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ABSTRACT: Solving the coupled-cluster (CC) equations is
a cost-prohibitive process that exhibits poor scaling with
system size. These equations are solved by determining the set
of amplitudes (t) that minimize the system energy with
respect to the coupled-cluster equations at the selected level of
truncation. Here, a novel approach to predict the converged
coupled-cluster singles and doubles (CCSD) amplitudes, thus
the coupled-cluster wave function, is explored by using
machine learning and electronic structure properties inherent
to the MP2 level. Features are collected from quantum
chemical data, such as orbital energies, one-electron
Hamiltonian, Coulomb, and exchange terms. The data-driven
CCSD (DDCCSD) is not an alchemical method because the actual iterative coupled-cluster equations are solved. However,
accurate energetics can also be obtained by bypassing solving the CC equations entirely. Our preliminary data show that it is
possible to achieve remarkable speedups in solving the CCSD equations, especially when the correct physics are encoded and
used for training of machine learning models.

Coupled-cluster singles and doubles with perturbative
triples (CCSD(T)) has become the “gold standard” in

computational chemistry because it can provide accurate
electronic energies and properties for molecules with a single-
reference ground state.1,2 The CCSD(T) scheme has been
applied in a plethora of computational studies for the
calculation of accurate atomization energies,3,4 reaction
barriers,5−7 noncovalent interactions,8,9 and more. However,
conventional CCSD(T) is a computationally intensive method
in terms of CPU time and disk space, which limits its
applicability to small- and medium-size molecular systems; a
large basis close to the complete basis set (CBS) limit is
needed to achieve the expected accuracy. Solutions to the slow
convergence with respect to the basis set include extrapolation
schemes3,10−13 and addition of two-electron functions that
explicitly depend on the interelectronic r12 distance (explicitly
correlated methods or R12/F12 methods).14−17 Alternative
methodologies that speed-up CC schemes are exploration of
the locality of electron excitations,18 fragmentation
schemes,19,20 pair-natural orbital (PNO) expansions,21−25

linear scaling methods,26 and high-performance computing.27

Herein, we present a novel approach toward implementing
low-cost, highly accurate CC calculations through machine
learning (ML). The data-driven coupled-cluster (DDCC)
scheme uses ML for accurate prediction of the double
excitation amplitudes, tij

ab. A new wave function is generated
that aims to replicate the converged CCSD wave function. The
machine-learned wave function can be used either directly for
accurate CCSD-level observables, such as energy, at MP2-level
cost, or as an improved guess for the tij

ab amplitudes, which

reduces the number of iterations to converge the CCSD
equations.
In recent years, ML has had an increased role in chemistry as

a promising technique because it is fast and scalable for a broad
range of applications. ML has been widely applied in
determining potential energy surfaces28−40 and has been
recently applied as an efficient method for screening the
chemical space for quantum-level accuracy prediction and
materials discovery.41−47 Achieving quantum-level accuracy at
low computational cost has received much attention due to
developments in machine-learnable molecular representations
such as Coulomb matrices,48 Bag-of-Bonds,49 and many other
fingerprinting methods.50−57 However, these methods ulti-
mately rely on mapping molecular geometries to properties,
which can require extensive amounts of training data and may
have limited transferability between systems. Additionally, this
may require optimization of chemical structures in order to
properly relate molecular structure to function.
In contrast to mapping properties from molecular structure,

