turbulent, component: 0 . By defini-
tion, 0, where ... represents a suitable averaging in
space and time, requiring 0. For instance, the velocity
vector is the sum of its mean and turbulent components,
u v vi i i , where v ui i . Applying such a decomposition
and averaging procedure to Equations (1)–(3), a so-called
Reynolds averaging, yields additional terms related entirely to
the turbulent character of the flow. In the context of CCNSe
(Murphy & Meakin 2011), the three most significant turbulent
correlation terms are the Reynolds stress tensor R, the energy
flux due to turbulence Fe, and the turbulent dissipation turb

(Mabanta & Murphy 2018).
The modified, turbulent Euler equations, including only the

most significant turbulent correlations, are then

u 0, 4t 0 0· ( ) ( )

u u u I g

R

P

, 5

t 0 0 0 0 0· ( )

· ( )

u

u g u R F

e e P

. 6

t

e

0 0 0 0

0 0 0 0 turb

· [ ( )]

· · · ( )

The above equations neglect certain higher-order turbulent
correlation terms that may be important in certain regimes.
Specifically, we ignore any turbulence-induced pressure
perturbations, P , and attendant terms (i.e., the Boussinesq
approximation). This approximation is only valid for low
turbulent Mach numbers, which is generally fine for most
regimes of stellar convection but can become a poor
assumption during the onset of explosion in CCSNe (see
Murphy et al. 2013; Couch & Ott 2015).

These equations are supplemented by an evolution equation
of the specific turbulent kinetic energy, K, which is defined as
one-half of the trace of the Reynolds stress: RK Tr

1

2
( ). The

full turbulent kinetic energy equation is (Murphy & Meakin
2011; Mabanta & Murphy 2018)

v R v v g

F F v

K

t
K

P

Tr

, 7K P 0 turb

· ( ) ( · ) ·

· · · ( )

where F vKK is the turbulent kinetic energy flux and
F vPP is the turbulent pressure flux. The trace term (first
term on the right-hand side) is the production of turbulence due
to shear. If we again assume that the pressure fluctuation
induced by turbulence is negligible, then the turbulent energy
equation in spherical symmetry becomes

K

t r r
r K v Kv

R
v

r
v g

1

. 8

r r

rr
r

r

2
2

turb

[ ( )]

( )

Hence, we shall assume that turbulent energy is generated by
shear and buoyancy (first and second terms on the right-hand
side), destroyed by dissipation (third term on the right-hand
side), advected with the background flow (first term in
divergence on the left-hand side), and diffused (second term
in divergence on the left-hand side). In the shear term, we have
assumed spherical symmetry and neglected the possibility of
background rotational flow. The presence of background
rotation would lead to additional shear terms. For the buoyancy
term, we have assumed that the gravitational acceleration, g, is
purely radial.
The rate of dissipation of turbulent kinetic energy to

heat is

v vTr 2 2,turb ( ( ) · ( ))

where ν is the fluid viscosity. Following Kolmogorov (1941)
and Mabanta & Murphy (2018), we can relate the turbulent
dissipation to the Reynolds stress, so for spherical symmetry

R v
, 9rr r

turb

3 2 3

( )

where Λ is the largest scale on which turbulent energy is
dissipated, i.e., the largest turbulent eddy size.
Turbulence appears in the Reynolds-averaged momentum

equation (Equation (5)) via the Reynolds stress,

R v v , 10ij i j ( )

which yields a source term of the form R· . Owing to
the fact that the turbulence is driven by buoyant convection, the
Reynolds stress in 3D simulations of CCSNe is anisotropic
(Murphy et al. 2013; Couch & Ott 2015; Radice et al. 2016).
Thus, in a spherical coordinate basis, the radial–radial
component is roughly equally to the sum of the transverse
diagonal components,

R R R , 11rr ( )

and the transverse diagonal components are approximately
equal, R R . The trace of the Reynolds stress is then

R RTr 2 rr( ) . In spherical symmetry, therefore, we can
simplify the turbulent momentum source term:

R
r r

r v
1

. 12r2
2 2

· ( ) ( )

The quantity vr
2 has units of pressure and so is often defined

as the turbulent pressure, Pturb.
Turbulent stresses transport heat in the fluid. This heat

transport results in an additional source term in the energy
equation:

F v e ,e· ·

where Fe is the internal energy flux due to turbulence and e is
the internal energy fluctuation. Since R R , there will be
no net transport of heat via turbulence in the transverse
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directions, so in spherical symmetry

F
r r

r v e
1

. 13e r2
2· ( ) ( )

2.2. Mixing-length Theory Closure

Following the assumption of spherical symmetry and
anisotropic turbulent stresses obeying Equation (11), we arrive
at expressions for the turbulent correlations (Equations (9),
(12), (13)) that depend on only a single turbulent quantity, the
characteristic turbulent speed in the radial direction, vr . This, in
turn, evolves according to Equation (8). Now we must find a
means to relate the turbulent speed to other unknowns of the
system in order to solve for its evolution; in other words, we
need a closure for our turbulence model. For this, we appeal to
MLT (Böhm-Vitense 1958; Cox & Giuli 1968), assuming that
the turbulence in CCSNe is driven by convection. This is
an incomplete picture, as other instabilities, most notably
the standing accretion shock instability (SASI), can also
drive turbulence (Endeve et al. 2010, 2012). Nevertheless,
we shall make the approximation that the typical turbulent
speed is equivalent to the typical convective speed, vturb
v vr con,MLT, the latter computed via a modified MLT
described below.

MLT relates the transport of energy and compositional
mixing to the typical speed of a putative buoyant blob rising
against the background flow. Such a buoyant blob will
experience an acceleration described by the local Brunt–
Väisälä frequency. Simultaneously, a buoyant blob that begins
to rise against the background flow will experience a drag
force, resulting in turbulent dissipation of the blob’s kinetic
energy. Following MLT, the buoyant forcing is

v g v , 14r turb BV
2

mix ( )

where BV is the Brunt–Väisälä frequency and mix is the
mixing length. We calculate the Brunt–Väisälä frequency
assuming the Ledoux criterion for convection,

g
r c

P

r

1 1
, 15

s

BV
2

eff 2
( )

⎛

⎝
⎜

⎞

⎠
⎟

where cs is the adiabatic sound speed. This expression for the
Ledoux Brunt–Väisälä frequency is completely equivalent to
expressions that explicitly include entropy and electron fraction
gradients (Müller et al. 2016b). We have experimented with
several other expressions for the Brunt–Väisälä frequency,
including those using entropy and lepton gradients. We find
that using Equation (15), which avoids the need to compute
thermodynamic derivatives and any additional spatial gradi-
ents, generally results in the smoothest BV

2 . Our sign

convention is such that positive BV
2 implies convective

instability.
In computing the Brunt–Väisälä frequency, we modify the

gravitational acceleration to account for local acceleration from
the background flow, yielding an effective gravitational
acceleration,

g
r

v
v

r
, 16r

r
eff ( )

where Φ is the gravitational potential. In effect, this term shifts
the frame of reference in which the gravitational acceleration is

computed. During the early post-bounce, pre-explosion phase,
this modification to the acceleration is negligible. Only once an
explosion begins is vr or its gradient very large. Following
explosion, throughout most of the ejecta both the background
radial velocity and its gradient are positive. Thus, the effect of
including the second term on the right-hand side of
Equation (16) is to reduce the magnitude of the gravitational
acceleration felt in the ejecta. This drives the Brunt–Väisälä
closer to zero, shutting off buoyant acceleration in regions that
are exploding. Physically, this reflects that the “buoyant
plumes” of the convection have essentially become the
background flow once an explosion sets in.
In the PNS, the enhanced lepton fraction gradient induced by

trapped neutrinos can also drive convection (Wilson &
Mayle 1988). This effect is neglected in Equation (15).
Including the total lepton fraction gradient correctly requires
complicated thermodynamic derivatives in the Brunt–Väisälä
frequency (Roberts et al. 2012b), and we find that the overall
effect is small in the gain region, which is what we are most
concerned about in this work. We leave an improved treatment
of the PNS convection to future work.
For the mixing length, we take a fraction of the pressure

scale height as computed from the equation of hydrostatic
equilibrium,

H
P

g
, 17Pmix ( )

where g r is the magnitude of the local gravitational
acceleration and is a tunable parameter. This is a standard
approximation to the mixing length in MLT. Of course,
hydrostatic equilibrium is not a very good assumption for a
collapsing stellar core, but it is not so bad for the post-shock
region. And, critically, we find that direct calculation of the
pressure scale height via the gradient of the pressure introduces
unwanted oscillations near the shock. The pressure scale height
diverges at the coordinate origin owing to the g 1 term, so we
limit the mixing length to be no larger than the local radial
coordinate. In practice, this only occurs deep inside the PNS,
below any convective regions.
Following the standard assumption in MLT, we relate the

diffusive flux due to turbulent convection of some scalar X to
its local gradient via (see Cox & Giuli 1968; Wilson &
Mayle 1988)

v X v X D X, 18r X Xturb mix ( )

where we have defined the diffusion coefficient DX. Thus, the
diffusive flux of turbulent energy is

Kv D K, 19r K ( )

where the corresponding diffusion coefficient is

D v . 20K K turb mix ( )

K is a tunable parameter to control the rate of diffusion. The
dissipation/drag term is simply Equation (9), where we use the
mixing length for the dissipation scale. Hence, the turbulent
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energy equation, Equation (8), then becomes

v

t r r
r v v D v

v
v

r
v

v

1

, 21

r K

r

turb
2

2
2

turb
2

turb
2

turb
2

turb BV
2

mix
turb
3

mix

( )
[ ( )]

( )

where we have used R vrr turb
2 in the shear term (first term on

the right-hand side). In general, the shear is quite a bit smaller
than either buoyancy or turbulent dissipation. The last term on
the right-hand side of Equation (21) is the rate of dissipation of
turbulent energy to heat, Equation (9), where we have assumed
that the dissipation scale is equivalent to the mixing length.
This is not necessarily the case, as the physics governing these
two scales are, in principle, different. This assumption,
however, reduces the free parameters required by the model
and results in peak convective speeds that agree with the
expectations from MLT.

The peak speed of the convection can be found by setting the
left-hand side of Equation (21) to zero, assuming a steady state
with no background velocity gradient, and solving for speed,

v , 22turb,max BV mix ( )

which is identical to the usual expression for the convective
speed in standard MLT implementations (Cox & Giuli 1968;
Paxton et al. 2013; Müller et al. 2016b). Rather than assume
that the convection becomes instantaneously fully developed
with the typical speed given by Equation (22), we solve
Equation (21) for the time-dependent local convective speed.
We allow for negative squared Brunt–Väisälä frequencies, i.e.,
negative buoyancy, resulting in deceleration of convective flow
in regions that are stably stratified. This is particularly
important in the neutrino cooling region below the gain region.
There, convective plumes falling down from the gain layer are
rapidly decelerated by the strongly positive entropy and lepton
gradients.

