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Abstract—By providing substantial amounts of data and stan-
dardized evaluation protocols, datasets in computer vision have
helped fuel advances across all areas of visual recognition. But
even in light of breakthrough results on recent benchmarks, it
is still fair to ask if our recognition algorithms are doing as well
as we think they are. The vision sciences at large make use of a
very different evaluation regime known as Visual Psychophysics
to study visual perception. Psychophysics is the quantitative
examination of the relationships between controlled stimuli and
the behavioral responses they elicit in experimental test subjects.
Instead of using summary statistics to gauge performance,
psychophysics directs us to construct item-response curves made
up of individual stimulus responses to find perceptual thresholds,
thus allowing one to identify the exact point at which a subject
can no longer reliably recognize the stimulus class. In this article,
we introduce a comprehensive evaluation framework for visual
recognition models that is underpinned by this methodology. Over
millions of procedurally rendered 3D scenes and 2D images, we
compare the performance of well-known convolutional neural
networks. Our results bring into question recent claims of human-
like performance, and provide a path forward for correcting
newly surfaced algorithmic deficiencies.

Index Terms—Object Recognition, Visual Psychophysics, Neu-
roscience, Psychology, Evaluation, Deep Learning.

I. INTRODUCTION

We often attribute “understanding” and other cognitive
predicates by metaphor and analogy to cars, adding
machines, and other artifacts, but nothing is proved by
such attributions.

John Searle

Imagine the following scenario: a marvelous black box

algorithm has appeared that purportedly solves visual object

recognition with human-like ability. As a good scientist, how

might you go about falsifying this claim? By all accounts,

the algorithm achieves superior performance on established

benchmarks in computer vision, but its internal workings

are opaque to the external observer. Such a situation is not

far fetched — it should be familiar to any of us studying

machine learning for visual recognition. But what many of us

in computer vision might not realize is that this setup happens

to be the classic Chinese Room [3] problem proposed by the

philosopher John Searle.

In Searle’s thought experiment, a person who does not speak

Chinese is alone in a locked room and following instructions

from a computer program to generate Chinese characters to

respond to Chinese messages that are slipped under the door.

To the message passer outside of the room, the person inside
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Fig. 1. In this article, the concept of applying psychophysics [1], [2] on a
recognition model is introduced. In this figure, A and B are two models being
compared. (Top) In traditional dataset-based evaluation, summary statistics
are generated over large sets of data, with little consideration given to
specific conditions that lead to incorrect recognition instances. (Bottom) Psy-
chophysics, a set of experimental concepts and procedures from psychology
and neuroscience, helps us plot the exact relationships between perturbed test
images and resulting model behavior to determine the precise conditions under
which models fail. Instead of comparing summary statistics, we compare item-
response curves representing performance (y-axis) versus the dimension of the
image being manipulated (x-axis).

understands Chinese. However, this is not the case. The person

inside the room is simply following instructions to complete

the task — there is no real replication of the competency of

knowing the Chinese language. Linking this back to computer

vision, the summary statistics of performance from our algo-

rithms look good on benchmark tests — enough so that we

believe them to be close to human performance in some cases.

But are these algorithms really solving the general problem

of visual object recognition, or are they simply leveraging

“instructions” provided in the form of labeled training data

to solve the dataset?

Datasets in computer vision are intended to be controlled

testbeds for algorithms, where the task and difficulty can be

modulated to facilitate measurable progress in research. A

dataset could be made up of images specifically acquired

for experimentation, or publicly available images crawled

from the web. Under this regime, strong advancements have

been demonstrated for a number of problems, most notably

for object recognition [4]. Deep learning is now a mainstay

in computer vision thanks in part to the 2012 ImageNet

Challenge [5], where AlexNet [6] reduced top-5 object clas-

sification error to 16.4% from the previously best reported

result of 25.8%. When algorithms are evaluated on a common

footing, it is possible to track meaningful improvements in

artificial intelligence like this one. However, increases in error

when different datasets are used for training and testing [7],
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[8] make us wonder if this is the only way to do it.