ML has been also used to improve the electronic structure
description directly. For density functional theory (DFT)-
based approaches, ML has been applied to directly learn the
electron density and for the development of exchange−
correlation functionals.58−61 Recently, there have also been
developments in applying ML to wave function-based
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methods. For instance, Coe developed a technique for
choosing important electronic configurations in a selected
configuration interaction (CI) expansion.62 Additionally, there
have been several implementations to predict coupled-cluster
energies using electronic structure techniques. McGibbon et al.
developed spin-network-scaled MP2 (SNS-MP2), which uses
Hartree−Fock, second-order Møller−Plesset perturbation
theory (MP2), and symmetry-adapted perturbation theory
(SAPT0) calculations coupled with an artificial neural network
(ANN) to predict noncovalent interaction energies at the
CCSD(T) level.63 Margraf and Reuter developed a method to
predict the CC correlation energy on systems by implementing
a transformation on a subset of the largest MP2 amplitudes
modified using a transformed tensor representation.64 Their
technique uses features independent of the number of atoms
and includes only electronic structure features but does not
demonstrate transferability across different molecular systems.
Lastly, Welborn et al. presented a ML method for predicting
CCSD energies based on Hartree−Fock localized molecular
orbital (MO) features, yielding an accurate method with
promising chemical transferability.65 These previous ML-CC
methods have used MP2 or HF wave functions to predict CC
energies. Building on these ideas, we present a data-driven
approach that uses the MP2 wave function and its implicit
properties to predict the CCSD wave function. This new data-
driven CCSD (DDCCSD) wave function can be used as a
starting guess for the CCSD solver for faster convergence of
the CC equations or implemented as a low-cost improvement
to the MP2 wave function for more accurate properties and
energetics.
The CC ansatz uses an exponential form, where the cluster

operator typically acts on a canonical Hartree−Fock (HF)
reference

ψ ψ= ̂Texp( )CC 0 (1)

T̂ is the cluster operator, and ψ0 represents the HF reference
wave function. The cluster operator is truncated for practical
purposes, and the most common implementation uses only
explicit singles and doubles excitations (CCSD). The
correlation energy is given by

∑ ∑= ⟨ || ⟩ + ⟨ || ⟩
<
<

<
<

E ij ab t ij ab t t
a b
i j

ij
ab

a b
i j

i
a
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(2)

where {ij} and {ab} refer to occupied and virtual orbitals,
respectively, and ti

a and tij
ab are the one- and two-excitation

amplitudes that are determined through the iterative solution
of the CC equations. Conventional CCSD uses the MP2
amplitudes as initial guess

ε ε ε ε
=

⟨ || ⟩
+ − −

t
ab ij

ij
ab

i j a b
(MP2)

(3)

where εk corresponds to the energy of the respective orbital, k.
The amplitudes and properties of these orbitals will ultimately
comprise the feature set used to design a ML-based wave
function.
For developing a transferable model to molecular systems of

varying size, orientation, and atom composition, we chose to
restrict the features to electronic structure properties. There-
fore, the features do not explicitly incorporate the identity or
position of any of the atoms. Additionally, all of the features
consist of values already obtained in the HF or MP2

calculation, adding no additional cost for the generation of
the feature set. An obstacle in applying ML to quantum
chemical applications is dimensionality: i.e., how we frame an
input feature matrix of amplitudes when the number of
amplitudes changes for all systems. Molecular representations
of molecules such as the Coulomb matrix have used padding,
where all empty cells are filled with zeros.48 Here, the size of
the input and output matrices will vary, and for the case of
amplitudes, the size of the matrix of amplitudes is
M M( ) ( )occ

2
vir

2, where Mocc and Mvir corresponds to the
number of occupied and virtual MOs, respectively. However,
this is overcome by predicting each amplitude independently.
Therefore, only the properties of one instance of a double
excitation will be considered by the ML model at a time.
For a given double excitation, elements from the Fock,

Coulomb, and exchange matrices are collected, which can be
considered as an extension of the approach taken by Welborn
and co-workers.65 For each double excitation, the following are
collected:

• orbital energies, as well as the broken-down contribu-
tions to these energies from the one-electron Hamil-
tonian matrix (h), Coulombic matrix (J), and exchange
matrix (K), which come from diagonalization of their
respective matrices

• Coulombic and exchange integrals (Ji
a,Jj

b,Ki
a,Kj

b)
• whether two promoted electrons go into the same virtual

orbital or not (value of 1 or 0)
• two-electron integral ⟨ij||ab⟩
• MP2 denominator (εi + εj − εa − εb)
• initial MP2 amplitude (see eq 3)