We integrate Equation (21) in an operator split fashion.
During the hydrodynamic update, the turbulent energy is
advected with the flow and the hyperbolic fluxes are modified
by the diffusive turbulent flux assuming an exact conservation
law (i.e., the right-hand side of Equation (21) is set to zero).
The buoyant and dissipative source terms in Equation (21) are
incorporated separately from the hydrodynamic update using a
simple forward-Euler approach. Since some small perturbation
is required to seed convection, we assume that the minimum
vturb in regions of positive BV

2 is

v t , 23turb,min BV
2

mix ( )

where t is the computational time step size. As a consequence
of advecting the turbulent energy with the flow, in regions of
sufficient background radial velocity, vturb will be advected out
of layers with positive BV

2 and will be damped in time
according to the turbulent dissipation and buoyant deceleration.
This reflects the requirement of sufficiently rapid growth of
convection (i.e., sufficiently large BV

2 ) for convection to
become strong in the presence of a background accretion flow
(Foglizzo et al. 2006).

A time-dependent treatment of the convective speed is
justified by a consideration of relevant timescales in the

problem. Assuming that the background is stationary (v 0r ),
we can integrate Equation (21) from v 0turb to some fraction f
of vturb,max to find the growth time of the convection,

ftanh
. 24con

1

BV

( )
( )

Thus, the true vturb,max is only reached asymptotically at infinite

time. A typical BV
2 in the gain region of a CCSN is 105 s−2;

thus, the time for the convective speed to reach 90% of its
maximum is ∼10 ms. This is remarkably similar to the
advection time through the gain region, r vadv gain gain

50 km 5000 km s 10 ms1 . This is also roughly the
dynamical timescale, G 1 2( ) , at the shock radius. All of this
indicates that the growth of convection occurs on timescales
similar to other processes in the CCSN gain layer, i.e., it is not
fast and should not be treated as instantaneous. This has also
been shown in multidimensional simulations wherein we
observe convection developing “slowly” and from the analysis
of Foglizzo et al. (2006). Integrating Equation (21) with

0BV
2 , we find the characteristic timescale for the convec-

tion to slow down from this peak speed in stable regions:
v 50 km 2000 km s 25 msdrag mix turb

1 1 . Again, this
is a comparable timescale to others in the problem, if slightly
slower.
Finally, it is worth noting that we have essentially equated

the convective speed to the square root of the turbulent kinetic
energy. For Kolmogorov-like turbulence, as is the case in the
CCSN gain region (Radice et al. 2016), the largest turbulent
scales contain the vast majority of the kinetic energy. Our
equating of the average convective speed to the turbulent speed
is consistent with this characteristic of CCSN turbulence.

2.3. Modified Evolution Equations

We are now equipped to compute the turbulent correlation
terms, Equations (9)–(13), in a space- and time-dependent
fashion. With the model for turbulence and convection in the
CCSN context described above, the resulting evolution
equations for mass, momentum, energy, electron fraction, and
turbulent kinetic energy are
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where , Qν, and are source terms due to matter–neutrino
interactions and g is the gravitational acceleration. In
Equations (27)–(29), the respective diffusion coefficients are

D v , 30e e turb mix ( )

D v , 31Y Y turb mixe e
( )

D v . 32K K turb mix ( )

In general, the various diffusion parameters α can have
different, independent values, but for the present work we
assume that they are all equal and 1 6K e Ye .

Equations (25)–(29) describe the dynamics of a 1D system in
the presence of nonspherical, turbulent motion and neutrino
radiation. It is perhaps a subtle, even semantical, point to make,
but this is no longer truly a spherically symmetric system,
owing to the inclusion of turbulent, convective motion. More
precisely, this might now be described as an angle-averaged
approach to the full dynamics. It is also worth commenting on
the conservation of energy. As pointed out by Mabanta &
Murphy (2018), the energy in turbulent convection in the
CCSN context is extracted from the free energy in unstable
thermodynamic and compositional gradients. This is accounted
for in our model described above. The turbulent kinetic energy
is generated by buoyancy (Equation (21)). This buoyancy, in
turn, is the product of unstable gradients, as described by the
Brunt–Väisälä frequency (Equation (15)). The diffusive mixing
induced by the turbulent convection flattens these gradients,
reducing the buoyant driving. In the limit of fully efficient
convection, the gradients will be eliminated along with the
buoyant driving. Thus, up to a factor of order unity (determined
by the diffusive mixing α parameters), total energy is
conserved by STIR, when accounting also for the free energy
in unstable thermodynamic and compositional gradients.

Our approach for including turbulent convection in 1D
CCSN simulations recalls that of Bruenn et al. (1995). There,
the authors include MLT for the diffusive convective transport
of energy, composition, and neutrinos. They also include a
turbulent pressure term in the momentum equation. Our
approach extends this in a number of ways. First, Bruenn
et al. (1995) assume that the turbulence is isotropic, whereas we
account for the fact that the CCSN gain region turbulence is, in
fact, quite anisotropic (Equation (11), Couch & Ott 2015). We
also account for many more turbulent correlation terms in the
evolution equations than just the pressure term in the
momentum equation. These terms are key to accurately
modeling realistic 3D CCSN convection.

Yamasaki & Yamada (2006) also explore the effects of
convection in 1D CCSN models. This work relied on steady-
state models and a phenomenological approach to including the
effects of convection. As in Bruenn et al. (1995), they
neglected several terms related to the presence of turbulence
that we now understand to be critical. The model of Yamasaki
& Yamada (2006) primarily included the effect of diffusive
energy transport outward toward the shock as an aid to shock
expansion. This effect is very important, but it is only part of
the story of the impact of turbulence in CCSNe.

STIR is most reminiscent of the recent work of Mabanta &
Murphy (2018). They include all the same turbulent correlation
terms we do, but in the context of a steady-state system and
using parameterized source terms to treat the neutrino physics.
They were the first to point out the key role of the turbulent
dissipation term, and our experiments with STIR confirm this.
The turbulent dissipation term is at least as important as the

“turbulent pressure” terms appearing in the momentum and
energy equations. In contrast to Mabanta & Murphy (2018), in
STIR we treat the turbulent convection terms in a fully time-
and space-dependent manner, adopting a new closure based on
MLT. We also include high-fidelity, energy-dependent neutrino
transport in our model.
Mabanta et al. (2019) extend the model of Mabanta &

Murphy (2018) to time-dependent 1D simulations. Their
approach includes most of the same turbulent correlation terms
we include in STIR, though their approach to closing the model
is completely different. Whereas here we have used a time-
dependent MLT approach, Mabanta et al. (2019) relate the
strength of turbulence and convection directly to the neutrino
luminosity (Murphy & Meakin 2011; Murphy et al. 2013).
Furthermore, they treat neutrinos with a simple heating/cooling
“lightbulb” approach with a constant luminosity that is input by
hand (Murphy & Burrows 2008). This requires them to make
assumptions about the radial dependence of the convective
terms through the gain region, since these quantities are local in
nature. In STIR, our use of MLT relates the convective terms to
the local thermodynamic gradients and, as such, is more
general, allowing convection to be driven by other physical
mechanisms besides just neutrino heating. We also include
high-fidelity, energy-dependent neutrino transport and approx-
imate general relativistic gravity (Section 3). Mabanta et al.
(2019) assume purely Newtonian gravity.

3. Numerical Approach

Our CCSN application is implemented in the FLASH
adaptive mesh refinement (AMR) simulation framework
(Fryxell et al. 2000; Dubey et al. 2009). We solve
Equations (25)–(29) using a newly implemented hydrody-
namics solver based on a fifth-order finite-volume weighted
essentially nonoscillatory (WENO) spatial discretization (Shu
& Osher 1988; Tchekhovskoy et al. 2007; Shu 2009) and a
method-of-lines Runge–Kutta time integration. We use the
WENO steepness indicators of Borges et al. (2008) and a two-
stage second-order SSP Runge–Kutta time integrator (e.g., Shu
& Osher 1988). Details of this new solver will be presented in a
forthcoming methods paper (S. M. Couch 2019, in prep-
aration). We use an HLLC Riemann solver everywhere except
in shocks, where we use a more diffusive HLLE solver
(Toro 2009). We treat self-gravity using an approximate
general relativistic effective potential (Marek et al. 2006;
O’Connor & Couch 2018a). We use the “optimal” EOS
parameterization of Steiner et al. (2013, hereafter SFHo). In the
present work, we assume nuclear statistical equilibrium (NSE)
abundances everywhere.
We include the additional turbulent correlation terms on the

right-hand side of Equations (25)–(29), including the diffusive
mixing terms, directly in the explicit hyperbolic fluxes. We
monitor the parabolic diffusive time step limit to ensure
stability, though since our neutrino transport scheme is also
explicit, the parabolic time step is almost always larger than the
transport time step.
For the transport of neutrinos, we employ an explicit two-

moment scheme with analytic closure for higher moments (so-
called “M1” transport; Shibata et al. 2011; Cardall et al. 2013;
O’Connor 2015). Our implementation of M1 transport in
FLASH is detailed in O’Connor & Couch (2018a). In the
present study, we use 12 energy groups spaced logarithmically.
Our base opacity set from NuLib (O’Connor 2015) closely
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matches that of Bruenn (1985), with corrections for weak
magnetism following Horowitz (2002). We include velocity-
dependent transport terms and inelastic neutrino–electron
scattering according to O’Connor (2015).

We make no ad hoc modifications to the neutrino physics in
our simulations except to include turbulent diffusion of trapped
neutrinos. Analogous to the diffusive mixing terms for
advected mass scalars such as the electron fraction
(Equation (28)), we include an additional term in the explicit
hyperbolic fluxes of neutrino energy density (Wilson &
Mayle 1988; Bruenn et al. 1995),

D E f1 , 33,dif
4( )( ) ( )

where E is the energy density of the neutrino radiation field
(the zeroth moment of the neutrino distribution function in our
M1 scheme). The neutrino flux factor, f F E , is limited to
1 in regions where the neutrinos are free-streaming and to ∼0
in diffusive regions. The f1 4( ) term, then, smoothly shuts
off the diffusive mixing of neutrinos in low optical depth layers
where neutrinos are not trapped. Similar to the other diffused
scalar fields, the diffusion coefficient for neutrino energy
density is

D v , 34turb mix ( )

and in the present work we assume 1 6.
For all of the simulations described here, we use 10 levels of

refinement in a domain with a radial extent of 15,000 km,
yielding a finest grid spacing of 0.244 km. We limit the
maximum allowed level of refinement logarithmically with
radius with a typical r r of 0.7%.

4. Comparison to 3D CCSN Turbulence

We now compare our 1D model for turbulent convection in
the CCSN context to fully 3D simulations. For this, we use the
3D data from the O’Connor & Couch (2018b) model
mesa20_LR_v, which includes velocity dependence in the
neutrino transport and inelastic scattering on electrons up to 16
ms post-bounce. The progenitor is a 20M model from Farmer
et al. (2016). We construct radial profiles of various quantities
from the 3D data by angle averaging the full 3D data at 135 ms
post-bounce. This is just after the maximum shock extension
prior to subsequent shock recession, a time when convection is
fully developed and strong in both the gain region and the PNS.
In comparing to 3D, we vary only the mixing-length parameter,

, and keep all other free parameters of the STIR model fixed.
In principle, fully fitting to the 3D data would require that we
allow all the model parameters to vary simultaneously, which
will be explored in future work.