When it comes to natural intelligence, neuroscientists and

psychologists do not evaluate animals or people in the same

way that computer vision scientists evaluate algorithms — and

for a very good reason. With a collection of images crawled

from the web, there is no straightforward way to determine the

exact condition(s) that caused a subject to fail at recognizing

a stimulus presented during an experiment. A natural image is

the product of the physics at the instant the sensor acquired the

scene; its latent parameters are largely unknown. Instead, for

behavioral experiments meant to discover perceptual thresh-

olds (i.e., the average point at which subjects start to fail), the

vision sciences outside of computer vision use the concepts

and procedures from the discipline of visual psychophysics.

Psychophysics is the quantitative study of the relationships

between controlled stimuli and the behavioral responses they

elicit in a subject [1], [2]. It is a way to probe perceptual

processes through the presentation of incremental and, in

many cases, extremely fine-grained perturbations of visual

stimuli. The properties of each stimulus are varied along one

or more physical dimensions, thus controlling the difficulty

of the task. The result (Fig. 1) is an item-response curve [9],

where performance (e.g., accuracy) on the y-axis is plotted

against the dimension being manipulated (e.g., Gaussian blur)

on the x-axis. Each point on the curve reflects an individual

stimulus, letting us map performance back to causal conditions

in a precise manner. Psychophysics is an indispensable tool

to vision science, and has been deployed to discover the

minimum threshold for stimulation of a retinal photoreceptor

(a single photon) [10], confirm Helmholtz’s assertions on

color absorption in the retina [11], and establish criteria to

diagnose prosopagnosia [12] (the inability to recognize a face).

As in these discoveries from biological vision, we submit

that psychophysics holds much promise for discovering new

aspects of the inner workings of machine learning models.

In this article, we introduce a comprehensive evaluation

framework for visual recognition that is underpinned by the

principles of psychophysics. In this regime, a stimulus can be

an object drawn from purely rendered data or natural scene

data, and a varying physical parameter can control the amount

of transformation in the subsequent set of manipulated images

derived from the original stimulus. A key difference from

traditional benchmarks in computer vision is that instead of

looking at summary statistics (e.g., average accuracy, AUC,

precision, recall) to compare algorithm performance, we com-

pare the resulting item-response curves. For complete control

of the underlying parameter space, we find that procedural

graphics [13]–[16] are a useful way to generate stimuli that

can be manipulated in any way we desire. Because we have

the procedure that rendered each scene, we can find out where

a model is failing at the parametric level. As we will see, by

using this framework to explore artificial vision systems like

psychologists, many interesting new findings can be surfaced

about the strengths and limitations of computer vision models.

To summarize, our main contributions are as follows:

• A general evaluation framework is developed for per-

forming visual psychophysics on computer vision models.

The framework has a strong grounding in well-established

work in psychology and neuroscience for behavioral

experimentation.

• An investigation of procedural graphics for large-scale

psychophysics experiments applied to models.

• A parallelized implementation of the psychophysics

framework that is deployable as a Python package.

• A case study consisting of a battery of experiments

incorporating millions of procedurally rendered images

and 2D images that were perturbed, performed over a

set of well-known Convolutional Neural Network (CNN)

models [6], [17]–[19].

II. RELATED WORK

Methods of Evaluation from the Vision Sciences. With re-

spect to work in computer vision directly using psychophysics,

most is related to establishing human baselines for compari-

son to algorithmic approaches. Riesenhuber and Poggio [20]

described a series of psychophysical comparisons between

humans and the HMAX [21] model of visual cortex using

a limited set of stimuli rendered by computer graphics. Simi-

larly, Eberhardt et al. [22] designed an experiment to measure

human accuracy and reaction time during visual categorization

tasks with natural images, which were then compared to

different layers of CNN models [6], [19]. Geirhos et al.

undertook a similar study for image degradations [23]. With

respect to low-level features, Gerhard et al. [24] introduced

a new psychophysical paradigm for comparing human and

model sensitivity to local image regularities.

Psychophysics can also be used for more than just perfor-

mance evaluation. Scheirer et al. [25] introduced the notion of

“perceptual annotation” for machine learning, whereby psy-

chophysical measurements are used as weights in a loss func-

tion to give a training regime some a priori notion of sample

difficulty. Using accuracy and reaction time measured via the

online psychophysics testing platform TestMyBrain.org [26],

perceptual annotation was shown to enhance face detection

performance. Along these lines, Vondrick et al. [27] devised

a method inspired by psychophysics to estimate useful biases

for recognition in computer vision feature spaces.