These features and some mathematical transformations
discussed in the Supporting Information comprise the 30
features for each doubles excitation. Such selection of features
provides a representation that contains properties analogous to
the HF method used to generate the features; the predictions
are invariant to rotation and translation. However, the
predictions may not be invariant toward different localization
schemes, and therefore, it necessitates the use of the same
scheme for the generation of the MOs. It may be beneficial to
use localized MOs as many of the amplitudes would tend
toward zero values at increasing distances between atoms,
which is encoded in the feature set by proxy through the
Coulombic integrals.65 The standard MOs are delocalized, and
this may lead to more nonvanishing amplitudes. However, the
performance change for such an implementation will be
examined in a future study.
The k-Nearest Neighbors (k-NN) algorithm was used for

the ML prediction of the double excitation amplitudes. k-NNs
have several distinct advantages for a proof-of-concept. First,
they are conceptually simple: they measure the distance of a
test sample in the feature space from the training samples, take
the k closest neighbors, and predict with the average value of
those neighbors. In this way, it does not make assumptions
about the data and is strictly instance-based learning. Most ML
methods fit with a mean-squared error loss function, and this
would lead to fitting the largest amplitudes more accurately
and ultimately neglecting the smaller amplitudes. This was
shown to be problematic when attempting to use the ML-
predicted wave function as a starting point for iterations to
calculate the converged CCSD wave function. However, k-
NNs avoid the need for scaling amplitudes as they are not
trained via a loss function. Due to their simplicity, k-NN
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models provide an excellent proof-of-concept which can be
considered a first step towards a large-scale implementation of
DDCC.
By default, k-NN algorithms weigh the distance in feature

space for all features equivalently. This involves calculation of
the Euclidean distance

= − + − + + −p qd q p q p q p( , ) ( ) ( ) ... ( )n n1 1
2

2 2
2 2

(4)

d(p,q) represents the distance measured by the k-NN, p and q
represent a given test and training sample, respectively, and the
subscripts denote the feature number up to n features. In
practice, this means that all feature distances contribute equally
in their importance toward the calculated total distance used to
decide the nearest neighbor, which is undesirable for our
implementation, as all of the features may not contribute
equally or perhaps a small error in a certain feature is more
significant than another. This can be visualized by the modified
Euclidean distance

= [ − ] + [ − ] + + [ − ]p qd x q p x q p x q p( , ) ( ) ( ) ... ( )n n n1 1 1
2

2 2 2
2 2

(5)

where the feature weights, xn, were determined via a grid
search on the scaled data to optimize their weights. The most
significant features include the corresponding two-electron
integral, the MP2 amplitude, the orbital energy differences, and
whether or not the two promoted electrons are being excited
into the same virtual orbital. Optimized weights are listed in
the Supporting Information. The features were scaled using a
MinMaxScaler in the Sci-Kit Learn27 module to accentuate and
normalize the distances between points in the feature space to
allow for a truer recognition of neighbors. All k-NN models
were implemented with one nearest neighbor (k = 1), which
was shown to have the best performance and is listed in the
Supporting Information.
All HF calculations were performed in the Psi466 program.

The MP2 and coupled-cluster calculations were performed
using the Psi4Numpy67 spin-factored CCSD implementa-
tion.68 The implementation of the DDCC code described
herein uses the CCSD code modified to generate the ML
features and predict the CC wave function using k-NNs. All
ML results included use the ML predicted double excitation
amplitudes (tij

ab) as an initial guess, and both ti
a and tij

ab are
further converged as in the conventional CCSD scheme. All
structures were obtained from simulations at 200 K using the
OPLS-AA force field,69 as generated by LigParGen70 and
implemented in the LAMMPS71 software.
Single-Molecule Prediction: H2O as a Test Case. There are two

metrics that will be used to evaluate the effectiveness of
DDCC: (1) energy differences between the converged CCSD
energy and the starting energy before performing iterations and
(2) the number of iterations until convergence. Errors in
energy will be reported as the mean absolute error in mHartree
(mEh). Another metric to determine the accuracy of the
method will be the percent improvement over MP2

i
k
jjjjj

y
{
zzzzz= −

Δ
Δ

×
E
E

Percent Improvement 1
( )
( )

100ML

MP2 (6)