In Figure 1 we show the turbulent speed vturb from the 3D
simulation along with the same from our STIR simulations for
various values of . For the 3D data, we define the turbulent
speed based on the Reynolds stress tensor as in Couch & Ott
(2015), analogous to our definition in Section 2. STIR results in
turbulent velocity profiles that are very similar to those from
the 3D simulation in both location and strength. Figure 1
implies that the “best-fit” value of is somewhere between
1.2 and 1.3 when considering the integrated amount of
turbulent kinetic energy, while values around 1.1 yield the
closest match to the peak speeds. And, as expected, the strength
of the turbulent convection in STIR is a strong function of the
mixing-length parameter . A notable exception to this is for

convection in PNS, which is clearly evident in the 3D
simulation around 25 km in radius. STIR predicts essentially
no convection here. Adjusting the various α parameters in our
model associated with the strength of diffusive mixing can
yield a better match to the PNS convection in 3D, but for the
sake of simplicity we do not explore this in the present work
and leave it to future work. Also, we are mostly concerned with
the turbulent convection in the gain region and find that the
PNS convection has very little impact on the general results we
discuss here.
As evident from Figure 1, larger values of result in higher

typical turbulent speeds, and this has an important impact on
the overall dynamics of the 1D CCSN simulation. In Figure 2
we show the time evolution of the (average) shock radius from
the 3D comparison simulation and from our STIR simulations
with several values of . At early times ( 50 ms), there is
very little difference in the shock radii. This is a result of the
turbulent convection not being fully developed and strong at
these early post-bounce times. Once convection does become
strong, which occurs slightly later in our STIR simulations than
in the 3D simulation, the shock radius becomes a strong,
increasing function of . For sufficiently large values, a
successful explosion results. This is a consequence of the
turbulent correlation terms included in Equations (25)–(28),
most importantly the turbulent stress and dissipation terms. For

0, all these additional terms are zero, and the system of
equations reduces to the usual 1D, spherically symmetric case.
This is shown in Figure 2 as the darkest blue line with the
smallest shock extension.
In Figure 3 we show the diagnostic explosion energy (see

Müller et al. 2012; Bruenn et al. 2013) as a function of time
post-bounce for our 1D STIR simulations using the 20M
progenitor from O’Connor & Couch (2018b). These explosions

Figure 1. Angle-averaged turbulent speed vturb from the 3D simulation of
O’Connor & Couch (2018b; dashed line), along with the turbulent speed from
STIR simulations with a range of values spaced in intervals of 0.1. All
simulations are at 135 ms post-bounce. 1.0 is marked with a thick black
line to guide the eye. Values of around 1.1 yield similar peak convective
speeds to the 3D simulation, while larger values, between 1.2 and 1.3,
reproduce the total amount of convective kinetic energy. The more extended
“tail” of convection below the gain layer seen in the 3D simulation between 50
and 80 km is a product of angular variation in the 3D model and not of
excessive diffusion or advection of convective motion along any given line of
sight in 3D as compared to STIR. STIR does not reproduce the PNS convection
around 25 km very well.
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energies are, evidently, still increasing slowly at the point
where we end our simulations. Here, our ability to capture the
final, asymptotic explosion energies is limited by our
assumption of NSE everywhere in the computational domain.
This assumption becomes less and less correct at larger radii in
the progenitors, so we limit the radial extent of the domain to
15,000 km. We stop the simulations once the shock reaches this
radial limit, and the explosion energies are, in general, still
increasing at this point, as seen in Figure 3. Therefore, we can
only give an estimated lower limit for the diagnostic explosion
energy of our STIR models. Beyond this, we see that there is a
weak correlation with the rate of growth of the explosion
energy and the value used. For failed explosions, which
result for this progenitor for values of 1.2 and below, we run
the simulations until PNS collapse, around 2.78 s for this
model.

The value that most closely reproduces the shock
evolution of the 3D simulation is around 1.2, which is also
roughly the value that most closely reproduces the magnitude
of the turbulent speeds from the 3D simulation (Figure 1). At
this the 1D STIR simulation results in a shock radius that
tracks closely the 3D model of O’Connor & Couch (2018b),
particularly prior to about 250 ms post-bounce. After this time,
the STIR simulation shows a more rapid recession of the shock
than the 3D simulation. Other multidimensional effects that are
not included in our STIR model, such as the SASI, may be
aiding the 3D shock radius at these times. The 3D simulation
does not explode up to the 500 ms simulated by O’Connor &
Couch (2018b), and our STIR simulation with 1.2 also
fails. We do not find an explosion for this progenitor with STIR
until 1.3. As we will see in Section 5, this is a very large
“critical” for explosion. As O’Connor & Couch (2018b)
found, it seems that this progenitor is, indeed, stubbornly
nonexplosive.
Figure 4 shows the entropy and Ye profiles from STIR for

several values of compared to the corresponding angle-
averaged profiles from the 3D simulation of O’Connor &
Couch (2018b) at 135 ms post-bounce. Evident from the
entropy profiles is the greater extension of the shock radius as

Figure 2. Shock radius evolution for our STIR simulations compared to the 3D
simulation of O’Connor & Couch (2018b). As the mixing-length parameter
is increased, the shock reaches larger and larger radii. For 1.3 a
successful explosion results in our 1D simulations. For 1.2 the shock
radius closely follows the 3D evolution until ∼250 ms, at which time additional
3D effects such as SASI aid the shock in 3D and are not included in the 1D
model.

Figure 3. Diagnostic explosion energy as a function of time for 1D STIR
simulations using the 20 M progenitor model from O’Connor & Couch
(2018b). This progenitor only explodes for values 1.3.

Figure 4. Entropy and Ye radial profiles from our STIR models compared with
angle-averaged radial profiles of the same progenitor from the 3D simulation of
O’Connor & Couch (2018b) at 135 ms post-bounce.
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is increased. The comparison of entropy profiles shows that,
as implied by Figures 1 and 2, an value between 1.2 and 1.3
reproduces the average shock radius of the 3D simulation.
Generally, the entropy profiles in the gain layer from STIR are
steeper than those from the 3D simulation. Larger values of the
diffusive mixing parameters in STIR can lead to flatter entropy
profiles, but overall we find a better agreement in the gross
dynamics (i.e., shock radius, total turbulent energy) with the
parameter values given above. The case is similar for the Ye
profiles. While increasing leads to profiles closer to the 3D
case, the gain region Ye values from STIR are always larger
than for the comparable 3D simulation. Enhanced mass scalar
diffusive mixing can improve this comparison. At small radii,
around 10 km, the inability of STIR to accurately capture PNS
convection is clear, as the peak in Ye is substantially higher than
for the 3D case and the entropy profiles are slightly steeper.
Adjusting the MLT diffusion parameters in STIR, particularly
that for the compositional or trapped neutrino mixing (see
Equations (31) and (34)), can improve the comparison to 3D,
but more likely is that the use of the Ledoux criterion without
the inclusion of the impact of trapped neutrinos is also
hampering our ability to capture PNS convection at present
(Roberts et al. 2012b). Exploration of this is left to future work.

Figure 5 shows a detailed comparison between our 1D STIR
models and the 3D simulation for several key metrics and for
three different values of the mixing-length parameter . For

=0 (i.e., no inclusion of any turbulent convection in the 1D
simulation), the shock radius after the 50 ms post-bounce
remains substantially below that of the 3D simulation. The radii
of the various neutrinospheres also decrease faster. The
luminosities of electron neutrinos and antineutrinos are quite
similar, though the heavy-lepton neutrino luminosity is slightly
higher at early times but falls off much faster than the 3D case.
The mean energies of the neutrinos are fairly similar prior to
about 150 ms, but then they diverge significantly. After this
time, in the 1D case, the mean energies of the electron
neutrinos and antineutrinos increase rapidly, while the mean
energies of the heavy-lepton neutrinos decrease. This is not
seen in the 3D simulation, where the energies of all neutrino
flavors continue to increase, though the electron types increase
in energy more slowly than for the =0 1D case. The net
neutrino-heating rate in the 1D =0 case is less than that for
the 3D simulation after about 75 ms post-bounce, while the
mass accretion rates are essentially identical.

The middle column of Figure 5 compares the 3D simulation
to the = 1.2 STIR simulation. This value of
approximately fits the convective velocity, shock radius, and
angle-averaged profiles of the 3D simulation fairly well. Prior
to the accretion of the Si/O interface around 250 ms, the shock
radius and neutrinosphere radii match the 3D simulation
closely. The neutrino luminosities for the 1D STIR model are
typically a bit higher than the 3D simulation. The neutrino
mean energies are closer to those of the 3D simulation,
particularly for the heavy-lepton neutrinos, though the electron
neutrinos/antineutrinos are slightly harder following the
accretion of the Si/O interface. The net heating rate for the

=1.2 case is more similar to that of the 3D case, though
there is a slight deficit of heating prior to about 150 ms and a
slight excess thereafter.

The right column of Figure 5 compares the =1.4 STIR
case to the 3D simulation. For this value of the mixing-length
parameter the 1D simulation successfully explodes. Up to

around 100 ms, the shock radii between this 1D simulation and
the 3D simulation are very similar, and then the 1D shock
begins to expand while the 3D shock recedes. The shock
expansion in the 1D case is accelerated when the Si/O interface
is accreted around 250 ms. The neutrino luminosities in the
STIR model with =1.4 are generally enhanced prior to the
onset of explosion, at which point they drop dramatically. This
is due to the cessation of accretion onto the PNS and attendant
release of gravitational binding energy as neutrino radiation.
The mean neutrino energies are comparable between the 1D
STIR and 3D simulations, until the 1D simulation begins to
explode. Then, the electron neutrinos and antineutrinos begin
to soften, as do, to a lesser extent, the heavy-lepton neutrinos.
The heating rate in the 1D STIR simulation is significantly
enhanced compared to the 3D one after about 150 ms. As
explosion sets in, around the time the Si/O interface is
accreted, the heating rate in the 1D case drops precipitously,
falling below even the heating rate of the =0 case at late
times. This is a direct result of the drop in accretion luminosity
and expansion of the post-shock matter, lowering the efficiency
of neutrino capture in the gain region. By the end of this STIR
simulation (around 1.75 s, when the shock reaches the edge of
the domain), the heating rate is around 1050 erg s−1, which is
almost exactly the time rate of change of the diagnostic
explosion energy shown in Figure 3.
Figure 5 also shows that the radii of the neutrinospheres

depend on . For no convection or turbulence ( =0; left
panel), the recession of the PNS is quite a bit more rapid than
for the 3D case. For =1.2, the descent of the neutrino-
spheres is slowed, becoming more similar to the 3D case. Since
STIR results in weak, essentially absent PNS convection, we
do not attribute this to increased turbulent pressure support near
the neutrinospheres but instead attribute the slower contraction
of the PNS to the slower recession of the shock radius. Even in
spherical symmetry these two quantities are tightly connected
(Janka 2001). This coupling of the shock and PNS radii is only
valid prior to the onset of explosion during the quasi-
hydrostatic phase.
Overall, the STIR model is able to reproduce fairly well

many of the gross features of the 3D simulation, such as the
shock radius evolution, the neutrino luminosities and mean
energies, and the gain region heating rate. STIR does not yield
comparable turbulent velocities in the PNS convection. We
reiterate that, in STIR, we make no ad hoc modifications to the
neutrino physics or transport and include full, multigroup,
multidimensional transport of neutrinos identical to what is
used in the comparison 3D simulation, except for the diffusive
mixing of trapped neutrinos included in the 1D model.
Comparing our STIR models to the 3D simulation of

O’Connor & Couch (2018b), we find that the “best-fit” value of
is between 1.2 and 1.3. This is similar to the MLT

parameters that Müller et al. (2016b) find compare well to 3D
simulations of convective O shell burning in a massive star.
There, they define the MLT “α” parameters slightly differently
than we do, but their 1 essentially corresponds to . They
find that 11 describes the angle-averaged convective
properties of the full 3D convective O shell, which is quite
similar to the values that we find fit well to convection in a
3D CCSN simulation. In the analysis of their 3D simulation,
Müller et al. (2016b) also use diffusive mixing parameters of

1 6D , just as we do in STIR.