Outside of work specifically invoking psychophysics, one

can find other related methods from psychology and neuro-

science for behavioral-style model testing. 2D natural images

are the most common type of data in computer vision, and

form a good basis for algorithmic evaluation in this mode.

O’Toole et al. [28], [29] and Philips et al. [30] have designed

controlled datasets of natural images to compare human face

recognition performance against algorithms. With the focus

on algorithmic consistency with human behavior, there is no

explicit model vs. model comparison in these methods.

More control in experimentation can be achieved through

the use of rendered 3D scenes. Cadiue et al. [31], Yamins et

al. [32] and Hong et al. [33] all make use of rendered images

with parametrized variation to compare the representations

of models with those found in the primate brain. Pramod

and Arun [34] describe a set of perceived dissimilarity mea-

surements from humans that is used to study the systematic

differences between human perception and a large number
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of handcrafted and learned feature representations. Because

of a need for very fine-grained control of object parts and

other latent parameters of scenes, procedural graphics were

introduced by Tenenbaum et al. [13] for the study of one-

shot learning using probabilistic generative models. The use

of procedural graphics for generative models was further

developed by Yildirim et al. [14], Kulkarni et al. [15], and

Wu et al. [16]. These studies do not vary the conditions of the

stimuli using the procedures of psychophysics, nor do they use

large-scale renderings on the order of millions of scenes.

Other Manipulations of Stimuli in Visual Recognition

Evaluations. Work coming directly out of computer vision

also addresses stimulus generation for the purpose of isolating

model weaknesses. Hoiem et al. [35] suggest systematically

varying occlusion, size, aspect ratio, visibility of parts, view-

point, localization error, and background to identify errors in

object detectors. Wilber et al. [36] systematically apply noise,

blur, occlusion, compression, textures and warping effects over

2D scenes to assess face detection performance. Finally, a

whole host of approaches can be found to manipulate the

inputs to CNNs in order to highlight unexpected classification

errors. These include the noise patterns introduced by Szegedy

et al. [37] that are imperceptible to humans, and the fooling

images produced via evolutionary algorithms that were ex-

plored by Nguyen et al. [38] and Bendale and Boult [39]. The

level of control in the evaluation procedures varies between

these approaches, but a common starting point based on

model preference for each class is missing (i.e., which object

configuration produces the highest score?). We suggest in this

article that the use of computer graphics helps us address this.

III. METHOD: THE PSYPHY FRAMEWORK

Our procedure for performing psychophysics on a model

largely follows established procedures found in psychology,

with a few key adaptations to accommodate artificial per-

ception. For the purposes of this article, our focus is on

two performance-based forced-choice tasks that yield an in-

terpretable item-response curve. For descriptions of other

procedures in psychophysics, see [1], [2]. First, let us consider

the two-alternative forced choice (2AFC) match-to-sample task

that is common in psychological testing.

In the 2AFC match-to-sample procedure, an observer is

shown a “sample” stimulus, followed by two “alternate”

stimuli where one is a positive (i.e., matching) stimulus and the

other is a negative (i.e., non-matching) stimulus. The observer

is then asked to choose from the alternate stimuli the stimulus

that best matches the sample — the match criterion may or

may not be provided to the observer. The observer repeats the

task at different perturbed stimulus levels in either an adaptive

pattern, which is like gradient descent for humans, or via the

method of constants, which is a predetermined set of perturbed

stimulus levels. Regardless of method, each task has two

presented alternate stimuli (N = 2) and thus two-alternative

forced-choices (M = 2). Analysis of the experiment would

utilize the mean or median accuracy humans achieved at each

stimulus level and mean or median human response time, if

recorded. Models can be tested in precisely the same way

Algorithm 1 Dm
f (i, c), the top-1 binary decision of the Soft-

max layer of a CNN. Used for both preferred view calculation

and MAFC.

Input: f , a single pre-trained network model

Input: i, an input image

Input: c, the expected class

1: V = f(i) . the Softmax vector

2: c∗ = argmaxj∈[0,|V |) Vj . find class label

3: ς = Vc∗

4: if c 6= c∗ then . incorrect class, negate response

5: ς = −1 ∗ ς
6: end if

7: return ς , the decision score

when the input images are arranged as described above and

accuracy is used as the performance measure.