ΔE corresponds to the energy difference between the
converged CCSD energy and the initial energy calculated
before iterations, and the subscripts ML and MP2 correspond

to the respective method’s energies. The CCSD iterations
include also the relaxation of the single excitation amplitudes,
but because their number is significantly smaller than the
double excitation amplitudes, we followed their standard
initialization (set to zero and solved separately). The projected
equations for the ti

a amplitudes were solved for all schemes
discussed in the next paragraphs.
The method was investigated on a set of water molecules at

different geometries generated with OPLS-AA.69 The perform-
ance of the method was evaluated on a sample of 1, 5, 10, 20,
40, and 100 water molecules in the training set, and the trained
models were tested on a different set of 50 water molecules.
The results for both energy differences and iterations for the
STO-3G,72 cc-pVDZ,73 aug-cc-pVDZ,74 and aug-cc-pVTZ74

basis sets are presented in Figures 1 and 2. Even training on

one molecule, the error in energy is significantly lower than the
MP2 error, which is depicted for the aug-cc-pVTZ basis set
(Figure 1, inset). By systematically increasing the number of
molecules in the training set, the average deviation from exact
CCSD significantly decreases. The larger basis sets require
more training examples to reduce error due to the increased
number of amplitudes; however, they all show systematic
improvement in the expansion of training molecules, and with

Figure 1. Average absolute deviation between the initial DDCC
energy and the converged CCSD energies for 50 water molecules in
the test set by varying the size (number of waters) in the training set.
For comparison, the MP2 deviation from the CCSD results is
included for the aug-cc-pVTZ basis set (inset).

Figure 2. Number of steps to converge the CC equations based on
the number of molecules in the training set.
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10 training structures, a sub-mEh average deviation was
obtained. With 40 training examples, the average deviation
for all basis sets is below 0.2 mEh, or approximately 98% of the
difference between MP2 and CCSD. By using 40 molecules for
training, the energy difference from the true CCSD correlation
energy has nearly converged (Figure 1), and thus, 40 training
examples will be used in the following applications, unless
otherwise noted.
Another important consideration is the number of steps

(iterations) taken to solve the CCSD equations. By building
the wave function with the DDCC amplitudes, the number of
steps to convergence is reduced significantly (Figure 2).
Conventional CCSD converges in eight iterations for all basis
sets, except cc-pVDZ, which converges in seven steps. The 100
water k-NN models result in up to a 40% reduction in
iterations in the test set.
Transferability: Data f rom Seven Small Molecules. DDCC is

able to predict better starting amplitudes for the coupled-
cluster wave function than MP2. To demonstrate trans-
ferability and model performance, we trained ML models
where electronic structure data from other molecules are used,
and tested on a set of seven small molecules. Eight different
models were created using electronic structure data from seven
different molecules obtained with the 6-311G basis set:75

water, methane, ethylene, ethane, methanol, ammonia, and
formaldehyde. Each model was trained on one molecule type
and tested on all seven (ML-molecule name of Figure 3). The

eighth model was trained using electronic structure data from
all of the molecules combined (ML-All of Figure 3). Figure 3
shows a summary of the results from these calculations on sets
of 50 test molecules in the form of a heat map that plots the
percent improvement.
A remarkable percent improvement is achieved when each

molecule uses a model trained from data of the same type of
molecule (diagonal of Figure 3). Off-diagonal cases show
varying degrees of accuracy. For instance, formaldehyde test
cases see a large percent improvement from the model trained
on water, whereas it does not perform better with the model
trained on ethylene. Such performance enhancements are not
intuitive, and it is unclear when a performance enhancement
will occur, but it is probably related to lack of data that capture
the physics (vide inf ra) of a specific atom type. For example,
the ML-water model predicts well (80% improvement or

greater) for five of the seven molecules, but its energy is not
well predicted by the models generated from other molecules.
However, the ML model trained on the data with all seven
molecules shows impressive performance for all molecules with
at least 98% improvement, which corresponds to less than a 0.5
mEh error for all molecules. Additionally, a 15−60% reduction
in iterations to convergence was observed (see Table S4 of the
Supporting Information).
Molecular Clusters: Extrapolating f rom Few Water Molecules to