10

The Astrophysical Journal, 890:127 (24pp), 2020 February 20 Couch, Warren, & O’Connor



Our best-fit value for as compared to the full 3D
simulation of 1.2–1.3 is quite a bit smaller than the value often
used for MLT in stellar evolution calculations of 2.0 (Paxton
et al. 2013; Sukhbold & Woosley 2014). This value of is far
too large for our CCSN simulations and would result in very
poor agreement with the 3D simulation and, as we shall see in
the following section, very poor agreement with CCSN
population metrics such as the explosion fraction. It must be
noted, however, that the choice for the mixing-length
parameter in stellar evolution simulations is generally made
on the basis of producing a good model for the Sun, and

convection in the post-shock region of a nascent CCSN is
quite a bit different from that in the solar envelope. That the
preferred value is different by about a factor of two is not
really that surprising but does, perhaps, serve to reiterate the
concern that a single value for for all times in all places
during stellar evolution is likely incorrect. The constancy of

, however, is a basic assumption of MLT that we also adopt
here. Over the few seconds of CCSN dynamics we simulate,
during which time the fundamental nature of the convection
does not change dramatically, this is probably not a terrible
assumption.

Figure 5. Comparison of key time-dependent metrics between STIR and the 3D simulation of O’Connor & Couch (2018b). STIR data are shown with solid lines,
while the 3D data are displayed with dashed lines. The left column shows data for =0, the middle column shows =1.2, and the right column shows =1.4.
The top row shows the shock radius and the radii of the neutrinospheres for electron neutrinos, electron antineutrinos, and heavy-lepton neutrinos. As is increased
to 1.2, the shock radius evolution more closely matches the 3D simulation. For =1.4, the 1D STIR simulation explodes successfully. The second row shows the
neutrino luminosities. Increasing can slightly increase the luminosities of all three flavors we evolve until explosion occurs. The cessation of accretion accompanied
by explosion dramatically reduces the electron neutrino and antineutrino luminosities. The third row shows the mean spectral energies of the neutrino emission.
Increased hardens the spectra of heavy-lepton neutrinos/antineutrinos while softening the spectra of electron-type neutrinos/antineutrinos since the convection
causes the matter temperature to be higher at the heavy-lepton neutrinosphere. The fourth row shows the net heating rate in the gain region and the mass accretion rate
at 500 km in radius. Similar to the neutrino luminosities, increasing enhances the neutrino heating, until explosion sets in. The mass accretion rates between 1D and
3D are essentially identical (until explosion occurs for =1.4), with small differences arising just from the way that we compute an average accretion rate at 500 km
in the Cartesian 3D grid used by O’Connor & Couch (2018b).
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5. CCSN Explosions from a Range of Masses

5.1. Explodability and Explosion Energies

Having presented the formalism of STIR in Section 2 and
shown that it can respectably reproduce the overall dynamics of
a full 3D CCSN simulation in Section 4, we now turn to an
exploration of the explodability and observable characteristics
for CCSNe arising from 200 progenitor models in the ZAMS
mass range of 9–120M . Here we utilize the progenitor set of
Sukhbold et al. (2016), which is a superset of models from
Woosley & Heger (2007) and Sukhbold & Woosley (2014).
We have used the whole range of progenitor masses
(9–120M ) to explore the sensitivity to progenitor mass. All
of these progenitors are nonrotating, nonmagnetic, solar-
metallicity, single stars.8 We refer the reader to Sukhbold
et al. (2016, and references therein) for detailed discussion of
these progenitor models. Our computational approach for these
simulations is the same as that described above in Section 3.
For this first study, besides progenitor mass, we only vary the
mixing-length parameter of our STIR model, adopting
several values from 1.0 to 1.4.

Figure 6 displays the “explodability” for the progenitor stars
we study at several discrete values of . Here, by
explodability we simply mean whether or not the star explodes
(green in the figure) or fails (black). We consider a model to
have exploded if it has attained a net positive diagnostic
explosion energy (see, e.g., Müller et al. 2012; Bruenn et al.
2016, for definition). For failed explosions, we run the
simulations for up to 5 s post-bounce. For the vast majority
of the failures, this is late enough to capture the onset of general
relativistic instability of the PNS and collapse to a BH. For
explosions, we run the simulations until the shock reaches the
outer computational boundary.

A number of interesting features stand out in Figure 6. As
has come to be expected (see Müller et al. 2019), the low end of
the mass range (9–10M ) explodes more readily than more
massive stars, with these progenitors exploding already for

1.0. Beyond this low-mass window, the explodability of
the progenitors as a function of ZAMS mass is extremely

nonmonotonic, with the jagged, sawtooth-like pattern described
as “islands of explodability” by Sukhbold et al. (2016). Note,
however, that while we find qualitative agreement about the
complicated dependence of explodability on ZAMS mass
between STIR and previous works (Ugliano et al. 2012;
Sukhbold et al. 2016; Ebinger et al. 2019), detailed comparison
shows that STIR predicts a somewhat different landscape of
explosions. We will return to a detailed discussion of this in
Section 5.2.
The overall fraction of explosions from this set of

progenitors is very sensitive to the mixing-length parameter
. In the bottom panel of Figure 7 we show the total explosion

fraction as a function of weighted by a Salpeter initial mass
function (IMF). The explosion fraction is 6% at 1.0 and
rises to ∼40% at 1.2. A linear increase in the explosion
fraction is seen between 1.2 and 1.3 to 100%. This
sensitive behavior of explodability with is to be expected
since, upon inspection of the evolution equations in Section 2,
we see that most of the turbulent correlation terms depend at
least quadratically on . This behavior also appeared for the
comparison to 3D in Section 4. There, Figure 2 shows how the
shock expansion depends nonlinearly on and quickly
transitions to explosion. Also plotted in the bottom panel of
Figure 7 is the error box for the observationally determined
explosion fraction from Adams et al. (2017),9 along with their
most likely value of ∼86% (black horizontal line). Values of

that fall in the observational explosion fraction error box are
1.23, 1.25, and 1.27. These values of are also roughly those
that compare best to the 3D simulation (Section 4). We note,
however, that our explosion fractions here do not include any
stars with mass less than 9M that may evolve to core collapse.
The top panel of Figure 7 shows the IMF-weighted

explosion energy for the population of CCSNe produced by
our progenitor set as a function of . We show these data as
lower limits on the final predicted explosion energies because,
in almost all cases, the explosion energy is still increasing by
the end of our simulations (see Figure 3). We also do not
include the “overburden” energy required to unbind the outer

Figure 6. Landscape of explosions for progenitors with ZAMS masses of 9–120 M from Sukhbold et al. (2016) as a function of . Green denotes successful
explosion within the simulated time, and black denotes failed explosion. Gray regions denote the lack of a progenitor model.

8 Thus, no stars such as these likely exist in nature.

9 Technically, Adams et al. (2017) estimate a “failed” supernova fraction.
Here, we assume that the sum of the explosion fraction and the failed fraction
is 1.
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layers of the progenitor stars (see Bruenn et al. 2016). The
overburden can be quite significant, particularly for high-
compactness models. Due to this overburden, the final
diagnostic explosion energy itself is an upper limit on the
final explosion energy. One drawback of STIR, like all 1D
models, is that once an explosion is established, further
accretion onto the PNS is shut off, dramatically reducing the
total emergent neutrino luminosities and attendant heating (see
Figure 5). In 3D models, there is long-lasting continued
aspherical accretion onto the PNS that helps maintain the
neutrino luminosities (Lentz et al. 2015; Müller 2015; Müller
et al. 2019; Vartanyan et al. 2019). Unlike other 1D explosion
parameterizations (e.g., Perego et al. 2015; Sukhbold et al.
2016), in STIR we do not add any sort of ad hoc late-time
enhancement of the neutrino luminosity or heating that might
lead to a general inability of STIR to obtain as large explosion
energies as comparable 3D simulations. Still, already at

1.2 we find an average explosion energy approaching
8×1050 erg, very near the canonical CCSN explosion energy
of ∼1051 erg.

Figure 7 shows that the IMF-weighted average CCSN
explosion energy depends only weakly on . Of course, for

1.0, where only low-mass progenitors explode, the
average explosion energy is small. Note that in the averaging
we only include models that actually explode. Low-mass
progenitors systematically yield lower explosion energies in

our models, in agreement with the 1D explosions in Sukhbold
et al. (2016). Once a large fraction of the progenitor models
explode, we see a constant population-average explosion
energy with increasing . For values of 1.3 and 1.4, for
which all progenitors explode, there is a weak increase in
average explosion going from 1.3 to 1.4. This indicates that
turbulence plays a significant role in setting the explosion
energy of our CCSN models. As pointed out by Mabanta &
Murphy (2018) and shown here by our STIR simulations,
dissipation of turbulent kinetic energy to heat (see
Equation (9)) contributes significantly to the overall energy
balance of the system (see Equation (27)). Larger values of
naturally lead to larger amounts of turbulent kinetic energy
behind the shock in what will become the CCSN ejecta. Once
an explosion sets in, this turbulent kinetic energy is advected
out with the ejecta (Equation (29)) and over time dissipates into
thermal energy, contributing to the final explosion energy. We
find that after explosion occurs, while the base of the ejecta
near the PNS is still subject to large neutrino heating, in the
majority of the ejecta at later times the rate of dissipation of
turbulent energy to heat far exceeds the rate of neutrino
heating.
Figure 8 shows the landscape of explosion energies for our

progenitor model set for each value of we run. Evident is the
weak correlation with , but more apparent is the stronger
nonmonotonic dependence on progenitor ZAMS mass. As
discussed by previous works (e.g., Sukhbold et al. 2016), the
explosion energy is most closely correlated with core
compactness. The core compactness is defined as (O’Connor
& Ott 2011)

M M

R M M 1000 km
, 35M

t tbary
collapse

( )
( )

where R M Mbary( ) is the radius that encloses a massM in the
progenitor star. In O’Connor & Ott (2011), the authors
compute the compactness at the point of core bounce. Here,
for convenience, we compute the compactness at the point of
core collapse instead, which gives a very similar result
(Sukhbold & Woosley 2014). In Figure 9 we show the core
compactnesses for M=1.75 and 2.5M for our progenitor
model set (Sukhbold et al. 2016). While we find that the vast
majority of the model space results in somewhat weak
explosions with energies 1051, the highest-compactness
progenitors in the M M M23 25 range yield large
explosion energies, upward of 2×1051 erg. These large
energies are obtained even at the “critical” value for which
these models just explode. The low-mass, low-compactness
models that explode for values as small as 1.0 yield weak
explosions. Even at 1.4 these low-mass models barely
reach explosion energies of 0.5 1051 erg. We stress again,
however, that these explosion energies are not the final,
asymptotic energies that will be attained at later times than we
are able to run these simulations, and they do not include the
overburden of the material above the shock. The variation in
explosion energy with for a given progenitor is, in large
part, due to the explosions occurring earlier at higher .
Figure 10 shows the explosion times for our model set as a

function of . We define the explosion time as the time when
the diagnostic explosion energy exceeds 0.01×1051 erg. We
find a wide range of explosion times from less than 0.1 s to

Figure 7. Average explosion energy of CCSNe for progenitors from Sukhbold
et al. (2016), convolved with the Salpeter IMF (top panel), and the total
explosion fraction for our models, also convolved with the IMF (bottom panel).
The black line and error box in the bottom panel show the observationally
estimated explosion fraction of Adams et al. (2017).
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more than 1 s, with explosions in most progenitors occurring
before 0.5 s. This is a range of explosion times very similar to
what is found in multidimensional CCSN simulations (see
Section 5.4) and significantly earlier than the explosion times
for the 1D explosion parameterization of Sukhbold et al.
(2016), though similar to the explosion times from Ebinger
et al. (2019).