Second, we can consider a mapping of a more difficult

classification procedure in machine learning to a more general

version of the 2AFC match-to-sample procedure. We call

this mapped classification MAFC match-to-sample. In MAFC,

the probe image in classification is equivalent to the sample

stimulus. In classification, we rarely have only two classes

for a model to choose from. Thus the value of M becomes

the number of labeled training classes (e.g., ImageNet 2012

has 1K learned classes, making M = 1K). Likewise, N —

the number of presented alternate stimuli — changes to the

number of images used in training, as this is the set of images

the model is implicitly matching to (e.g., for ImageNet 2012,

N = ∼1.2M training images).

When testing a model with any psychophysics procedure,

we need a special process for the selection of the stimuli’s

default state, that is, where there is no perturbation. Blanz et

al. [40] show that humans have a natural inclination towards

recognizing a certain view of an object, called a canonical

view. We assume in human trials that an object configuration

close to a canonical view will be chosen, maximizing the

probability that all observers will have no problems performing

at least some part of a match-to-sample task. However, this is

not as simple for any task involving a model because we do not

necessarily know if it follows a similar canonical view. But we

can say that a model’s preferred view is a view that produces

the strongest positive response, as determined by a decision

score. Note that there can be more than one preferred view

(hence our use of the term preferred), because ties are often

observed for the strongest response, especially in quantized

decision score spaces. Choosing a preferred view is crucial to

guaranteeing that when the stimulus is perturbed, the model’s

response will already be at its maximum for that class. Any

perturbation will cause a decline (or possibly no change) in

the strength of the model’s response, not an increase.

PsyPhy Framework for 2AFC and MAFC. Inspired by

software frameworks for subject testing like PsychoPy [41], we

have implemented the 2AFC and MAFC procedures described

above using a Python framework for model testing called

PsyPhy. Here we describe the details of each component of the

framework. The basic steps of (1) stimuli selection, (2) pre-

ferred view selection, (3) perturbation, and (4) item-response



4

Algorithm 2 φ2T (D
2
f , V, s): an item-response point generation

function supporting 2AFC tasks for any image transformation

function T (s, v)

Input: D2
f , decision function for 2AFC

Input: V , a vector of preferred views for a set of classes

Input: s, the stimulus level

1: h(v) :=random v′|v′ ∈ [V \ {v}] . pick negative

2: β =
∑

v∈V max(0, dD2
f (T (s, v), v, h(v))e)

3: a = β
|V |

4: return {s, a}, an x, y coordinate pair (stimulus level,

accuracy over trials) for one item-response point

curve generation apply to any psychophysics procedure, and

the specific 2AFC and MAFC procedures may be viewed

as pluggable modules within the framework. PsyPhy is very

flexible with respect to tasks it can support.

The first step is to select the initial set of stimuli for each

class. For 2D natural images, this is any set of chosen images

I2D for a class c. For a rendered scene, a set of image

specifications I3D is provided to a rendering function R(c, v)
(implemented in this work using Mitsuba [42]) to render a

single object centered in an image. The view v ∈ I3D is

the parameter set {x, y, z, ψ}, where the coordinates x, y,

and z are real numbers in the range (−180.0, 180.0] and ψ,

representing scale, is a real number in the range (0.0, 25.0].
The second step is to find an individual model’s preferred

view for each class. For natural 2D images, the preferred view

function in Eq. 1 is used. The second preferred view function,

Eq. 2, uses R to create rendered images for classification. In

Eq. 2, the search space is almost infinite, thus it does not find

the absolute global maximum, but rather an approximation.

P2D(I2D, c) := argmax
i∈I2D

Dm
f (i, c) (1)

P3D(I3D, c) := argmax
v∈I3D

Dm
f (R(c, v), c) (2)

A decision function for classification Dm
f (i, c) (Alg. 1) nor-

malizes the score output of a model f to a value in the range

[−1.0, 1.0], which gives both a decision and a confidence

associated with that decision. A value in the range [−1.0, 0]
is an incorrect decision and (0, 1.0] is a correct decision. The

parameter i is the input stimulus and c is the expected class.