Larger Clusters. While it is useful to be able to predict the
energies of isolated molecules, as in the seven molecule heat
map (Figure 3), it is also useful to generate accurate energies
for systems containing several interacting molecules. A
successful model must be able to capture the physics of a
larger interacting system based on those provided by smaller
subsystems. To demonstrate this, models have been trained
using conformations containing one, two, and three water
molecules to predict the amplitudes of four different clusters
containing six (book, prism, cage, and ring conformations),
eight (D2d and S4), and 16 water molecules (Figure 4)

optimized by Miliordos et al.76 An optimized monomer, 11
dimers generated through a relaxed dissociation, and 24 trimer
systems were used for training (see the Supporting
Information). The goal was to demonstrate that these smaller
systems are capable of capturing the physics of the larger
clusters. Due to the larger system sizes, the STO-3G basis was
used for testing purposes.
For demonstration purposes, models that use data from each

supersystem structure will be added on top of the previous
model’s data; for example, the trimer model will contain data
from the monomer, dimer, and trimer systems. Therefore, we
can examine how interactions of the larger supersystem are
captured given the increasing system complexity through the
monomer, dimer, and trimer systems. The deviations and

Figure 3. Heat map showing the performance of different k-NNs
models, where the value being plotted is the percent improvement (eq
6).

Figure 4. Molecular structures of water hexamers in the book, ring,
prism, and cage conformation, water octamers in D2d and S4
conformations, and of the ordered water decahexamer conformation.
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improvements for each of the models on the six-molecule
supersystems are shown in Figure 5. The model based on only
isolated water failed to predict hexamer test cases, and none of
the ML systems showed an improvement on the MP2 energy.
This finding is in line with intuition that the physics of the
intermolecular interactions between the water molecules are
not captured from an isolated water. However, by adding data
from dimer conformations in the training set, the errors drop
drastically (less than 9.0 mEh for all systems), which results in a
90% improvement over MP2. By including trimer systems in
the training set, the DDCC deviations from the CCSD energy
drop to below 1.0 mEh for all systems, which results in greater
than 99% percent improvement for all of the six-water systems.
To further demonstrate the extrapolation, the 3 water k-NN

model was used to predict the CCSD energy on two different 8
water clusters (D2d and S4) and a 16 water cluster. The
absolute errors were 9.65, 15.92, and 8.33 mEh, respectively.
These errors correspond to 90.5, 81.3, and 95.7% improve-
ment over the MP2 energies, which demonstrates that the
model of three waters can be extrapolated to much larger
systems and the DDCC scheme demonstrates a significant
improvement to the MP2 wave function.
This study demonstrates the prediction of the CC

amplitudes with a great deal of efficiency. In the first test
case (convergence of CCSD for one water molecule), the ML-
predicted amplitudes resulted in energies that are two orders of

magnitude closer to the true CCSD correlation energy and in
40% reduction of the number of iterations on average for all
basis sets tested. To demonstrate the transferability of the
proposed methodology, seven ML models were trained on data
from different molecules, plus a model that incorporated data
from all seven molecules. Across the board, all molecules
showed to have improvement over the MP2 predicted
amplitudes using the model trained on all seven molecules,
meaning that more data, in general, should lead to more
accurate models using k-NNs. This shows that the model can
be extrapolated to new molecules with good accuracy. Lastly,
subsystems containing few waters (1−3) were used to predict
larger clusters of water (6,8,16). It was found that the models
including one, two, and three waters could predict six water
systems with a 99% improvement over MP2 because the
chemical interactions between water molecules were encoded
successfully. The 8 and 16 water systems also showed
significant improvements. In conclusion, we have shown that
machine-learned coupled-cluster amplitudes can provide a
better starting approximation to the CC wave function than
MP2 amplitudes and are capable of extrapolating to larger
systems. The suggested methodology is not alchemical because
the exact CCSD energies can be computed by solving the exact
CC equations and can be used in a plethora of chemical
applications (such as the calculation of full potential surfaces
from only a few structures, and the efficient computation of
energy and properties of molecular clusters from smaller
subclusters). Our methodology is transferable to other
methods that use iterative solvers, such as the complete active
space second-order perturbation theory (CASPT2) methods,
which are currently being examined in our group. Finally, a
data-driven scheme for the accurate computation of the (T)
term is also underway.
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