The only “time limit” for explosion, physically, is the race
against the collapse of the PNS to a BH.10 In STIR, since we
include the full PNS with a realistic nuclear EOS and
approximate general relativistic gravity, we are able to simulate
the onset of PNS collapse to a BH. Of course, once BH
formation commences, our essentially Newtonian dynamics
become wildly inappropriate and, furthermore, the central
densities tend to exceed the limits of our EOS table. In
Figure 11 we show our measured BH formation times for our
model set as a function of compactness 2.5. Our data for BH

formation times match exceedingly well those from the fully
general relativistic simulations of O’Connor & Ott (2011).
There, the authors suggest the freefall timescale of the inner
2.5M of the progenitor as a good proxy for the BH formation
time. This timescale is also shown in Figure 11, and we also
find it to be a reasonable approximation of our measured BH
collapse times.
Figure 11 suggests that for progenitors more compact than

about 0.152.5 , 5 s is sufficiently long to capture the onset of
collapse to a BH, that is, this is a long-enough timescale to say
definitively whether a model will explode or not. For less
compact progenitors, the BH formation time as approximated
by the freefall time of the 2.5M mass shell becomes
considerably longer. It is possible that these progenitors may
explode at times later than we consider here. Still, with this
caveat, we consider any model that has failed to explode within
the ∼5 s we simulate to be a “failed” explosion that will result
in BH formation. This timescale is substantially longer than
any explosion time we find in our current study.

5.2. Explosion Criteria

Understanding the impact of the population of CCSNe on,
e.g., cosmic chemical evolution, or to compare directly to
observational data on things such as the compact object mass
distributions, we need theoretical predictions from the wide
range of potential progenitors of CCSNe. Given the enormous
expense and complexity of multidimensional CCSN simula-
tions, even in 2D, this is not yet feasible. Thus, an area of
perennial interest is to develop criteria for predicting which
progenitor stars will explode, and where their explosion and
remnant properties will be, based solely on the precollapse
progenitor structure itself. In the present work, we refrain from
developing a new analytic, or semianalytic, explosion criterion
based on STIR and instead restrict ourselves to a comparison of
our STIR results to a few select explosion criteria.
The first and easiest metric by which to attempt to predict

explosion or failure is the ZAMS mass. ZAMS mass is still,
regrettably, the introductory “textbook” differentiator between
success and neutron star (NS) production or failure and
collapse to a BH, with the typical cutoff somewhere around
25M (see Heger et al. 2003). A multitude of theoretical work

Figure 8. Explosion energies from STIR for progenitors with ZAMS masses of 9–120 M and a range of =0.0–1.4. The color bar indicates the energy of the
explosion, with black indicating that the simulation did not explode or the absence of a progenitor model at a given mass.

Figure 9. Core compactness at the onset of collapse as defined by Equation (35)
for the progenitor model set of Sukhbold et al. (2016). Shown are the 1.75 and
2.5 M compactness values.

10 Though, practically, very late explosions on average would significantly
impact key observables such as nucleosynthetic yields in a manner inconsistent
with observations (see Woosley & Weaver 1986, 1995).
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in 1D, 2D, and 3D, however, has already shown this to be a
poor criterion, finding explosions for stars more massive than
25M and/or failures for stars less than this (e.g., O’Connor &
Ott 2011; Ugliano et al. 2012; Ertl et al. 2016; Roberts et al.
2016; Sukhbold et al. 2016; Summa et al. 2016; O’Connor &
Couch 2018a, 2018b; Ott et al. 2018; Vartanyan et al.
2018, 2019; Ebinger et al. 2019). As in these works, our
results with STIR clearly show that the ZAMS mass is a poor
indicator for which stars will explode, as gleaned from
Figures 6 and 8. These figures show that for =1.25, most
of the high-mass stars in our model set successfully explode.
Even the oft-collapsed-to-BH 40M star explodes quite
energetically. This model has the highest compactness in the
Sukhbold et al. (2016) set and, hence, a very short BH
formation timescale (see Section 5.3 below and O’Connor &
Ott 2011), making it ideal for multidimensional studies of BH
formation (Chan et al. 2018; Pan et al. 2018). However, our
STIR simulations show that this model is not particularly
nonexplosive. The 40M progenitor has a “critical” value

of 1.2, making it one of the easiest models to explode in our
current set. And even at this value of , it explodes quite
robustly with the highest explosion energy we obtain
(2.7×1051 erg).11 We note that this is also a distinguishing
feature between our STIR simulations and the 1D neutrino-
driven explosion model of Sukhbold et al. (2016) and Ertl et al.
(2016). There, the authors find that the 40M model fails to
explode, even with the most robust neutrino-driving engine
parameterization. This model also explodes in the 2D
simulations of Pan et al. (2018), depending on the EOS used,
as well as in the 3D general relativistic simulations of Ott et al.
(2018). Chan et al. (2018) find a successful 3D explosion with
this 40M progenitor accompanied by “fallback” BH forma-
tion. Similar coincidental explosion and collapse of the PNS to
a BH were observed in the 2D simulations of Pan et al. (2018)
for the DD2 and LS200 EOSs. In our STIR models, the 40M
model explodes without collapse to a BH, though the final PNS
mass is extremely close to the maximum mass limit for
the SFHo EOS. Since we have to stop the simulation once the
shock reaches the outer computational boundary (about 1.8 s
post-bounce for =1.25), we cannot say for certain that this
model will not ultimately collapse to a BH at later times. Such
cases of explosion with BH formation were seen in the 1D
simulations of Sukhbold et al. (2016) when fallback accretion
onto the PNS was accounted for.
Initial stellar mass is a poor distinguishing criterion between

explosion and failure. Indeed, of stars with ZAMS mass greater
than 25M , only the 27.7 and 28.3M stars fail to explode at

=1.25, while the 120M progenitor explodes readily at
=1.25. This nonmonotonicity of explosion with respect to

ZAMS mass will have important implications for, e.g.,
the distribution of compact remnant masses. For instance,
the majority of the BHs we find at =1.25 come from the
range of 13–16M , when accounting for the IMF. These issues
are discussed in greater detail below in Section 5.3.
A major contributing factor to why ZAMS mass is such a

poor criterion for predicting the outcome of stellar core collapse

Figure 10. Explosion timescale of CCSNe with ZAMS masses of 9–120 M and a range of =1.0–1.4 for the Sukhbold et al. (2016) progenitor set. The color bar
indicates the timescale of the explosion, with black indicating that the simulation did not explode.

Figure 11. BH formation time vs. compactness parameter 2.5 for a range of
values. The dashed line shows the freefall timescale of the 2.5 M mass shell
(O’Connor & Ott 2011).

11 Though the overburden energy of this progenitor is about 1.6×1051 erg,
bringing the corrected explosion energy down much closer to the canonical
1051 erg.
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is that, due to the complex processes of stellar evolution, it is
largely disconnected from the final structure of a massive star’s
core at the point of collapse. Even in the case of single stars at
solar metallicity, the highly nonlinear physics of radiation
hydrodynamics coupled to nuclear burning, which becomes
more and more sensitive to small variations in the thermal
structure of the star as evolution proceeds, combine to make the
outcomes of stellar evolution almost chaotic as a function of
ZAMS mass (Sukhbold & Woosley 2014). O’Connor & Ott
(2011) pointed out that a far better indicator for many aspects
of stellar core collapse is the compactness of the final (usually
iron) core (see Equation (35)).

In Figure 12 we show the “critical” value of at which a
progenitor model just explodes plotted against the compactness
for a mass of 1.75M . O’Connor & Ott (2013) argue that this
value is more closely related to the early post-bounce behavior
since it is the typical baryonic mass enclosed by the shock soon
(200–300 ms) after bounce. Our STIR models show that there
is a weak linear relationship between the critical value (i.e.,
the explodability) and the compactness 1.75 above values of
about 0.6 in the opposite direction: for high-compactness
progenitors, higher compactness corresponds with lower
critical values. The very lowest compactness progenitors
also explode readily, some already at 1.0, but besides
these two extreme ends of the compactness scale, there is no
correlation at all with compactness and explodability. In order
to draw more salient conclusions about the relationship
between compactness and explodability, we would clearly
need to sample more finely in our parameter study. Our
present data simply cover too few values of to say much
conclusive beyond the correlation at high compactness.

Ugliano et al. (2012) and Sukhbold et al. (2016) also point
out that the compactness on its own, while somewhat better
than ZAMS mass, is a generally poor predictor of the success
or failure of a given model. In the quest for a better-still
explosion indicator based solely on progenitor structure, Ertl
et al. (2016) present a two-parameter criterion. This criterion is
based on the mass enclosed at the point where the entropy in
the progenitor exceeds a value of 4 kB baryon−1 and the value
of the slope of the mass profile at this point. Specifically,

M m s M4 364 ( ) ( )

and

dm M

dr 1000 km
, 37

s

4

4

( )

where m is the enclosed mass, r is the radius from the center of
the star, and s is the entropy in units of kB baryon−1. Ertl et al.
(2016) argue that in the plane formed by 4 versus M4 4 there
is a distinct dividing line above which a progenitor model will
fail and collapse to a BH and below which a successful
neutrino-driven explosion will proceed. Based on parameter-
ized 1D neutrino-driven explosion models along the lines of
those in Ugliano et al. (2012) and Sukhbold et al. (2016) using
621 different stellar progenitor models, Ertl et al. (2016) find
that their two-parameter criterion predicts explodability with
~97% accuracy.
In Figure 13 we plot the results of our STIR simulations for
=1.25 in the 4 versus M4 4 plane, along with the steepest

of the dividing lines between explosion (below) and failure
(above) from Ertl et al. (2016).12 In this plot, failed explosions
are denoted by gray crosses and explosions by colored circles
where the color indicates the measured explosion energy of the
model. As can be seen, our results with STIR do not follow the
same trend and separation between explosion and failure as
those of Ertl et al. (2016). We find many successful explosions
above the separation line and many failures below it. Above
M 0.154 4 , our STIR results do seem to separate into two
branches in the parameter space of Figure 13, the higher branch
leading to failure and the lower branch leading to explosion.
This might seem to indicate that simply making the separation
line proposed by Ertl et al. (2016) steeper might lead to a
similarly good fit to the one those authors find. This, however,
does not hold at lower values of M4 4. The inset in Figure 13
shows a zoom-in of the low-M4 4 region. While a steep-
enough separation line might nicely divide explosions and
failures at higher M4 4, at smaller values it is the models with
higher 4 values at a given M4 4 that explode. Thus, no single
curve in this plane would describe the outcomes of our STIR
simulations to the degree of accuracy found by Ertl et al.
(2016).
Including the impact of turbulent convection in our 1D

models clearly results in dynamics that are significantly
different from those for purely neutrino-driven 1D explosions.
Our STIR model most likely captures more closely the integral
condition for explosion including the effects of turbulence by
Murphy & Dolence (2017) and Mabanta & Murphy (2018). It
is hard to compare our results directly to these works since
there the authors have assumed a steady state with constant
neutrino luminosities and mass accretion rates onto the stalled
shock. Murphy & Dolence (2017) and Mabanta & Murphy
(2018) approach the problem from the perspective of a “critical
neutrino luminosity” as introduced by Burrows & Goshy
(1993). Our approach is far more general, accounting for the
detailed physics of the neutrino transport and time-dependent
dynamics of core collapse for realistic progenitors, making
comparison between STIR and these other models challenging.
This is also the case for other explosion criteria such as the
“antesonic” condition of Pejcha & Thompson (2012) and

Figure 12. Critical , the lowest value of at which the progenitor explodes,
vs. progenitor core compactness 1.75.