A natural 2D preferred view (Eq. 1) is a single selected

image i ∈ I2D, where Dm
f has the strongest positive re-

sponse. A 3D preferred view (Eq. 2) is a single selected

set v = {xv, yv, zv, ψv} ∈ I3D, where Dm
f has the strongest

positive response. The major difference between Eq. 1 and

Eq. 2 is the use of R in Eq. 2 to render the image prior to

measuring the response from Dm
f . Invoking Eq. 1 or Eq. 2 for

each class will create a vector of preferred views V .

After preferred views have been selected for all classes,

whether natural or rendered, the next step is to apply pertur-

bations to them. In this procedure, a set of preferred views

is perturbed at a specific stimulus level (i.e., the amount

of perturbation) using a function T (s, v), where T could

be any image transformation function (e.g., Gaussian blur,

rotation). The parameter v is one preferred view — either in

Algorithm 3 φmT (Dm
f , V, s): an item-response point generation

function supporting MAFC tasks for any image transformation

function T (s, v)

Input: Dm
f , decision function for MAFC

Input: V , a vector of preferred views for a set of classes

Input: s, the stimulus level

1: β =
∑

v∈V max(0, dDm
f (T (s, v), c(v))e)

2: a = β
|V |

3: return {s, a}, an x, y coordinate pair (stimulus level,

accuracy over trials) for one item-response point

2D image format or {x, y, z, ψ} for rendered stimuli — and

s is the stimulus level. The function φT (D,V, s) perturbs the

set of preferred views given in V and then makes a decision

on each image using a decision function D. The specific

implementation φ2T (D
2
f , V, s) for 2AFC is described in Alg. 2,

and φmT (Dm
f , V, s) for MAFC is described in Alg. 3. Procedure

specific decision functions are required, with D2
f (Alg. 4) used

for 2AFC and Dm
f (Alg. 1) used for MAFC. Each individual

image evaluation is a trial. The value returned by φT represents

one point on an item-response curve, which is the computed

accuracy over all trials (one trial per class).

An item-response curve is the set of x, y coordinates that

represent the model behavior for a set of stimuli. Each

x, y value represents a perturbation level and accuracy of

the model’s performance. Note that traditional psychophysics

experiments with live test subjects often apply a psychometric

function to interpolate between the points to generate the

curve. To approximate a psychometric function for better inter-

pretability, we applied rectangular smoothing (i.e., unweighted

sliding-average smoothing) with a window size of 15 while

padding the curve with repeated edge values.

The final step generates item-response curves using the

function CT (φ,D, V, n, bl, bu). The procedure is simple, and

only requires a repeated execution of φT for each stimulus

level. Its steps are shown in Alg. 5. The procedure will create

a set of stimulus levels starting with a lower bound, bl, and

ending with an upper bound bu. bl is the closest stimulus level

to the preferred view and bu is the stimulus level that is farthest

away. The parameter n is the number of stimulus levels to use.

Typically in visual pyschophysics, log-spaced stepping is used

for finer-grained evaluation near the canonical view; the same

strategy is used for preferred view.

IV. EXPERIMENTS

The first goal of our experiments was to demonstrate PsyPhy

as a large-scale psychophysics evaluation framework. To do

this, we processed millions of procedurally rendered 3D scenes

and 2D images that were perturbed. The second goal was

to demonstrate the utility of procedural graphics for large-

scale psychophysics experiments. Thus we broke our data

up into two sets: natural scenes and rendered scenes. Our

final goal was to evaluate the strengths and weaknesses of

well-known CNN models. To do this, we looked at model

behavior for 2AFC and MAFC tasks, the behavior of dropout

at test time [43] under perturbations, and comparisons to
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Algorithm 4 D2
f (i, p, q), best match decision of the final

feature layer of a CNN. Used for 2AFC.

Input: f , a single pre-trained network model

Input: i, an input image

Input: p, the expected positive image

Input: q, the expected negative image

1: Wi = f(i) . gather activations from final feature layer

2: Wp = f(p)
3: Wq = f(q)
4: ςp = r(Wi,Wp) . Pearson’s Correlation

5: ςq = r(Wi,Wq)
6: if ςp > ςq then . if incorrect selection, negate response

7: ς = ςp
8: else

9: ς = −1 ∗ ςq
10: end if

11: return ς , the decision score

Algorithm 5 CT (φ,D, V, n, bl, bu): an item-response curve

generation function for any type of decision function

Input: φ, an item-response point generator

Input: f , an input model

Input: V , a vector of preferred views

Input: n, the number of stimulus levels

Input: bl and bu, the lower and upper bound values of the

stimulus levels

1: Let S be n log-spaced stimulus levels from bl to bu
2: I =

⋃

s∈S

{φT (D,V, s)}

3: return I , the item-response curve

human behavior. In all of our experiments, we chose to

use five convolutional neural network models that were pre-

trained on ImageNet 2012 [5]: AlexNet [6], CaffeNet [17],

GoogleNet [18], VGG-16, and VGG-19 [19]. The complete

set of plots and more details on the methods can be found in

the supplemental material for this article1.

Data Generation. For the natural scene experiments, we

perturbed images from the ImageNet 2012 [5] training dataset,

which consists of ∼1.2M million images and 1K classes.

Using the training set instead of the testing set gives each

model an intentional bias towards “expert” performance. The

following transformations were applied: Gaussian blur, lin-

ear occlusion, salt & pepper noise, brightness, contrast, and

sharpness. For each condition, we created 200 perturbed

images starting with the preferred view and log-spaced stepped

towards increasing difficulty. The result was 201 images per

class per network, or 201K images per network, or ∼1M

images per condition. In total, ∼9M images were evaluated.

For the experiments with rendered images, we selected 40
3D objects from the Blend Swap [44] library that corresponded

to classes in ImageNet (see supp. material for a list of the

classes). For each of the 3D objects, we randomly rendered

100K uniformly distributed x, y, z rotations and scales, result-

1Supplemental material is accessible at
http://bjrichardwebster.com/papers/psyphy/supp

ing in 4M images. After each preferred view was selected

from that set, the following transformations were applied by

our graphics engine: rotations in the x, y, z dimensions, and

scale. All were applied in the positive and negative direction.

In addition, all of the transformations from the 2D natural

image experiment were repeated using the rendered preferred

views. For each of the 3D transformations, we rendered 200
images starting with the preferred view and log-spaced stepped

towards increasing difficulty. The result was 201 images per

class per network, or ∼8K images per network, or ∼40K

images per transformation. The additional 2D transformations

resulted in a total of ∼362K images, which brought the

rendered image total to ∼683K evaluated images.

2AFC Experiments. The motivation for the 2AFC experi-

ments is twofold: (1) to test decision making at a fundamental

level via activation matching (i.e., to not just look at class

labels), and (2) to test a precise implementation of a well-

known match-to-sample task. Given that this setting is just two

instances of pair-matching, we had initially expected models

to perform relatively well under a variety of perturbations.

The experiments included the use of both natural scenes and

rendered scenes as stimuli.

Model behavior was only very stable for the 3D rotation

(Fig. 2 left and Supp. Fig. 1), and contrast and sharpness

(Supp. Figs. 3 & 4) transformations. The rest of the trans-

formations induced more erratic behavior, with accuracy de-

clining below 80%. For example, Gaussian blur (Fig. 2 center)

was very detrimental to model accuracy, even in this limited

matching setting. This tells us something about the receptive

fields of the convolutional layers of the networks: they are

not large enough to tolerate even modest levels of blur. Also

interesting were results for the 3D-specific scale perturbation

that let us isolate specific failure modes. For example, when

scale decreases to 20% of the original size, the object structure

is still clearly visible, but accuracy drops to ∼60% or lower

for all networks (Supp. Fig. 1). This is an observation that

could not have been made by looking at summary statistics.

What about the differences in behavior across networks?

Are they significant? When examining the item-response

curves with the the 95% confidence interval plotted (Supp.

Figs. 2, 5, 6 & 8) all network behavior consistently demon-

strates the same trends for each transformation type across

perturbations. While it is commonly believed that architectural

innovation is advancing deep learning, this finding indicates

that model behavior is more influenced by the training data,

which was the same for all models in these experiments. For

the VGG networks, this suggests that additional layers — be-

yond a certain point — do not imply better performance under

degrading conditions. Likewise, switching the order of the

pooling and normalization layers in CaffeNet and AlexNet [45]

does not imply better performance under degrading conditions.