12 As in Ertl et al. (2016), we do not use Equations (36) and (37) directly but
instead follow the prescription described in their Section 3.2.
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Raives et al. (2018), which does not account for turbulence or
convection.

5.3. Compact Remnant Masses

We now turn to the masses of the compact remnants left
behind by our STIR simulations. While the explosion energies
in the vast majority of our successful models are still increasing
by the end of the simulations (see Figure 3), the PNS mass
asymptotes quite quickly following the onset of explosive
shock expansion owing to the rapid cessation of accretion onto
the PNS. In reporting the NS masses in what follows, we do not
include any potential fallback that might add to the PNS mass
at later times.

Figure 14 shows the IMF-weighted average NS mass as a
function of mixing-length parameter . Shown are both the
baryonic and gravitational PNS masses; the latter we compute
by solving the Tolman–Oppenheimer–Volkoff equations for
the SFHo EOS. Shown also in this figure as horizontal lines are
the observationally derived average NS masses from three
classes of objects (Lattimer 2012): low-mass X-ray binaries
(LMXBs), NS–NS binaries, and NS–white dwarf (WD)
binaries. Note that the widths of the NS gravitational mass
distributions for these different classes of systems are rather
large: ∼1.0M for LMXBs, ∼0.8M for NS–WDs, and
∼0.3M for NS–NSs (Lattimer 2012, Figure 8). We find a
generally declining trend in average NS mass with . This is
the result of two factors. First, the highest compactness
progenitors explode with lower critical values (see
Figure 12) and result in the most massive NSs. Second, the
explosions occur earlier for higher , leading to less massive
NSs since accretion on the PNS is shut off earlier. The NS
masses we find at all of the shown values of are right in the
range of observationally determined average PNS masses from
Lattimer (2012), especially when considering the large spreads
in the observed distributions. Compared to the best-constrained
average derived from double-NS systems of ∼1.3±0.15M ,
the average NS masses we find are perhaps a little high, though

we consider only single-star progenitors, and binarity could
substantially impact the population-averaged NS masses.
As with all integration, the population-averaged NS mass

contains less information than the underlying distribution of NS
masses. The detailed NS mass distribution, while difficult to
measure at present owing to small numbers, contains a wealth
of information about the outcomes of stellar evolution, the
CCSN mechanism, and the nuclear EOS (Raithel et al. 2018).
In Figure 15 we show the IMF-weighted NS mass distribution
from our STIR simulations for several values of . The bars in
this plot are color-coded based on the ZAMS mass of the
progenitor from whence the NSs at that mass came.
In Raithel et al. (2018) the authors compute the NS mass

distribution from the 1D explosion models of Sukhbold et al.
(2016). They find that a roughly Gaussian distribution, peaked

Figure 13. Two-parameter explosion criterion from Ertl et al. (2016). 4 is the slope of the mass profile at the mass coordinate M4 at which the entropy profile in the
progenitor exceeds an entropy of 4 kB baryon−1, as defined by Equations (36) and (37). Failed explosions are marked by gray crosses, whereas successful explosions
are marked circles, color-coded by their respective explosion energies.

Figure 14. Average NS mass vs. for the Sukhbold et al. (2016) progenitor
set, convolved with the Salpeter IMF. Horizontal lines indicate average NS
masses as measured for LMXBs, double-NS binaries, and NS–WD binaries
(Lattimer 2012, stellarcollapse.org, 2019 February 2).
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around a gravitational mass of 1.4M , fits the models quite
well. This is also in rough agreement with the observed average
NS mass (Figure 14). There is tentative evidence, however,
based on the population of millisecond pulsars that the NS
mass distribution is double peaked, with a primary peak around
a gravitational mass of 1.4M and a secondary peak around a
gravitational mass of 1.8M (Antoniadis et al. 2016). The
models of Sukhbold et al. (2016) have trouble explaining such
a high-mass peak, if it exists (Raithel et al. 2018). In Figure 15
we also plot the double-Gaussian model of Antoniadis et al.
(2016) based on masses derived from millisecond pulsars.

At 1.2 (top left panel of Figure 15), the PNS mass
distribution is peaked at small gravitational mass, around
1.25M , with a second peak around 1.8M . This structure is a
result of only the least compact and most compact progenitors
exploding at this low value. As is increased, the NS mass
distribution fills in with more and more progenitors success-
fully exploding. At 1.25, the distribution peaks at a
gravitational mass of about 1.4M with a clear second peak at
about 1.8M , remarkably similar to the double-Gaussian
model of Antoniadis et al. (2016). As increases beyond
1.25, more models explode and explosions occur earlier for
already-exploding progenitors. As stars in the mass range
13–16M begin exploding, the peak in the NS mass
distribution shifts to slightly larger values. By 1.4, the

double-peaked structure of the distribution remains, but the first
Gaussian peak is far more dominant and peaks around 1.7M
gravitational, a bit larger than the peak estimated by Antoniadis
et al. (2016) and Raithel et al. (2018). For no value of do we
find very massive NSs, near 2M gravitational. This could be a
product of explosions occurring too early in STIR, before the
PNS has grown in mass sufficiently, or due to a deficiency in
the set of progenitor models we use.
We assume that all models that fail to explode result in

gravitational collapse of the PNS to a BH. For progenitors with
compactnesses 0.22.5 , our simulations run late enough to
capture the onset of PNS collapse directly. For all other models
that do not explode within about 5 s, we consider them to also
be failed explosions resulting in BH formation. For estimating
the mass of the BH formed by a given progenitor, we use the
approach presented by Fernández et al. (2018). Here the
authors account for unbinding of some fraction of the envelope
of the star due to neutrino mass loss from the core prior to BH
formation (e.g., Lovegrove & Woosley 2013). While a rather
detailed model, it yields estimates for BH masses fairly close to
the He core mass of the star at the point of initial core collapse
(see Clausen et al. 2015).
In Figure 16 we show the IMF-weighted distributions of BH

masses derived from our STIR simulations for a few values of
. As for the NS mass distributions (Figure 15), the BH mass

Figure 15. NS mass distribution for the Sukhbold et al. (2016) progenitor set, convolved with Salpeter IMF, for several values of . Only simulations that produced
successful explosions are included here. Top left is for =1.2, top middle is =1.23, top right is =1.25, bottom right is =1.27, bottom middle is

=1.3, and bottom left is =1.4. Colors indicate the ZAMS mass range of the progenitor star. The black line is the double-peaked model based on observed
millisecond pulsar masses (Antoniadis et al. 2016). The values on the y-axis are the probabilities in arbitrary units (a.u.).
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distributions are color-coded according to the ZAMS mass of
the BH’s progenitor. At =1.0 (left panel), all progenitors
with ZAMS masses 10M fail to explode and will form BHs.
At 1.2, some of the most compact progenitors in the
range of 20–30M explode, along with more of the lowest-
mass models. This removes BHs in the ~5.0–9.0M range.
About 73% of massive stars explode for 1.25, leaving a
more anemic distribution of BHs. The right panel of Figure 16
clearly shows that STIR predicts a typical BH mass of around
4M , with the vast majority of those BHs originating from
stars with ZAMS masses in the 13–16M range. The
distribution is fairly tight from 3 to 7M , with a low-
probability tail extending up to 10M resulting from higher
ZAMS mass progenitors. It is interesting to note that for

1.25 the BHs we find come from progenitors with ZAMS
masses representing almost the entire range of high-mass stars,
from 12 to 60M . Clearly, according to STIR, forming BHs is
not something only the highest-mass stars do. As increases,
more progenitors explode and the distribution of BH mass
tightens around the same mean value of 5M .

For this progenitor set, we find no BHs with masses above
about 15M for any value of following the prescription for
predicting the BH mass of Fernández et al. (2018). Thus, our
present model set based on single, solar-metallicity stars would
have difficulty explaining the extremely massive BHs now
being observed in gravitational waves by LIGO (e.g., Abbott
et al. 2016). Due to the mass-loss prescription used in this
progenitor set, even if we were to assume that the entire star
collapsed into a BH, without any unbinding of the outer
envelope as envisaged by Lovegrove & Woosley (2013), this
would still be insufficient to produce the 30M and higher-
mass BHs observed so far by LIGO (see Ebinger et al. 2019).
As has been pointed out by other works (Belczynski et al.
2016), forming such enormous BHs via single-star evolution is
a challenge, if not an impossibility.

Taken together, our NS and BH mass distributions show
only weak evidence for the presence of a “mass gap” between
NSs and BHs. Belczynski et al. (2012) and Wiktorowicz et al.
(2014) present observational and theoretical support for the
existence of such a gap between about 2M for the highest-
mass NSs and 5M for the lowest-mass BHs, i.e., no BHs with
baryonic masses less than about 5M . The data seem to show
that for BHs that have measured masses so far, many of them
“pile up” around 5M , with no statistically significant evidence
that any BHs fall below this mass (Wiktorowicz et al. 2014).
For our model set we find a substantial number of BHs below

5M for all values of . This is a product of STIR predicting
failed explosions for certain lower-mass progenitors in the
range of 10–19M . These stars yield fairly low-mass BHs
according to the method we have adopted for estimating final
BH masses (Fernández et al. 2018).

5.4. Comparison to 2D and 3D Simulations

As discussed above, our results with STIR reproduce the
qualitative result from other parameterized 1D models (e.g.,
Ugliano et al. 2012; Ertl et al. 2016; Sukhbold et al. 2016;
Ebinger et al. 2019) that the explodability of massive stars is a
complicated, nonmonotonic function of ZAMS mass. We also
find, however, that the details of which precise stars explode or
fail are quite different from other 1D parameterizations,
specifically those of Ugliano et al. (2012), Sukhbold et al.
(2016), and Ebinger et al. (2019). So, which is “right?” Well,
this is a complicated question to answer and depends on how
one approaches addressing it. In this section, we compare the
explosions and failures found by STIR to some of the available
results in the literature from multidimensional CCSN simula-
tions including comparable physics. We also compare these
results to those two purely neutrino-driven 1D explosion
parameterizations: Sukhbold et al. (2016) and Ebinger et al.
(2019).
One approach to determining the verisimilitude of a 1D

explosion model would be to compare the population statistics
of the produced set of models to the population of observed
CCSNe. 1D parameterizations such as those of Sukhbold et al.
(2016) and Ebinger et al. (2019) actually do quite well in
reproducing mean observable metrics such as the explosion
fraction, explosion energy, radioactive nickel production, and
even detailed nucleosynthesis (Curtis et al. 2019). These
methods, however, are tuned to accurately yield these metrics
for certain progenitors (usually those designed to mimic SN
19987A). For STIR, we make no such fitting to observable
outcomes but instead “fit” the main model parameter, , to the
3D simulation of O’Connor & Couch (2018b) while fixing all
the diffusion parameters to fiducial values (see Section 4). This
comparison showed that a mixing-length parameter of

=1.2–1.3 worked well to reproduce the strength and
location of turbulent convection and shock radius evolution of
the 3D model with STIR. Consideration of the predicted
explosion fraction for the population of CCSNe produced from
the Sukhbold et al. (2016) progenitors using STIR (Section 5.1)
led us to prefer an value of 1.25, at least among those values

Figure 16. BH baryonic mass distribution for the Sukhbold et al. (2016) progenitor set, convolved with the Salpeter IMF. Only simulations that failed to explode are
included here. The left panel is for =1.0, the middle panel is for =1.2, and the right panel is for =1.25.
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we simulate in this paper. We will stick with this value of
for our comparisons in this subsection, except where noted.