MAFC Experiments. The motivation for the MAFC ex-

periments is to evaluate a task that is more closely aligned to

the multi-class classification task the models were originally

trained for. Given that there are 1, 000 choices in this setting

instead of just two, we expected models to perform much

worse under the transformations. And this is exactly what

we observed in the results (Fig. 3 and Supp. Figs. 9, 11, 12
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Fig. 2. (Left and Center) a selection of item-response curves for the 2AFC task. These rendered scene experiments reflect the accuracy across 40 classes.
Each experiment used five well-known CNNs [6], [17]–[19]. A perfect curve would be a flat line at the top of the plot. The images at the bottom of each
curve show how the perturbations increase from right to left, starting with no perturbation (i.e., the original image) for all conditions. The red dot indicates
mean human performance for a selected stimulus level. (Right) a summary plot of all VGG-16 2AFC item-response curves using AUIRC (Riemann sum) as
a summary statistic, normalized by the total area above and below the curve. These plots (as well as the next sets in Figs. 3 & 4) are best viewed in color.

& 15). For instance, compare the plot for positive rotation

in the x-axis (Fig. 3 bottom-left) to the corresponding plot

in Fig. 2. For this transformation type, the networks that

only experienced moderate dips in performance for the most

extreme perturbations in the 2AFC case fall to under ∼20%
accuracy at points. A caveat to the MAFC decision function

is that because it is patterned after the classification task in

computer vision, it only uses class labels to make its decisions.

Thus it leaves out the layer-specific activation information

that was used in the 2AFC case. This highlights an important

trade-off that can occur when designing decision functions for

psychophysics evaluations: task fidelity versus task difficulty.

Curiously, there are large asymmetries for some of the

transformations with increasing and decreasing perturbation

levels. See the plots for brightness, contrast, and sharpness

(Fig. 3 top-left and top-center, and Supp. Figs. 11 & 12).

Contrast is a particularly intriguing case. As a transformation,

contrast is a non-linear single pixel-level operation applied

globally to an image. In the positive direction, contrast is

increased, and the performance of each network degrades

rapidly (Fig. 3 top-center). In the negative direction, contrast

is decreased, but the performance of each network remains

relatively stable until the objects have very low contrast (Fig. 3

top-left). This suggests a contrast sensitivity problem under

the MAFC decision function that is the opposite of what

human patients with contrast-related vision deficits struggle

with. There is a positive aspect to this finding — while

diminished contrast sensitivity may induce night-blindness in

a human driver, CNN-based autonomous driving systems can

be expected to operate more effectively in the dark.

Cross-Perturbation Comparison. To facilitate comparison

across perturbations, we generated one summary plot for each

set of 2AFC (Fig. 2 right) and MAFC (Fig. 3 bottom-right)

experiments. Each plot is generated using an area under the

item-response curve (AUIRC) summary statistic, calculated

with a midpoint Riemann sum and then normalized to unit

space. This is similar in spirit to area under the curve in

an ROC setting. A bar representing perfect performance has

y = 1.0. A benefit of using AUIRC allows comparisons

across perturbations without making assumptions about the

underlying shape of the item-response curve. While model per-

formance can effectively be compared using AUIRC, caution

should be taken when comparing unbounded parameters (e.g.,

σ for Gaussian blur) as such a comparison is dependent on

the selected bound the experimenter has chosen.

Dropout Experiments. The experiments we have looked

at thus far assume deterministic outputs. What about settings

with stochastic outputs that support uncertainty in decision

making? Gal and Ghahramani [43] introduced dropout at

testing time to implement Bayesian inference in neural net-

works. What sort of variability does this lead to under various

transformations and perturbation levels, and what does this

tell us about the certainty of the experiments above? The

setup for these experiments is identical to the setup for the

MAFC experiments (including preferred views) except that

during evaluation we applied dropout at test time to the Caffe

version of AlexNet (which was also trained with dropout).

Deploying the pre-trained model for each test, we dropped

out 50% (because the model is large) of the neurons in layers

fe6 and fe7 by uniformly randomly setting their activations

to zero. This is repeated with 5 different random seeds for

each transformation except salt & pepper noise and linear

occlusion, which were not performed due to randomness in

their underlying perturbation functions.