We first consider how our results with STIR compare to the
2D simulations of O’Connor & Couch (2018a). The neutrino
transport used in that work is exactly the same code we use in
this work (two-moment M1), modulo the diffusion of trapped
neutrino fractions due to turbulent convection (Section 3). In
O’Connor & Couch (2018a) the authors simulated progenitors
of ZAMS masses 12, 15, 20, 21, 22, 23, 24, and 25M , all of
which were taken from Woosley & Heger (2007). Here we
employ the models from Sukhbold et al. (2016), but
comparison shows these two sets to be fairly similar for the
masses we are concerned with. O’Connor & Couch (2018a)
also use the Lattimer & Swesty (1991) model with nuclear
incompressibility of 220MeV (hereafter LS220), where here
we use the SFHo EOS (Steiner et al. 2013). This could be a
source of quantitative difference in the results, but the
controlled 2D comparison between these two EOSs by Pan
et al. (2019) implies that they are qualitatively very similar and,
crucially, should agree on the leading-order question whether
or not a given progenitor explodes.

In Figure 17 we show the shock radius curves for 21, 22, 23,
and 24M progenitors for the 2D simulations of O’Connor &
Couch (2018a), along with the comparable 1D STIR simula-
tions (with =1.2). This is an interesting set of progenitor
masses since O’Connor & Couch (2018a) find that the 21M
model fails while the others succeed, with the 22M model
exploding 200 ms later than the 23 and 24M models.
Encouragingly, STIR predicts the exact same qualitative
outcome: the 21M progenitor fails while the others succeed
in exploding. The order of explosion times is also the same,
with the 22M star exploding the latest, but all of the explosion
times are significantly earlier as compared with the 2D
simulations. This could be a result of the differences in EOS
or overly optimistic mixing parameters in STIR. We note that
for 1.23 and above, STIR predicts that all of these
progenitors explode.

In Table 1 we compare the explosion times for our STIR
simulations to several recent 1D, 2D, and 3D simulations of
CCSNe using similar physics and progenitors. For brevity, we
show only the progenitor models simulated in 3D as

summarized in Burrows et al. (2020). In this table, failed
explosions (or, more precisely, a lack of explosion within the
simulated time) are represented by “L.” As discussed above for
the cases of 21–25M stars, STIR also agrees fairly well with
the 2D results of O’Connor & Couch (2018a). Table 1 shows the
results for the other models simulated by O’Connor & Couch
(2018a). For the 20.0 and 25.0M progenitors, STIR agrees well
with the 2D results, though the explosion times are earlier in
STIR. For the 12 and 15M models, STIR and O’Connor &
Couch (2018a) disagree on the qualitative outcome. The 12M
model explodes in STIR but fails in O’Connor & Couch
(2018a), and vice versa for the 15M progenitor. We also show
in Table 1 the approximate explosion times for these progenitors
from the 1D parameterized purely neutrino-driven simulations of
Sukhbold et al. (2016). In every instance, Sukhbold et al. (2016)
and O’Connor & Couch (2018a) disagree on the qualitative
outcome of explosion or not for these progenitors. Table 1 also
shows the explosions times from Ebinger et al. (2019) for these
progenitor masses from the 1D PUSH model. Here, the authors
use the Woosley & Heger (2007) progenitors and the DD2 EOS
parameterization of Fischer et al. (2014). Pan et al. (2019)
compare DD2 to SFHo in 1D and find that it produces
systematically larger shock radii and, therefore, might be more
favorable for explosion, but for the most part it gives similar
results to SFHo. PUSH is, apparently, very robust, and almost all
of these progenitors successfully explode and at times earlier
than either Sukhbold et al. (2016) or STIR. For the progenitors
used by O’Connor & Couch (2018a), the only models that
PUSH predicts failure for are the 23 and 24M stars. These stars
are the first to explode in O’Connor & Couch (2018a) and also
for STIR (see Figure 17).
The 2D explosions of Summa et al. (2016) also show fairly

good agreement with STIR. There the authors simulate the 12,
15, 20, and 25M progenitors from Woosley & Heger (2007)
using a two-moment variable Eddington tensor (VET) method
with model Boltzmann equation closure for neutrino transport
with detailed microphysics (Rampp & Janka 2002) and the
LS220 EOS. They find explosions for all of these progenitors, in
agreement with O’Connor & Couch (2018a), except for the case
of the 12M progenitor. STIR also predicts explosion for the
12M progenitor. For this case, however, Summa et al. (2016)
find the latest explosion of their entire set. Bruenn et al. (2016)
also find explosions in their 2D simulations for all the same
progenitors as Summa et al. (2016). There, the authors employ
one-moment flux-limited diffusion (FLD) neutrino transport and
the LS220 EOS and include a transition to a full nuclear reaction
network at low density (Bruenn et al. 2018). Bruenn et al. (2016)
find that all of these progenitors explode around the same time,
just after 200 ms post-bounce. This qualitatively agrees with
STIR, though the spread of explosion times from STIR is a bit
larger, and quite comparable to the explosion times for the 3D
simulation summarized in Burrows et al. (2020).
Vartanyan et al. (2018) present 2D results for several of the

Woosley & Heger (2007) progenitors, including all of those
used by Bruenn et al. (2016) and Summa et al. (2016). The
explosion times they find are summarized also in Table 1.
Vartanyan et al. (2018) employ a two-moment M1 neutrino
transport approach similar to ours (Skinner et al. 2019) but with
significantly different neutrino–matter interactions (Burrows
et al. 2018). They also use the SFHo EOS. Their results for
the progenitors considered are similar to what STIR predicts,
with a few exceptions. STIR and Vartanyan et al. (2018)

Figure 17. Shock radius curves for select STIR simulations in the 21.0, 22.0,
23.0, and 24.0 M progenitors for =1.2 (dashed lines). Also shown are the
shock radius curves for the same ZAMS mass progenitors from the 2D
simulations of O’Connor & Couch (2018a; solid lines).
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disagree on the qualitative outcome of explosion or failure for
the 12.0, 20.0, and 25.0M progenitors. All of the other 2D
simulations they present yield the same conclusion on this most
basic question as compared with STIR. We note, however, that
this puts the results of Vartanyan et al. (2018) in tension with the
other recent 2D simulations we mention above (Bruenn et al.
2016; Summa et al. 2016; O’Connor & Couch 2018a) and, in
some cases, even with the 3D results using the same code
(Radice et al. 2019; Burrows et al. 2020; Vartanyan et al. 2019).

Given the issues that affect the physical accuracy of 2D
simulations, most relevantly the incorrect inverse turbulent
energy cascade (Hanke et al. 2012; Couch 2013; Murphy et al.
2013; Couch & O’Connor 2014; Couch & Ott 2015),
comparing STIR to fully 3D simulations is desirable. There
are still only a handful of 3D CCSN simulations that include
high-fidelity neutrino transport and microphysics in the
literature. A large set of comparable 3D simulations has been
completed using the FORNAX code and discussed in
Vartanyan et al. (2019), Radice et al. (2018), and Burrows
et al. (2020). In every single case, STIR and Burrows et al.
(2020) agree on the qualitative outcome of explosion or failure.
This is true even for the progenitors in the mass range
13–15M that fail both for STIR and in Burrows et al. (2020).
The explosion times found in these 3D simulations are also
relatively similar to those found in STIR. Considering the
purely neutrino-driven parameterization of Sukhbold et al.
(2016), their 1D models disagree with the 3D simulations
presented in Burrows et al. (2020), and hence with STIR, for
the cases of the 13.0, 14.0, 20.0, and 25.0M models.

In Ott et al. (2018) the authors present a set of 3D general
relativistic CCSN simulations using M1 neutrino transport with
the 12, 15, 20, and 40M progenitors of Woosley & Heger

(2007). For these models, Ott et al. (2018) find explosions for
the 15, 20, and 40M stars and a failure for the 12M
progenitor. Their explosion times are also listed in Table 1. As
mentioned above, STIR predicts failure for the 15M star but
explosion for the 12M star, in contrast to the 3D results of Ott
et al. (2018). STIR also finds a successful explosion for the
highly compact 40M model. As mentioned above, depending
on the EOS employed, Pan et al. (2019) also find successful
explosions for this progenitor, though accompanied by
simultaneous BH formation. It is possible that STIR would
predict a “fallback” BH formation after this successful
explosion if we continued our simulations to much later times
(Chan et al. 2018). Table 1 shows a few other 3D simulations
with comparable physics to STIR. Lentz et al. (2015) present
the successful explosion in 3D of the 15M progenitor from
Woosley & Heger (2007) using the same simulation method as
in Bruenn et al. (2013, 2016). The explosion for this progenitor
occurs later than for Bruenn et al. (2016), but nonetheless still
occurs, in disagreement with the prediction from STIR of
failure for this model. Melson et al. (2015), using a similar
approach to that of Summa et al. (2016), find a failed explosion
for the 20M progenitor of Woosley & Heger (2007) unless
strange-quark corrections are accounted for in the neutrino–
nucleon scattering cross sections. STIR predicts an explosion
for this model.