As anticipated, some variability in the base model perfor-

mance was introduced (Fig. 4 and Supp. Figs. 17-20). But

importantly, most runs still demonstrated a large measure of

consistency (e.g., Fig. 4) across the ranges of perturbations,

indicating higher degrees of model certainty. This is a good

stability property — when a model fails, it does so in an

expected way across different dropout configurations, lending

credibility to the initial characterizations of the behavior in

the earlier experiments. More variability was observed for

the rendered objects versus the natural scenes. This can be

attributed to the use of the 3D objects that were outside of the

training set for all of the models. The maximum difference

observed between points from two runs for any transformation

was 16.5% for sharpness applied to 3D objects (Supp. Fig. 19).

In over half the cases, the maximum difference was over 10%.

Human Comparisons. Using psychophysics, model perfor-
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Fig. 3. A selection of item-response curves for the MAFC task. (Top) natural scenes. (Bottom-Left and Center) rendered scenes. The top-left can be directly
compared to the top-center as well as the bottom-left to its corresponding plot in Fig. 2. (Bottom-Right) MAFC summary plot for VGG-16.

mance can be directly compared to human performance. To ob-

tain human data points (red dots) for Figs. 2-4, we conducted

a study with 24 participants (21 for contrast). Each participant

performed the 2AFC task as described above, but to mitigate

fatigue, only 5 trials with a fixed psychophysical parameter

setting were given for each of the transformations from Fig. 2.

The participants also performed the MAFC task, but were

limited to 3 choices instead of the full 1000 classes to make the

task tractable. For those experiments, participants performed in

5 trials with a fixed psychophysical parameter setting for each

transformation in Fig. 3. The original images for each trial

were chosen randomly from the VGG-16 preferred views such

that each class was only used one time for each participant in

order to prevent participants from learning while performing

the task. For all trials on both tasks, the sample images were

presented for 50ms and subjects had unlimited time to answer.

Even without generating a full psychometric curve for

the human subjects, it was apparent that only two out of

eleven experiments showed any relative consistency between

human and model performance (Fig. 2 left and brightness

increasing in Supp. Fig. 1). While human performance was

superior to model performance in most cases, there were two

cases where humans were worse than the models: decreasing

contrast (Fig. 3 left; for analysis, see MAFC experiments) and

increasing brightness (Supp. Fig. 3). Brightness adjustment in

image processing is a constant multiplicative change to all the

pixel values, which preserves edges and allows the networks

to recognize the geometry of an object almost until saturation

is reached. Humans were also good at this task, but were still

∼9% worse than VGG-19 for the perturbation level analyzed.

V. DISCUSSION

In visual psychophysics, we have a convenient and practical

alternative to traditional dataset evaluation. However, the use

of psychophysics testing and datasets are not mutually exclu-

sive. One needs datasets to form a training basis for any data-

driven model. Moreover, there is major utility to having a large

amount of such data — this is essential for making machine

learning capture enough intraclass variance to generalize well

to unseen class instances. Data augmentation [6], [46] is

an obvious strategy for leveraging the rendered images that

were problematic for a model during psychophysics testing

to expand the scope of the training set. However, this has

diminishing returns as datasets grow to sizes that exceed

available memory (or even disk space) during training. Using

more limited training data and reinforcement learning that

optimizes over item-response curves to correct for recognition

errors is likely a better path forward.

Recent research has shown that CNNs are able to predict

neural responses in the visual cortex of primates [32]. This,

coupled with excellent benchmark dataset results across multi-

ple recognition domains, suggests that good progress is being

made towards reaching human-like performance. As a strong

counterpoint, our psychophysics experiments show that the

current most popular CNN models sometimes fail to correctly

classify images that humans do not make mistakes on. What

is missing from the models that is causing this behavioral

discrepancy? With psychophysics as a guide, we can more

easily discover what is missing — making it harder for us to

be fooled by the person inside of the Chinese room.
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Fig. 4. Item-response curves for five different runs of an AlexNet model with
dropout applied at test time [43] for a 3D rotation transformation. The black
line indicates the mean of the five AlexNet curves. The maximum difference
between points on any two curves in this plot is 12.2%.
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