6. Conclusions

We have presented a new approach for incorporating the
effects of convection and turbulence into 1D simulations of the
CCSN mechanism called Supernova Turbulence In Reduced-
dimensionality (STIR). STIR begins with a Reynolds

Table 1

Explosion Times from Recent Studies in 1D, 2D, and 3D Using Similar Methods and Progenitors Compared to STIR with =1.25

Progenitor Mass (M )

9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 25.0

STIR (this work) 1D 0.24 s 0.40 s 0.29 s 0.40 s L L L 0.43 s 0.39 s 0.64 s 0.47 s 0.40 s 0.39 s
Sukhbold et al. (2016)a 1D 0.66 s 0.80 s 1.56 s 1.1 s 0.8 s 0.71 s L 0.78 s 0.77 s 1.2 s 1.2 s L L

Ebinger et al. (2019)b 1D 0.39 s 0.47 s 0.41 s 0.41 s 0.44 s 0.35 s 0.33 s 0.42 s 0.36 s 0.42 s 0.49 s
O’Connor & Couch (2018a)c 2D L 1.1 s 0.8 s 0.6 s
Vartanyan et al. (2018)d 2D L L L 0.3 s 0.38 s 0.41 s L L

Summa et al. (2016)e 2D 0.79 s 0.62 s 0.35 s 0.40 s
Bruenn et al. (2016)f 2D 0.24 s 0.23 s 0.21 s 0.21 s
Pan et al. (2018)g 2D
Ott et al. (2018)h 3D L 0.58 s 0.35 s
Lentz et al. (2015)i 3D 0.37 s
Melson et al. (2015)j 3D L

Burrows et al. (2020)d 3D 0.21 s 0.45 s 0.21 s 0.31 s L L L 0.30 s 0.30 s 0.32 s 0.40 s 0.45 s 0.55 s

Notes. Explosion times are roughly approximate based on published data. Ellipses denote that the model did not explode in the simulated time and may, or did,
collapse to a BH. A blank entry implies that a given progenitor model was not simulated by the referenced work. All referenced models use some form of general
relativistic gravity.
a Same progenitor models as this work; parameterized neutrino lightbulb; LS220 EOS.
b Woosley & Heger (2007) progenitors; parameterized “PUSH” IDSA transport; DD2 EOS.
c Woosley & Heger (2007) progenitors; same transport as this work; LS220 EOS.
d Woosley & Heger (2007) progenitors; M1 transport with slightly different neutrino microphysics; SFHo EOS.
e Woosley & Heger (2007) progenitors; two-moment VET transport; LS220 EOS.
f Woosley & Heger (2007) progenitors; FLD transport; LS220 EOS.
g Woosley & Heger (2007) progenitor; IDSA transport; LS220 EOS.
h Woosley & Heger (2007) progenitors; M1 transport without velocity-dependent terms; SFHo EOS; fully general realistic.
i Woosley & Heger (2007) progenitor; FLD transport; LS220 EOS.
j Woosley & Heger (2007) progenitor; two-moment VET transport; LS220 EOS; note that this model explodes around 0.4 s if the authors include matter strangeness
corrections.
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decomposition of the compressible Euler equations into
background, mean flow components and perturbed, turbulent
components (see Section 2). We then angle-average these
equations in spherical coordinates and make a few simplifying
assumptions gleaned from multidimensional simulations of
CCSNe, to yield a set of 1D evolution equations that depend
solely on the local magnitude of the turbulent kinetic energy.
We “close” these equations using a modified MLT approach
that relates the space- and time-dependent evolution of the
turbulent kinetic energy to the local Brunt–Väisälä frequency
(Equation (15)). This physically motivated model then depends
on a total of five free parameters, the mixing-length parameter

(Equation (17)) and four parameters that control the strength
of diffusive mixing due to turbulent convection for internal
energy ( e), turbulent kinetic energy ( K), electron fraction
( Ye), and trapped neutrino fractions ( ). In the present work,
we vary only the mixing-length parameter and fix all the
diffusive mixing parameters to 1/3 (Bruenn et al. 1995).

In STIR, we use full high-fidelity two-moment M1 neutrino
transport (O’Connor 2015; O’Connor & Couch 2018a) and
make no modifications to the transport or neutrino micro-
physics, beyond the inclusion of diffusive mixing of trapped
neutrino fractions due to convection. We also include the full
PNS on the computational domain and utilize a microphysical
nuclear EOS. These features of STIR allow us to explore the
dependence of the CCSN mechanism and resulting observables
on details of the nuclear and neutrino physics. In future work,
we will explore these aspects further.

In Section 4 we compare STIR to the 3D simulation from
O’Connor & Couch (2018b) using the very same neutrino
transport code we employ in STIR. By varying only , STIR
can reasonably reproduce the angle-averaged features and
dynamics of this 3D model, including the profiles of turbulent
motions, electron fraction, and entropy, as well as the time
evolution of the average shock radius. The 1D STIR model
compares far better to the full 3D simulation than does a 1D
simulation that neglects turbulent convection entirely (i.e.,

=0.0). The value of we find that fits best to the
dynamics of this particular 3D simulation is between 1.2 and
1.3. As reported by O’Connor & Couch (2018b), this 3D
simulation fails to explode, and STIR also predicts failure for
this model up to =1.25. For sufficiently large values of ,
turbulence-aided neutrino-driven explosions are achieved.

Comparison to the 3D simulation of O’Connor & Couch
(2018b) showed that STIR does a comparatively poor job of
capturing convection in the PNS. The ability of STIR to model
PNS convection could be improved by including the effects of
trapped neutrino fraction gradients in our calculation of the
Brunt–Väisälä frequency. Equation (15) implicitly includes
only the electron fraction gradient and not the full lepton
fraction gradient that would include the trapped neutrino
fractions as well. Calculating this correctly is complicated but
may be critical to correctly modeling PNS convection with
STIR (Roberts et al. 2012b).

In Section 5, we present a first, preliminary parameter study
of observable outcomes for a population of CCSNe generated
by STIR in progenitors of masses 9–120M from Sukhbold
et al. (2016). We find a similar pattern of “islands of explosion”
described by Sukhbold et al. (2016) wherein the explodability
of the progenitors is a complicated, nonmonotonic function of
their ZAMS masses. With STIR, however, the details of which
precise progenitor models explode and which fail are quite

different from other 1D explosion parameterizations, such as
Sukhbold et al. (2016) and Ebinger et al. (2019). We compare
our results for STIR for several specific progenitor masses to
recent results from 2D and 3D simulations in Section 5.4. We
find tentative evidence based on certain sets of 2D and 3D
simulations that STIR predicts more accurately which progeni-
tors will explode or not than other 1D models (Sukhbold et al.
2016; Ebinger et al. 2019), but much more work is needed with
both STIR and multidimensional simulations to say anything
definitive along these lines.
The total fraction of massive stars that explodes according

to STIR is, unsurprisingly, a strong function of (see
Section 5.1). For =1.25, we find an IMF-weighted
explosion fraction of massive stars above 9M of about 73%,
in decent agreement with the explosion fraction estimated by
Adams et al. (2017). We also find a population-averaged
diagnostic explosion energy of around 0.7×1051 erg. The
explosion energies in most of our models are still increasing at
the end of our simulations (see Figure 3), and so the explosion
energies we report here are lower limits. In turn, though, we
neglect accounting for the “overburden” energy to unbind the
outer layers of the progenitors (Bruenn et al. 2016). The
overburden would revise the final explosion energies downward.
In Section 5.2 we compare the results from STIR to a few

explosion criteria for predicting success or failure based on
features of the precollapse progenitor models. We find
essentially no correlation between the “critical” value
required to just achieve an explosion and the progenitors’
compactness 1.75 (Equation (35)). The highest-compactness
models ( 0.81.75 ) explode more readily than lower-compact-
ness progenitors, though so do the very lowest compactness
cases. There is some weak evidence from multidimensional
simulations that higher-compactness progenitors also explode
more readily (see Section 5.4).
We also compare our results to the two-parameter explosion

criterion of Ertl et al. (2016). We find a very different
separation between explosions and failures in the 4–M4 4

plane (Equations (36) and (37)) than do Ertl et al. (2016). There
does not seem to be an easy way of reconciling this difference
with, e.g., different parameters for their separation curve. This
reflects the fundamental differences in the natures in which
explosions are driven between turbulence-aided STIR and the
purely neutrino-driven methods such as Ertl et al. (2016) and
Sukhbold et al. (2016).
A key observable outcome from CCSN explosions is the

mass distributions of the compact remnants, NSs and BHs, they
leave behind. In Section 5.3 we construct predicted NS and BH
mass distributions based on STIR and compare them to what
available observational data there are for these quantities. The
average NS mass is sensitive to the parameter, at first
because a very different fraction of the progenitors we simulate
explode as is increased, and then because increasing
causes explosions to occur earlier and earlier. In our 1D model,
once an explosion sets in, accretion onto the PNS is stopped, in
contrast to multidimensional models that can exhibit simulta-
neous explosion and continued accretion. Thus, the later the
explosion with STIR, the heavier the resulting PNS. In general,
at our preferred of 1.25, STIR predicts a PNS mass
distribution and the IMF-weighted average NS mass in good
agreement with the current observational estimates.
This first parameter study with STIR is, in large part, a proof

of principle. There are several aspects of our model that can be
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improved, and we will do so in future work. First, we must
relax the assumption of NSE everywhere. This will require the
transition to an appropriate low-density EOS and some sort of
nuclear network to track and evolve the isotopic composition of
the plasma. This alone would be a major improvement and
allow us to push to much later simulation times, more
accurately simulating, e.g., the final diagnostic explosion
energies. By assuming NSE in the low-density material that
is, in actuality, far from NSE, we lose the energy that could be
derived from the nuclear processing of this material
toward NSE.

In future work we will also explore a more accurate handling
of the full lepton gradient in computation of the Brunt–Väisälä
frequency. This could improve the behavior of PNS convection
in our STIR simulations. We also plan a statistically more
rigorous fitting of the five STIR “α” parameters to available 3D
data and will explore the universality of these parameters for
different progenitor stars.

Another interesting potential for STIR is to include turbulent
convection in the precollapse progenitor star. Our evolution
equation for the turbulent kinetic energy, Equation (29),
implies that in the layers above the shock where the Brunt–
Väisälä frequency should be close to zero, turbulent kinetic
energy will be advected along with the collapsing stellar core.
Thus, the convective structure of the progenitor could be fully
retained in our STIR simulations, likely resulting in earlier and
easier explosions (Couch & Ott 2013; Couch et al. 2015;
Müller & Janka 2015; Müller et al. 2016b). In STIR, this would
manifest itself as providing a large, finite-amplitude initial
perturbation from which post-shock neutrino-driven convection
would grow, ultimately increasing the overall strength of post-
shock turbulence and convection (see Equation (23) and
surrounding discussion). In addition, the evolution equation for
the turbulent kinetic energy in spherical coordinates implies a
geometric concentration of the turbulent kinetic energy as
precollapse perturbations are advected to smaller radii. This
results in an amplification of such preexisting perturbations
during collapse that is essentially equivalent to that predicted
by Lai & Goldreich (2000).

It is worth pointing out that while STIR seems to be a
promising model for theoretical studies of CCSN populations
and their resulting observables, it is hampered by the fact that it
is fundamentally a 1D model for a quintessentially 3D
phenomenon. Crucially, while the importance of the SASI for
CCSN explosions is still much debated (Hanke et al. 2012;
Murphy et al. 2013; Fernández et al. 2014; Cardall &
Budiardja 2015; Summa et al. 2018; Vartanyan et al. 2019),
it is a real instability and can occur in the 3D CCSN context
(e.g., O’Connor & Couch 2018b). The impact of the SASI,
whatever it may be, is something that is not accounted for in
STIR but is something that we should expect in 3D
simulations. In other words, real CCSNe are both shaken by
the SASI and stirred by turbulent convection.

Current missions in time-domain astronomy, such as the All-
Sky Automated Survey for Supernovae and the Zwicky
Transient Facility, are already revolutionizing the observational
picture of CCSNe. Future missions such as the Large Synoptic
Survey Telescope will completely redefine what the astronom-
ical study of CCSNe even means through a cataclysm of new
data. These efforts will fill out our understanding of the real
CCSN population. In order to translate these data into
understanding, we need a comparably strong theoretical

picture. This necessitates high-fidelity simulations of CCSNe
from the entire range of possible progenitors and the production
of reliable predictions for CCSN observables that can be
compared directly with data. High-fidelity 3D simulations of
CCNSe are still incredibly difficult and expensive, limiting our
ability to cover the enormous parameter space of initial
conditions. In the meantime, 1D parameterized explosion
models offer an attractive alternative because their relative
affordability means that thousands of simulations can be run
quickly. Still, it is crucial that such 1D models accurately
reproduce key features of 3D simulations. By including a
physically rigorous model for the impact of convection and
turbulence in 1D, STIR is a promising approach for making
testable theoretical predictions about the broad and complex
CCSN population.
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